
Garbage Collection and the Case for
High-level Low-level Programming

Daniel Frampton

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

June 2010

c© Daniel Frampton 2010

Except where otherwise indicated, this thesis is my own original work.

Daniel Frampton
8 June 2010

to Kerryn.

Acknowledgments

This work would not have been possible without the generous support and assistance
of many individuals and organizations. I only hope that I have remembered to give
you all the credit you deserve.

First, I would like to thank my advisor, Steve, who has been amazing throughout
my candidature. He has provided me with incredible opportunities, encouraging me
to apply for internships, supporting me in attending several conferences. Most of all,
he has helped me to believe in and persist with my research—thank you.

I would also like to express my gratitude to those who have supported me fi-
nancially: the Australian National University, the Australian Government, IBM, and
Microsoft Research.

During my time as a student I have been lucky to be involved with several great
research communities, including DaCapo, Microsoft Research’s Singularity and Ad-
vanced Compiler Technology groups, and IBM’s Metronome group. Each of these
has helped to shape my research, and my involvement with them has been both
enjoyable and productive. Thanks specifically to Bjarne, Mark, Vivian and David at
MSR, to Dave, David, Mike and Perry at IBM, and to Amer, Eliot, Kathryn, Steve,
Tony, and the countless others in DaCapo that make it such a friendly and engaging
community.

I would also like to thank my fellow students, particularly Robin and Filip, with
whom I have worked most closely. I have greatly enjoyed our many intense discus-
sions and coding marathons, and look forward to more of the same in the future!

I would also like to express my gratitude to all the developers of Jikes RVM and
MMTk, past and present, without whom this research would not have been the same.

For offering to review previous versions of this document, thanks must go to Ker-
ryn, Steve, Kathryn, Luke, and Mira. The document is all the better for having your
attention, though as always, I claim exclusive ownership of any and all remaining er-
rors (as unlikely an occurence as this may be!). Particular thanks must go to Kerryn,
who not only spent countless hours reviewing my work, but also helped me to tame
Illustrator, and waded with me through countless poorly formatted BibTEX entries to
get my bibliography under control.

Last of all, I would like to recognize the vast amount of more personal support
that I have received throughout this endeavor. Thanks to my parents, Luke, Mira,
Danel, Jackie, all of my soccer buddies, and especially to Kerryn, who has helped to
make the whole process of finishing infinitely more enjoyable than it otherwise could
have been.

vii

Abstract

Modern high-level programming languages have helped to raise the level of abstrac-
tion at which software is written, increasing reliability and security, while also re-
ducing development costs. Despite the benefits afforded by high-level languages,
low-level applications—such as real-time applications and systems programs—have
bucked the general trend and continue to be overwhelmingly written in low-level
languages such as C. Software complexity is continuing to escalate, reliability and
security are now first-order concerns, and hardware is increasingly turning to more
radical designs to deliver performance increases. In this environment, the use of
low-level languages as the rule for low-level programming is becoming increasingly
questionable.

These trends raise the question: what is holding back the use of high-level lan-
guages for low-level applications? Two key technical barriers are: 1) the limited
expressiveness of high-level languages, which often intentionally abstract over de-
tail required to implement needed low-level functionality; and 2) the unique perfor-
mance requirements of low-level applications, which often demand a combination of
throughput, responsiveness, and predictability.

My thesis is that high-level languages can and should be used for low-level ap-
plications, improving security and reliability, reducing development cost, and com-
bating increasing hardware complexity.

I have addressed this challenge of high-level low-level programming through:
1) the development of high-performance garbage collection mechanisms and algo-
rithms, in particular those that deliver on the performance requirements of low-level
applications; and 2) the use and refinement of a suitably expressive high-level low-
level programming approach in the development of garbage collection techniques.

This thesis describes techniques to improve garbage collection performance and
introduces two novel garbage collection approaches—Cycle Tracing and Generational
Metronome—that provide the combination of throughput and responsiveness de-
manded by low-level applications. This thesis presents a framework for high-level
low-level programming that provides tools to construct new abstractions around rel-
evant low-level features. This thesis also draws on experience gained through engi-
neering garbage collectors, and shows how visualization can be an invaluable tool in
understanding, debugging, and evaluating complex software systems.

These contributions are reinforced through case studies, showing that high-level
low-level applications can meet strict performance requirements while maintaining the
benefits in design afforded by high-level languages. This work demonstrates that high-
level low-level programming is both possible and beneficial, leaving the most signif-
icant roadblock to adoption a cultural one, not a technical one.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Definitions . 1
1.2 Problem Statement . 1
1.3 Scope and Contributions . 2
1.4 Thesis Outline . 3

2 Garbage Collection 5
2.1 The Anatomy of a Garbage Collector . 5

2.1.1 Taxonomy of Garbage Collection Algorithms 7
2.1.1.1 Object Allocation . 7
2.1.1.2 Garbage Identification 8
2.1.1.3 Garbage Reclamation . 8

2.1.2 Canonical Algorithms . 9
2.1.2.1 Reference Counting . 9
2.1.2.2 Mark-Sweep . 10
2.1.2.3 Semi-Space . 10
2.1.2.4 Mark-Compact . 11
2.1.2.5 Mark-Region . 13

2.1.3 Generational Collection . 14
2.1.4 Barriers . 14

2.2 Garbage Collection for Low-level Programs 15
2.2.1 Measuring Garbage Collection Interference 15

2.2.1.1 Throughput . 15
2.2.1.2 Responsiveness and Predictability 16

2.3 Concurrent and Incremental Tracing Collection 17
2.3.1 The Tricolor Abstraction . 17
2.3.2 The Mutator–Collector Race . 18

2.3.2.1 Incremental-Update Algorithms 19
2.3.2.2 Snapshot-at-the-Beginning Algorithms 19

2.3.3 Incremental and Concurrent Copying 20
2.3.3.1 Incremental Copying Algorithms 20
2.3.3.2 Concurrent Copying Algorithms 21

2.4 Reference Counting Collection . 22

xi

xii Contents

2.4.1 Reducing Performance Overheads 23
2.4.1.1 Compiler Optimization 23
2.4.1.2 Deferred Reference Counting 23
2.4.1.3 Coalescing Reference Counting 23
2.4.1.4 Ulterior Reference Counting 24

2.4.2 Collecting Cyclic Garbage . 24
2.4.2.1 Backup Tracing . 24
2.4.2.2 Trial Deletion . 24

2.5 Real-Time Collection . 25
2.5.1 Metronome . 26

2.6 Summary . 27

3 High-Performance Garbage Collection 29
3.1 Effective Prefetch for Garbage Collection 30

3.1.1 Related Work . 30
3.1.2 Edge Enqueuing . 31
3.1.3 Buffered Prefetch . 31
3.1.4 Results . 32

3.2 Free-Me: Prompt Reclamation of Garbage 33
3.2.1 Related Work . 34
3.2.2 Runtime Mechanism . 34

3.2.2.1 Free List Implementation 35
3.2.2.2 Bump Pointer Implementations 35

3.2.3 Results . 36
3.2.3.1 Effectiveness of Analysis 36
3.2.3.2 Performance Evaluation 37

3.3 Summary . 39

4 Cycle Tracing 41
4.1 The Cycle Tracing Algorithm . 41

4.1.1 Base Backup Tracing Algorithm 42
4.1.2 A Lightweight Snapshot Write Barrier 43
4.1.3 Concurrency Optimization . 44
4.1.4 Marking Optimization . 47
4.1.5 Sweeping Optimization . 47
4.1.6 Interaction With The Reference Counter 47
4.1.7 Invocation Heuristics . 48

4.2 Evaluation . 48
4.2.1 Implementation Details . 48
4.2.2 Experimental Platform . 49
4.2.3 Benchmarks . 49
4.2.4 Throughput Limit Study . 50
4.2.5 Concurrency . 53
4.2.6 Overall Performance . 53

Contents xiii

4.3 Summary . 56

5 Generational Metronome 57
5.1 Real-Time Generational Collection . 57

5.1.1 Key Challenges . 58
5.1.2 Basic Structure . 59
5.1.3 Three Stage Nursery Life Cycle . 60
5.1.4 Incremental Nursery Collection 61

5.1.4.1 Outside Nursery Collection 61
5.1.4.2 Start of Nursery Collection 62
5.1.4.3 During Nursery Collection 63
5.1.4.4 End of Nursery Collection 64

5.1.5 Mature–Nursery Collection Interactions 65
5.1.5.1 Mature Collector References to the Nursery 66
5.1.5.2 Mark State of Promoted Objects 66
5.1.5.3 Sweeping Objects Stored in Remembered Sets 66

5.2 Analytical Model . 67
5.2.1 Definitions . 67
5.2.2 Steady-State Assumption and Time Conversion 68
5.2.3 Bounds for Non-Generational Metronome Collectors 68
5.2.4 Bounds for Our Generational Collector 69
5.2.5 Comparison with Syncopation . 72

5.3 Evaluation . 73
5.3.1 Generational versus Non-Generational Comparison 74
5.3.2 Dynamic Nursery Size . 76
5.3.3 Parametrization Studies . 76
5.3.4 Start-up versus Steady State Behavior 79

5.4 Summary . 79

6 High-level Low-level Programming 83
6.1 Low-level Programming . 83
6.2 High- versus Low-level Languages . 84
6.3 From Assembler to C . 84

6.3.1 Complexity Drives Change . 85
6.3.2 Cultural Resistance . 85

6.4 Looking Forward . 86
6.5 Related Work . 87

6.5.1 Fortifying a Low-level Language 87
6.5.2 Systems Programming Languages 88
6.5.3 Two-Language Approaches . 89
6.5.4 Extending High-level Languages for Low-level Programming . . 89

6.6 Summary . 91

xiv Contents

7 High-level Low-level Programming with org.vmmagic 93
7.1 The Approach . 93

7.1.1 Key Principles . 93
7.1.2 Requirements and Challenges . 95

7.1.2.1 Representing Data . 95
7.1.2.2 Extending the Semantics 97

7.2 A Concrete Framework . 98
7.2.1 Type-System Extensions . 99

7.2.1.1 Raw Storage . 99
7.2.1.2 Unboxed Types . 100

7.2.2 Semantic Extension . 100
7.2.2.1 Intrinsic Functions . 101
7.2.2.2 Semantic Regimes . 102

7.3 Deployment . 102
7.4 Summary . 103

8 High-Performance and Flexibility with MMTk 105
8.1 Why Java? . 105
8.2 Low-level Programming Requirements 106
8.3 Case Study: An Object Model for Heap Traversal 107

8.3.1 Original Design . 107
8.3.2 Solution . 107
8.3.3 Performance Evaluation . 109

8.4 Case Study: MMTk Harness . 110
8.4.1 Harness Architecture . 110
8.4.2 Usage Scenarios . 112

8.4.2.1 Unit Testing . 112
8.4.2.2 Garbage Collector Development 112

8.5 Summary . 113

9 Visualization with TuningFork 115
9.1 Introduction . 116
9.2 Related Work . 116
9.3 Requirements . 117
9.4 TuningFork Architecture . 118
9.5 Oscilloscope Figure . 119
9.6 Case Study: Unexpected Collector Scheduling Decisions 123
9.7 Summary . 124

10 Conclusion 125
10.1 Future Work . 126

10.1.1 Garbage Collection for Low-level Programs 126
10.1.2 High-level Low-level Programming 127

Contents xv

Bibliography 129

xvi Contents

List of Figures

2.1 An object graph, showing nodes, edges, and a root. 6
2.2 Bump pointer allocation. 7
2.3 Free list allocation. 8
2.4 An object graph showing reference counts and cyclic garbage. 10
2.5 Sliding compacting collection. 12
2.6 The mutator–collector race. 18
2.7 Adding an extra node to the mutator–collector race. 19

3.1 Core of tracing loop with node enqueuing. 30
3.2 Core of tracing loop with edge enqueuing. 31
3.3 Performance for node enqueuing across architectures and prefetch dis-

tances. 32
3.4 Performance for edge enqueuing across architectures and prefetch dis-

tances. 33
3.5 Total, garbage collection, and mutator time for mark-sweep (left) and

generational mark-sweep (right) systems using Free-Me. 38

4.1 A low-overhead write barrier to support coalescing reference counting. 43
4.2 Adding a cycle to the mutator–collector race. 46
4.3 Throughput limit study with varying invocation frequency. 51
4.4 Total, mutator, garbage collection, and cycle collection performance for

jess. 54
4.5 Total, mutator, garbage collection, and cycle collection performance for

javac. 55
4.6 Total, mutator, garbage collection, and cycle collection performance for

bloat. 56

5.1 Generational Metronome write barrier pseudo-code. 60
5.2 Initial sequence of nurseries progressing through the three stage life

cycle. 60
5.3 References created outside of a nursery collection. 61
5.4 State at the start of the collection of nursery Nk. 62
5.5 References that may be created during the collection of nursery Nk. . . 63
5.6 References that may exist after collection of nursery Nk is complete. . . 65
5.7 Time dilation due to generational collection causes additional alloca-

tion during a major heap collection, but attenuates all allocation by the
survival rate η(N). 70

xvii

xviii LIST OF FIGURES

5.8 Effect of changing nursery trigger for jess with an 8MB mature collec-
tion trigger. 77

5.9 Performance of jess with varying nursery trigger. 78
5.10 Memory usage over time of pjbb2000 under generational and non-

generational collection. 81

7.1 Unsafe code encapsulated within a safe method. 95
7.2 First attempt at an Address type. 98
7.3 Associating a one word payload with Address. 99
7.4 Unboxing with controlled field layout. 100
7.5 Use of intrinsics for Address. 101

8.1 Garbage collection performance for the production configuration before
and after the redesign. 108

8.2 Garbage collection performance for the full-heap mark-sweep configura-
tion before and after the redesign. 108

8.3 MMTk configured to run under a production virtual machine (left)
and the MMTk harness (right). 111

8.4 Virtualized version of Address. 111
8.5 MMTk harness unit test that creates cyclic garbage using the MMTk

harness scripting language. 113

9.1 The architecture of the TuningFork visualization platform. 118
9.2 Folding in the oscilloscope for a task with a period of 45.3515µs. 120
9.3 Oscilloscope view of unexpected and expected scheduling of collector

quanta (colors indicate the type of collection activity occurring, which
is not relevant to this discussion). 122

List of Tables

3.1 Effectiveness of Free-Me analysis, showing total allocation and the per-
centage of objects that could be freed by Free-Me and two more restric-
tive approaches. 37

3.2 Effectiveness of Free-Me analysis for hand-modified versions of three
benchmarks, showing further potential for the Free-Me approach. Per-
formance for original versions are shown in italics for comparison. . . . 37

4.1 Benchmark statistics showing total allocation, minimum heap size,
percentage allocated green (acyclic), and percentage collected due to
cyclic garbage. 49

4.2 Throughput limit study showing average costs per cycle collection for
backup tracing (invoked after every 8MB of allocation). 52

4.3 Throughput limit study showing average costs per cycle collection for
cycle tracing and trial deletion (invoked after every 8MB of allocation)
normalized to backup tracing. 52

5.1 Handling of reference mutations during nursery collections. 64
5.2 Absolute performance for full-heap collector. 74
5.3 Generational Metronome performance relative to full-heap collector. . . 75
5.4 Actual nursery size statistics showing dynamic nursery size variation. . 77

xix

xx LIST OF TABLES

Chapter 1

Introduction

This thesis addresses the problem of writing high-quality low-level software, asking
how we can—as well as why we need to—leverage high-level languages for low-level
programming tasks.

1.1 Definitions

We start by defining the use of the relative terms high-level language and low-level pro-
gramming in this thesis. We use high-level languages to describe languages that provide
type-safety, memory-safety, encapsulation, and strong abstractions over hardware.
We define low-level programming as that which requires transparent, efficient access
to the underlying hardware and/or operating system. Low-level programming in-
cludes a wide range of applications, but my focus has been on two key applications:
1) modern language runtimes; and 2) real-time systems.

1.2 Problem Statement

The complexity of computer hardware has increased dramatically, evolving from
simple in-order processors with uniform memory access to multicore, heterogeneous,
out-of-order, super-scalar processors with non-uniform cache hierarchies. The trend
of increasing complexity is only set to continue as hardware designers turn to multi-
and many-core designs in order to provide further performance increases [Agarwal
et al., 2000].

While perhaps the most confronting change is the increasing importance of con-
currency, there is also a trend towards heterogeneous systems with special pur-
pose cores. Notable examples include the synergistic processing elements in the
Cell [Kahle et al., 2005], the use of graphics processors for more general computa-
tion [Garland et al., 2008], and even the dynamic generation of custom processors
using FPGAs [Huang et al., 2008]. While the distinction between the cores in many
of these examples is quite clear, one can foresee a future in which large groups of
heterogeneous processor resources must be managed dynamically by the next gen-
eration of systems software.

1

2 Introduction

In addition to changes in hardware design, greater demands have been placed
on software in terms of complexity, with larger, more sophisticated software sys-
tems, and increased demands for reliability and security. These requirements are
extremely challenging for developers of low-level systems software in particular, be-
cause low-level software is the foundation on which application software is built;
without secure, scalable, and reliable low-level software, there is no hope to satisfy
software requirements into the future.

Earlier evolutions of computer hardware and software requirements demanded
a transition from assembly programming to languages such as C. As hardware and
software complexity continue to increase, application programmers are increasingly
choosing high-level languages such as C# and Java which raise the level of abstrac-
tion.

Modern high-level languages, which provide strong abstractions over hardware,
have helped to improve how software is written; high-level languages insulate pro-
grams from changes in hardware, provide concepts such as type- and memory-safety
to avoid key classes of programming error, and facilitate building large, secure, and
reliable applications in a modular and extensible manner. These high-level program-
ming trends have, for the most part, not yet reached low-level systems software.

