
More Data Flow Analysis

Last Time

• Data Flow Analysis

• Data Flow Frameworks

• Constant Propagation Framework

• Reaching Definitions

Today

Iterative Worklist Algorithm via Reaching Definitions

• Why it works

• What it computes

CS 380C Lecture 4 1 Data Flow Analysis

Work List Iterative Algorithm

for v ∈V
IN(v) = /0
OUT(v) = GEN(v)

endfor
worklist ← v ∈V
while (worklist 6= /0)

pick and remove a node v from worklist

oldout(v) = OUT(v)

IN(v) =
S

(OUT(p)), p ∈ PRED(v)

OUT(v) = GEN(v)
S

(IN(v) - KILL(v))

if oldout(v) 6= OUT(v) then
worklist ← worklist ∪ SUCC(v)

endwhile

CS 380C Lecture 4 2 Data Flow Analysis

Work List Iterative Algorithm

Questions

• Does this always terminate?

• How fast (or slow) is it?

• What answer does it compute?

• How fast can we make it?

CS 380C Lecture 4 3 Data Flow Analysis

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions

1. each node is initialized to /0
2. a definition has only one statement that generates

it

3. F is associative ⇒ F is monotone

⇒ each x ∈ Reaching definitions can be added once

4. N ∗ (E +1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?

CS 380C Lecture 4 4 Data Flow Analysis

Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block b

MOP(b) = ⊓ fp(⊤), for all paths p “reaching” b

• Paths that reach a block are reachable in the
control flow graph, which may be conservative.

• Perfect Solution = meet over real paths taken
during program execution

• MOP ≤ Perfect Solution

• In some sense, MOP is best feasible solution

• Not guaranteed to achieve MOP solution

• MOP is undecidable, even for monotonic
framework

• Reduction to Modified Post’s Correspondence
Problem

Reference: “Monotone Data Flow Analysis
Frameworks,” J.B. Kam and J.D. Ullman, Acta
Informatica 7:305-317, 1977.

CS 380C Lecture 4 5 Data Flow Analysis

Quality of Solution

Maximal Fixed Point (MFP)

• Any iterative data-flow problem that satisfies
admissible function requirements when it
converges to a solution and terminates, will have
reached a Maximal Fixed Point solution.

• MFP is unique, regardless of order of propagation

• If distributive, MFP = MOP

• Otherwise, MFP ≤ MOP

• So, MFP ≤ MOP ≤ Perfect Solution

CS 380C Lecture 4 6 Data Flow Analysis

How fast can we make the iterative algorithm?

Execution time of iterative framework

• For each basic block: # successors (predecessors)
+ constant bit vector operations

• Number of visits to basic block: length of longest
acyclic path

• What is the complexity equation? O(n2)

Where is unnecessary work being performed?

• Iteration over every node on each pass.

• Testing for altered sets on each pass.

• Extra pass to detect stabilization.

Problem: Nodes may be visited in any order

Reference: “Analysis of a Simple Algorithm for Global
Flow Problems,” M. Hecht and J. Ullman, Proceedings
of the ACM Conference on Principles of Programming
Languages, Oct. 1973.

CS 380C Lecture 4 7 Data Flow Analysis

Examples

1

2

3

4

1

2

3 4

CS 380C Lecture 4 8 Data Flow Analysis

How fast can we make the iterative algorithm?

To avoid unnecessary work:

• Bound number of visits by visiting a node roughly
after all its predecessors

(reverse PostOrder for forward data-flow problem;
conceptually, PostOrder for backward problem).

• Change to algorithm:

change = true;
while (change)

change = false;
for each basic block in rPostOrder:

solve for b
if (old 6= new) change = true;

end for
end while

• How does this improve performance?

