Lecture 16: Cache Memories

* Last Time
- AMAT - average memory access time
- Basic cache organization

- Today
- Take QUIZ 12 over P&H 5.7-10 before 11:59pm today
- Read 5.4, 5.6 for 3/25
- Homework 6 due Thursday March 25, 2010

- Hardware cache organization
- Reads versus Writes
- Cache Optimization

UTCS 352, Lecture 16

Cache Memory Theory

Small fast memory + big
slow memory

Looks like a big fast
memory

Small M,
Fast
Big
Slow

UTCS 352, Lecture 16

The Memory Hierarchy

Latency Bandwidth
‘ Registers ‘ 1 cyc 3-10 words/cycle compiler managed
CPU I < 1KB
Chip 1-3c 1-2 words/cycle hard d
y words/cycle ardware manage
‘ Level 1 Cache ‘ 39KB -1MB
‘ Level 2 Cache ‘ 5-10cy 1 word/cycle hardware managed
1MB - 4MB
Chips I
30-100cy 0.5 words/cycle OS managed
‘ DRAM ‘ 64MB - 4GB
F Disk j 106-107cy 0.01 words/cycle OS managed
4GB+

Mechanical

Direct Mapped

e Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)

0123 456 7

0 123 456 7 8 910111213 14151617 1819 20 2122 23 24 2526 27 28 29 30 31

UTCS 352, Lecture 16 4

Fully Associative

* Each block mapped to any cache location

Cache location = any

0123 456 7

"

0 123 456 7 8 910111213 14151617 1819 20 2122 23 24 2526 27 28 29 30 31

UTCS 352, Lecture 16 5

Set Associative

e Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0123 456 7

A 2-way set associative = 2 blocks in set
Set 0 2 3 This example: 4 sets

0 123 456 7 8 910111213 14151617 1819 20 2122 23 24 2526 27 28 29 30 31

UTCS 352, Lecture 16 6

How do we use memory address
to find block in the cache?

UTCS 352, Lecture 16

How Do We Find a Block in The Cache?

Our Example:
- Main memory address space = 32 bits (= 4GBytes)

- Block size = 4 words = 16 bytes
- Cache capacity = 8 blocks = 128 bytes

block address
32 bit Address e A N
tag index block offset
28 bits 4 bits

index = which set

tag = which data/instruction in block

block offset = which word in block

tag/index bits determine the associativity

tag/index bits can come from anywhere in block address

UTCS 352, Lecture 16

Finding a Block: Direct-Mapped

r
S
Entries
<
3
\.
25 ~ /
| Tag [index| Hit Data
Address

With cache capacity = 8 blocks

UTCS 352, Lecture 16

Finding A Block: 2-Way Set-Associative

S - sets 2 elements per set
. .
A - elements in each set _~— -
A-way associative A
S5=4, A=2 Sets
—

2-way associative

8-entry cache , < 7 %

26

Address Hit

— =
I Tag Ilndexl l l

Data

UTCS 352, Lecture 16 10

Finding A Block: Fully Associative

=R=R= @:Yr/

T T
— v 5T 1

iz
Address
Data

UTCS 352, Lecture 16 11

Set Associative Cache - cont'd

All of main memory is + Low address bits select set
divided into S sets - 2 in example
- All addresses inset Nmap . High address bits are tag,
to same set of the cache used to associatively
* Addr=Nmod S search the selected set

- A locations available

Shares costly comparators
across sefts

Extreme cases
- A=1l: Direct mapped cache
- 5=1: Fully associative

A need not be a power of 2

UTCS 352, Lecture 16 12

Cache Organization

Address
27 95 90 99 96
15 11 12 13 14
42 75 74 73 72
86 33 35 31 37
Valid W .
bits —~N

Data

- Where does a block get placed? - DONE
e How do we find it? - DONE

 Which one do we replace when a new one is brought in?
 What happens on a write?

UTCS 352, Lecture 16

Which Block Should Be Replaced on Miss?

Direct Mapped

- Choice is easy - only one option

Associative
- Randomly select block in set to replace
- Least-Recently used (LRU)

Implementing LRU
- 2-way set-associative
- >2 way set-associative

UTCS 352, Lecture 16

14

What Happens on a Store?

* Need to keep cache consistent with main memory
- Reads are easy - no modifications
- Writes are harder - when do we update main memory?

Write-Through

- On cache write - always update main memory as well

- Use a write buffer to stockpile writes to main memory for
speed

Write-Back

- On cache write - remember that block is modified (dirty
bit)

- Update main memory when dirty block is replaced

- Sometimes need to flush cache (I/0, multiprocessing)

UTCS 352, Lecture 16 15

BUT: What if Store Causes Miss!

Write-Allocate

- Bring written block into cache
- Update word in block
- Anticipate further use of block

No-write Allocate
- Main memory is updated
- Cache contents unmodified

UTCS 352, Lecture 16

16

Improving cache performance

UTCS 352, Lecture 16

17

How Do We Improve Cache Performance?