There are exceptions, however, and I have been involved with three research
projects that seek to benefit from the application of high-level languages to low-level
programming tasks: IBM’s Jikes RVM1 (a Java virtual machine written in Java); Mi-
crosoft’s Singularity2 (an operating system written in C#); and IBM’s Metronome3 (to
allow real-time applications to be written in Java). Each of these projects has helped
to shape my research direction.

1.3 Scope and Contributions

Given the potential software engineering advantages of high-level languages, the
question one must ask is: “What is preventing the widespread adoption of high-level
languages for low-level programming?” The aim of my research has been to identify
roadblocks, and develop novel techniques to resolve them.

There are two sources of resistance to bringing high-level low-level programming
into the mainstream: technical and social. I seek only to address the technical issues,
and have identified three key areas in which the state of the art must be improved to
support the goal of high-level low-level programming:

Expressivity. The key to high-level languages is abstraction, yet this abstraction often
defeats one of the primary requirements of low-level programming: transpar-
ent access to detail. To enable high-level low-level programming, it is essential
for high-level languages to express necessary low-level aspects, without break-
ing the high-level language abstractions and thus negating the advantage of

1http://www.jikesrvm.org
2http://research.microsoft.com/en-us/projects/singularity/
3http://domino.research.ibm.com/comm/research_projects.nsf/pages/metronome.index.html

http://www.jikesrvm.org
http://research.microsoft.com/en-us/projects/singularity/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/metronome.index.html

§1.4 Thesis Outline 3

the language. This thesis describes an approach and a concrete framework,
org.vmmagic, for high-level low-level programming in Java.

Garbage collector performance. Low-level code places different demands on run-
time systems than general application software. While improvements in opti-
mizing compiler technology have largely resolved the issue of absolute code
performance, one of the key benefits of high-level languages—memory safety—
relies on garbage collection, which often yields undesirable performance char-
acteristics in terms of throughput, responsiveness, and predictability. This the-
sis describes techniques for improving collector performance, as well as two
novel garbage collection algorithms that aim to deliver the combination of
throughput and responsiveness demanded by low-level applications.

Development tools. The increase in hardware and software complexity has a direct
impact on the ability for developers to evaluate, understand, and debug sys-
tems. Ultimately, the correctness of a low-level program is judged by observed
behavior, however, increased complexity makes it difficult to observe and an-
alyze the behavior of low-level programs. Development tools, in particular
those that harness visualization techniques, are well suited to improving this
process. This thesis describes TuningFork, a visualization platform for debug-
ging and evaluating real-time applications running on a real-time Java virtual
machine.

This thesis details contributions in each of these areas, with research driven
through the development of novel garbage collection approaches for low-level pro-
grams, including experience using a high-level low-level programming approach.

1.4 Thesis Outline

The body of this dissertation is structured around two key elements arising from the
areas listed in the previous section: 1) garbage collection techniques and algorithms,
and 2) engineering low-level programs in high-level languages. Garbage collection is
discussed first as it provides needed context for the chapters that follow.

Chapter 2 provides an overview of garbage collection and surveys relevant gar-
bage collection literature. Chapters 3–5 detail contributions to improving garbage
collection approaches for low-level systems. Chapter 3 describes novel techniques to
improve overall collection performance by improving the performance of fundamen-
tal mechanisms, while Chapters 4 and 5 discuss new garbage collection algorithms.
Chapter 4 describes Cycle Tracing, a technique based on reference counting that pro-
vides throughput and responsiveness in the face of cyclic garbage. Chapter 5 details
Generational Metronome, a garbage collector that provides improved time and space
behavior while maintaining real-time guarantees.

Chapter 6 starts with a brief history of language use for low-level programming,
and then describes previous approaches to high-level low-level programming. Chap-
ters 7–9 discuss my contributions to improving the way low-level systems, in par-

4 Introduction

ticular garbage collectors, are engineered. Chapter 7 identifies the requirements for
high-level low-level programming, then describes a concrete framework to support
it built on language extension: org.vmmagic. The high-level low-level programming
approach is demonstrated in Chapter 8 through a discussion of real-world experi-
ence. Then, Chapter 9 shows how visualization can be used to help address the
problem of understanding low-level programs in the face of increasing hardware
and software complexity.

Finally, Chapter 10 concludes the thesis—describing how my contributions have
shown that high-level low-level programming is both beneficial and feasible—and
identifies future directions for research.

Chapter 2

Garbage Collection

Garbage collection is an essential component of modern high-level languages, en-
abling strong type-safety and memory-safety guarantees. However, garbage collec-
tion has the potential to adversely affect performance, in terms of throughput, respon-
siveness, and predictability. This chapter provides an overview of garbage collection,
covering fundamental algorithms and mechanisms. The focus is on garbage collec-
tion approaches that have the potential to address all of these performance criteria
simultaneously, yielding predictable, highly-responsive, high-throughput systems.

Section 2.1 provides a brief overview of garbage collection, defines necessary
terminology, and introduces fundamental algorithms and mechanisms. Section 2.2 dis-
cusses the performance requirements of low-level programs with respect to garbage
collection. Sections 2.3 and 2.4 then describe garbage collection techniques that have
the potential to meet the particular performance requirements of low-level program-
ming. Section 2.3 discusses work on incremental and concurrent tracing garbage col-
lection: techniques that allow garbage collection to proceed alongside application
activity. Section 2.4 then describes an alternative approach based on reference count-
ing, an inherently incremental approach to garbage collection often used in low-level
programming.

2.1 The Anatomy of a Garbage Collector

This section provides a brief overview of garbage collection terminology, algorithms,
and mechanisms. For a more complete discussion of the fundamentals of garbage
collection see “Garbage Collection: Algorithms for Automatic Dynamic Memory
Management” [Jones and Lins, 1996], and “Uniprocessor Garbage Collection Tech-
niques” [Wilson, 1992].

Programs require data to execute, and this data is typically stored in memory.
Memory can be allocated statically (where memory requirements are fixed ahead-
of-time), on the stack (tightly binding the lifetime of the data to the currently ex-
ecuting method), or dynamically, where memory requirements are determined dur-
ing execution—potentially changing between individual executions of the same pro-
gram. This dynamically allocated heap memory can be explicitly managed by the
program (through primitives such as the C functions malloc and free), or it can be

5

6 Garbage Collection

Garbage Collected Heap

Node

Edge

Root

Garbage

Figure 2.1: An object graph, showing nodes, edges, and a root.

automatically managed through the use of a garbage collector.

Garbage collection takes the burden of explicitly managing memory away from
the programmer. While there are many cases in which this burden is insignificant,
complex systems with large, shared data-structures make the explicit management of
memory both an onerous and error-prone task. The need to manage memory explic-
itly also compromises software design, forcing additional communication between
modules in order to ensure that a global consensus is reached before any shared data
is freed.

The role of the garbage collector is to reclaim memory that is no longer required
by the application. To assist the discussion of garbage collection, we will view all
objects in memory as a directed graph as shown in Figure 2.1. Objects are represented
as nodes, and references between objects are represented as directed edges. There are
also edges originating from outside the object graph—such as values held in program
variables—which are known as roots. In accordance with the terminology of Dijkstra
et al. [1978], application threads that manipulate this object graph (by allocating new
objects and changing the set of edges) are known as mutators, while threads that
perform garbage collection work are known as collectors.

Determining precisely when an object will no longer be accessed is difficult in
general, so garbage collectors rely on a conservative approximation based on reacha-
bility. Any object that is unreachable—that is, there is no path from a root to the node
over the edges in the graph—can never be accessed again by the application, and
may therefore be safely reclaimed.

§2.1 The Anatomy of a Garbage Collector 7

2.1.1 Taxonomy of Garbage Collection Algorithms

Memory management approaches can be categorized based on how they solve three
key sub-problems: object allocation, garbage identification, and garbage reclamation.
Naturally, approaches to each of these sub-problems have a synergistic relationship
with solutions to other sub-problems. Many memory management approaches are
hybrids, drawing on several approaches to each of these sub-problems.

2.1.1.1 Object Allocation

There are two fundamental techniques used for object allocation—bump pointer allo-
cation, and free list allocation.

Bump pointer allocation. Under bump pointer allocation (see Figure 2.2), memory
is allocated by running a cursor across memory, bumping the cursor by the size of each
allocation request. Bump pointer allocation is simple and fast at allocation time, but
provides no facility for incremental freeing. Given the simplicity of the approach,
the design space for bump pointer allocation is quite restricted. One key design
consideration is the approach used to allow parallel allocation. Bump pointer alloca-
tion schemes generally perform synchronized allocation of larger chunks [Garthwaite
and White, 1998; Alpern et al., 1999; Berger et al., 2000], which are then assigned to
a single thread—allowing fast, unsynchronized bump pointer allocation within the
chunk.

Cursor

Allocated Free

Figure 2.2: Bump pointer allocation.

Free list allocation. Under free list allocation (see Figure 2.3), memory is divided
into cells, which are then maintained in a list—the free list. Throughout this thesis,
the free list structure of most interest is the segregated free list, such as that described
by Boehm and Weiser [1988].1 The segregated free list scheme (described as a two-
level allocation scheme by Jones and Lins [1996]) attempts to balance the concerns of
fragmentation and throughput performance. In a segregated free list scheme an allo-
cator manages multiple free lists, each containing a list of empty cells of a single fixed

1The design space for free list allocation is large; refer to Jones and Lins [1996] or Wilson et al. [1995]
for a more complete discussion.

8 Garbage Collection

size. Because each list contains cells of a fixed size, allocation is fast and no search-
ing is required. Memory is divided up into larger blocks, each containing cells of a
fixed size. Blocks are then managed on a block free list, with empty blocks available
for use by any size class. This structure addresses fragmentation for most programs,
failing only when a program: 1) allocates many objects of a given size class; 2) keeps
a small fraction alive (pinning down many blocks); and then 3) changes allocation
patterns to allocate many objects of different size classes. This pathology is generally
rare and can be addressed through some form of copying collection.

Head

Figure 2.3: Free list allocation.

2.1.1.2 Garbage Identification

There are two fundamental techniques for identifying garbage data: reference counting
and tracing. Each of these techniques forms the basis for one or more of the canonical
garbage collection algorithms described in more detail in Section 2.1.2.

Reference counting. This method directly identifies garbage. Each object has a ref-
erence count, which keeps track of the number of references (incoming edges) to that
object in the object graph. When a reference count falls to zero, the associated object
can be considered garbage.

Tracing. This method indirectly identifies garbage by directly identifying all live
objects. Tracing involves performing a transitive closure across some part of the ob-
ject graph—visiting all objects transitively reachable from some set of root edges—
identifying each visited object as live. All objects that were not visited during the
trace are identified as garbage.

2.1.1.3 Garbage Reclamation

Once objects have been allocated, and those that need to be collected have been
identified, there are several techniques that can be used to reclaim the space.

Direct to free list. For direct garbage collection approaches (e.g., reference count-
ing) it is possible to directly return the space for objects to a free list.

§2.1 The Anatomy of a Garbage Collector 9

Evacuation. Live objects can be evacuated from a region of memory, which once
emptied of live data, may be reclaimed in its entirety. This approach requires another
region of memory into which the live objects can be copied. Evacuation can be
particularly effective when there are very few survivors, and naturally aligns itself
with tracing as the approach for identification.

Compaction. Compaction rearranges the memory within the region in-place to al-
low future allocation into the region. A classic example is sliding compaction [Styger,
1967; Abrahams et al., 1966] where all live data is compressed into a contiguous
chunk of used memory, leaving a contiguous chunk of memory free for future allo-
cation.

Sweep. A sweep is a traversal over allocated objects in the heap, freeing the space
associated with objects that have been identified as garbage. Some form of sweep
is required by many tracing approaches, because garbage is not identified directly.
While sweep generally operates over individual free list cells, it is also possible to
use the sweep approach on larger regions of memory.

2.1.2 Canonical Algorithms

This section briefly introduces canonical algorithms that cover the design space laid
out above.

2.1.2.1 Reference Counting

One of the classic forms of garbage collection is reference counting [Collins, 1960].
Recall from above that reference counting works by keeping track of the number of
incoming edges—or references—to each node in the object graph. When this count
drops to zero, the object is known to be unreachable and may be collected. Figure 2.4
shows an object graph with reference counts calculated, and also demonstrates the
fundamental weakness of reference counting: cyclic garbage. The objects X and Y are
clearly unreachable (there is no path to either of them from any root) but they will
never be collected because they still hold counted references to each other. Unless
additional work is performed to identify and collect it, cyclic garbage can cause
memory leaks.

Reference counting is of particular interest for high-level low-level programming,
and is discussed in detail in Section 2.4. It is inherently incremental, and uses
object-local information only, rather than requiring any global computation. Explicit
reference counting—where the programmer manually manipulates reference count
information—is a proven approach for low-level programming, extensively used for
managing data structures in low-level software written in languages such as C and
C++.

10 Garbage Collection

RC = 3

RC = 1

RC = 0

RC = 1

YRC = 1

X

RC = 1

Reference Counted Heap

Cyclic Garbage

RC : Reference Count

Figure 2.4: An object graph showing reference counts and cyclic garbage.

2.1.2.2 Mark-Sweep

Mark-sweep collection [McCarthy, 1960] is a tracing collection approach that runs in
two simple phases:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing objects as they are visited.

2. A sweep phase, where all objects in the heap are checked, and any that are
not marked are unreachable and may be collected. It is possible for part of
this sweeping phase to be performed during execution, a technique called lazy
sweeping which reduces garbage collector time, and can actually improve over-
all performance, due to the sweep operation and subsequent allocations being
performed on the same page, improving cache behavior.

Mark-sweep collection is efficient at collection time, but forces the mutator to allo-
cate objects in the discovered holes surrounding live objects. This can result in lower
allocation performance, as well as generally exhibiting poor locality of reference due
to objects being spread over the heap. Over time, mark-sweep can also encounter
problems with fragmentation—even though the sum total of available memory may
be sufficient, an empty, contiguous region of sufficient size may not be available.

2.1.2.3 Semi-Space

Semi-space collection is also based on tracing, but uses a very different approach
to reclaim memory. Memory is logically divided into two equally sized regions.

§2.1 The Anatomy of a Garbage Collector 11

During program execution one region contains objects, while the other region is
empty. When garbage collection is triggered, the region containing objects is labeled
as the from-space and the empty region is labeled as the to-space. Garbage collection
proceeds by performing a transitive closure over the object graph, copying all nodes
encountered in from-space into to-space—updating all edges to point to the copied
objects in to-space. At the end of collection all reachable objects have been copied out
and saved, and all that remains in the from-space is unused. This from-space is now
considered empty, and the to-space contains all live objects: a reversal of the roles of
the two regions prior to the collection. Initial implementations of copying collectors
used a recursive algorithm [Minsky, 1963; Fenichel and Yochelson, 1969] but a simple
iterative algorithm was later introduced by Cheney [1970]. In comparison to mark-
sweep collection, semi-space collection:

• makes less efficient use of memory as it must hold 50% percent of total memory
as a copy reserve to ensure there is space to copy all objects in the worst case;

• can be more expensive at collection time because all live objects must be copied;

• can be cheaper at collection time if very few objects survive, because no sweep
phase is required;

• can utilize efficient bump pointer allocation, because free memory is always
maintained as a contiguous block; and

• has less problems with fragmentation, because live objects are copied into a
contiguous chunk of memory.

2.1.2.4 Mark-Compact

Mark-compact collection aims to combine the benefits of both semi-space and mark-
sweep collection. It addresses fragmentation often seen in mark-sweep by compacting
objects into contiguous regions of memory, but it does so in place rather than relying
on the large copy reserve required by semi-space collection. While this in-place tran-
sition saves space, it typically involves significant additional collection effort. This is
because additional care must be taken to ensure that the target location of a copied
object does not contain live data. A simple form is sliding compaction, which logi-
cally compresses all live objects—in allocation order—into a single contiguous chunk.
A simple sliding compaction algorithm—known as the LISP-2 algorithm [Styger,
1967]—proceeds as follows, with the state at the conclusion of key phases shown
in Figure 2.5:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing objects as they are visited.

2. A compute-forwarding-pointers phase, where objects are processed in address order
and the future location of each marked object is calculated. The calculation
occurs by simply incrementing a cursor by the size of each live object as it is
encountered.

12 Garbage Collection

Live Objects

DA B C

Allocation Cursor

(a) After the mark phase.

DA B C

(b) After the compute-forwarding-pointers phase.

DA B C

Allocation Cursor

(c) After the relocate phase.

Figure 2.5: Sliding compacting collection.

§2.1 The Anatomy of a Garbage Collector 13

3. A forwarding phase, where all pointers are updated to reflect the addresses
calculated in the previous phase. Note that after this phase all references point
to future locations of objects, rather than the current location.

4. A relocation phase, where objects are copied to their target locations in address
order. The address order is important as it ensures that the target location does
not contain live data.

The additional phases of simple compaction algorithms make them significantly
more expensive than simple mark-sweep or semi-space collection. While there have
been many attempts to reduce this cost—by optimizing the phases, reducing the
number of phases, or by implementing the phases as operations on compact repre-
sentations of the heap [Kermany and Petrank, 2006]—compaction is rarely used as
the sole collection strategy in a high-performance system. Compaction is, however,
commonly combined with mark-sweep collection (to provide a means to escape frag-
mentation issues), and is often used alongside semi-space collection [Sansom, 1991]
to allow execution to continue when memory is tight.

2.1.2.5 Mark-Region

Mark-Region is a collection approach that combines contiguous allocation and non-
copying tracing collection. The motivation of this approach is to combine the mutator
performance of semi-space with the collection performance of mark-sweep. In terms
of allocation, mark-region is similar to semi-space, with objects allocated into con-
tiguous regions of memory using a bump pointer. In terms of collection, mark-region
is similar to mark-sweep, but sweeps entire regions; regions with no reachable objects
are made available again for contiguous allocation. Immix [Blackburn and McKin-
ley, 2008] provides the first detailed analysis and description of a mark-region col-
lector, although a mark-region approach was previously used in JRockit [Oracle] and
IBM [Borman, 2002] production virtual machines. A mark-region collection proceeds
as follows:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing regions which contain live objects as each object is visited.

