
1

UTCS 352, Lecture 18
 1

Lecture 18: Virtual Memory

•  Administration
–  Take QUIZ 14 over P&H 5.6, 11-13 before 11:59pm today
–  Homework 7 due Thursday April 1, 2010 no joke 
–  Exam April 6 (review April 1)

•  Last Time
–  Virtual memory abstractions
–  Basics of segments and paging

•  Today
–  Integration of virtual memory into cache hierarchy
–  DRAM memory organization, TLBs

UTCS 352, Lecture 18
 2

Paging: Chop the program up into pages, load
 each page on demand in any page frame

Code

Data

Stack

Memory

Page memory
number address

one entry per page

Page
Frames

Code

Data

Stack

Process
divided into pages

1
2
3
4
5
6
7
8

Logical Page Table

(not to scale, page table is much
 smaller than the process!)

2

UTCS 352, Lecture 18
 3

Page Fault

User Program Runs
Page fault

OS requests page

Disk read

2nd User Program Runs
Disk interrupt

OS Installs page

User program
resumes

UTCS 352, Lecture 18
 4

valid
 Physical Page Number

What else can we put in this table?

•  What if we want a page to be read-only?
•  What if we want a page to only hold instructions?
•  What if we want to keep track of “dirty” pages?
•  What if we want to track frequently used pages?

3

UTCS 352, Lecture 18
 5

VM Requires Hardware

•  Restartable (or resumable) instructions
–  must be able to resume program after recovering from a

 page fault

•  Ability to mark a page not present
–  and raise a page fault when referencing such a page

•  (Optional) Maintain status bits per page
–  R - referenced - for use by replacement algorithm
–  M - modified - to determine when page is dirty
–  OS can store these elsewhere if need be

UTCS 352, Lecture 18
 6

Page Frame Management

•  OS maintains
–  page table for each user

 process
–  page frame table
–  free page list

•  pages evicted when
 number of free pages
 falls below a low water
 mark.

–  pages evicted using a
 replacement policy
•  random, FIFO, LRU, clock

–  if M-bit is clear, need not
 copy the page back to disk

Page Frame Table

Link R M State

Free

Proc 1

4

UTCS 352, Lecture 18
 7

Page Management and Thrashing

•  Need to keep a process’
 working set in memory or
 thrashing will occur

•  Find working set size by
 increasing page frame
 allocation until Page
 faults/ms falls below limit

•  Swap out whole process if
 insufficient page frames
 for working set

W

X

Y

Z

X

Y

Z

W

Y

Z

W

X

Example: Reference four pages
 in sequence, mapped to three
 page frames

UTCS 352, Lecture 18
 8

Page table organization

5

UTCS 352, Lecture 18
 9

Page Table Organization

Flat page table has size proportional
 to size of virtual address space
–  can be very large for a machine

 with 64-bit addresses and
 several processes

Three solutions
–  page the page table (fixed

 mapping)
•  what really needs to be

 locked down?
–  multi-level page table (lower

 levels paged - Tree)
–  inverted page table (hash table)

PTP

2n-o

UTCS 352, Lecture 18
 10

Multi-Level Page Table

PTP

Dir1 Dir2 Page offset

Directory
Directory

Page
Directory

Page
Table

Example: 42-bit VA with 12-bit offset
10-bits for each of three fields
1024 4-byte entries in each table (one page)

Virtual Address

6

UTCS 352, Lecture 18
 11

Inverted Page Tables

•  Only store table entries for
 pages in physical memory

•  Miss in page table implies page
 is on disk

•  Usual hash-table rules apply:
–  Hash table should not be full
–  Rule of thumb: at least twice

 as many hash table entries as
 there are pages in memory.

Virtual Address
Page Offset

Hash Page Frame S

=

Frame Offset

OK

UTCS 352, Lecture 18
 12

Summary so far

•  Virtual memory provides
–  Illusion of private memory system for each process
–  Protection
–  Relocation in memory system
–  Demand paging

•  But – page tables can be large
–  Motivates: paging page tables, multi-level tables, inverted

 page tables

•  Next:
–  How can we improve performance of page tables?

7

UTCS 352, Lecture 18
 13

How Long does it Take to Access VM?

•  Problems
–  Multiple memory and potentially disk accesses
–  Can we use cache for the page-table access? How?

Issue Load
 Walk page

table

Translate

VA⇒PA

Fetch data

using PA

Best Case

Worst Case

Issue Load
 Use data
Walk page

table

Fetch PTE from disk
 Fetch data page from disk
 Install new page,

update page table
 Use data

UTCS 352, Lecture 18
 14

Use a cache: Translation Lookaside Buffers

•  Store most frequently used
 translations in small, fast
 memory (cache for page
 table entries)

•  Valid, Writeable,
 Referenced, Modified
–  Access protection
–  Replacement strategies

•  Size – often 128 entries
•  Highly associative

 (sometimes fully assoc.)