AMAT = thit + pml’SS ° penalz:ymiss

UTCS 352, Lecture 16

18

How Do We Improve Cache Performance?

AMAT = thit + pm,-SS ° penaltymiss

Reduce hit time
Reduce miss rate
Reduce miss penalty

UTCS 352, Lecture 16

19

Questions to think about

» As the block size goes up, what happens to the
miss rate?

.. what happens to the miss penalty?
.. what happens to hit time?

- As the associativity goes up, what happens to the
miss rate?

.. what happens to the hit time?

UTCS 352, Lecture 16 20

Reducing Miss Rate: Increase Associativity

Reduce conflict misses

Rules of thumb
- 8-way = fully associative
- Direct mapped size N = 2-way set associative size N/2

But!
- Size N associative is larger than Size N direct mapped
- Associative typically slower that direct mapped (,,; larger)

UTCS 352, Lecture 16 21

Reducing Hit Time

Make Caches small and simple
- Hit Time = 1 cycle is good (3.3ns!)
- L1- low associativity, relatively small

Even L2 caches can be broken into sub-banks
- Can exploit this for faster hit time in L2

UTCS 352, Lecture 16

22

Reducing Miss Rate: Increase Block Size

* Fetch more data with each cache miss
- 16 bytes = 64, 128, 256 bytes!
- Works because of Locality (spatial)

25
1K —— 4K
= 16K - 64K
-8 256K
20
o 15
=)
©
(1’4
[7)]
L
= 10
5
n . =]
S — -
0 ‘ ‘
¥ " o 128 256
Block Size

UTCS 352, Lecture 16

Reduce Miss Penalty: Transfer Time

Should we transfer the whole block at once?

Wider path to memory

- Transfer more bytes/cycle

- Reduces total time to transfer block
- Limited by wires

Two ways to do this:
- Wider path to each memory
- Separate paths to multiple memories
“multiple memory banks"

Block size and transfer unit not necessarily equall

UTCS 352, Lecture 16

24

Reduce Miss Penalty: Deliver Critical word first

Only need one word from block immediately

LW R3,8 (RS)\

0 1 2 3

Don't write entire word into cache first
- Fetch word 2 first (deliver to CPU)
- Fetchorder: 2301

UTCS 352, Lecture 16 25

Reduce Miss Penalty: More Cache Levels

Average access time =
HitTime ; + MissRate ; * MissPenalty;

MiSSPenGH’yLl -
HitTime , + MissRate , * MissPenalty,,

etc.
Size/Associativity of higher level caches?

L1 | > L2 < L3

UTCS 352, Lecture 16 26

Reduce Miss Penalty: Read Misses First

+ Let reads pass writes in Write buffer

SW 512 (RO) ,R3
LW R1,1024 (RO)
LW R2,512 (RO)

CPU

Tag

i

Data

write buffer MAIN MEMORY

UTCS 352, Lecture 16 27

Reduce Miss Penalty:
Lockup (nonblocking) Free Cache

* Let cache continue to function while miss is being

CPU

serviced
LW +— MISS
R1,1024 (RO)
LW R2,512 (RO)
Tag LW R2,512 (RO)
Data

i

UTCS 352, Lecture 16

write

buffer

LW R1,1024 (RO)

MAIN MEMORY

28

Reducing Miss Rate: Prefetching

Fetching Data that you will probably need

Instructions
- Alpha 21064 on cache miss
* Fetfches requested block intro instruction stream buffer
* Fetfches next sequential block into cache
Data
- Automatically fetch data into cache (spatial locality)
- TIssues?

Compiler controlled prefetching
- Inserts prefetching instructions to fetch data for later use
- Registers or cache

UTCS 352, Lecture 16 29

Reducing Miss Rate: Use a "Victim" Cache

Small cache (< 8 fully associative entries)
- Jouppi 1990
- Put evicted lines in the victim FIRST
- Search in both the L1 and the victim cache
- Accessed in parallel with main cache
- Captures conflict misses

A 4

Tag

6

i

N
v

Victim

A@S L1

UTCS 352, Lecture 16

v

CPU

30

VC: Victim Cache Example

Given direct mapped L1 of 4 enftries,
fully associative 1 entry VC 5 | CPU
Address access sequence N = -
8,9.10,11,8,12,9,10, 11, 12, 8 S N
A A A Ll g
—><):? Victim
A B C

First access to 12 misses, put 8 in VC,
put 12 in L1, third access to 8 hits in VC

After: A B C
E 12 12
g 9 9
= 10 10
L 11 8 11 8
L1 Victim L1 Victim L1 Victim

UTCS 352, Lecture 16 31

Summary

Recap
- Using a memory address to find location in cache
- Deciding what to evict from the cache
- Improving cache performance

Next Time
- Homework 6 is due March 25, 2010
- Reading: P&H 5.4,5.6

- Virtual Memory
- TLBs

UTCS 352, Lecture 16

32