2. A sweep phase, where regions that were not marked in the previous phase are
made available for future contiguous allocation.

The mark-region approach is susceptible to issues with fragmentation, because
it may not be possible to discover large contiguous blocks to allow efficient bump
pointer allocation. To combat this, mark-region collectors often employ techniques to
relocate objects in memory to reduce fragmentation. The JRockit collector performs
compaction of a fraction of the heap at each collection, the IBM collector performs
whole heap compaction when necessary, and Immix performs lightweight defrag-
mentation as required when memory is in demand.

14 Garbage Collection

2.1.3 Generational Collection

Generational garbage collection [Lieberman and Hewitt, 1983; Moon, 1984; Ungar,
1984] is perhaps the single most important advance in garbage collection since the
first collectors were developed in the early 1960s. The generational hypothesis states
that most objects have very short lifetimes. Generational collectors are optimized
for when this hypothesis holds, and thereby attain greater collection efficiency by
focusing collection effort on the most recently allocated objects.

Generational collectors partition the heap into generations based on allocation age.
This thesis considers only the basic form of generational collection, where the heap
is divided into two generations: the nursery—containing the most recently allocated
set of objects—and the mature area—containing all other objects. In order to indepen-
dently collect the nursery, generational collectors must remember all pointers from
the mature space into the nursery. This can be achieved by building a remembered set
of pointers created into the nursery, or by remembering regions of the mature space
(usually referred to as cards) that contain nursery pointers, and must be scanned at
nursery collection time. References from the mature space into the nursery, in combi-
nation with any other roots (e.g., program variables), then provide the starting point
for a transitive closure across all live objects within the nursery. A partial copying
collection can be performed during this closure, with live objects evacuated from the
nursery into the mature space. When the generational hypothesis holds, this collec-
tion is very efficient because only a small fraction of nursery objects must be copied
into the mature area.

2.1.4 Barriers

Barriers are operations that are injected into mutator code surrounding mutator op-
erations that may affect the garbage collector. Barriers are most commonly inserted
on read and write operations, and are essential tools for more powerful garbage col-
lection algorithms. In reference counting collectors, reference write barriers can be
used to perform necessary reference count increments and decrements. Generational
collectors may also rely on reference write barriers to intercept pointers created from
mature objects to nursery objects. Concurrent and incremental garbage collectors
may make extensive use of read and write barriers to keep them informed of poten-
tially destructive changes, and to ensure that mutators are operating on and updating
the appropriate data.

Given the algorithmic power of barriers, it is essential that high-performance
barrier operations be available in order to judge the true cost of a given garbage
collection approach. The performance of barriers is a complex interaction of mul-
tiple factors including the operation itself, how it is optimized (e.g., what portions
are inlined), the behavior of individual applications, and the underlying architec-
ture [Hosking et al., 1992; Blackburn and McKinley, 2002; Blackburn and Hosking,
2004]. It is also possible to elide barriers to improve performance by identifying cases
in which the barrier operation is redundant [Vechev and Bacon, 2004].

§2.2 Garbage Collection for Low-level Programs 15

2.2 Garbage Collection for Low-level Programs

Garbage collection can deliver significant software engineering benefits, but the pres-
ence of garbage collection can adversely affect application performance. To achieve
the requisite combination of throughput and responsiveness demanded by low-level
programs, it is necessary to use garbage collection techniques that allow both col-
lectors and mutators to progress within relatively short time windows. This section
discusses how garbage collection can affect mutator performance, and introduces
metrics to help quantify the problem. Sections 2.3 and 2.4 then describe existing
garbage collection strategies that allow mutator progress during a collection cycle.

Given that the collector operates over the same object graph as mutators, there is
the potential for conflict between mutator and collector. In order to safely and ac-
curately perform collection work, collection algorithms are thus forced to either stop
all mutators from proceeding during collection work, impose some synchronization
burden onto both collector and mutator, or a combination of both. This has signifi-
cant potential to affect mutator performance, both directly—in terms of reduced pro-
cessor time and collector synchronization overheads—as well as indirectly—through
changes in mutator locality (positive or negative) and changes in timing behavior due
to unpredictable collector interference. Overall throughput performance can suffer
if too much processor time is used for garbage collection, or if the choice of collec-
tion and/or allocation technique negatively affects data locality. Predictability can be
affected because the amount of time required to perform seemingly identical oper-
ations can change (even by orders of magnitude) when garbage collection is active.
Some activities cannot tolerate significant variation, and so need garbage collectors
that provide responsiveness guarantees. Strong responsiveness guarantees typically
come with a significant cost to overall throughput, and while this is acceptable for
some applications, it is generally not acceptable for low-level programs.

2.2.1 Measuring Garbage Collection Interference

Given that low-level programs may have strict performance requirements in terms of
throughput and responsiveness, there is a clear need to both specify what these re-
quirements are, as well as identify a means to evaluate the characteristics of individual
approaches.

2.2.1.1 Throughput

The throughput, or overall execution time required to perform a given task, can be
affected by the presence of garbage collection. This effect can be both direct (the
collector itself requires resources to run) and indirect, with the choice of collector
changing how mutator code is executed.

Fine-grained effects—due to barriers, changes in allocation policy, changes in
cache locality, or small increments of collection work—can impose a penalty on the
mutator that is difficult to measure dynamically. For practical purposes, collectors
designed to guarantee responsiveness must aim to make the burden imposed by the

16 Garbage Collection

collector predictable, by making it either constant (i.e., independent of the current
phase of the collector) or a simple function of the current collector phase (so that it
can be compensated for in any calculations). This thesis assumes the former model,
where any performance guarantees, along with any mutator time measurements, are
inclusive of any garbage collector burden. This approach is suitable for the collectors
discussed in this thesis, in which most operations have a fairly uniform cost. The
approach would, however, be problematic for work-based collectors such as Baker’s
collector [Henry G. Baker, 1978], where the cost of individual operations can vary
greatly due to the collection state of objects.

In order to compare mutator throughput, total mutator time can be measured for
each system across a single workload. This comparison accounts for primary effects
(such as the choice of allocator and barrier operations) as well as secondary effects
(such as changes in cache locality).

2.2.1.2 Responsiveness and Predictability

Some garbage collectors interrupt the execution of mutators by taking exclusive ac-
cess to the heap. While this simplifies the synchronization of mutator and collector
activity, it has the potential to affect the responsiveness of the application, which is
a critical concern for many systems. With responsiveness as a key requirement, it is
important to have a metric to measure it. The length of the longest interruption—or
maximum pause time—that is imposed on the mutator by a garbage collector is an
obvious choice, but maximum pause time can be a poor measure of overall respon-
siveness. While a mutator cannot make progress during a long collector pause, it
is also possible that a mutator may not make sufficient progress if it encounters a
sequence of many short pauses.

Looking at the problem from the perspective of an application, suppose we have
a unit of application work that is guaranteed to take at most 7ms to complete (as-
suming the application is given all resources), and that the application is required
to complete such a unit of work within 10ms. To guarantee that this is possible
(given that the application may execute this unit of work at any moment) we must
ensure that for any given 10ms of execution time at least 7ms is given to the mutator.
While it is impossible to guarantee such behavior if there are individual collection
pauses longer than 3ms, more than three 1ms collection pauses in an individual 10ms
window would also not meet the requirement. In order to guarantee that the 7ms
application work unit can execute within an arbitrary 10ms window, we can restate
our requirement to say that the application must have a minimum mutator utilization
(MMU) [Cheng and Blelloch, 2001] of 70% within each 10ms time window.

Note that a 70% per 10ms MMU also bounds the overall amount of time con-
sumed by the garbage collector across program execution to 30%. The ability to
guarantee a higher MMU is generally easier over longer time periods, where the
impact of individual pauses can be amortized, allowing the specification of several
MMUs at different window sizes (e.g., 50% per 2ms, 70% per 10ms, and 80% per
100ms). Conversely, it becomes increasingly difficult to provide an MMU guarantee

§2.3 Concurrent and Incremental Tracing Collection 17

as the time window becomes smaller. In the limit, it becomes necessary to introduce
additional programming environments that can safely run concurrently to the collec-
tor, and seamlessly integrate into the high-level language environment [Bollella and
Gosling, 2000; Spoonhower et al., 2006; Titzer, 2006; Auerbach et al., 2007b; Spring
et al., 2007; Auerbach et al., 2008b].

While minimum mutator utilization handles the key situation in which measur-
ing pause time is problematic—bursts of many short pauses—it is by no means a
perfect metric for measuring responsiveness, or assessing the suitability of a collec-
tion strategy for real-time systems. In real-time systems it is often possible to use a
slack-based scheduling approach where garbage collection increments are scheduled
around real-time tasks. The correctness of such a system is governed by there be-
ing sufficient slack surrounding real-time tasks to execute garbage collection work,
although the garbage collector itself may not meet any MMU guarantees. MMU
provides an indication of overall responsiveness, and is well suited to many classes
of real-time applications, and makes it possible to develop a model to guarantee
real-time behavior with only a few high-level application and collector characteris-
tics. MMU and slack based scheduling can be combined in a hybrid approach, such
as the Metronome Tax-and-Spend [Auerbach et al., 2008a] collector, which meets an
MMU specification but uses slack to accumulate a surplus of collector work to allow
longer periods of sustained mutator utilization.

2.3 Concurrent and Incremental Tracing Collection

Given strict requirements for responsiveness, an obvious goal is to allow mutator
progress during a collection cycle. There are two broad approaches to allowing mu-
tator progress during tracing collection: incremental collection, and concurrent col-
lection. This thesis uses the term incremental collection to describe systems where
a single collection cycle is broken into increments of collector work, but where only
mutators or collectors are running at any point in time. Concurrent collection is used
to describe systems where both collector and mutator threads are running and pro-
gressing simultaneously.

Under both concurrent and incremental collection, some form of synchronization
between collector and mutator must be performed to ensure that: 1) all garbage
is ultimately collected, 2) no live memory is incorrectly collected, and 3) garbage
collection is guaranteed to terminate. There is a substantial literature on concurrent
garbage collection with seminal work dating back to the 1970s [Steele, 1975; Dijkstra
et al., 1978].

2.3.1 The Tricolor Abstraction

To facilitate the discussion of concurrent and incremental collection, this section uses
the tricolor abstraction of Dijkstra et al. [1978], where each node in the object graph
is colored according to collection status:

18 Garbage Collection

White nodes have not been visited by the collector. All nodes start white, and those
that remain white at the end of collection are garbage.

Gray nodes have been visited by the collector, but have not yet had their outgoing
edges inspected.

Black nodes have been visited by the collector, and all outgoing edges have been
traversed.

2.3.2 The Mutator–Collector Race

Figure 2.6 illustrates the fundamental race that an incremental or concurrent tracing
collector must address. At t0, the collector has processed A, marking the sole referent
B gray (enqueuing it for later processing), and finally marking A black. At t1, the
mutator has created an edge from A to C, and removed the edge from B to C. At time
t2 the collector resumes execution by processing B, which involves simply marking B
as black as there are no outgoing edges from B. C is thus left white at the end of the
collection, but it is still live. Jones and Lins [1996, Chapter 8] state the conditions for
this race to cause the collection of live data to be:

C1. A pointer from a black object to a white object is created.

C2. The original reference to the white object is destroyed.

A B

C

(a) t0

A B

C

(b) t1

A B

C

(c) t2

Figure 2.6: The mutator–collector race.

However, as Figure 2.7 shows, the introduction of an intervening node, D, be-
tween A and B makes it clear that C2 must be modified to account for the white
object becoming indirectly unreachable. The following modified condition accounts
for this case:

C2′. The original path to the white object is destroyed.

The following sections provide a brief overview of the many previously described
concurrent collection algorithms, focusing in particular on how they attempt to han-
dle this race condition. The design space of concurrent collection is broad. There
have been studies of the relationship between the various non-moving concurrent
approaches [Vechev et al., 2005, 2006], but these do not extend to include approaches
that move objects.

§2.3 Concurrent and Incremental Tracing Collection 19

C

A B

D

(a) t0

C

A B

D

(b) t1

C

A B

D

(c) t2

Figure 2.7: Adding an extra node to the mutator–collector race.

2.3.2.1 Incremental-Update Algorithms

Incremental-update algorithms use write barriers (see Section 2.1.4) to monitor muta-
tions to the heap and directly ensure that no pointers from black to white objects are
created. There are two seminal incremental update algorithms, both dating from the
mid 1970s. Dijkstra et al. [1978] describe a conservative approach, marking the target
of a new reference gray if it was white, regardless of the color of the source. Steele
[1975] describe a less conservative approach, marking the source gray if it was black
and the target was white. Abstractly, Steele’s algorithm retreats the gray wave-front,
while Dijkstra et al.’s advances it. Conservatism in this case affects the volume of
floating garbage: garbage that will not be reclaimed by the current collection cycle and
will consume memory until after the next garbage cycle.

Extension to support multiple mutators. The Doligez-Leroy-Gonthier algorithm
[Doligez and Leroy, 1993; Doligez and Gonthier, 1994] is an extension of Dijkstra
et al.’s algorithm to work in the case of multiple mutator threads, and has been
subsequently implemented for Java [Domani et al., 2000b,a]. The key idea is to use a
handshake mechanism to allow mutators to agree on phase changes without requiring
all mutators to stop. Handshake mechanisms are now frequently used in concurrent
collectors to perform operations such as enabling or disabling barriers, flushing or
clearing data structures, executing special machine instructions, or changing the color
to be used for newly allocated objects.

2.3.2.2 Snapshot-at-the-Beginning Algorithms

Snapshot-at-the-beginning algorithms aim to collect the heap as it exists at the start of
the collection by taking a logical snapshot. In practice, it is too expensive to snapshot
the whole heap, so practical algorithms detect potentially destructive changes to the
heap, and then process or copy those parts of the heap before the destructive change
occurs. Yuasa [1990] achieves this by using a write barrier which inspects the value of
the field before it is updated, and if this value points to a white object, the white object
is made gray. Azatchi et al. [2003] improve on this algorithm by using a lightweight

20 Garbage Collection

object remembering barrier. The first time an object is mutated during each collection,
the original state of every reference in the object is logged, with a pointer to the
log recorded in an additional word in the object’s header. Any unlogged objects
encountered during collection are also logged prior to processing. All of these logged
copies of objects make up a virtual before-image of the state of all references as at the
start of the collection, which is what is traced by the collector. All snapshot-at-the-
beginning approaches may create significant amounts of floating garbage, because
they make no attempt to collect any garbage created after the snapshot.

2.3.3 Incremental and Concurrent Copying

While good allocator design may reduce the problem of fragmentation [Johnstone
and Wilson, 1998], when attempting to provide strict bounds—on time, space, or
utilization—the issue of worst case (rather than common case) fragmentation must
be addressed.2

The previous two sections describe techniques to ensure that the correct set of
objects were identified as garbage. In the case of either incremental or concurrent
copying collection, there is the additional race between the collector relocating an
object, and the mutators performing reads and writes of the fields of the object.
Section 2.3.3.1 discusses the problem of incremental copying, essentially described
as a problem of ensuring that mutators operate on the correct version of an object.
Concurrent copying—far more complicated as mutations are allowed to occur during
the copy operation of an object—is discussed in Section 2.3.3.2.

2.3.3.1 Incremental Copying Algorithms

Henry G. Baker [1978] introduced an incremental version of the simple semi-space
algorithm (see Section 2.1.2.3) for uniprocessors, where small increments of work are
performed at each allocation. Because copying progresses incrementally, the system
must ensure that mutators see a consistent view of the heap. The simplest method
to achieve this—as used in Baker’s work—is with a reference read barrier (code that
is executed whenever the mutator reads a reference) to maintain a to-space invariant.
This invariant ensures that the mutator can only ever access objects that have been
fully processed by the collector. When a reference into from-space is encountered,
the mutator must perform an additional increment of collection work (and either
copy the object or forward the reference if copying has already been performed).
Brooks [1984] modifies Baker’s algorithm by using a read barrier that unconditionally
indirects to the current version of the object, trading off additional space to store a
forwarding pointer in every object against a reduction in code size and improved
run-time performance.

2It is possible to entirely avoid external fragmentation by supporting only a single object size [Siebert,
2000; Baker, 1992]. This is not a general solution because it increases internal fragmentation and also
imposes a significant run-time performance hit due to additional indirections and calculations when
accessing data.

§2.3 Concurrent and Incremental Tracing Collection 21

Appel et al. [1988] avoid the use of a read barrier altogether by leveraging hard-
ware protection mechanisms for virtual memory to detect accesses to from-space
(a refinement due to Johnson [1992] improves this by reducing the per-page scan-
ning work required). Ben-Yitzhak et al. [2002] and Kermany and Petrank [2006] also
use memory protection based approaches to allow partial compaction during mostly
non-moving collection. Click et al. [2005] introduce a similar approach but use cus-
tom hardware combined with a special mutator read instruction that traps to the
collector when the target reference is on a page that is being relocated.

Nettles and O’Toole [1993] require neither a read barrier nor virtual memory
hardware protection. Mutators continue to operate on from-space objects (instead
of to-space objects) during collection, and use a write barrier on all fields (including
non-reference fields) to maintain a mutation log. This mutation log is then used by
the collector to create a consistent copy of the heap.3 Meyer [2006] implements the
read barrier for a Baker-style collector in custom hardware, which is extended by
Stanchina and Meyer [2007] into a hardware-based mostly non-copying collector of
similar design.

