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Generational GC
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‘nursery’ ‘older generation’

e Advantage:
—Fast allocation (via ‘bump pointer’)
— Cheap reclamation (en masse)
—Non-fragmenting
—Minimizes copying of older objects
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GC Can Be Expensive

Percentage of time spent in GC
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Heap size relative to minimum heap size (log scale)
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Problem

Long lived objects copied at least once
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Pretenuring

Allocate long lived objects directly into
older generation
— Identify long lived sites (via profiling)

[CHL98]
— Modify to allocate into older generation
R B
‘nursery’ ‘older generation’
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Pretenuring: our Goals

* Apply pretenuring to Java

e Generalize:
~ A PRIHEBRRAEI U FOF Java
— program scales
— different programs

« Apply to different collectors
— Appel-style generational collector
— Older-first collector
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mObject Lifetime Homogeneity

Ul

Pretenuring requires allocation site
lifetime homogeneity
—True for ML [CHL98]

—Not true for C (call chain is necessary)
[BZ93]

What about Java?
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wmGC—neutraI Lifetime Statistics

(In the GC literature, ‘time’ is usually expressed in terms of al location, not seconds)

TEXAS

e Lifetime
— Time from birth to death of an object

— Expressed w.r.t. min heap size
e Time of death

— Expressed w.r.t. total allocation
« Use profiling

— Trace ‘birth’ and ‘death’ events

— Very frequent GCs (e.g. every 64K)

14 October 2003 CS395T — Memory Management 9

UMASS.

Discussion Question

» 64K granularity in GC Profiling

e What affects could profile granularity
have on the pretenuring decision?

14 October 2003 CS395T — Memory Management

A&

TEX AS

Three-way Classification

e Short
—Lived less than fraction s of a heap
e Immortal

— Lifetime is longer than ‘deathtime’ (exploit fact
that non-copied space is half cost of copied space)

e Long
— If neither short nor immortal
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Object Lifetime Demographics
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Mapping from Instance to Site

= Given 3 fractions: S;, L, & |, and a
homogeneity factor, H:
—If S;+ H; > L; + [ site is short
—Else if S + Lt + H; > | site is long
— Otherwise site is immortal
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Discussion Question

» What other methods could be used to
decide to pretenure an allocation site?
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Pretenuring Mechanics

» Generate advice file

—<class> <method> <offset> <[s]|l]i]>
e Supply advice to compiler

—Env. variable or command line option

— Compiler generates map

— Consults map for each new()

— Compiles in appropriate allocation code
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CHL Pretenuring

e CHL pretenuring advice:
— Profile application using generational GC
— Any site where 80% of allocated instances
‘survive’ the nursery is long-lived
e Limitations
— Can't easily combine advice
— Collector-specific
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7 Experimental Setting:

TEXAS

. Results
Jikes RVM
(formally known as Jalapefio) . i . i .
. . e UMass build-time advice is ‘true’ advice
e JVM written in Java (see 0OPSLA 99,00,01, PLDI 00,01) . . .
— High performance — Advice for each application based on profile
gn pet nce _ of remaining N-1 applications
— Aggressive optimizing compiler . R .
) ) —Run-time advice is ‘self advice
— Flexible GC toolkit d50b h K
. . L ]
< ‘Boot image’ contains core classes (class loader, Used 5 benchmarks
compiler etc.) —3 from SPEC JVM
— Opportunity for application-neutral pretenuring —1 from Olden
— (Additional to application-specific pretenuring) —IBM’s pBOB
* GCTk a 00 GC toolkit with run-time and « Measurements across 32 heap sizes
build-time ‘allocation advice’ implemented
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Execution time: geometric mean of 5 benchmarks
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Execution time relative to no PT
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Pretenuring in the Older First
GC Algorithm

» Older First [SMM99]
— Efficient new copying GC algorithm
— Different collection order to generational GC
— Different heap layout to generational GC

000 ] e e pT = We add a permanent space (for immortals)
—CHL
90%
1.08 127 1.48 1.74 204 2.40 2.80 3.25
Heap size relative to minimum heap size (log scale)
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umass Older First GC mass R
Execution time: geometric mean of 5 benchmarks CO n CI usions

105%
— « Java programs are suitable for pretenuring
2 oo < UMass pretenuring is general:
2 — Exploits ‘immortal’ objects
kic} . . o .
® — Combinable (suitable for build-time)
£ — Collector neutral
< - Applied to Jalapefio/Jikes RVM
[} UMass run time PT
& 70% 4 Unassbuld ime PT — Significant performance improvements

65% — Build-time pretenuring highly practical (significant

1.32 1.54 1.81 213 2.49 291 . . . . ope
Heap size relative to minimum heap size (log scale) beneflts WIthOUt appllcatlon proflllng)
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The End
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