More Data Flow Analysis

Last Time

- Data Flow Analysis
- Data Flow Frameworks
- Constant Propagation Framework
- Reaching Definitions

Today

Iterative Worklist Algorithm via Reaching Definitions

1

- Why it works
- What it computes

Work List Iterative Algorithm

for $v \in V$ $IN(v) = \emptyset$ OUT(v) = GEN(v)endfor worklist $\leftarrow v \in V$ while (worklist $\neq \emptyset$) pick and remove a node v from worklist oldout(v) = OUT(v) $IN(v) = \bigcup (OUT(p)), p \in PRED(v)$ $OUT(v) = GEN(v) \bigcup (IN(v) - KILL(v))$ if oldout(v) $\neq OUT(v)$ then worklist \leftarrow worklist \cup SUCC(v) endwhile

CS 380C Lecture 4

Data Flow Analysis

CS 3

CS 380C Lecture 4

2

Work List Iterative Algorithm

Questions

- Does this always terminate?
- How fast (or slow) is it?
- What answer does it compute?
- How fast can we make it?

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions

- 1. each node is initialized to \emptyset
- 2. a definition has only one statement that generates it
- 3. ${\mathcal F}$ is associative $\Rightarrow {\mathcal F}$ is monotone
 - \Rightarrow each $x \in Reaching \ definitions$ can be added once
- 4. N * (E+1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?

CS 380C Lecture 4

1

3

Data Flow Analysis

CS 380C Lecture 4

4

Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block *b*

 $MOP(b) = \sqcap f_p(\top)$, for all paths p "reaching" b

- Paths that reach a block are reachable in the control flow graph, which may be conservative.
- Perfect Solution = meet over *real* paths taken during program execution
- MOP \leq Perfect Solution
- In some sense, MOP is best feasible solution
- Not guaranteed to achieve MOP solution
- MOP is undecidable, even for monotonic framework
- Reduction to Modified Post's Correspondence
 Problem

Data Flow Analysis

Reference: "Monotone Data Flow Analysis Frameworks," J.B. Kam and J.D. Ullman, Acta Informatica 7:305-317, 1977.

CS 380C Lecture 4 5

Quality of Solution

Maximal Fixed Point (MFP)

- Any iterative data-flow problem that satisfies admissible function requirements when it converges to a solution and terminates, will have reached a Maximal Fixed Point solution.
- MFP is unique, regardless of order of propagation
- If distributive, MFP = MOP
- Otherwise, MFP \leq MOP
- So, MFP \leq MOP \leq Perfect Solution

CS 380C Lecture 4

6

How fast can we make the iterative algorithm?

Execution time of iterative framework

- For each basic block: # successors (predecessors)
 + constant bit vector operations
- Number of visits to basic block: length of longest acyclic path
- What is the complexity equation? $O(n^2)$

Where is unnecessary work being performed?

- Iteration over every node on each pass.
- Testing for altered sets on each pass.
- Extra pass to detect stabilization.

Problem: Nodes may be visited in any order

Reference: "Analysis of a Simple Algorithm for Global Flow Problems," M. Hecht and J. Ullman, Proceedings of the ACM Conference on Principles of Programming Languages, Oct. 1973.

Data Flow Analysis

CS 380C Lecture 4 7

Examples

CS 380C Lecture 4

1

8

How fast can we make the iterative algorithm?

To avoid unnecessary work:

• Bound number of visits by visiting a node roughly *after* all its predecessors

(reverse PostOrder for forward data-flow problem; conceptually, PostOrder for backward problem).

• Change to algorithm:

```
change = true;
while (change)
    change = false;
    for each basic block in rPostOrder:
        solve for b
        if (old ≠ new) change = true;
        end for
end while
```

9

• How does this improve performance?