Eager versus lazy barriers. It is interesting to note that to-space or from-space in-
variants can be enforced eagerly or lazily [Bacon et al., 2003b] through barrier oper-
ations. Eager barriers ensure that all references in registers or on the stack meet the
invariant, meaning that the barrier is applied to references being brought into the
set (e.g., when a reference is read from the heap). Lazy barriers do not enforce an
invariant on references held in registers on the stack, but instead ensure that each use
of a reference is protected to ensure the invariant is met (e.g., just prior to a reference
value being used for any heap operation). For naive implementations there appears
to be a clear trade-off: lazy barriers allow more incremental processing (because the
stack and registers can be lazily updated), but are likely to do more work because
work must be done for every heap access, not just reference accesses. However, as
stated by Bacon et al. [2003b], when subjected to aggressive optimization, both oper-
ations tend towards a common solution, and are therefore similar in terms of cost.

2.3.3.2 Concurrent Copying Algorithms

The copying algorithms described in the previous section do not perform the copying
operation concurrently: mutators are either all suspended while copies are made, or
stalled if they try to access an object that is being copied. Concurrent mutation and
copying of individual objects adds significant complexity. Herlihy and Moss [1992]
work around this problem by making objects immutable and maintaining modifica-
tions as a singly linked list of object versions. A change to an object field thus involves
making a copy, updating field values, and then atomically installing the link to the

3These mutation log techniques were implemented in the context of functional programming lan-
guages (ML), and—due to the race between mutations and the collector—are likely to be less suited
to imperative or object-oriented languages which tend to have far higher mutation rates and fewer
immutable objects.

22 Garbage Collection

new version. If this fails it indicates that there was a race to update and it is necessary
to update to the new latest version and retry. Although valuable from a theoretical
standpoint, it is hard to see how this algorithm could be implemented efficiently in
practice.

Sapphire [Hudson and Moss, 2001] performs copying collection concurrently in
Java without the use of a read barrier, by using a write barrier to replicate mutations
(of reference and non-reference fields) in older versions of objects to the in-progress
copy. Sapphire may provide unexpected results when concurrent updates to an object
field occur. Two updates u1 and u2 to a single field f could be committed to memory
in the order u1u2 on the old version of the object, but replicated as u2u1 on the
new version of the object, making it possible for the observed value of the field f to
change when the switch from the old version to the new version occurs. While the
Java memory model permits this behavior (due to the lack of synchronization) the
effect may be surprising to programmers so is generally considered undesirable.

Stopless [Pizlo et al., 2007] provides concurrent copying while maintaining a more
understandable memory model than Sapphire through the use of a wide object dur-
ing copying, where each field has a corresponding status word for synchronization.
Fields are individually and atomically copied into the wide object, using an atomic
compare-and-swap operation of the field alongside its corresponding status word.
Once in the wide object, a second phase of copying returns the object to a normal,
narrow object format, again using atomic compare-and-swap operations on the wide
object to ensure correctness. Staccato [McCloskey et al., 2008] and Chicken [Pizlo
et al., 2008] avoid the need for a wide object by optimistically performing the copy
but invalidating and abandoning the copy when mutation occurs by marking the
header of each object during each update. Pizlo et al. [2008] also describe Clover,
a modification of Stopless that uses a randomly chosen marker value, α, to indicate
that an individual field has been forwarded. Mutators use compare-and-swap oper-
ations to write to fields, and when they detect α values they read from the new copy
of the object. The downside of this approach is that any mutator wanting to write an
α value must wait for copying to complete, although a good choice of α would make
this quite unlikely. Clover thus trades an absolute guarantee that the mutator will
not have to wait for an improvement in execution time.

2.4 Reference Counting Collection

This section discusses reference counting, an alternative to the concurrent and incre-
mental tracing collectors discussed above, that also allows collector activity to pro-
ceed alongside mutators. Reference counting, as an inherently incremental approach
to collection, is a natural fit for applications that require high levels of responsiveness.

Collins [1960] first described reference counting garbage collection. As described
in Section 2.1.2.1, simple reference counting approaches work by maintaining the
count of all incoming edges for each object. Two obvious shortcomings of reference
counting are the cost required to maintain such counts, and the inability for refer-

§2.4 Reference Counting Collection 23

ence counting to collect self-referential data structures. These two broad issues are
discussed in Sections 2.4.1 and 2.4.2 respectively.

2.4.1 Reducing Performance Overheads

Naive implementations of reference counting require increment and decrement oper-
ations to be performed for almost every reference operation, including operations on
local variables. This substantial cost is further increased on multithreaded systems,
because reference count updates and reference mutations must be performed atom-
ically to ensure correct counts are maintained. The following sections discuss ap-
proaches that aim to reduce the overhead required for maintaining reference counts.

2.4.1.1 Compiler Optimization

There is an obvious potential for using compiler analysis to reduce the amount of
reference counting work required [Barth, 1977; Joisha, 2006, 2007]. Such approaches
make it possible for only the net effect of a sequence of code to be processed on the
heap, avoiding unnecessary increment and decrement operations. Take, for example,
the case that a reference count of an object is incremented and then immediately
decremented; the two updates can cancel with no actual update required.

2.4.1.2 Deferred Reference Counting

Deutsch and Bobrow [1976] introduced deferred reference counting. In contrast to the
immediate reference counting scheme described above, deferred reference counting
schemes ignore mutations to frequently modified variables—such as those stored in
registers and on the stack. Periodically, these references are enumerated into a root
set, and any objects that are neither in the root set nor referenced by other objects in
the heap may be collected. Deutsch and Bobrow achieve this directly by maintaining
a zero count table that holds all objects known to have a reference count of zero. This
zero count table is enumerated, and any object that does not have a corresponding
entry in the root set is identified as garbage. Bacon et al. [2001] avoid the need to
maintain a zero count table by buffering decrements between collections. At collection
time, elements in the root set are given a temporary increment while processing all of
the buffered decrements.

2.4.1.3 Coalescing Reference Counting

Levanoni and Petrank [2001, 2006] observed that all but the first and last in any chain
of mutations to a given pointer could be coalesced. Only the initial and final states
of the pointer are necessary to calculate correct reference counts—the intervening
mutations generate increments and decrements that cancel each other out. Consider
a pointer field f that first points to object A. If it is mutated to point to B and later C,
the increment and decrement to B cancel each other out, and the reference counts of
only A (decremented by 1) and C (incremented by 1) need to be modified.

24 Garbage Collection

This observation can be exploited by remembering only the initial value of a
reference field between periodic reference counting collections. At each of these
collections, only the objects referred to by the initial (stored) and current values of
the reference field need be updated.

2.4.1.4 Ulterior Reference Counting

Azatchi and Petrank [2003] and Blackburn and McKinley [2003] concurrently and
independently added generations to reference counting. Blackburn and McKinley
[2003] did so in a general framework of ulterior reference counting, which generalizes
the notion of deferral to include heap pointers—such as those within a copying nurs-
ery. Using this configuration, Blackburn and McKinley showed that it was possible to
achieve performance competitive to the fastest tracing collectors while also exhibit-
ing reduced pause times. However, these results were achieved only for benchmarks
that did not show a significant volume of cyclic garbage.

2.4.2 Collecting Cyclic Garbage

Jones and Lins [1996] give a good description of the various approaches that deal
with cyclic data structures. Most approaches are not general, being either language
specific, or dependent on programmer intervention. However, there exist two general
approaches: backup tracing [Deutsch and Bobrow, 1976] and trial deletion [Christo-
pher, 1984; Martínez et al., 1990; Lins, 1992; Bacon and Rajan, 2001; Bacon et al.,
2001].

2.4.2.1 Backup Tracing

Backup tracing performs a mark-sweep style trace of the entire heap to eliminate
cyclic garbage. Unless tracing is performed concurrently, reference counting’s ad-
vantages of prompt reclamation and low pause times are lost. However, as described
in Section 2.3, concurrent mark-sweep collection imposes an additional synchroniza-
tion burden on the mutator. In the case that a significant fraction of garbage is cyclic
garbage, a reference counting system with backup tracing essentially reverts to a
mark-sweep collector with additional overheads in both time and space for main-
taining reference counts.

2.4.2.2 Trial Deletion

Intuitively, trial deletion algorithms determine whether the only references to a data
structure originate within the same data structure, thereby forming a garbage cycle.
The original trial deletion algorithm can be traced back to Christopher [1984], who
described a method to implement complete garbage collection without requiring
access to an external root set.

Trial deletion algorithms work by selecting some candidate object or objects, and
then performing a partial mark-sweep [Jones and Lins, 1996] of the object graph.

§2.5 Real-Time Collection 25

If it can be determined that a candidate is alive only by virtue of reachability from
itself, then it is part of a self-sustaining garbage cycle and should be collected. The
process of trialing the deletion of these candidate objects proceeds in three phases,
with each phase performing a transitive closure over the sub-graph reachable from
the candidates:

1. Traverse the sub-graph, adjusting reference counts on all objects in the sub-
graph to reflect the hypothetical death of the candidates. At the end of this
phase the reference counts reflect only the references from objects external to
the sub-graph. Any object with a count of zero is reachable only from within
the sub-graph.

2. Traverse the sub-graph, incrementing the reference counts of all objects pointed
to by externally reachable objects—that is the objects whose count did not drop
to zero in the trial.

3. Traverse the sub-graph, sweeping any objects that still have a zero count.

The original implementation by Christopher [1984] effectively applied this three-
phase approach using all objects in the heap as the candidate set. Martínez et al.
[1990] noted that cyclic garbage can be created only when a reference is removed from
an object that had multiple incoming references. Lins [1992] noted that this could be
prohibitively expensive, and performed cycle detection lazily, periodically targeting
the set of candidate objects whose counts experienced decrements to non-zero values.
Bacon and Rajan [2001] made three key improvements to Lins’ algorithm: 1) they
performed each phase over all candidates en masse after observing that performing
the three phases for each candidate sequentially could exhibit quadratic complexity;
2) They used very simple static analysis to exclude the processing of objects they
could identify as inherently acyclic and 3) they extended the algorithm to allow it to
run concurrently with the mutator.

2.5 Real-Time Collection

The previous sections described collection strategies that allow mutator progress dur-
ing a garbage collection cycle. This section discusses work on systems with proven
bounds on performance in terms of time, space, or utilization. The following para-
graphs give an overview of key previous work on real-time collection, and then
Section 2.5.1 gives a more complete description of Metronome, a state-of-the-art real-
time collector that forms the basis for my work in Chapter 5.

Strong guarantees in terms of time, space, and utilization can be important for
many application areas, and establishing such bounds helps us to better understand
how different algorithms behave. As indicated in the previous section, reference
counting collection alone is not complete, due to the possibility of cyclic garbage. For
this reason, proven bounds on general purpose reference counting collectors would
require guarantees on the cycle collector, a strictly harder problem than providing

26 Garbage Collection

similar guarantees on a tracing collector. For that reason, the published literature
on real-time collection that this section discusses is all based on incremental and/or
concurrent tracing collection.

Henry G. Baker [1978] introduced the first collector to provide guarantees on time
and space. Baker’s work was restricted to uniprocessor systems, however, and while
many multiprocessor algorithms were implemented and published in the intervening
time, Blelloch and Cheng [1999] were the first to describe a multiprocessor collector
with proven bounds on time and space. Cheng and Blelloch [2001] describe a more
practical implementation of this multiprocessor algorithm, and also introduce the
Minimum Mutator Utilization Metric (see Section 2.2.1.2), but do not provide proven
bounds on utilization.

2.5.1 Metronome

Metronome, described by Bacon et al. [2003b], was the first collector to provide a
model that gave time, space, and utilization guarantees. This model, refined by
[Bacon et al., 2003a], requires the quantification of only a few key characteristics of
the application and collector, such as allocation and tracing rates. Metronome is
a hard real-time incremental collector. It uses a hybrid of non-copying mark-sweep
collection (in the common case) and selective copying collection (when fragmentation
occurs).

The virtual machine scheduler alternates between execution of mutator threads
and garbage collector threads, using predictable quanta and predictable spacing be-
tween those quanta.

A key contribution of the Metronome system is that it abandons a fine grained
work-based approach—such as that of Henry G. Baker [1978]—in favor of a time-
based approach. The fundamental observation here is that the race between collector
and mutator occurs at a relatively coarse temporal granularity—a collection cycle.
Bursty allocation behavior in small time windows can then be amortized over the
period of a complete collection cycle. A time-based scheduler interleaves mutator and
collector work in small quanta at a ratio determined by the model. This ensures that
the collector keeps up, but does so in a predictable manner amenable to providing
guarantees on mutator utilization.

Metronome is a snapshot-at-the-beginning algorithm [Yuasa, 1990] that allocates
objects black (marked). While this means that no objects allocated after the snapshot
can be collected, potentially increase floating garbage, the worst-case performance is
no different from other approaches and the termination condition is deterministic—a
crucial property for real-time collection.

Metronome addresses fragmentation through several measures. First, large ar-
rays are broken into fixed-size pieces called arraylets, bounding the external frag-
mentation caused by large objects. Second, Metronome uses a segregated free list
(see Section 2.1.1.1), a structure which generally exhibits low fragmentation. Finally,
Metronome allows for objects to be relocated during collection. However, fragmen-
tation is rare in practice, so objects are usually not moved. If a page becomes frag-

§2.6 Summary 27

mented due to garbage collection, its objects are moved to another (mostly full) page
containing objects of the same size. Relocation of objects is achieved by using a for-
warding pointer located in the header of each object [Brooks, 1984]. A read barrier
maintains a to-space invariant (mutators always see objects in the to-space). Dur-
ing marking, all pointers to objects that were relocated in the previous collection are
updated, ensuring that at the end of a marking phase the relocated objects of the
previous collection can be freed.

Metronome achieves guaranteed real-time behavior provided the application is
correctly characterized by the user. In particular, the user must be able to specify the
maximum volume of simultaneously live data m as well as the peak allocation rate
over the time interval of a garbage collection a(∆G). The collector is parametrized by
its tracing rate R. Given these characteristics of the mutator and the collector, the user
then has the ability to tune the performance of the system using three inter-related
parameters: total memory consumption s, minimum guaranteed CPU utilization u,
and the resolution at which the utilization is calculated, ∆t.

2.6 Summary

This chapter gave a general background of garbage collection, including an overview
of key garbage collection mechanisms and algorithms. In particular, the chapter
introduced broad approaches to garbage collection that attempt to combine high
throughput and responsiveness. The key characteristic of these approaches is the
ability for both mutator and collector to progress at the same time. The follow-
ing chapters build on this work, and introduce novel algorithms that make garbage
collection suitable across a wider range of applications, including real-time and low-
level applications that have strict requirements in both throughput and responsive-
ness.

28 Garbage Collection

Chapter 3

High-Performance Garbage
Collection

Garbage collection plays a central role in modern high-level language runtimes; it is
the key technique used to enforce type- and memory safety. However, garbage col-
lection requires resources to fulfill this role, making garbage collection performance
an important aspect of overall system performance. This chapter discusses research
to improve the performance of garbage collectors through techniques that are largely
independent of any single collection algorithm. While performance is of critical
concern to many low-level programs, the approaches described in this chapter have
broader application beyond the goal of high-level low-level programming.

This chapter describes two projects aimed at improving garbage collector per-
formance. First, Section 3.1 describes how important locality is to the performance
of the transitive closure—a key mechanism used heavily in garbage collection—and
demonstrates how performance can be improved through the use of cache prefetch
instructions. Then, Section 3.2 switches focus to a technique to reduce garbage collec-
tor load by promptly reclaiming space through a combination of a simple compiler
analysis and runtime mechanism.

Section 3.1 is based on work published in the paper “Effective Prefetch for Mark-
Sweep Garbage Collection” [Garner, Blackburn, and Frampton, 2007], which dis-
cusses both a rigorous analysis of the costs in the tracing loop, and the implemen-
tation and evaluation of the effective prefetch system. This chapter focuses on the
aspects of the paper for which I was principally responsible, namely those related to
the design of the final effective prefetch system.

Section 3.2 discusses work published in the paper “Free-Me: A Static Analysis for
Automatic Individual Object Reclamation” [Guyer, McKinley, and Frampton, 2006].
This section focuses on the aspects of the work that I was principally responsible for,
namely the selection and implementation of the runtime mechanisms. The section
does not discuss the details of the compiler analysis.

29

30 High-Performance Garbage Collection

3.1 Effective Prefetch for Garbage Collection

Garbage collection typically exhibits poor locality; traversing all objects in the heap
can result in a significant number of cache misses. Because the transitive closure
process is generally supported by a work queue, it is natural to try and take advan-
tage of cache prefetch instructions to improve performance. Despite this apparently
obvious match, previous studies have struggled to provide significant improvements
to tracing performance with prefetch instructions. This section shows that effective
use of prefetch instructions for tracing is possible by combining prefetch instructions
with a restructured tracing loop based on edge enqueuing. This configuration allows
prefetching to improve the performance of a canonical mark-sweep garbage collector
by an average of between 13% and 25% depending on architecture.

This section is structured as follows. First, Section 3.1.1 discusses other work re-
lated to prefetching for garbage collection. The two key techniques that together form
the basis of the approach—edge enqueuing and buffered prefetch—are discussed in
Sections 3.1.2 and 3.1.3 respectively. Finally, Section 3.1.4 provides an overview of
the results.

3.1.1 Related Work

While performing a transitive closure, garbage collectors need to maintain some form
of work set. The standard approach is to maintain a set of all objects to which an
incoming reference has been found, but from which outgoing references have yet
to be scanned. Each live object is inserted into the set only once. The tracing loop
performs processNode(), as shown in Figure 3.1.

1 void processNode(Object o) {
2 for(Object e: scan(o)) {
3 if(!isMarked(e)) {
4 mark(e);
5 push(e);
6 }
7 }
8 }

Figure 3.1: Core of tracing loop with node enqueuing.

Boehm [2000] was the first to apply software prefetching to garbage collection,
introducing prefetch on gray, a strategy where each object is prefetched upon insertion
into the work set (line 5 in Figure 3.2). Boehm reported speedups of up to 17% in
synthetic garbage collection dominated benchmarks and 8% on a real application,
ghostscript.

