More Data Flow Analysis Work List Iterative Algorithm

Last Time
for veV
e Data Flow Analysis IN(v) (=) 0 W
OUT(v) = GEN(v
e Data Flow Frameworks endfor
e Constant Propagation Framework worklist «— veVv

while ( worklist #0 )
pick and remove a node v from worklist

oldout(v) = OUT(v)
IN(v) = U (OUT(p)), pe PRED(v)

Reaching Definitions

Today
OUT(v) = GEN(v) U (IN(v) - KILL(v))
Iterative Worklist Algorithm via Reaching Definitions if oldout(v) # OUT(v) then
worklist «— worklist U SUCC(v)
e Why it works endwhile

e What it computes
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Work List Iterative Algorithm

Questions

Does this always terminate?

How fast (or slow) is it?

What answer does it compute?
How fast can we make it?
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Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions
1. each node is initialized to 0

2. a definition has only one statement that generates
it

3. # is associative = ¥ is monotone
= each x& Reaching definitions can be added once

4. Nx(E+1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?
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Correctness and Quality of Solution Quality of Solution

Does it compute the answer we want? Maximal Fixed Point (MFP)

e Any iterative data-flow problem that satisfies
admissible function requirements when it
converges to a solution and terminates, will have
reached a Maximal Fixed Point solution.

Definition: For each basic block b

MOP(b) = nfy(T), for all paths p “reaching” b

e Paths that reach a block are reachable in the e MFP is unique, regardless of order of propagation
control flow graph, which may be conservative.
e If distributive, MFP = MOP

e Perfect Solution = meet over real paths taken

during program execution e Otherwise, MFP < MOP
e MOP < Perfect Solution e So, MFP < MOP < Perfect Solution
e In some sense, MOP is best feasible solution

e Not guaranteed to achieve MOP solution

e MOP is undecidable, even for monotonic
framework

e Reduction to Modified Post’'s Correspondence
Problem

Reference: '“*Monotone Data Flow Analysis
Frameworks,” J.B. Kam and J.D. Ullman, Acta
Informatica 7:305-317, 1977.
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How fast can we make the iterative algorithm?

Execution time of iterative framework

e For each basic block: # successors (predecessors)
—+ constant bit vector operations

e Number of visits to basic block: length of longest
acyclic path

e What is the complexity equation? o(n?)
Where is unnecessary work being performed?

e Iteration over every node on each pass.

e Testing for altered sets on each pass.

e Extra pass to detect stabilization.

Problem: Nodes may be visited in any order

Reference: “Analysis of a Simple Algorithm for Global
Flow Problems,” M. Hecht and J. Ullman, Proceedings
of the ACM Conference on Principles of Programming
Languages, Oct. 1973.
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Examples
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How fast can we make the iterative algorithm?

To avoid unnecessary work:

e Bound number of visits by visiting a node roughly
after all its predecessors

(reverse PostOrder for forward data-flow problem;
conceptually, PostOrder for backward problem).

e Change to algorithm:

change = true;
while (change)
change = false;
for each basic block in rPostOrder:
solve for b
if (old # new) change = true;
end for
end while

e How does this improve performance?
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PostOrder and Reverse PostOrder

Stepl: PostOrder

main()
count = 1;
Visit (root);
Visit(n)

mark n as visited

for each successor s of n not yet visited
Visit(s);

PostOrder(n) = count;

count = count 4+ 1;

Step 2: rPostOrder

for each node n
rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search ~ rPostOrder
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“Rapid” Data-Flow Problems

Necessary and sufficient condition for “rapid”
stabilization of iterative framework:
vi,ge F,vxel, fg(L)>=g(L)nf(x)mnx

An equivalent condition:

Vier,Wxel, f(x)=xmf(T)

For Reaching Definitions:

f(x) § XM f(T)
aU(x—b) = xU(au(T—b))
au(x—b) 2 xua

X—b > X

= Reaching definitions is rapid

“Rapid” data-flow problems stabilize in at most
d(G)+2 passes over the control flow graph, (iff for
forward problems you use rPostOrder, and backwards
problems use PostOrder).
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Loop Interconnectiveness

e d(G) = maximum number of retreating edges on

any acyclic path on graph G

e d is the degree of loop interconnectiveness

e d is unique for reducible flow graphs
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Node Listing

key: iterate exactly enough times to transmit
information along any simple paths of CFG.

A node listing [Kennedy 75]
I = (v1,V2,... Vi)

requires that every simple path in CFG is in sequence
inl, i.e., if p=(Xy,X,...X) is a simple path then

(EljlajZa'-'jk)lji < ji+l and X = njmlg [ < ka

Vv CFG,3 node listing of length <n2n=|V|

For a large class of graphs (which ones?), there is an
O(n) listing.
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Node Listing

\‘

CS 380C Lecture 4

14

Data Flow Analysis



“Rapid” Data-Flow Problems

Property of “rapid”’ data-flow problems

e the “rapid” condition means information stabilizes
in two passes around a loop

e d-1 iterations to propagate data, 1 iteration to
detect stability

e in practice, d(G) is less than 3 [Knuth]

e in practice, iterative algorithms make a small
number of passes

e each pass computes

— O(E) meets (sets of size |defs|)
— and O(N) other operations

e Effectively O(n) complexity

Data-flow hierarchy

“rapid”’ C “fast” C distributive € monotone

References: “Global Data Flow Analysis and Iterative
Algorithms,” J.B. Kam and J.D. Ullman, Journal of
the ACM, 23(1), Jan. 1976.
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Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

e the domain and its size

e size of a single fact

e forward or backward problem

e model of characteristic function

Representation

e Sets represented by bit vector

e Size of each bit vector:

— Available Expressions: # distinct expressions

in program

— Reaching Definitions: # definitions in program

— Live Variable Analysis: # variables in program

Complexity

e distinguish bit-vector steps from logical steps

e watch out for complex mappings ( GEN— KILL)
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Summary Next Time

e Iterative data-flow framework used to solve global e Live Variable Analysis (backward problem)

data-flow problems. e Constant Propagation

e Use semi-lattice to represent facts. Reading: Wegman & Zadeck, Constant Propagation
with Conditional Branches, ACM Transactions on
e Analysis on semi-lattice with finite descending Progirammlng I_2anguages and Systems, 13:2, April
chains and monotone data-flow framework 1991, pp. 181-210.

guarantees termination.

e Monotonic data-flow framework guarantees MFP
solution reached.

e Distributivity property necessary to guarantee
MOP solution reached.

e rPostOrder (or PostOrder) for “rapid” data-flow
problems guarantees bound of O(n(d+2))
complexity.
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