Pretenuring for Java™

Presented by Maria Jump

Special Thanks to Steve Blackburn for the Power Point Presentation

Steve Blackburn, Sharad Singhai, Matthew Hertz,
Kathryn McKinley & Eliot Moss

Avrchitecture and Language Implementation Laboratory
Department of Computer Science, University of Massachusetts, Amherst

i

Where are they now?

e Steven M. Blackburn
— Senior Lecturer, Australia National University
e Sharad Singhai
— Sandbridge Technology
e Matthew Hertz
— Graduate Student, University of Mass., Amherst
e Kathryn S. McKinely
— Associate Professor, University of Texas at Austin

A&

P HE UNIVERSITY OF
University of Y e J. Eliot B. Moss
KAMassachusctts T E X 1'6‘1. S . . :
UMASS. Amherst AT AT — Associate Professor, University of Mass., Amherst
14 October 2003 CS395T — Memory Management
TEXAS
UMASS

Generational GC

B8 B3 BRARm =

‘nursery’ ‘older generation’

e Advantage:
—Fast allocation (via ‘bump pointer’)
— Cheap reclamation (en masse)
—Non-fragmenting
—Minimizes copying of older objects

14 October 2003 CS395T — Memory Management 3

GC Can Be Expensive

Percentage of time spent in GC

[—sPec 202 jess
|— spec 213 _javac
80%

SPEC_228_jack
70%4 health 6 128

|—psos

Percentage of time spent in GC

100 111 1.27 148 174 2.04 240 280 325

Heap size relative to minimum heap size (log scale)

14 October 2003 CS395T ~ Memory Management 4

A

>

A

UMASS.

Problem

Long lived objects copied at least once

14 October 2003 CS395T — Memory Management

UMASS.

Pretenuring

Allocate long lived objects directly into
older generation
— Identify long lived sites (via profiling)

[CHL98]
— Modify to allocate into older generation
R B
‘nursery’ ‘older generation’

14 October 2003

CS395T — Memory Management 6

Pretenuring: our Goals

* Apply pretenuring to Java

e Generalize:
~ A PRIHEBRRAEI U FOF Java
— program scales
— different programs

« Apply to different collectors
— Appel-style generational collector
— Older-first collector

14 October 2003 CS395T — Memory Management

mObject Lifetime Homogeneity

Ul

Pretenuring requires allocation site
lifetime homogeneity
—True for ML [CHL98]

—Not true for C (call chain is necessary)
[BZ93]

What about Java?

14 October 2003

CS395T — Memory Management 8

EX

A s

A

wmGC—neutraI Lifetime Statistics

(In the GC literature, ‘time’ is usually expressed in terms of al location, not seconds)

TEXAS

e Lifetime
— Time from birth to death of an object

— Expressed w.r.t. min heap size
e Time of death

— Expressed w.r.t. total allocation
« Use profiling

— Trace ‘birth’ and ‘death’ events

— Very frequent GCs (e.g. every 64K)

14 October 2003 CS395T — Memory Management 9

UMASS.

Discussion Question

» 64K granularity in GC Profiling

e What affects could profile granularity
have on the pretenuring decision?

14 October 2003 CS395T — Memory Management

A&

TEX AS

Three-way Classification

e Short
—Lived less than fraction s of a heap
e Immortal

— Lifetime is longer than ‘deathtime’ (exploit fact
that non-copied space is half cost of copied space)

e Long
— If neither short nor immortal

14 October 2003 CS395T — Memory Management 11

UMASS.

14 October 2003

Object Lifetime Demographics
SPEC _213_javac

0.80 Immortal
.o m\(ewe
s .
$ 0.60 e
3
5 *
@
£ 0.40 M4
= Long

Short

CS395T — Memory Management

A

3

m TEX

UMASS.

Mapping from Instance to Site

= Given 3 fractions: S;, L, & |, and a
homogeneity factor, H:
—If S;+ H; > L; + [site is short
—Else if S + Lt + H; > | site is long
— Otherwise site is immortal

14 October 2003 CS395T — Memory Management 13

& &

UMASS.