Cher et al. [2004] built on Boehm’s investigation, using simulation to measure
costs and explore the effects of prefetching. They found that when evaluated across
a broad range of benchmarks, Boehm’s prefetch on gray strategy attained only lim-

§3.1 Effective Prefetch for Garbage Collection 31

ited speedups under simulation, and no noticeable speedups on contemporary hard-
ware. Cher et al. introduce the buffered prefetch strategy that we also adopt (see
Section 3.1.3).

Cher et al. validated their simulated results using a PowerPC 970 (G5). They ob-
tained significant speedups on benchmarks from the JOlden suite, but less impressive
results for the SPECjvm98 suite, with their best result being 8% on jess, and 2% on
javac. All results were achieved using very space-constrained heaps (about 1.125×
the minimum heap size) forcing frequent collections, thereby amplifying the effect of
any garbage collector performance improvements.

3.1.2 Edge Enqueuing

The typical arrangement of queuing operations in the previous section minimizes
queuing operations because each object is enqueued only once. However, we per-
formed analysis that clearly showed that locality, not queuing operations, was the
limiting factor in tracing performance. Looking carefully at Figure 3.1, it is clear
that data related to each live object must be consulted multiple times: once on line 2
when the object is being scanned, and again on lines 3 and 4 when the mark state is
checked and changed. We can reorder the structure of the tracing loop, so that the
checking of the mark state is co-located with the scanning of the object. In the case
of an object reachable only from one edge, this ensures that all accesses to that object
are temporally clustered. For edge enqueuing, the work set contains edges, and the
tracing loop performs processEdge() as shown in Figure 3.2 for each edge.

1 void processEdge(Object o) {
2 if(!isMarked(o)) {
3 mark(o);
4 for(Object e: scan(o)) {
5 push(e);
6 }
7 }
8 }

Figure 3.2: Core of tracing loop with edge enqueuing.

Edge enqueuing requires at least as many queuing operations as node enqueuing,
as each live node in the object graph must have at least one edge to it. When edge
enqueuing was previously considered (e.g., Jones and Lins [1996]) it was discarded
on the basis of this overhead. However, on modern hardware locality is the key
performance concern during tracing, so it is important to consider the potential for
edge enqueuing to align memory accesses and improve cache behavior.

3.1.3 Buffered Prefetch

The poor locality exhibited by the tracing loop and the presence of a work set makes
the use of prefetch instructions a natural choice. In order to allow prefetch, however,

32 High-Performance Garbage Collection

0.94

0.96

0.98

1

1.02

1.04

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

Ti
m

e

Prefetch Distance

Pentium M
Pentium 4
Athlon 64
PPC 970

(a) Total Time

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

C
ol

le
ct

io
n

Ti
m

e

Prefetch Distance

Pentium M
Pentium 4
Athlon 64
PPC 970

(b) Collection Time

Figure 3.3: Performance for node enqueuing across architectures and prefetch distances.

it is important to inject the necessary prefetch call into the instruction stream at the
correct point. Initial attempts at using prefetch simply executed a prefetch instruction
for each object as it was inserted onto a LIFO work stack [Boehm, 2000]. This does
not provide significant gains for real world applications as the distance between the
prefetch and the actual read is highly unpredictable. Often the prefetch is executed
too late and occurs just before the object data is used—providing no time for the
processor to prefetch the data into cache—and in other cases the prefetch happens
too early, meaning that the data is loaded into and subsequently replaced in the cache
before it is required.

In order to address these issues Cher et al. [2004] introduced the idea of a buffered
prefetch, where a small fixed-size FIFO buffer is used in combination with the main
LIFO stack. New values are pushed directly to the stack, while values are processed
off the FIFO buffer. When the latest value is taken off the FIFO buffer, another value
is popped off the stack, inserted into the buffer, and a prefetch instruction executed
for that value. The prefetch distance can be easily varied by changing the size of
the FIFO buffer. This FIFO buffer in combination with the main LIFO stack exhibits
mostly LIFO behavior, but provides a more predictable distance between the prefetch
and memory accesses. Our approach uses a similar queue structure, but as discussed
in the previous section, we combine it with an edge enqueuing approach.

3.1.4 Results

We evaluated the effectiveness of software prefetching in the tracing loop using
both edge and node enqueuing models. Figures 3.3 and 3.4 show performance for
node and edge enqueuing models respectively, providing total and collection time
performance for prefetch distances from 0 to 16 across four modern architectures.
Each graph shows the geometric mean of performance for the full set of 17 bench-
marks drawn from DaCapo [Blackburn et al., 2006], SPECjvm98 [SPEC, 1999], and the
pjbb2000 variant of jbb2000 [SPEC, 2001]. Results are normalized to the performance

§3.2 Free-Me: Prompt Reclamation of Garbage 33

0.94

0.96

0.98

1

1.02

1.04

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

Ti
m

e

Prefetch Distance

Pentium M
Pentium 4
Athlon 64
PPC 970

(a) Total Time

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

C
ol

le
ct

io
n

Ti
m

e

Prefetch Distance

Pentium M
Pentium 4
Athlon 64
PPC 970

(b) Collection Time

Figure 3.4: Performance for edge enqueuing across architectures and prefetch distances.

of node enqueuing with no prefetch: the original default configuration.
We report results for a fairly generous heap, 3× the minimum heap size for

each benchmark. We performed identical experiments across a range of heap sizes,
and found the collection time improvements were independent of heap size. Natu-
rally, overall improvements to total time increased because the total fraction of time
spent in collection was higher in smaller heaps. These results show that combining
edge enqueuing with reasonable prefetch distances can significantly improve collec-
tion performance, yielding a 14% to 27% average speedup across all benchmarks
(depending on architecture). This translates into a 3% to 6% improvement in total
execution time.

3.2 Free-Me: Prompt Reclamation of Garbage

Garbage collection is well understood to trade off time and space [Blackburn et al.,
2004a; Hirzel et al., 2002; Inoue et al., 2003; Shaham et al., 2001; Ungar, 1984]. With-
out performing garbage collection, space requirements are unbounded. Conversely,
performing extremely frequent garbage collection minimizes space requirements.
Free-Me improves the balance between these two extremes with an approach that
promptly reclaims some memory without invoking garbage collection. This reduces
space consumption while avoiding the need to spend time running the garbage col-
lector frequently. This is achieved through a novel combination of a lightweight com-
piler analysis and runtime mechanism. The analysis identifies points in the program
where memory can be reclaimed, and injects calls to the runtime mechanism.

The key insight in Free-Me is that it is not necessary to try and cover all cases;
Free-Me’s analysis is not required to identify and free all objects, nor is the runtime
mechanism required to immediately recycle any memory identified as garbage. This
allows the overheads of Free-Me—both at compilation time and execution time—to
be kept low, ensuring that the approach is profitable.

Free-Me adds an explicit free() operation to the garbage collector, and uses a

34 High-Performance Garbage Collection

Free-Me compiler analysis to inject calls to free() at the point an object becomes
garbage. Free-Me analysis combines simple, flow-insensitive pointer analysis with
flow-sensitive liveness information. Even when an allocation site produces some
objects that escape the method or loop, Free-Me can still free those that do not escape.
Since its scope is mostly local, it typically finds very short-lived objects. Free-Me
includes an interprocedural component that summarizes connectivity and identifies
factory methods (simple methods that return a newly allocated object and have no
other side effects).

The underlying garbage collector dictates the implementation of free(). This
work describes the implementation of free() for free list and bump pointer alloca-
tion. For bump pointer allocation, several variants of free() were explored: 1) a
version that can reclaim the object only when it is the most recent allocation, requir-
ing strict last-in-first-out ordering of calls to free(); 2) a more powerful version of
free() that tracks one unreclaimed region closest to the bump pointer, allowing a
subsequent call to free() to coalesce with it and free a larger region; and 3) a ver-
sion that simply reduces the required copy reserve size by the number of free bytes,
logically saving only half as much space but doing so with minimal complexity.

3.2.1 Related Work

While Free-Me allocates all objects on the heap, the approach is related to region
allocation [Chin et al., 2004; Hicks et al., 2004; Qian and Hendren, 2002; Tofte and
Talpin, 1997] and stack allocation [Blanchet, 2003; Choi et al., 2003; Gay and Steens-
gaard, 2000; Whaley and Rinard, 1999], although it differs in two key ways. First,
region and stack allocation require lifetimes to be contained within a particular pro-
gram scope, whereas our approach frees objects as soon as they become unreachable.
Second, region and stack allocation require specialized allocation sites; the choice of
stack, region, or heap allocation must be made when the object is allocated. In many
systems, this limitation requires each allocation site to produce objects with the same
lifetime characteristics. Even if some objects become unreachable, these systems must
wait until all objects become unreachable.

Research on understanding object lifetimes in Java programs has provided moti-
vation for this work. Marinov and O’Callahan [2003] show that using object equiva-
lence (in which object contents are the same, but have disjoint lifetimes) could save
2% to 50% of memory across SPECjvm98 and two Java server programs. Inoue et al.
[2003] explore the limits of lifetime predictability for allocation sites, and find that
many objects have zero lifetimes, indicating that an approach such as Free-Me could
be profitable.

3.2.2 Runtime Mechanism

We implemented and evaluated several mechanisms for Free-Me across a range of
collectors. The following sections discuss four distinct implementations of free().
Each free() implementation takes two arguments: a reference to the object that is

§3.2 Free-Me: Prompt Reclamation of Garbage 35

no longer live, and the size of the object in bytes. The size information is generally
available to the compiler as a constant, but when the size is not known statically (e.g.,
for arrays with dynamic length), the size is calculated by querying type information.

3.2.2.1 Free List Implementation

Our free list implementation is suitable for several collectors, including mark-sweep,
reference counting, and variants of mark-compact. This implementation can take
advantage of a more aggressive compiler analysis, because both long and short-lived
objects can be freed.

The base free list is a segregated free list, where free lists of fixed sized cells
are maintained. The point in time at which cells can be identified as free varies
depending on the collection policy. The implementation of free() is unaffected by
these variations as it can always link the freed cell onto the head of the free list for
the given size class, making the cell available for immediate re-allocation.

3.2.2.2 Bump Pointer Implementations

Bump pointer allocation is a very simple form of allocation and is widely used with
copying, compacting, and generational garbage collectors. Allocation simply pro-
ceeds in memory order, bumping a pointer to accommodate newly allocated objects.
Two variants of free() for bump pointer allocation were evaluated: unbump() and
unbumpRegion(). In addition, we evaluated a variant, unreserve(), that does not
actually free space, but instead allows a reduction in the required copy reserve.

unbump() The simplest implementation decrements the bump pointer when the
most recently allocated object becomes garbage. Subsequent allocations can then
reuse the space that was occupied by the object. If an attempt is made to free an
object that was not the most recently allocated, then unbump() has no effect.

unbumpRegion() One of the complexities of the unbump() approach is that the com-
piler is forced to present the calls in last-in first-out order in order to free multiple
objects. unbumpRegion() allows the reclamation of more than just the most recently
allocated object, by keeping track of a single contiguous region of freed data just
before the bump pointer. If a sequence of calls to unbumpRegion() results in the re-
gion growing to the current bump pointer, then the entire contiguous region is made
available for allocation.

unreserve() A copying garbage collector is required to maintain a copy-reserve
which contains sufficient space to allow all surviving objects to be copied into it.
unreserve() uses the identification of some objects as garbage which therefore can-
not survive to reduce the required copy-reserve, improving space efficiency while
requiring very little in terms of overhead.

36 High-Performance Garbage Collection

3.2.3 Results

Free-Me was implemented in Jikes RVM and MMTk, a high performance Java-in-Java
virtual machine and memory management toolkit [Alpern et al., 1999, 2000; Black-
burn et al., 2004a,b]. This section presents two sets of results. First, Section 3.2.3.1
presents statistics of the effectiveness of the analysis in injecting calls to free() across
the various benchmarks and configurations. Then, Section 3.2.3.2 presents perfor-
mance numbers—for total, garbage collector, and mutator time—across the various
configurations.

3.2.3.1 Effectiveness of Analysis

Table 3.1 presents statistics for our compiler analysis gathered using a specially in-
strumented build. On average, the Free-Me analysis frees 32% of all objects and up
to 80% in one benchmark. Table 3.1 also shows results for two other systems that
are more restrictive than Free-Me. Unconditional uses a modified version of the anal-
ysis that requires objects to be dead on all paths. Stack-like is even more restrictive,
requiring both the frees and allocation to be in the same method, with the call to
free restricted to be at the end of the method. These restrictions reduce the average
effectiveness from 32% to 25% and 21% respectively, including significant reductions
in some benchmarks. Comparing results listed for Unconditional and Free-Me demon-
strates the importance of allowing free() on some paths and not others, with the
effect most pronounced for more complex benchmarks: bytes freed is reduced by
half or more for javac, jack, antlr, bloat, and pmd.

Table 3.2 shows further potential for the refinement of our approach on three
benchmarks by modifying the code to make up for shortcomings in the analysis.
Note that these modified benchmarks are not used for the performance analysis
in the following section. The modifications made are described in the following
paragraphs.

javac inline A single method, symbolTable.lookup(), is hand-inlined as the op-
timizing compiler chooses not to inline it under normal circumstances. With this
change, Free-Me is able to free a total of 27% of objects. An enhanced version of the
analysis could change inlining heuristics to work well with Free-Me and automati-
cally detect this case.

db mod and xalan mod The addition of three explicit calls to free() from key rou-
tines responsible for growing array-based collections. For example, the ArrayList
container increases the size of its array to accommodate new elements. The add()
method allocates a new, larger array and copies the elements from the old array. The
old array is immediately garbage. Because the arrays are internal to the collection
classes, it seems feasible to construct a compiler analysis that can detect and exploit
such opportunities.

§3.2 Free-Me: Prompt Reclamation of Garbage 37

Table 3.1: Effectiveness of Free-Me analysis, showing total allocation and the percentage of
objects that could be freed by Free-Me and two more restrictive approaches.

Benchmark Allocated (MB) Percentage Freed
Free-Me Unconditional Stack-like

compress 105 0% 0% 0%
jess 263 6% 6% 6%
raytrace 91 81% 80% 80%
db 74 61% 61% 61%
javac 183 13% 9% 9%
mtrt 98 75% 75% 74%
jack 271 60% 47% 38%

pjbb2000 180 19% 9% 3%

antlr 1544 44% 22% 10%
bloat 716 31% 7% 5%
fop 103 30% 24% 20%
hsqldb 515 11% 7% 6%
jython 348 22% 20% 1%
pmd 822 34% 17% 7%
ps 523 4% 4% 3%
xalan 8195 20% 20% 19%

Arithmetic Mean 32% 25% 21%

Table 3.2: Effectiveness of Free-Me analysis for hand-modified versions of three benchmarks,
showing further potential for the Free-Me approach. Performance for original versions are
shown in italics for comparison.

Benchmark Allocated (MB) Percentage Freed
Free-Me Unconditional Stack-like

db mod 74 (74) 88% (61%) 88% (61%) 87% (61%)

javac inline 188 (183) 27% (13%) 14% (9%) 14% (9%)

xalan mod 8195 (8195) 89% (20%) 89% (20%) 88% (19%)

3.2.3.2 Performance Evaluation

The performance of each Free-Me system was evaluated using SPECjvm98 [SPEC,
1999], SPECjbb2000 [SPEC, 2001], and DaCapo [Blackburn et al., 2006] benchmarks.

Mark-sweep performance. The left half of Figure 3.5 shows that for mark-sweep
collection, Free-Me improves total performance by an average of 50% in small heaps,
10% in moderate heaps, and 5% in large heaps. Free-Me improves performance in
line with the statistics of freed objects given in Table 3.1. Figure 3.5 shows these
improvements are primarily due to a reduction in the time required for garbage
collection for the benchmarks. Interestingly, Free-Me also provides a measurable
improvement to mutator time, despite the overhead of calling free(). There are

38 High-Performance Garbage Collection

12

14

16

18

20

22

24

26

28

30

32

1 1.5 2 2.5 3

Ti
m

e
(s

)

Heap Size Relative to Minimum

MarkSweep
free() MarkSweep

(a) Total Time

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

1 1.5 2 2.5 3

Ti
m

e
(s

)

Heap Size Relative to Minimum

GenMS
unbump() GenMS

unreserve() GenMS

(b) Total Time

0

20

40

60

80

100

120

140

160

1 1.5 2 2.5 3

C
ol

le
ct

io
n

Ti
m

e
(s

)

Heap Size Relative to Minimum

MarkSweep
free() MarkSweep

(c) Collection Time

10

15

20

25

30

35

40

45

50

1 1.5 2 2.5 3

C
ol

le
ct

io
n

Ti
m

e
(s

)

Heap Size Relative to Minimum

GenMS
unbump() GenMS

unreserve() GenMS

(d) Collection Time

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

1 1.5 2 2.5 3

M
ut

at
or

Ti
m

e
(s

)

Heap Size Relative to Minimum

MarkSweep
free() MarkSweep

(e) Mutator Time

22.7

22.75

22.8

22.85

22.9

22.95

23

23.05

23.1

23.15

1 1.5 2 2.5 3

M
ut

at
or

Ti
m

e
(s

)

Heap Size Relative to Minimum

GenMS
unbump() GenMS

unreserve() GenMS

(f) Mutator Time

Figure 3.5: Total, garbage collection, and mutator time for mark-sweep (left) and generational
mark-sweep (right) systems using Free-Me.

two key reasons for this. First, Free-Me reuses the same cell that was recently allo-
cated into, which will exhibit excellent locality. Second, the mark-sweep collector on
which Free-Me is built uses lazy allocation, which means that the sweep operation
is performed during mutator time. Reducing the number of collections reduces the

§3.3 Summary 39

number of sweep operations, directly affecting mutator performance.