PID VPN Offset

TLB

V W R M VPN PPN

PPN Offset Page = VPN

Frame = PPN

8

UTCS 352, Lecture 18
 15

“Rare” Behavior in VM system

•  TLB Miss
–  Translation is not in TLB – but everything could be in

 memory
–  Two approaches

•  Hardware state machine walks the page table
–  fast but inflexible

•  Exception raised and software walks the page table
•  Page Fault

–  Entry not in TLB and target page not in main memory
•  Worst case

–  Page fault and page table and target page

UTCS 352, Lecture 18
 16

Reducing TLB misses

•  Same type of optimizations as for cache
–  Associativity (many TLBs are fully associative)
–  Capacity – TLBs tend to be 32-128 entries

•  Adjust page size
–  Small pages

•  Reduces internal fragmentation
•  Speeds page movement to/from disk

–  Large pages
•  Can cover more physical memory with same number of

 TLB entries
–  Solution – typically have a variable page size

•  Select by OS, 4KB-256KB (superpages)
•  AMD “Barcelona” supports 1 GB pages!

9

UTCS 352, Lecture 18
 17

Combining virtual memory
with conventional caching

UTCS 352, Lecture 18
 18

Virtual Memory + Caching

•  Conflicting demands:
–  Convenience of flexible memory management (translation)
–  Performance of memory hierarchy (caching)

•  Requires cooperation of O/S
–  Data in cache implies that data is in main memory

•  Combine VM and Caching
–  Where do we put the Cache and the TLB????

10

UTCS 352, Lecture 18
 19

Physically Addressed Cache

•  Translate first from VA ⇒ PA
•  Access cache with PA

•  Problems?

CPU
 Cache

LW R1,0(R2)

Virtual Addr.

64 bits

Physical Addr.

48 bits

 TLB
 DRAM

UTCS 352, Lecture 18
 20

Virtually Addressed Cache

•  Access cache first
•  Only translate if going to main memory

•  Problems?

CPU
 Cache

LW R1,0(R2)

Virtual Addr.

32 bits

Physical Addr.

26 bits

 TLB
 DRAM

11

UTCS 352, Lecture 18
 21

Virtually addressed caches give aliasing problems

•  Can occur when switching among multiple address
 spaces

•  Synonym aliasing
–  Different VAs point to the same PA
–  Occurs when data shared among multiple address spaces
–  One solution – always translate before going to the cache

•  Homonym aliasing
–  Same VA point to different PAs
–  Occurs on context switching
–  Two solutions:

•  Flush TLB on process switch/system call
•  TLB includes process ID

UTCS 352, Lecture 18
 22

Best of Both Worlds:

Virtually addressed, Physically Tagged

•  Parallel Access

•  Eliminate synonym problem

CPU

Cache

LW R1,0(R2)

Virtual Addr.

64 bits

Physical Addr.

48 bits

 TLB

DRAM

12

UTCS 352, Lecture 18
 23

Virtual Index, Physical Tag

UTCS 352, Lecture 18
 24

Other Aliasing Solutions

•  Note virtually indexed/physically tagged put
 constraints on cache capacity, page size, etc.

•  Other solutions:
–  21264: 8KB pages, 64KB i-cache, 2-way set associative

•  Aliases could reside in 8 different places in cache
•  On cache miss, invalidate any possible aliases in cache

–  Intel Pentium 4
•  Virtually indexed/virtually tagged cache
•  Check for TLB misses off line (roll back if necessary)

13

UTCS 352, Lecture 18
 25

Virtual Memory Summary

•  Relocation, Protection
•  Apparent memory size >> DRAM capacity

•  Translation
–  From large VA space to smaller PA space
–  Page tables hold translations

•  Provides
–  Separation of memory management from user programs
–  Ability to use DRAM as cache for disk
–  Fast translation using Translation Lookaside Buffer (TLB)

•  Cache for page table
–  Speed - translate in parallel with cache lookup

UTCS 352, Lecture 18
 26

Recap: caches and virtual memory

•  Two basic ideas:
–  Indirection (data = memory[table[address]])
–  Caching

•  Caches
–  Uses caching idea

•  Virtual memory
–  Uses indirection to convert virtual->physical address
–  Uses caching to store active pages in DRAM,

inactive pages on disk
–  Uses caching to store active page translations in TLB

14

UTCS 352, Lecture 18
 27

Virtual memory “cache” policies

•  Write back
•  Fully associative
•  Clever replacement policies, implemented in SW

UTCS 352, Lecture 18
 28

Summary

•  Virtual memory: the illusion of a memory as large
as the disk!

•  Next Time
–  Exam Review!
–  Bring your questions

•  Exam April 6, open notes

