
1

UTCS 352, Lecture 24
 1

Lecture 24: Parallelism

•  Administration
–  Take QUIZ 18 over P&H 7.6-13, before 11:59pm today
–  Project: Cache Simulator, Due April 29, 2010

•  Last Time
–  Where do architectures exploit parallelism?
–  What are the implications for programming models?
–  What are the implications for communication?
–  … for caching?

•  Today
–  What are the implications for caching and

communication?

UTCS 352, Lecture 24
 2

Remember Amdahl’s Law

2

Granularity of Parallelism
Too Hot, Too Cold, or Just Right?

•  Fine grain parallel architectures
–  Lots of instruction & data communication

•  Instructions/data all on the same chip
•  Communication latency is very low, order of cycles

•  Coarse grain parallel architectures
–  Lots and lots of independent data & work
–  Rarely or never communicate, because communication is

 very, very expensive
•  Multicore is betting there are applications with

–  Medium grain parallelism (i.e., threads, processes, tasks)
–  Not too much data, so it wont swamp the memory system
–  Not too much communication (100 to 1000s of cycles

 across chip through the memory hierarchy)
UTCS 352, Lecture 24
 3

Shared Memory Multicore
Programming Model

 4

CPU 1

L1 Data Cache

PC

L1 I Cache

CPU 2

L1 Data Cache

PC

L1 I Cache

Shared Memory

Example: Two threads running on
 two CPUs

Communicate implicitly by
 accessing shared global state

Example: both threads access
 shared variable X

Must synchronize accesses to X
 thread 1 thread 2
 withdrawal(wdr) { deposit(dep) {
 lock(l) lock(l)
 if X > wdr X = X + dep
 X = X – wdr bal = X
 bal = X unlock(l)
 unlock(l)
 return bal

X

X X

UTCS 352, Lecture 24

3

Shared Memory Cache Coherence Problem

•  Two threads share variable X
•  Hardware

–  Two CPUs, write-through caches

Time
step

Event CPU 1’s
cache

CPU 2’s
cache

Memory

0 10

1 CPU 1 reads X 10 10

2 CPU 2 reads X 10 10 10

3 CPU 1 writes 1 to X 5 10 5

UTCS 352, Lecture 24
 5

Memory Consistency Models

•  When are writes seen by other processors?
–  “Seen” means a read returns the written value
–  Can not be instantaneous!

•  Assumptions
–  A write completes only when all processors have

 seen it
–  A processor does not reorder writes with other

 accesses
•  Consequence

–  P writes X then writes Y
⇒ all processors that see new Y also see new X

–  Processors can reorder reads, but not writes
UTCS 352, Lecture 24
 6

4

Cache Coherence Defined

Sequential Coherence
Reads return most recently written value

Formally
•  P writes X; P reads X (no intervening writes)
⇒ read returns written value

•  P1 writes X; P2 reads X
⇒ read returns written value
–  c.f. CPU 2 reads X = 5 after step 3 in example

•  P1 writes X, P2 writes X
⇒ all processors see writes in the same order
–  End up with the same final value for X

UTCS 352, Lecture 24
 7

Cache Coherence Protocols

Operations performed by multiprocessors to
 ensure cache coherence

•  Migration of data to local caches
–  Reduces bandwidth for shared memory

•  Find the correct data
Bus Based Snooping protocols
•  Popular, but scales poorly
Hierarchical & Directory-based protocols
•  Scale better, but require more state and

 complexity

UTCS 352, Lecture 24
 8

5

Bus Based Snooping Protocols

•  Caches connected to a bus
•  Caches “snoop” bus to know what the other caches

 are doing
•  Act on other cache actions
•  Cache line bits for “state” of sharing
•  States: Modified, Exclusive, Shared, Invalid
•  Finite state machine logic determines actions

 based on current state and request (read or
 write)

UTCS 352, Lecture 24
 9

Bus Based Protocol Architecture

 10

CPU 1
L1 Data Cache

PC

L1 I Cache

Shared Memory

X

CPU 2
L1 Data Cache

PC

L1 I Cache

X X

Bus

snooping
adaptor

UTCS 352, Lecture 24

6

MEI: Most Basic Snooping Protocol

•  Lots of messages, invalidations, does not support
 write back

•  Protocol letters MEI encode cache block (line) state
Modified – this block is modified in cache (dirty bit)
Exclusive – this block is a read only copy
Invalid – this block is invalid (valid bit)

UTCS 352, Lecture 24

M E I

processor
 read

processor
 read/write

bus
read/write

processor
read

processor
 write

bus read/write bus read/write

processor
write

 11

MEI Example
Only one cache ever holds a block in M or E state
Supports write back at invalidation time