Generational performance. Free-Me was unable to improve the performance of a
state-of-the art generational mark-sweep collector. Although Free-Me reclaims simi-
lar numbers of objects, and these frees translate into many fewer nursery collections
(e.g., from 16 to 4 in the db benchmark) the survival rate of each nursery collection
increases. The cost of collecting the nursery is dominated by the number of objects
copied, so the reduction in the number of nursery collections does not translate into
a reduction in overall collection time. Figure 3.5 shows results for two of the vari-
ations of free() discussed above, unbump() and unreserve(); unbumpRegion() is
not shown because it performs strictly worse than unbump().

These results show that generational collectors are extremely effective at reclaim-
ing short-lived objects, making it difficult for any technique (including ours) to out-
perform it for collecting short-lived objects. However, full-heap collectors are still
used in some areas (e.g., real-time systems and memory constrained embedded sys-
tems) and Free-Me is a demonstrated way to improve space efficiency and perfor-
mance while retaining the software engineering benefits of garbage collection.

3.3 Summary

The use of high-performance techniques for garbage collection is an important aspect
of overall garbage collection performance. This chapter described two projects that
improved the performance of garbage collected systems that have applications across
a range of garbage collection algorithms. This is an important avenue for research
complementary to the algorithmic approaches that are described in the following
chapters.

40 High-Performance Garbage Collection

Chapter 4

Cycle Tracing

Reference counting, introduced in Chapter 2, is an approach to garbage collection
that has the potential to deliver the requisite combination of throughput and respon-
siveness demanded by low-level programs. Much of the recent progress in refer-
ence counting has been in reducing the overheads imposed by maintaining object
reference counts. While this overhead has been dramatically reduced, the efficient
collection of cyclic garbage remains a stumbling block. This chapter addresses this
shortcoming with cycle tracing, a concurrent, tracing-based cycle collection approach
that achieves greater efficiency than existing methods by taking advantage of infor-
mation already captured and available within a reference counted environment.

This chapter is structured as follows. Section 4.1 describes the cycle tracing algo-
rithm, including a discussion of the base backup tracing algorithm on which cycle
tracing is built. Section 4.2 then describes our evaluation methodology and exper-
imental platform, and provides an evaluation of cycle tracing against trial deletion
and conventional backup tracing.

The work described in this chapter is presented in “Cycle Tracing: Efficient Con-
current Cyclic Garbage Collection” [Frampton, Blackburn, Quinane, and Zigman,
2009b].

4.1 The Cycle Tracing Algorithm

For programs that create little cyclic garbage, generational reference counters have
closed the gap in terms of performance with traditional high-throughput tracing col-
lectors [Blackburn and McKinley, 2003]. Such collectors are able to achieve this while
also providing improved responsiveness due to the incremental nature of reference
counting collection. The stumbling block is cycle collection. Programs that create
even moderate amounts of cyclic garbage suffer severe throughput penalties.

Cycle collection algorithms must determine a transitive property of the object
graph. Participation in a cycle depends on the references of an object transitively
reaching back to the object: a property that can not be determined by looking at an
object in isolation. Trial deletion employs partial tracing techniques and tends to have
very high overheads for programs with significant volumes of cyclic garbage. High
performance cycle collection generally relies on the the use of a backup tracing collec-

41

42 Cycle Tracing

tor, invoked when insufficient memory is reclaimed by the reference counter alone.
While significant research effort has been spent investigating concurrent garbage col-
lection algorithms, surprisingly little research has been undertaken on how best to
deploy such collectors within a reference counting environment.

Cycle tracing is a modified version of a snapshot-at-the-beginning concurrent
mark-sweep collector. It is designed to collect only cyclic garbage, and is optimized
for collecting this cyclic garbage in a reference counted environment. Collecting only
cyclic garbage is sufficient—all acyclic garbage will be promptly reclaimed by the
reference counter. This study identifies and evaluates three potential optimizations
over a conventional snapshot-at-the-beginning collector:

1. Taking advantage of information already gathered during reference counting to
reduce the set of objects that might have been subject to the collector–mutator
race inherent in concurrent tracing collection.

2. Limiting the mark phase to avoid tracing inherently acyclic objects and data
structures.

3. Limiting the sweep phase to sweep only potentially cyclic garbage rather than
the entire heap.

The following sections first give an overview of the unoptimized base backup
tracing algorithm, and then proceed to describe each of these optimizations in detail.

4.1.1 Base Backup Tracing Algorithm

The cycle tracing algorithm is built on a conventional snapshot-at-the-beginning trac-
ing collector as described in Section 2.3.2.2. Abstractly, the backup tracing algorithm
can be described in terms of three phases and a single work queue:

1. Roots. All objects referenced by roots are added to the work queue.

2. Mark. The work queue is exhaustively processed.

(a) Process. Each object is taken off the work queue, and if the object is not
marked, it is marked and then each of its referents are added to the work
queue.

(b) Check. Before leaving the mark phase, we process any object poten-
tially subject to the collector–mutator race. If any of these objects are not
marked, they are marked, added to the work queue, and the Mark phase
is resumed.

3. Sweep. Reclaim space used by objects that have not been marked.

In the backup tracing algorithm, every object that is modified during the collec-
tion must be processed as part of Step 2(b). Throughout the rest of this chapter we
refer to this algorithm as the base snapshot-at-the-beginning algorithm or simply the base
algorithm.

§4.1 The Cycle Tracing Algorithm 43

4.1.2 A Lightweight Snapshot Write Barrier

This section describes the write barrier used by the backup tracing and cycle trac-
ing systems to support both coalescing reference counting and concurrent tracing.
Recall from Chapter 2 that a snapshot-at-the-beginning collector relies on a barrier
to capture reference values before they are mutated, constructing an accurate snap-
shot of the heap to be traced during collection. Our implementation uses a low-cost,
low-synchronization snapshot barrier to provide the required information for both
coalescing reference counting and concurrent tracing. The barrier is the same as that
used by Blackburn and McKinley [2003] which was itself a variant of the barrier used
by Levanoni and Petrank [2001] for their on-the-fly reference counter with backup
mark-sweep.

1 @Inline
2 public void writeBarrier(ObjectReference srcObj,
3 Address srcSlot,
4 ObjectReference tgtObj) {
5 if (getLogState(srcObj) != LOGGED)
6 writeBarrierSlow(srcObj);
7 srcSlot.store(tgtObj);
8 }
9

10 @NoInline
11 private void writeBarrierSlow(ObjectReference srcObj) {
12 if (attemptToLog(srcObj)) {
13 enumeratePointersToSnapshotBuffer(srcObj);
14 modifiedObjectBuffer.push(srcObj);
15 setLogState(srcObj, LOGGED);
16 }
17 }
18

19 @Inline
20 private boolean attemptToLog(ObjectReference object) {
21 int oldState;
22 do { /* perform conditional store */
23 oldState = object.prepare();
24 if (oldState == LOGGED) return false;
25 } while (oldState == BEING_LOGGED ||
26 !object.attempt(oldState, BEING_LOGGED));
27 return true;
28 }

Figure 4.1: A low-overhead write barrier to support coalescing reference counting.

Figure 4.1 shows source code for the write barrier. The barrier establishes before
and after images of the pointers within each mutated object, and ensures that each
object is only ever remembered once. It achieves this by:

(a) taking a snapshot of the state of all pointer fields of each object prior to its first
mutation since a collection (line 13); and

44 Cycle Tracing

(b) recording the mutated object so that the ‘after’ state of its fields can be enumer-
ated at collection time (line 14).

Line 5 determines whether the object being mutated has already been logged.
This requires a simple unsynchronized test of a bit in the object header. If the ob-
ject fails this test (and appears not to have been logged since the last collection)
an out-of-line call is made to the write barrier slow path (lines 10–17). The slow
path first attempts to set the state of the object to being logged, using a synchronized
prepare/attempt idiom to ensure the object is only logged once. If the current
thread is confirmed as responsible for logging the object, each reference field is pro-
cessed (lines 13–14), and the object header is then marked as logged (line 15). All
subsequent mutations of the object may then fall straight through to line 7 on the fast
path and simply perform the (unsynchronized) pointer store.

The common case thus involves only a simple unsynchronized test of a bit in the
source object’s header in addition to performing the pointer store (lines 5 and 7).
The unsynchronized check is sufficient because each object’s logged state changes
only from unlogged to logged in any given collection cycle, and the entire system is
guaranteed to have a consistent view of every object’s state (all unlogged) at the start
of each collection cycle. If any thread is late to observe that an object has been logged
it will simply force a call to the slow path where the correct state will be discovered.

Note that this barrier is different to a barrier designed to support a snapshot-at-
the-beginning tracing collector without reference counting. Line 14 is needed specifi-
cally for reference counting; it allows the collector to enumerate new reference values
within all modified objects at the end of the collection cycle (in order to apply incre-
ments). Depending on collector design and architecture, the guard on line 12 may
also be omitted, because a snapshot-at-the-beginning tracing collector requires the
original value be processed at least once, while reference counting must decrement
the reference count of each original, overwritten value exactly once.

The following sections outline each of the three optimizations cycle tracing ap-
plies to the base backup tracing algorithm.

4.1.3 Concurrency Optimization

The first optimization uses reference counting information to simplify the work re-
quired to ensure an accurate trace in the face of concurrent mutator and collector
activity. Recall that the base backup tracing algorithm must process every overwritten
reference, because in general, each could be an occurrence of the mutator–collector
race and result in live data remaining unmarked. The set of objects that the collector
must process to avoid harmful races is known as the fix-up set. This section will show
that processing every overwritten reference is conservative, because a harmful race
will occur only in the case that the last reference to a given object is overwritten. In
a reference counting environment this information is on hand, so it makes sense to
utilize it, thus reducing the size of the fix-up set.

§4.1 The Cycle Tracing Algorithm 45

We start by recalling the necessary conditions C1 and C2′ for a race, described in
Section 2.3.2 and repeated here:

C1. A pointer from a black object to a white object is created.

C2′. The original path to the white object is destroyed.

In the context of reference counting we make the following claims:

1. For C2′ to occur, either the white object, or some object in the original path to
the white object, will be subject to a reference count decrement to a non-zero
reference count.

2. When C2′ arises, it is correct and sufficient to add to the fix-up set either the
white object or any object in the original path still connected to the white object.

We justify the first claim as follows. For case C2′ to occur, some pointer must be
removed, and this pointer must:

(a) directly point to the white object; or

(b) be the start of an acyclic path to the white object; or

(c) be the start of a path to the white object that contains a cycle.

Considering case (a), the white object is subject to the following sequence of changes:

1. The initial reference count must be at least 1, because it includes the reference
that is to be removed.

2. During some time interval, the creation of the new pointer (due to condition C1)
and the removal of the original pointer to the white object will occur, causing
an increment and decrement to the white object to be buffered.

3. The reference count will then rise to at least 2, because buffered increments
must be processed before decrements.

4. The reference count will then be subject to a decrement to a non-zero value, as
required by our claim.

Case (b) trivially reduces to case (a), because intervening objects are decremented
to zero and collected, with referents recursively decremented until the direct pointer
to the object is found.

Case (c) is illustrated by Figure 4.2. The deletion of the reference from D to E must
cause some object in the path from A to the white object C to have its reference count
reduced (i.e., object E), and because E is part of a cycle, this decrement must be to a
non-zero reference count, meaning E will be added to the fix-up set. Thus whenever
condition C2′ arises, either the white object—or some object in the path to the white

46 Cycle Tracing

C

A

B

D
E

(a) t0

C

A

B

E
D

(b) t1

C

A

B

E
D

(c) t2

Figure 4.2: Adding a cycle to the mutator–collector race.

object—must experience a decrement to a non-zero reference count, causing it to be
added to our fix-up set, satisfying our first claim.

Our second claim is trivial. Since any object in the fix-up set will be traced, it
is sufficient to add any object that reaches the white object to the fix-up set. Fur-
thermore, once an object which forms the original path to the white object is made
unreachable, the path cannot be changed by the mutator. We therefore claim that it
is sufficient and correct to use the set of objects which experienced a decrement to a
non-zero reference count as the fix-up set.

Martínez et al. [1990] noted that a decrement to a non-zero reference count is a
necessary condition for the generation of cyclic garbage, a fact also used by subse-
quent work (see Section 2.4.2). Three interesting, previously established properties
follow:

• decrements to non-zero reference counts are empirically known to be uncom-
mon (which is why they are used to reduce the set of candidates in trial dele-
tion);

• the condition is trivially identified by the reference counter during batch pro-
cessing of decrements; and

• the condition is robust to coalescing of reference counts (exploited by Blackburn
and McKinley [2003] and discussed by Paz et al. [2007]).

Cycle tracing therefore reduces its set of fix-up candidates to just those that ex-
perience decrements to non-zero reference counts, referred to as purple objects by
Bacon and Rajan [2001]. Note that the correctness of this optimization to cycle trac-
ing depends on purple object identification during heap tracing only, whereas trial
deletion requires that this set be continually maintained. The results section shows
that the overhead of continually maintaining the purple sets is measurable, so per-
forming the operation only on demand may be sensible. However, the cycle tracing
sweep optimization described below does depend on the purple set being continually
maintained between invocations of the cycle collector.

§4.1 The Cycle Tracing Algorithm 47

4.1.4 Marking Optimization

Our second optimization is to reduce the scope of the mark phase by avoiding ob-
jects which are statically identified as being inherently acyclic. We use the simple
method of determining acyclic classes in Java proposed by Bacon and Rajan [2001].
A class is said to be acyclic if it contains no pointer fields, or if it can point only to
acyclic classes. Such objects are referred to as green objects, and are identified by a
dedicated bit in each object’s header. Bacon and Rajan use this bit to curtail the scope
of each trial deletion trace to avoid tracing green objects. We trivially modify Step 2
in the base algorithm above to consider an object to be marked if the object is either
marked or green. When using this optimization, green objects are not swept, but in-
stead their collection is left entirely to the reference counter. The effectiveness of this
optimization depends on the proportion of green objects in the heap. As shown later
in Section 4.2.3, for many benchmarks a significant proportion of allocated objects
are green.

4.1.5 Sweeping Optimization

Our third optimization is to limit the scope of sweeping to sweep only potentially
cyclic objects and their children. We do this by using the same definition of poten-
tially cyclic garbage as used in Section 4.1.3: objects subject to decrement to non-zero
reference counts, which we refer to as purple. Rather than sweep the entire heap for
unmarked objects, we note that the collector need only collect cyclic garbage, and
therefore target our sweep at the potentially cyclic garbage identified by the purple
set. This optimization is complete since all acyclic garbage will be collected by the
reference counting collector.

4.1.6 Interaction With The Reference Counter

Cycle tracing places just three requirements on the underlying reference counting
implementation. First, a consistent root set needs to be established. This is easily
achieved by piggy-backing on an invocation of the deferred reference counter (which
must establish a root set for its own purposes). The computation of this root set
can be performed in either a stop-the-world or on-the-fly manner [Levanoni and
Petrank, 2001]. Second, the fix-up set must be added to the gray queue (see Step 2(b)
in Section 4.1.1) at a point where the set is known to be complete. This is trivial
when the reference counter operates in a stop-the-world manner, which is the case
in our system even though cycle collection work is concurrent. If all mutators are
suspended, then it is sufficient to first process all increments and then all decrements
before determining the fix-up set, with termination guaranteed if this fix-up set is
empty. The third requirement is that the reference counter not free any objects known
to the cycle tracing mechanism (which would cause cycle tracing to dereference a
dangling pointer). Cycle tracing maintains a work queue (containing gray objects)
and a fix-up queue (containing purple objects). The reference counter must simply
mark any purple or gray objects for removal rather than directly freeing them; the

48 Cycle Tracing

cycle tracer takes responsibility for freeing them as they are removed from the buffers
and identified as free.

Both trial deletion and cycle tracing place similar requirements upon the underly-
ing reference counter (including the establishment of the purple set), so it would also
be possible to construct a system where the collectors are interchanged dynamically.
While some variations of cycle tracing do not maintain a purple set, it is possible
to establish an appropriate purple set during a complete cycle collection, making it
possible to switch to these variations (or trial deletion).

4.1.7 Invocation Heuristics

A detailed analysis of heuristics for invoking cycle collectors is outside the scope of
this work. A trivial policy is to invoke the cycle collector whenever the underly-
ing reference counter is unable to free memory according to a specified space usage
threshold. In collectors that rely on a purple set—such as trial deletion and some
variants of cycle tracing—the size of the purple set might also constitute a suitable
cycle detection trigger.

4.2 Evaluation

This section first briefly describes the platform within which all collectors have been
implemented and evaluated. We then present the characteristics of the machines on
which we conducted our experiments as well as some features of the benchmarks
used.

We evaluated three cycle collectors: cycle tracing, simple backup tracing, and trial
deletion, exploring performance in three ways:

1. performing a limit study of raw cycle collection throughput, where the cycle
collector is forced to run at set intervals in a non-concurrent setting;

2. examining concurrency, measuring the efficiency of the cycle tracing concur-
rency optimization; and

3. comparing overall performance in a more natural setting, where the collectors
are invoked only when deemed necessary by a cycle collection heuristic.

4.2.1 Implementation Details

We used MMTk in Jikes RVM version 2.3.4+CVS, with patches to support replay
compilation [Blackburn et al., 2006]. MMTk is a flexible high performance mem-
ory management toolkit used by Jikes RVM [Blackburn et al., 2004a]. Jikes RVM
is a high-performance virtual machine written in Java with an aggressive optimiz-
ing compiler [Alpern et al., 1999, 2000]. We use configurations that pre-compile as
much as possible—including key libraries and the optimizing compiler—and turn

§4.2 Evaluation 49

Table 4.1: Benchmark statistics showing total allocation, minimum heap size, percentage
allocated green (acyclic), and percentage collected due to cyclic garbage.

