More Data Flow Analysis Work List Iterative Algorithm

Last Time
for veV
e Data Flow Analysis IN(v) (=) 0 W
OUT(v) = GEN(v
e Data Flow Frameworks endfor
e Constant Propagation Framework worklist «— veVv

while (worklist #0)
pick and remove a node v from worklist

oldout(v) = OUT(v)
IN(v) = U (OUT(p)), pe PRED(v)

Reaching Definitions

Today
OUT(v) = GEN(v) U (IN(v) - KILL(v))
Iterative Worklist Algorithm via Reaching Definitions if oldout(v) # OUT(v) then
worklist «— worklist U SUCC(v)
e Why it works endwhile

e What it computes

CS 380C Lecture 4 1 Data Flow Analysis CS 380C Lecture 4 2 Data Flow Analysis

Work List Iterative Algorithm

Questions

Does this always terminate?

How fast (or slow) is it?

What answer does it compute?
How fast can we make it?

CS 380C Lecture 4 3

Data Flow Analysis

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions
1. each node is initialized to 0

2. a definition has only one statement that generates
it

3. # is associative = ¥ is monotone
= each x& Reaching definitions can be added once

4. Nx(E+1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?

CS 380C Lecture 4 4 Data Flow Analysis

Correctness and Quality of Solution Quality of Solution

Does it compute the answer we want? Maximal Fixed Point (MFP)

e Any iterative data-flow problem that satisfies
admissible function requirements when it
converges to a solution and terminates, will have
reached a Maximal Fixed Point solution.

Definition: For each basic block b

MOP(b) = nfy(T), for all paths p “reaching” b

e Paths that reach a block are reachable in the e MFP is unique, regardless of order of propagation
control flow graph, which may be conservative.
e If distributive, MFP = MOP

e Perfect Solution = meet over real paths taken

during program execution e Otherwise, MFP < MOP
e MOP < Perfect Solution e So, MFP < MOP < Perfect Solution
e In some sense, MOP is best feasible solution

e Not guaranteed to achieve MOP solution

e MOP is undecidable, even for monotonic
framework

e Reduction to Modified Post’'s Correspondence
Problem

Reference: '“*Monotone Data Flow Analysis
Frameworks,” J.B. Kam and J.D. Ullman, Acta
Informatica 7:305-317, 1977.

CS 380C Lecture 4 5 Data Flow Analysis CS 380C Lecture 4 6 Data Flow Analysis

How fast can we make the iterative algorithm?

Execution time of iterative framework

e For each basic block: # successors (predecessors)
—+ constant bit vector operations

e Number of visits to basic block: length of longest
acyclic path

e What is the complexity equation? o(n?)
Where is unnecessary work being performed?

e Iteration over every node on each pass.

e Testing for altered sets on each pass.

e Extra pass to detect stabilization.

Problem: Nodes may be visited in any order

Reference: “Analysis of a Simple Algorithm for Global
Flow Problems,” M. Hecht and J. Ullman, Proceedings
of the ACM Conference on Principles of Programming
Languages, Oct. 1973.

CS 380C Lecture 4 7 Data Flow Analysis

Examples

CS 380C Lecture 4

Data Flow Analysis

How fast can we make the iterative algorithm?

To avoid unnecessary work:

e Bound number of visits by visiting a node roughly
after all its predecessors

(reverse PostOrder for forward data-flow problem;
conceptually, PostOrder for backward problem).

e Change to algorithm:

change = true;
while (change)
change = false;
for each basic block in rPostOrder:
solve for b
if (old # new) change = true;
end for
end while

e How does this improve performance?

CS 380C Lecture 4 9 Data Flow Analysis

PostOrder and Reverse PostOrder

Stepl: PostOrder

main()
count = 1;
Visit (root);
Visit(n)

mark n as visited

for each successor s of n not yet visited
Visit(s);

PostOrder(n) = count;

count = count 4+ 1;

Step 2: rPostOrder

for each node n
rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search ~ rPostOrder

CS 380C Lecture 4 10 Data Flow Analysis

“Rapid” Data-Flow Problems

Necessary and sufficient condition for “rapid”
stabilization of iterative framework:
vi,ge F,vxel, fg(L)>=g(L)nf(x)mnx

An equivalent condition:

Vier,Wxel, f(x)=xmf(T)

For Reaching Definitions:

f(x) § XM f(T)
aU(x—b) = xU(au(T—b))
au(x—b) 2 xua

X—b > X

= Reaching definitions is rapid

“Rapid” data-flow problems stabilize in at most
d(G)+2 passes over the control flow graph, (iff for
forward problems you use rPostOrder, and backwards
problems use PostOrder).

CS 380C Lecture 4 11 Data Flow Analysis

Loop Interconnectiveness

e d(G) = maximum number of retreating edges on

any acyclic path on graph G

e d is the degree of loop interconnectiveness

e d is unique for reducible flow graphs

CS 380C Lecture 4

12

Data Flow Analysis

Node Listing

key: iterate exactly enough times to transmit
information along any simple paths of CFG.

A node listing [Kennedy 75]
I = (v1,V2,... Vi)

requires that every simple path in CFG is in sequence
inl, i.e., if p=(Xy,X,...X) is a simple path then

(EljlajZa'-'jk)lji < ji+l and X = njmlg [< ka

Vv CFG,3 node listing of length <n2n=|V|

For a large class of graphs (which ones?), there is an
O(n) listing.

CS 380C Lecture 4 13 Data Flow Analysis

Node Listing

\‘

CS 380C Lecture 4

14

Data Flow Analysis

“Rapid” Data-Flow Problems

Property of “rapid”’ data-flow problems

e the “rapid” condition means information stabilizes
in two passes around a loop

e d-1 iterations to propagate data, 1 iteration to
detect stability

e in practice, d(G) is less than 3 [Knuth]

e in practice, iterative algorithms make a small
number of passes

e each pass computes

— O(E) meets (sets of size |defs|)
— and O(N) other operations

e Effectively O(n) complexity

Data-flow hierarchy

“rapid”’ C “fast” C distributive € monotone

References: “Global Data Flow Analysis and Iterative
Algorithms,” J.B. Kam and J.D. Ullman, Journal of
the ACM, 23(1), Jan. 1976.

CS 380C Lecture 4 15 Data Flow Analysis

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

e the domain and its size

e size of a single fact

e forward or backward problem

e model of characteristic function

Representation

e Sets represented by bit vector

e Size of each bit vector:

— Available Expressions: # distinct expressions

in program

— Reaching Definitions: # definitions in program

— Live Variable Analysis: # variables in program

Complexity

e distinguish bit-vector steps from logical steps

e watch out for complex mappings (GEN— KILL)

CS 380C Lecture 4

16

Data Flow Analysis

Summary Next Time

e Iterative data-flow framework used to solve global e Live Variable Analysis (backward problem)

data-flow problems. e Constant Propagation

e Use semi-lattice to represent facts. Reading: Wegman & Zadeck, Constant Propagation
with Conditional Branches, ACM Transactions on
e Analysis on semi-lattice with finite descending Progirammlng I_2anguages and Systems, 13:2, April
chains and monotone data-flow framework 1991, pp. 181-210.

guarantees termination.

e Monotonic data-flow framework guarantees MFP
solution reached.

e Distributivity property necessary to guarantee
MOP solution reached.

e rPostOrder (or PostOrder) for “rapid” data-flow
problems guarantees bound of O(n(d+2))
complexity.

CS 380C Lecture 4 17 Data Flow Analysis CS 380C Lecture 4 18 Data Flow Analysis