PostOrder and Reverse PostOrder

Step1: PostOrder

```
main()
count = 1;
Visit (root);
```

```
Visit(n)
  mark n as visited
  for each successor s of n not yet visited
     Visit(s);
  PostOrder(n) = count;
     count = count + 1;
```

Step 2: rPostOrder

for each node n
 rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search \approx rPostOrder

CS 380C Lecture 4

Di

Data Flow Analysis

CS 380C Lecture 4

10

"Rapid" Data-Flow Problems

Necessary and sufficient condition for "rapid" stabilization of iterative framework:

 $\forall f, g \in \mathcal{F}, \forall x \in L, \quad fg(\bot) \succeq g(\bot) \sqcap f(x) \sqcap x$

An equivalent condition:

$$\forall f \in \mathcal{F}, \forall x \in L, \quad f(x) \succeq x \sqcap f(\top)$$

For Reaching Definitions:

$$f(x) \stackrel{?}{\succeq} x \sqcap f(\top)$$

$$a \cup (x-b) \stackrel{\succ}{\geq} x \cup (a \cup (\top-b))$$

$$a \cup (x-b) \stackrel{\succeq}{\geq} x \cup a$$

$$x-b \stackrel{\succeq}{\geq} x$$

 \Rightarrow Reaching definitions is *rapid*

"Rapid" data-flow problems stabilize in at most d(G)+2 passes over the control flow graph, (iff for forward problems you use rPostOrder, and backwards problems use PostOrder).

11

CS SOUC LECTURE 4	CS	380C	Lecture	4
-------------------	----	------	---------	---

Data Flow Analysis

Loop Interconnectiveness

- d(G) = maximum number of retreating edges on any acyclic path on graph G
- *d* is the degree of *loop interconnectiveness*
- *d* is unique for *reducible* flow graphs

Node Listing

key: iterate exactly enough times to transmit information along any *simple paths* of *CFG*.

A node listing

[Kennedy 75]

$$l = (v_1, v_2, \dots v_m)$$

requires that every simple path in *CFG* is in sequence in *l*, *i.e.*, if $p = (x_1, x_2, ..., x_k)$ is a simple path then

$$(\exists j_1, j_2, \dots j_k) | j_i < j_{i+1} \text{ and } x_i = n_{j_i}, 1 \le i \le k,$$

 \forall *CFG*, \exists node listing of length $\leq n^2, n = |V|$

For a large class of graphs (which ones?), there is an O(n) listing.

13

Node Listing

D

Data Flow Analysis

CS 380C Lecture 4

14

"Rapid" Data-Flow Problems

Property of "rapid" data-flow problems

- the "rapid" condition means information stabilizes in two passes around a loop
- d+1 iterations to propagate data, 1 iteration to detect stability
- in practice, d(G) is less than 3 [Knuth]
- in practice, iterative algorithms make a small number of passes
- each pass computes
 - O(E) meets (sets of size |defs|)
 - and O(N) other operations
- Effectively *O*(*n*) complexity

Data-flow hierarchy

"rapid" $\,\subset\,$ "fast" $\,\subset\,$ distributive $\,\subset\,$ monotone

References: "Global Data Flow Analysis and Iterative Algorithms," J.B. Kam and J.D. Ullman, Journal of the ACM, 23(1), Jan. 1976.

Data Flow Analysis

CS 380C Lecture 4 15

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

- the domain and its size
- size of a single fact
- forward or backward problem
- model of characteristic function

Representation

- Sets represented by bit vector
- Size of each bit vector:
 - Available Expressions: # distinct expressions in program
 - Reaching Definitions: # definitions in program
 - Live Variable Analysis: # variables in program

Complexity

- distinguish bit-vector steps from logical steps
- watch out for complex mappings ($\mathsf{GEN}{\rightarrow}$ KILL)

CS 380C Lecture 4 16 Data Flow Analysis

Summary

- Iterative data-flow framework used to solve global data-flow problems.
- Use semi-lattice to represent facts.
- Analysis on semi-lattice with finite descending chains and monotone data-flow framework guarantees termination.
- Monotonic data-flow framework guarantees MFP solution reached.
- Distributivity property necessary to guarantee MOP solution reached.
- rPostOrder (or PostOrder) for "rapid" data-flow problems guarantees bound of O(n(d+2)) complexity.

17

Next Time

- Live Variable Analysis (backward problem)
- Constant Propagation

Reading: Wegman & Zadeck, Constant Propagation with Conditional Branches, ACM Transactions on Programming Languages and Systems, 13:2, April 1991, pp. 181-210.

CS 380C Lecture 4

D

Data Flow Analysis

CS 380C Lecture 4

18