Benchmark Allocated (MB) Min. Heap (MB) Green Cyclic

compress 116 14 91% 93%
db 90 16 11% 1%
jack 271 8 72% 2%
javac 241 20 47% 23%
jess 300 9 8% 2%
mpegaudio 5 8 6% 45%
mtrt 173 16 21% 6%
raytrace 163 12 20% 4%

pjbb2000 315 36 47% 14%

antlr 301 13 85% 13%
bloat 684 22 43% 12%
fop 66 24 69% 28%
hsqldb 592 21 65% 14%
jython 462 13 0.6% 4%
pmd 322 20 17% 24%
ps 572 9 46% 2%
xalan 77 99 89% 58%

Arithmetic Mean 43% 20%

off assertion checking (this is the Fast build-time configuration). The adaptive com-
piler uses sampling to select methods to optimize, leading to high performance but
a lack of determinism. Since our goal is to focus on application and garbage col-
lection interactions, we use the replay approach to deterministically mimic adaptive
compilation.

By using the MMTk framework we are able to perform an apples-to-apples com-
parison of the collectors, with all base mechanisms shared by the different collector
implementations. MMTk includes all space consumed by meta-data as part of overall
memory consumption, including all work queues, buffers, and free list meta-data.

4.2.2 Experimental Platform

Experiments were conducted on a 2.2GHz AMD 64 3500+ running Linux 2.6.10. The
data and instruction L1 caches are 64KB 2-way set associative. It has a unified,
exclusive 512KB 16-way set associative L2 cache, and is configured with 2GB of dual
channel 400 DDR RAM configured as 2 × 1GB DIMMs on an MSI nForce3 Ultra
motherboard with an 800MHz front side bus.

4.2.3 Benchmarks

Table 4.1 shows the key characteristics of each of the 17 benchmarks used. These
experiments were conducted with beta version beta050224 of the subsequently re-

50 Cycle Tracing

leased DaCapo benchmarks [Blackburn et al., 2006], a suite of non-trivial real-world
open source Java applications. We also use the SPECjvm98 [SPEC, 1999] suite and
pjbb2000, a variant of SPECjbb2000 [SPEC, 2001] that executes a fixed number of
transactions to perform comparisons under a fixed garbage collection load. In Ta-
ble 4.1, the Allocated column shows the total volume of allocation. The Min. Heap
column shows the minimum heap size in which each benchmark runs successfully
using the default configuration of MMTk (a generational mark-sweep collector). The
Green column shows the fraction of allocated objects (in bytes) that were statically
determined to be green (acyclic). The Cyclic column shows the fraction of data (in
bytes) that a reference counter alone is unable to collect due to cyclic garbage. Note
that this includes not only objects directly participating in garbage cycles, but also
any objects kept alive by references from garbage cycles.

4.2.4 Throughput Limit Study

We begin by describing a limit study to analyze the fundamental efficiency of three
cycle collectors: the base backup tracing algorithm, trial deletion, and cycle tracing.
All three cycle collectors are correct and complete, and are able to collect any cyclic
garbage present in a given heap. Abstractly, this approach exposes each collector
to a large number of cycle collection opportunities and measures the efficiency with
which they perform the collection task. Concretely, this is achieved by forcing the
cycle collectors to collect a reference-counted heap after a fixed volume of allocation.
In each case the cycle collector is invoked in a stop-the-world manner, thereby ignor-
ing concurrency related concerns. This approach is simply an analytical tool, not a
practical way to collect cycles. We examine the overall cost of the collectors in a more
natural setting in the following sections.

Given that all collectors execute in a stop-the-world setting, this analysis is lim-
ited to examining the effectiveness of the mark optimization and sweep optimization
as described in Sections 4.1.4 and 4.1.5. The effectiveness of the cycle tracing concur-
rency optimization is addressed in Section 4.2.5.

Figure 4.3 shows the overall throughput of the cycle tracing and trial deletion
algorithms (normalized against backup tracing) for cycle collection invocation fre-
quencies ranging from 128KB to 128MB. We show the average time for each cycle
collection, taking the geometric mean of this value for all 17 benchmarks. These re-
sults show that cycle tracing outperforms the base algorithm by around 20%, while
trial deletion performs around 70% worse than the base algorithm. This appears
stable across the range of invocation frequencies examined, and while it is possible
that this will not be the case for all invocation frequencies, note that the upper limit
(128MB) is in the order of the total volume of allocation for many benchmarks (see
Table 4.1).

Tables 4.2 and 4.3 (on page 52) show a breakdown of results for each of the
17 benchmarks when using an 8MB invocation frequency. Table 4.2 gives absolute
figures for the base backup tracing algorithm, showing: cycle collection time (in mil-
liseconds), nodes visited (in millions), and average cost per node visit (in nanosec-

§4.2 Evaluation 51

0.6

0.8

1

1.2

1.4

1.6

1.8

2

128K 512K 2M 8M 32M 128M

N
or

m
al

iz
ed

C
yc

le
C

ol
le

ct
io

n
Ti

m
e

Cycle Collection Trigger (bytes)

Backup Tracing
Cycle Tracing
Trial Deletion

Figure 4.3: Throughput limit study with varying invocation frequency.

onds). Table 4.3 then shows the corresponding figures for cycle tracing and trial
deletion, normalized against the results obtained for backup tracing. For all bench-
marks, trial deletion is substantially and consistently slower than backup tracing,
with the best result being a 41% slowdown in pjbb2000. In contrast, cycle tracing
outperforms backup tracing in 16 of the 17 benchmarks, with only fop showing a 2%
slowdown. Other benchmarks show consistent improvements of between 10% and
30%.

The Visits column for cycle tracing indicates that on average cycle tracing visits
about 12% fewer nodes than backup tracing, demonstrating the efficacy of the mark
optimization from Section 4.1.4. This reduction is not as significant as might be
expected given the high proportion of green objects shown in Table 4.1. Two factors
could account for this discrepancy. First, it is still necessary to visit the green fringe,
that is the set of green objects that are directly referenced from non-green objects (it
might be possible to further optimize the marking process by not considering object
fields that always point to green objects). Second, the numbers in Table 4.1 reflect
the total volume of allocated objects, whereas the counts given during execution are
determined by the proportion of green objects in the heap at an instant in time.

The Visit Cost column for cycle tracing shows that the average cost of a node visit
is also lower in cycle tracing than backup tracing. This is due to two factors. First, as
mentioned above, the mark optimization means that visits to green objects are very
fast, since no marking or scanning work is required. Second, because this figure is
calculated by dividing the total cycle collection time by the number of nodes visited,
and the cycle tracing sweep optimization reduces overall cycle collection time, the
average visit cost is reduced.

52 Cycle Tracing

Table 4.2: Throughput limit study showing average costs per cycle collection for backup
tracing (invoked after every 8MB of allocation).

Benchmark Backup Tracing
Time (ms) Visits (×106) Visit Cost (ns)

jess 89.98 11.62 7.74
raytrace 91.25 11.95 7.64
db 92.38 12.12 7.62
javac 118.33 14.59 8.11
mpegaudio 66.74 8.94 7.46
mtrt 99.75 12.90 7.73

pjbb2000 126.29 13.83 9.13

antlr 95.78 11.84 8.09
bloat 116.56 14.12 8.25
fop 108.97 12.94 8.42
hsqldb 104.29 13.01 8.02
jython 105.62 13.24 7.98
xalan 108.82 13.23 8.23

Arithmetic Mean 101.9 12.64 8.03

Table 4.3: Throughput limit study showing average costs per cycle collection for cycle tracing
and trial deletion (invoked after every 8MB of allocation) normalized to backup tracing.

Benchmark Cycle Tracing Trial Deletion
Normalized to backup tracing Normalized to backup tracing

Time Visits Visit Cost Time Visits Visit Cost

jess 0.81 0.88 0.93 1.76 1.17 1.51
raytrace 0.78 0.87 0.90 1.64 1.28 1.28
db 0.73 0.85 0.86 1.52 1.15 1.32
javac 0.94 0.92 1.02 1.94 1.99 0.98
mpegaudio 0.77 0.90 0.86 1.65 1.23 1.34
mtrt 0.80 0.87 0.92 1.65 1.32 1.25

pjbb2000 0.71 0.84 0.84 1.41 1.55 0.91

antlr 0.91 0.90 1.01 1.86 1.40 1.33
bloat 0.81 0.91 0.89 1.65 1.55 1.07
fop 1.02 0.92 1.10 1.88 1.93 0.97
hsqldb 0.83 0.81 1.02 1.70 1.44 1.18
jython 0.81 0.90 0.90 1.70 1.30 1.30
xalan 0.86 0.90 0.95 1.73 1.49 1.16

Geometric Mean 0.83 0.88 0.93 1.69 1.43 1.19

§4.2 Evaluation 53

4.2.5 Concurrency

All of the experiments described in the previous section were performed in a stop-
the-world setting, and therefore precluded any analysis of the concurrency optimiza-
tion from Section 4.1.3. Recall that the concurrency optimization allows a reduction
in the size of the fix-up set—the set used by the snapshot-at-the-beginning collector
to account for any collector–mutator races.

Initially, we expected the concurrency optimization to reduce the amount of work
required, resulting in a direct improvement to overall efficiency. In practice, mea-
surements in a uniprocessor time-slicing context showed that the optimization had
no measurable impact.

Although Section 4.1.3 showed that decrements to objects whose reference count
falls to zero are not required to ensure correctness, the structure of our collector means
that the cost of performing fix-up operations on these objects is insignificant. The
reference count of the object is stored in the same word as the cycle tracing mark
state, and so the cost of checking the reference count is the same as directly checking
the mark state.

It is also worth noting that the amount of fix-up work required in any case was
minimal, although one would expect the amount of work to increase in a truly con-
current setting (as opposed to time-slicing).

4.2.6 Overall Performance

This section evaluates the performance of the collectors. All experiments use a simple
heuristic where cycle collection was triggered when the reference counter was unable
to reclaim sufficient space in a fixed sized heap. All cycle collectors are invoked in
a stop-the-world manner. We did not have a concurrent implementation of trial
deletion, and we found in experiments with backup tracing and cycle tracing that
the choice of heuristics dominated results, rather than the algorithm. A stop-the-
world setting allows us to more fairly match the heuristics used across the different
cycle collection approaches.

Figures 4.4–4.6 show more detailed performance results for three representative
benchmarks, giving total time, overall garbage collection time (inclusive of cycle col-
lection), cycle collection time, and mutator time as a function of heap size. Included
are measurements for backup tracing, cycle tracing with mark and sweep optimiza-
tions, cycle tracing with just the mark optimization, and trial deletion. All of the
graphs plot time in seconds. For javac, cycle collection costs become noticeable at
heap sizes less than 2.5× the minimum, while for jess and bloat cycle collection
costs are noticeable for heap sizes less than 4× the minimum (see Figure 4.4(b), Fig-
ure 4.5(b), and Figure 4.6(b)).

The most surprising result in Figures 4.4–4.6 is that the cycle tracing with mark
and sweep optimizations performs worse than cycle tracing with just the mark opti-
mization in all but the tightest heap sizes. The sweep optimization uses the purple
set—containing roots of potentially cyclic garbage—to restrict the sweep to just those
objects, avoiding a potentially expensive sweep of the entire heap. Closer analysis

54 Cycle Tracing

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(a) jess Total Time

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(b) jess Cycle Collection Time

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(c) jess Total Collection Time

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(d) jess Mutator Time

Figure 4.4: Total, mutator, garbage collection, and cycle collection performance for jess.

reveals that any advantage in a more targeted sweep is lost to purple set mainte-
nance in large heap sizes. The correctness of the sweep optimization requires that
the purple set contain all purple objects identified since the last cycle collection.

Purple set maintenance costs both space and time. Because we count all meta-
data (including the purple set) as heap memory, a large purple set can lead to heap
pressure and consequently increased collector load, evident in Figure 4.4(b) and Fig-
ure 4.6(b). Trial deletion and cycle tracing (with mark and sweep optimizations)
continue to perform measurable cycle collection work in large heaps, while the oth-
ers perform none. The time overhead is due to the need to filter the purple set
periodically to remove objects which have been collected by the reference counter.
As the cycle collections become less frequent, the size of the purple set accumulates
over a longer time, becomes larger, and requires more filtering, explaining why at the
tightest heaps the sweep optimization is not harmful. The difference in performance
across heap sizes suggests a more intelligent approach. Because the sweep optimiza-
tion makes sense only when the purple set is small, a cap could be placed on the
purple set size. Once the cap is exceeded, the purple set can be discarded (unmain-
tained until the next cycle collection phase), where the cap can then be reinstated and

§4.2 Evaluation 55

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(a) javac Total Time

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(b) javac Cycle Collection Time

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(c) javac Total Collection Time

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(d) javac Mutator Time

Figure 4.5: Total, mutator, garbage collection, and cycle collection performance for javac.

the process started again. Such a hybrid would thus dynamically choose whether to
use the sweep optimization. The overhead of dealing with the purple set could also
be addressed by using a purple object bitmap. This would come at a constant space
overhead, but would avoid the need for filtering. A combination of modest buffers
and a bitmap updated by a single thread would avoid the need for atomic bitmap
updates. Evaluating these alternatives is left to future work.

There are two other notable conclusions to be drawn from Figures 4.4–4.6. The
first is that in benchmarks such as jess which allocate large numbers of short lived
objects, the overhead of setting the gray bit on newly allocated objects is measurable.
This is clear in Figure 4.4(d), where trial deletion holds a clear mutator time advan-
tage over the others. Initial experience showed that setting the green bit in newly
allocated acyclic objects was expensive, but we addressed this by modifying the Jikes
RVM optimizing compiler to ensure that the green state is compiled in as a constant
in the allocation sequence. The final result is perhaps the most striking of all, and
that is the need for good heuristics for triggering of cycle collection. The heuristic is
obviously naive; jess, which produces very little cyclic garbage, spends as much as
half of its total running time performing cycle collection in tight heaps.

56 Cycle Tracing

10

15

20

25

30

35

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(a) bloat Total Time

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(b) bloat Cycle Collection Time

6

8

10

12

14

16

18

20

22

24

26

28

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(c) bloat Total Collection Time

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

1 2 3 4 5 6

Ti
m

e
(s

)

Heap Size Relative to Minimum

Backup Tracing
Cycle Tracing

Cycle Tracing (-Sweep)
Trial Deletion

(d) bloat Mutator Time

Figure 4.6: Total, mutator, garbage collection, and cycle collection performance for bloat.

4.3 Summary

This chapter introduced the novel tracing based cycle collection algorithm—cycle trac-
ing—and described several optimizations targeted at improving cycle collection per-
formance. Not all of the described optimizations improved performance, but the
results obtained indicate that cycle tracing provides a significant performance im-
provement over state-of-the-art backup tracing and trial deletion cycle collectors.

Chapter 5

Generational Metronome

Chapter 2 describes Metronome [Bacon et al., 2003b]—the first collector to provide
proven bounds on time, space, and utilization. While suitable for hard real-time
applications, in Metronome these guarantees come at a significant cost to overall
throughput performance. This chapter describes Generational Metronome, a fully in-
cremental, real-time, generational collector based on a three stage nursery configu-
ration. This collector achieves real-time bounds comparable to a non-generational
Metronome-style collector, while cutting memory consumption and total execution
times for generational workloads by as much as 44% and 24% respectively.

Section 5.1 highlights the features of the collector, and describes the real-time gen-
erational algorithm, focusing on key implementation and algorithmic hurdles. Sec-
tion 5.2 introduces an analytical model for the collector, and describes the collector
and application parameters required to provide real-time guarantees. Section 5.3.1
then presents a thorough evaluation of the generational collector, showing both ana-
lytically and experimentally that the collector achieves real-time bounds comparable
to a non-generational Metronome-style collector, while cutting memory consumption
and total execution time.

This chapter is based on work published in the paper “Generational Real-Time
Garbage Collection: A Three-Part Invention for Small Objects” [Frampton, Bacon,
Cheng, and Grove, 2007].

5.1 Real-Time Generational Collection

The potential for reducing memory consumption and/or improving throughput by
employing a generational technique is well understood. A few generational collec-
tors with various levels of soft- or hard-real-time behavior have been described [Ba-
con et al., 2005; Doligez and Leroy, 1993; Doligez and Gonthier, 1994; Domani et al.,
2000b,a], but they either collect the nursery synchronously, or prevent nursery col-
lections during mature collections—making it necessary for the mature collector to
handle the full allocation rate of the application. This leads either to long pauses (in
the order of 50 ms) or a very limited nursery size. For example, if the target maxi-
mum pause time is 1 ms and the evacuation rate is 100 MB/s, a synchronous nursery
can be no larger than 100 KB. At such small sizes the survival rate is often too high

57

58 Generational Metronome

to derive much benefit from generational collection.
This chapter presents a fully generational version of the original Metronome real-

time garbage collector [Bacon et al., 2003b], in which both nursery and mature col-
lections are performed incrementally, and in which the scheduling of the two types
of collections is only loosely coupled. This allows nursery collection to occur at any
time, including in the middle of a full-heap collection.

Our generational algorithm is more complex but yields one significant advantage:
greater flexibility in sizing the nursery while still meeting the real-time requirements
of the application. The algorithm allows the collector to achieve very short pause
times (nominally 500 µs) and reliable real-time behavior, while using a nursery large
enough to achieve low survival rates.

The key contributions of this work are:

• An algorithm for fully generational real-time garbage collection in which both
the nursery and major collections are incremental and can be arbitrarily inter-
leaved.

• A nursery configuration based on a three stage life cycle that allows one nurs-
ery to be collected while the application continues to allocate into a separate
nursery.

• An analysis of the space bounds and mutator utilization of a generational col-
lector in which the nursery size is elastic, including the derivation of the nurs-
ery size that maximizes utilization and minimizes memory consumption.

• Measurements of applications showing that our generational collector is able to
achieve real-time behavior comparable to a non-generational Metronome sys-
tem, while using significantly less memory and increasing throughput.

5.1.1 Key Challenges

To make generational real-time collection more widely applicable, we must:

1. Make nursery collection incremental or concurrent; and

2. Ensure that nursery collections can always make progress (e.g., nursery collec-
tion should not be affected by the mature collection state).

Achieving both of these design goals decouples worst case pause time from nurs-
ery size, allowing the nursery size to be chosen to yield the low survival rates critical
for effective generational collection.