CS 380C Lecture 4 9 Data Flow Analysis

PostOrder and Reverse PostOrder

Step1: PostOrder

main()
count = 1;
Visit (root);

Visit(n)
mark n as visited
for each successor s of n not yet visited

Visit(s);
PostOrder(n) = count;
count = count + 1;

Step 2: rPostOrder

for each node n
rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search ≈ rPostOrder

CS 380C Lecture 4 10 Data Flow Analysis

“Rapid” Data-Flow Problems

Necessary and sufficient condition for “rapid”
stabilization of iterative framework:

∀ f ,g ∈ F ,∀x ∈ L, f g(⊥)� g(⊥)⊓ f (x)⊓ x

An equivalent condition:

∀ f ∈ F ,∀x ∈ L, f (x)� x⊓ f (⊤)

For Reaching Definitions:

f (x)
?
� x⊓ f (⊤)

a∪ (x−b)
?
� x∪ (a∪ (⊤−b))

a∪ (x−b)
?
� x∪a

x−b � x

⇒ Reaching definitions is rapid

“Rapid” data-flow problems stabilize in at most
d(G)+2 passes over the control flow graph, (iff for
forward problems you use rPostOrder, and backwards
problems use PostOrder).

CS 380C Lecture 4 11 Data Flow Analysis

Loop Interconnectiveness

• d(G) = maximum number of retreating edges on
any acyclic path on graph G

• d is the degree of loop interconnectiveness

• d is unique for reducible flow graphs

1

2

3

4

1

2

3 4

CS 380C Lecture 4 12 Data Flow Analysis

Node Listing

key: iterate exactly enough times to transmit
information along any simple paths of CFG.

A node listing [Kennedy 75]

l = (v1,v2, . . .vm)

requires that every simple path in CFG is in sequence
in l, i.e., if p = (x1,x2, . . .xk) is a simple path then

(∃ j1, j2, . . . jk)| ji < ji+1 and xi = n ji
,1≤ i≤ k,

∀ CFG,∃ node listing of length≤ n2,n = |V |

For a large class of graphs (which ones?), there is an
O(n) listing.

CS 380C Lecture 4 13 Data Flow Analysis

Node Listing

1

2

3

4

1

2

3

4

5

CS 380C Lecture 4 14 Data Flow Analysis

“Rapid” Data-Flow Problems

Property of “rapid” data-flow problems

• the “rapid” condition means information stabilizes
in two passes around a loop

• d+1 iterations to propagate data, 1 iteration to
detect stability

• in practice, d(G) is less than 3 [Knuth]

• in practice, iterative algorithms make a small
number of passes

• each pass computes

– O(E) meets (sets of size |de f s|)
– and O(N) other operations

• Effectively O(n) complexity

Data-flow hierarchy

“rapid” ⊂ “fast” ⊂ distributive ⊂ monotone

References: “Global Data Flow Analysis and Iterative
Algorithms,” J.B. Kam and J.D. Ullman, Journal of
the ACM, 23(1), Jan. 1976.

CS 380C Lecture 4 15 Data Flow Analysis

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

• the domain and its size

• size of a single fact

• forward or backward problem

• model of characteristic function

Representation

• Sets represented by bit vector

• Size of each bit vector:

– Available Expressions: # distinct expressions
in program

– Reaching Definitions: # definitions in program

– Live Variable Analysis: # variables in program

Complexity

• distinguish bit-vector steps from logical steps

• watch out for complex mappings (GEN→ KILL)

CS 380C Lecture 4 16 Data Flow Analysis

Summary

• Iterative data-flow framework used to solve global
data-flow problems.

• Use semi-lattice to represent facts.

• Analysis on semi-lattice with finite descending
chains and monotone data-flow framework
guarantees termination.

• Monotonic data-flow framework guarantees MFP
solution reached.

• Distributivity property necessary to guarantee
MOP solution reached.

• rPostOrder (or PostOrder) for “rapid” data-flow
problems guarantees bound of O(n(d+2))
complexity.

CS 380C Lecture 4 17 Data Flow Analysis

Next Time

• Live Variable Analysis (backward problem)

• Constant Propagation

Reading: Wegman & Zadeck, Constant Propagation
with Conditional Branches, ACM Transactions on
Programming Languages and Systems, 13:2, April
1991, pp. 181-210.

CS 380C Lecture 4 18 Data Flow Analysis