CPU activity Bus activity CPU 1’s
cache

CPU 2’s
cache

Memory

10
CPU 1 reads X Cache miss for X 10
CPU 2 reads X Cache miss for X 10
CPU 1 writes 5 to X Invalidate for X
CPU 2 read X Cache miss for X

UTCS 352, Lecture 24
 12

7

MEI Example
Only one cache ever holds the data in either M or E

 mode
Supports write back at invalidation time

CPU activity Bus activity CPU 1’s
cache

CPU 2’s
cache

Memory

10
CPU 1 reads X Cache miss for X 10 (E) 10
CPU 2 reads X Cache miss for X 10 (I) 10 (E) 10
CPU 1 writes 5 to X Invalidate for X 5 (M) 10 (I) 10
CPU 2 read X Cache miss for X 5 (I) 5 (X) 5

UTCS 352, Lecture 24
 13

MSI: Better, but still basic snooping protocol

•  Used in SGI 4D processor
•  Supports sharing & write back
•  Supports readX: read exclusive, only one cache can

 contain the line
•  Protocol letters MSI encode cache block (line) state

Modified – block modified in cache & inconsistent with
 backing store (memory or cache). Cache must write block
 back on eviction.

Shared – block in at least one cache & unmodified
Invalid – block invalid

UTCS 352, Lecture 24
 14

8

MSI State Diagram

Modified – block modified in cache & inconsistent with backing store
 (memory or cache). Cache must write block back on eviction.

Shared – block in at least one cache & unmodified
Invalid – block invalid

UTCS 352, Lecture 24

M S I

processor/bus
 read

processor
 read/write processor /bus

read/readX

bus read
 flush

bus write/readX flush

bus readX/write

processor write

processor
 write

 15

MSI Example

Multiple caches may hold a block in S state
Only one cache holds a block in M state
Supports write back at invalidation time

CPU activity Bus activity CPU 1’s
cache

CPU 2’s
cache

Memory

10
CPU 1 reads X Cache miss for X 10
CPU 2 reads X Cache miss for X 10
CPU 1 writes 5 to X Invalidate for X
CPU 2 read X Cache miss for X

UTCS 352, Lecture 24
 16

9

MSI Example

Multiple caches may hold a block in S state
Only one cache holds a block in M state
Supports write back at invalidation time

CPU activity Bus activity CPU 1’s
cache

CPU 2’s
cache

Memory

10
CPU 1 reads X Cache miss for X 10 (S) 10
CPU 2 reads X Cache miss for X 10 (S) 10 (S) 10
CPU 1 writes 5 to X Invalidate for X 5 (M) 10 (I) 10
CPU 2 read X Cache miss for X 5 (I) 5 (S) 5

UTCS 352, Lecture 24
 17

MESI & MEOSI Snooping Protocol

Modified – block modified in cache & inconsistent
 with backing store (memory or cache). Cache
 must write block back on eviction.

Owner – cache owns block & can modify it without
 a bus message

Exclusive – block only in this cache & unmodified
Shared – block in at least one other cache &

 unmodified
Invalid – block invalid

UTCS 352, Lecture 24
 18

10

Industry Cache Coherence Implementations

Intel: MESI
AMD: MOESI
Sun Microsystems: JBus (MOESI)

UTCS 352, Lecture 24
 19

Granularity of Parallelism = Cost of Communication
Too Hot, Too Cold, or Just Right?

•  Fine grain parallel architectures
–  Instructions/data all on the same chip
–  Communication latency is very low, order of 1-2 cycles

•  Coarse grain parallel architectures
–  Lots and lots of independent data & work
–  Rare communication, communication is very expensive

•  Multicore
–  Medium grain parallelism
–  Not too much data & data with good locality, so threads wont

 swamp the memory system
–  Not too much communication (100 to 1000s of cycles across

 chip through the memory hierarchy)
–  Shared data in caches leads to lots of communication
–  Explicitly send messages instead of shared memory? Is that

 programming model too hot?

UTCS 352, Lecture 24

 20

11

UTCS 352, Lecture 24
 21

Summary

•  Parallelism
–  Granularities
–  Implications for programming models
–  Implications for communication
–  Implications for caches

•  Next Time
–  Doug Burger, EDGE architectures

•  Parallelism and single thread performance
–  Optional readings

``An Evaluation of the TRIPS Computer System,'’ M. Gebhart et al.,
The ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 1-12,
March, 2009. Best paper award.

``Scaling to the End of Silicon with EDGE Architectures,'' Burger et
al., IEEE Computer, pp. 44 - 55, July, 2004.