Discussion Question

» What other methods could be used to
decide to pretenure an allocation site?

14 October 2003 CS395T — Memory Management 14

Pretenuring Mechanics

» Generate advice file

—<class> <method> <offset> <[s]|l]i]>
e Supply advice to compiler

—Env. variable or command line option

— Compiler generates map

— Consults map for each new()

— Compiles in appropriate allocation code

14 October 2003 CS395T — Memory Management 15

CHL Pretenuring

e CHL pretenuring advice:
— Profile application using generational GC
— Any site where 80% of allocated instances
‘survive’ the nursery is long-lived
e Limitations
— Can't easily combine advice
— Collector-specific

14 October 2003 CS395T ~ Memory Management 16

7 Experimental Setting:

TEXAS

. Results
Jikes RVM
(formally known as Jalapefio) . i . i .
. . e UMass build-time advice is ‘true’ advice
e JVM written in Java (see 0OPSLA 99,00,01, PLDI 00,01) . . .
— High performance — Advice for each application based on profile
gn pet nce _ of remaining N-1 applications
— Aggressive optimizing compiler . R .
)) —Run-time advice is ‘self advice
— Flexible GC toolkit d50b h K
. . L]
< ‘Boot image’ contains core classes (class loader, Used 5 benchmarks
compiler etc.) —3 from SPEC JVM
— Opportunity for application-neutral pretenuring —1 from Olden
— (Additional to application-specific pretenuring) —IBM’s pBOB
* GCTk a 00 GC toolkit with run-time and « Measurements across 32 heap sizes
build-time ‘allocation advice’ implemented
14 October 2003 CS395T — Memory Management 17 14 October 2003 CS395T — Memory Management 18
TEXAS TEXAS
UMASS UMASS.
Mark/cons: geometric mean of 5 benchmarks GC time: geometric mean of 5 benchmarks
140% 120%
o [~ o e T e i e 7
% o :LCJ:ALBSS 1un & buld time PT e 110% 9 :;rfss run & build time PT
; g 100%
% 110% -9
2 2
5 100% fai; 90%
§ -
P 90% % 80%
g 80% 8
g 0% 4 70%
60% T T T T T T T 60% T T T T T T T
1.08 1.27 148 174 2.04 2.40 2.80 325 1.08 1.27 148 174 2.04 2.40 2.80 325
Heap size relative to minimum heap size (log scale) Heap size relative to minimum heap size (log scale)
14 October 2003 CS395T — Memory Management 19 14 October 2003 CS395T — Memory Management 20

m TEXAS

UMASS.

Execution time: geometric mean of 5 benchmarks

104%

1029% 4

100% 4

98%

96%

94% 4

UMass run time PT
——UMass build time PT

Execution time relative to no PT

TEXAS
UMass

Pretenuring in the Older First
GC Algorithm

» Older First [SMM99]
— Efficient new copying GC algorithm
— Different collection order to generational GC
— Different heap layout to generational GC

000] e e pT = We add a permanent space (for immortals)
—CHL
90%
1.08 127 1.48 1.74 204 2.40 2.80 3.25
Heap size relative to minimum heap size (log scale)
14 October 2003 CS395T — Memory Management 21 14 October 2003 CS395T — Memory Management 22
TEXAS TEX AR
umass Older First GC mass R
Execution time: geometric mean of 5 benchmarks CO n CI usions

105%
— « Java programs are suitable for pretenuring
2 oo < UMass pretenuring is general:
2 — Exploits ‘immortal’ objects
kic} . . o .
® — Combinable (suitable for build-time)
£ — Collector neutral
< - Applied to Jalapefio/Jikes RVM
[} UMass run time PT
& 70% 4 Unassbuld ime PT — Significant performance improvements

65% — Build-time pretenuring highly practical (significant

1.32 1.54 1.81 213 2.49 291 ope
Heap size relative to minimum heap size (log scale) beneflts WIthOUt appllcatlon proflllng)
14 October 2003 CS395T — Memory Management 23

14 October 2003 CS395T ~ Memory Management 24

14 October 2003

The End

CS395T — Memory Management