The remainder of this section outlines the key challenges in incremental nursery
collection and how our system addresses them. This is not a complete description
of the generational algorithm, but covers all of the key extensions necessary to build
an incremental generational collector on top of the base Metronome system. Sec-
tion 5.1.3 introduces the three-part nursery configuration, which enables the mutator

§5.1 Real-Time Generational Collection 59

to continue allocating while a nursery collection is in progress. Section 5.1.4 de-
scribes the techniques used to collect the nursery, including the write barriers used
to establish and preserve the nursery root set. Finally, Section 5.1.5 discusses how
the nursery and mature collections interact when both are active.

5.1.2 Basic Structure

The fundamental goal of our approach is to allow mutators to continue executing—
and therefore allocating—while a nursery collection is taking place. The heap in our
generational system consists of a single mature area, and a sequence of nurseries
that follow a three stage life cycle, as described in the following section. Unlike the
synchronous nursery collector, Syncopation [Bacon et al., 2005], each nursery in our
system is not fixed in size. Instead, each nursery continues to grow due to mutator
allocation until it is both desirable and possible to begin a nursery collection cycle.

It is considered desirable to initiate a nursery collection once a certain amount
of allocation—the nursery trigger—has occurred. The nursery trigger is a system
parameter that can be varied to trade off survival rate with memory consumption
(see Section 5.2).

However, it is not possible to begin a nursery collection if a previous nursery col-
lection is still in progress, so a new collection will be deferred while the previous
collection completes. The mutator continues to allocate during this period, making
it possible for the nursery to exceed the size specified by the nursery trigger. This
introduces some degree of nursery elasticity, allowing the system to smoothly ab-
sorb short-term spikes in the application allocation rate, without resorting to direct
allocation into the mature area (which defeats any attempt to improve guaranteed
real-time behavior through the nursery).

Nursery pages are allocated out of a single global pool of pages shared with
the mature area. This facilitates the development of a simple model of the system.
Allocation to nursery pages is performed using a simple bump pointer. Objects are
promoted by copying them into cells allocated in the mature space using a segregated
free list allocator.

As is typical for generational collectors, we use a write barrier to capture refer-
ences created from the mature space to a nursery object. These references are stored
in a remembered set. As with nurseries, there is a sequence of remembered sets, each
associated with a single nursery. Figure 5.1 shows the section of the write barrier
that is inlined into application code. This barrier differs from the non-generational
Metronome barrier only through the additional check on line 6; both the forwarding
of the target value on line 3, and the check against collector tracing state on line 5 are
unchanged. During both nursery and mature collections collector_tracing is set
to true to ensure that a correct snapshot-at-the-beginning collection is performed.

60 Generational Metronome

1 writeBarrier (Object source, Address slot, Object target) {
2 // Ensure forwarded
3 target = forward(target);
4

5 if (collector_tracing ||
6 (isMature(source) && isNursery(target)) {
7 slowPath(source, slot, target);
8 }
9 }

Figure 5.1: Generational Metronome write barrier pseudo-code.

5.1.3 Three Stage Nursery Life Cycle

As described in the previous section, our heap consists of a single mature space, M;
and a sequence of nurseries, N0 N1 N2 . . . Nk, which each progress through a three
stage life cycle:

1. allocate. Each nursery starts its life as the allocate nursery.

2. collect. When it is time to collect the allocate nursery, it becomes the collect
nursery, and a new allocate nursery is created.

3. redirect. After a nursery collection is completed, the collect nursery is retained
as the redirect nursery, because references could have been created to it during
collection, and these references might not be discovered until the collection of
the next nursery in the sequence.

t0)
N0

Allocate

N2 N3N1 Nk
...

t1)
N0

Collect

N2 N3N1

Allocate

Nk
...

t2)
N0

Redirect

N2 N3N1

Allocate

Nk
...

t3)
N0

Redirect

N2

Allocate

N3N1

Collect

Nk
...

t4)
N0 N2

Allocate

N3N1

Redirect

Nk
...

Figure 5.2: Initial sequence of nurseries progressing through the three stage life cycle.

§5.1 Real-Time Generational Collection 61

At any point in time there will exist at most 3 nurseries, consisting of:

• a single allocate nursery;

• a single collect nursery, whenever a nursery collection is in progress; and

• a single redirect nursery, at any point after the first nursery collection.

The initial sequence of nurseries passing through these stages is illustrated by Fig-
ure 5.2. Each nursery, Nk, has associated with it a remembered set, Rk, which
captures all mature to nursery references created while Nk is the allocate nursery. As
described in the following sections, this may include references to the collect nursery.

5.1.4 Incremental Nursery Collection

This section describes the process of performing a single incremental nursery col-
lection. First, Section 5.1.4.1 describes references the mutator can create outside of
a nursery collection. Next, Section 5.1.4.2 describes the process of initiating a nurs-
ery collection. Then, Section 5.1.4.3 describes mutator and collector activities during
a nursery collection. Last, Section 5.1.4.4 describes the state of the system at the
conclusion of a nursery collection.

5.1.4.1 Outside Nursery Collection

Figure 5.3 shows the references that can be created during mutator intervals outside of
a nursery collection. These are simply references between and within M and Nk (the
allocate nursery), with all references from the mature space to the nursery captured
in remembered set Rk.

M Mature

Rk

Nk-1 Redirect Nk Allocate

Figure 5.3: References created outside of a nursery collection.

62 Generational Metronome

M Mature

Rk

Nk-1 Redirect Nk Collect Nk+1 Allocate

(empty)

Rk+1
(empty)

Figure 5.4: State at the start of the collection of nursery Nk.

5.1.4.2 Start of Nursery Collection

Figure 5.4 shows the state of the system at the start of the collection of nursery
Nk. For the first collection, the redirect nursery Nk−1 will not exist (and can be
treated as empty) and the remembered set associated with the collect nursery, Rk,
will be empty, because no objects have yet been promoted, and thus no references
can exist from the mature space into a nursery. As Figure 5.4 shows, for subsequent
collections, Rk contains all of the references created from M → Nk (when Nk was
the allocate nursery) and from M→ Nk−1 (when Nk−1 was the collect nursery).

To initiate the collection of nursery Nk, the following steps are performed atomically:1

• Close the remembered set Rk;

• Capture all root references to Nk in the root set, Zk;

• Direct all mutators to begin allocating into Nk+1;

• Direct all mutators to begin contributing remembered set entries into Zk+1; and

• Activate the tracing write barrier to ensure the nursery is traced consistently.

Note that Rk ∪Zk provides a complete root set for the collection of nursery Nk.
All live objects in Nk are transitively reachable from Rk and/or Zk. By enabling
a standard snapshot-at-the-beginning tracing barrier [Yuasa, 1990], it is possible to
allow the mutator to execute while safely and completely collecting the nursery Nk.

1To facilitate the exposition of the novel aspects of our collector, we describe the algorithm as if an
atomic snapshot of the roots were taken. In practice, the root set can be captured incrementally using
the approach of Azatchi et al. [2003].

§5.1 Real-Time Generational Collection 63

M Mature

Rk+1Rk

Nk-1 Redirect Nk+1 AllocateNk Collect

Figure 5.5: References that may be created during the collection of nursery Nk.

5.1.4.3 During Nursery Collection

This section describes collector and mutator activity during an incremental nursery
collection.

Collector activity. Collector threads perform a transitive closure over the collect
nursery, starting with the root set Rk ∪ Zk, and maintaining a work list of gray
objects. The work list contains objects that have been promoted, but have not yet had
outgoing references scanned. During scanning, outgoing edges are treated according
to the location of the target object:

• References to the mature space are ignored.

• References to the redirect nursery are redirected to promoted versions of the
objects in the mature space.

• References to marked objects in the collect nursery are redirected to the pro-
moted copy in the mature space.

• References to unmarked objects in the collect nursery result in the object being
promoted to the mature space, with the original reference redirected to the
promoted copy in the mature space.

• References to the allocate nursery, Nk+1, are added to the active remembered
set, Rk+1.

Mutator activity. Mutators are free to resume executing while the collect nursery
is being collected. To ensure the collector traces a valid snapshot of the heap, the
mutator is required to execute the snapshot write barrier if a nursery collection is in
progress. References that can be created by the mutator are shown in Table 5.1 and

64 Generational Metronome

Table 5.1: Handling of reference mutations during nursery collections.

Target

M Nk−1 Nk Nk+1

So
ur

ce

M 1,2 5 Rk+1 ∗ Rk+1

Nk−1 2,3,4 1,3,4,5 3,4 3,4

Nk 2,3 3,5 1,3 3 †

Nk+1 2,3 3,5 3 ‡ 1,3

Reason reference is ignored
1 Intra-area reference.
2 Reference into M.
3 Reference from N∗.
4 Nursery Nk−1 is immutable.
5 Reachable objects in Nk−1

have been promoted.

Notes
∗ References from M to Nk must also have been obtained from the

snapshot, and are therefore not required to correctly collect Nk.
† References from Nk to Nk+1 will be added to the remembered set

by the collector as the source objects are promoted.
‡ References from Nk+1 to Nk are not needed to correctly collect Nk

(they must have been obtained from the snapshot given by Rk ∪Zk)
and so are equivalent to references from Nk+1 to M.

illustrated in Figure 5.5. Table 5.1 also indicates which references are added into the
remembered set, and indicates why other references are not required for collection.

As Table 5.1 shows, references created into any nursery (Nk or Nk+1) are added
to the generational remembered set Rk+1. References can not be created to Nk−1
because all references are forwarded as they are written to ensure tracing progress,
and all objects in Nk−1 that have references to them must have been promoted. Ref-
erences from M to Nk+1 stored in Rk+1 are equivalent to the usual generational
remembered set. References from M to Nk are not required for correct collection
of Nk, because Rk ∪ Zk provides a complete root set for collecting Nk, but such
references will need to be updated once the target objects are promoted from Nk.
Updating these references is one reason why the redirect nursery is required.

5.1.4.4 End of Nursery Collection

Once the nursery collection is completed, the remembered set Rk is fully processed
and empty, and all objects in the collect nursery Nk that were transitively reachable
from the mature space and/or Zk have been promoted. In addition, there are now no
references to objects in the redirect nursery Nk−1. These references were previously
in the remembered set or in the collect nursery, Nk. Because the remembered set Rk
in now empty, and Nk has been completely traced, no remaining references to the
redirect nursery Nk−1 remain. This allows the redirect nursery Nk−1 to be reclaimed,
and the collect nursery Nk to change role and take its place as the new redirect nurs-

§5.1 Real-Time Generational Collection 65

M Mature

Rk+1Rk

Nk-1 Redirect Nk+1 AllocateNk Redirect

Figure 5.6: References that may exist after collection of nursery Nk is complete.

ery. The state of the system at this point is shown in Figure 5.6. From this point
note that the only required information in the redirect nursery is forwarding pointer
information for promoted objects. All live objects have been identified and promoted
to the mature space.

Having described the complete process of performing a nursery collection in the
previous sections, we next discuss some of the more interesting issues that arise
when combining mature and nursery collections into a single system.

5.1.5 Mature–Nursery Collection Interactions

The previous section described the operation of the nursery collection, but additional
complexities arise when integrating the mature and nursery collections. In order to
provide the necessary real-time guarantees, the ability for a nursery collection to
proceed must not be impeded by the mature collection process. In our system, the
nursery collection is allowed to preempt a mature collection at any time. This requires
the mature collection to maintain the system in a state where nursery collection is
possible at the end of every mature increment. There is no inverse requirement; a
correct parametrization of the system guarantees that the nursery will leave sufficient
collection time for mature collection work.

To support independent mature and nursery collection, each object is allocated
with two independent mark-bit fields. One field holds the object’s nursery mark
state, while the other holds the object’s mature mark state. Each thread remembers
the current values for each of the mark-bit fields to apply to newly allocated objects.
The current values for the mark-bit fields are then updated as the thread is scanned
at the beginning of a nursery or mature collection.

66 Generational Metronome

5.1.5.1 Mature Collector References to the Nursery

During a mature collection the mature collector potentially holds references to the
nursery in two locations: 1) the root set used to establish the mature collection snap-
shot, and 2) the buffer filled with values captured by the snapshot write barrier.
When a nursery collection preempts a mature collection, it is important to ensure
that these references are processed to avoid creating dangling references.

To allow correct tracing by the mature collector, the nursery collector uses all
values held by the mature collector as additional roots, to ensure that any portion of
the nursery that is part of the mature snapshot is kept alive. In order to allow this
to occur without forcing the nursery collector to process the entire mature collector’s
buffer, the mature space is required to maintain nursery references separately. This
splitting is performed both as roots are calculated, and as the snapshot write barrier
discovers unmarked objects.

5.1.5.2 Mark State of Promoted Objects

The nursery must promote objects into the mature space in a consistent state. If, for
example, the nursery were to promote objects into the mature space as unmarked
after mature tracing is complete, the mature space might sweep up these live objects.
Similarly, if the nursery were to promote objects as marked during tracing, references
from these objects to the mature space might be missed by the mature collector,
causing live mature objects to be collected.

Maintaining correct mark state at promotion is the motivation for associating
two mark-bit fields with each object. All objects, including those in the nursery,
have a valid mature mark-bit field. In line with the allocate-black property of the
mature snapshot collector, the mature mark-bit field records objects allocated after
the mature collection has started as marked. When the nursery promotes objects, the
value of this mark-bit field is preserved, ensuring that the mature trace and sweep
progress correctly. This makes it possible for the nursery to promote an object that
will never be marked by the current mature collection, but because nursery collections
preempt mature collections, the mature collection can never free such an object while
the nursery is still processing it.

5.1.5.3 Sweeping Objects Stored in Remembered Sets

In general, it is possible for objects referred to by the remembered sets to become
garbage. While a stop-the-world generational collector can simply discard all re-
membered set entries during a mature collection, this is not possible with incremen-
tal generational collection. Unless these remembered set entries are handled, the
nursery collector is potentially exposed to invalid data. In order to resolve this issue
in our system, we require the mature collector to sweep the remembered set of all
references to garbage objects before the space associated with the objects is freed. This
allows the nursery collection to preempt the mature collection at any time, because

§5.2 Analytical Model 67

either the remembered set entry will have been removed, or the object will still be
present in memory.

5.2 Analytical Model

To formalize the performance of our generational collector, this section introduces an
extension of the model used by Metronome [Bacon et al., 2003a] to include genera-
tional collection. This model is the basis under which real-time performance guaran-
tees can be provided.

Generational collection provides greater efficiency by focusing work on an area
where there is a high proportion of dead objects. However, in the case where the
nursery survival rate is high, then the additional cost of copying each live object out
of the nursery will make the generational collector perform comparatively poorly.

5.2.1 Definitions

The garbage collector is characterized using the following parameters:

RT is the tracing rate in the heap (bytes/second);

RS is the sweeping rate in the heap (bytes/second); and

RN is the collection rate in the nursery (bytes/second).

The application is characterized by the following parameters:

a is the maximum allocation rate in mutator time (bytes/second) within a time win-
dow required for a mature collection cycle (i.e., the maximum average number
of bytes allocated for every second of processor time that the mutator is active);

m is the maximum live memory size of the mutator in bytes; and

η(N) is a function that provides the maximum survival rate of a nursery of size at
least N bytes (taking into account the generational barrier). By this definition
η(N) is monotonically decreasing in N (eliminating quantization effects caused
by irregular survival patterns).

The real-time behavior of the system in characterized by the following parameters:

∆t is the task period in seconds; and

u is the minimum mutator utilization or MMU [Cheng and Blelloch, 2001] for the
task period ∆t.

68 Generational Metronome

5.2.2 Steady-State Assumption and Time Conversion

While the allocation rate and survival rate can vary considerably during execution,
we start by considering the case when they are smooth. However, dynamic nursery
size variation is central to our approach, so we model it dynamically. As in previous
Metronome collectors, modeling relies on being able to relate total time, mutator
time, and collector time. For a given total time interval ∆t, the collector may consume
up to (1− u) · ∆t seconds for collection. We define the garbage collection factor γ as
the ratio of mutator execution to collector work:

γ =
u · ∆t

(1− u) · ∆t
=

u
1− u

(5.1)

Multiplying by γ converts collector time into mutator time, and dividing does the
reverse. Since the relationship between u in the range [0, 1) and γ in the range [0, ∞)
is one-to-one, we also have:

u =
γ

1 + γ
(5.2)

From the above parameters, we can now derive the overall space consumption
of the system. Fundamentally, for all real-time collectors, the space requirements
depend on the amount of extra memory that is allocated during the time when in-
cremental collection is being performed and the mutator is continuing to run. Thus:

• s is the space requirement of the application in our collector; and

• e is the extra space allocated by the mutator over the course of a full-heap
collection.

We first review bounds for s and e for previous collectors, and then show how
they relate to the generational metronome collector.

5.2.3 Bounds for Non-Generational Metronome Collectors

In the absence of generational collection, the extra space eM required by Metronome
during a collection in order to allow that collection to complete (as described in [Ba-
con et al., 2003b]) is:

eM = aγ ·
(

m
RT

+
sM

RS

)
(5.3)

This corresponds to allocation at the maximum rate across a complete collection
cycle, and is expressed in mutator time. In practice, the total space requirements are
greater.

Consider the case of a collection cycle that starts with m live memory, and has
eM memory allocated during the collection (and also eM memory freed to satisfy m
as the maximum live size). In this case, memory usage at the completion of the

§5.2 Analytical Model 69

collection cycle is m + eM. A subsequent collection cycle must also be able to allocate
an additional eM of memory, so the extra space required must be at least 2eM.

The 2eM extra space requirement is typical of incremental tracing collectors, but
Metronome’s approach to defragmentation leads to further space overheads. Any
objects being defragmented occupy twice the space, because both the original ver-
sion and the copy are stored. Clearly there is an additional extra space requirement
equal to the maximum number of bytes being defragmented. Metronome sets this
maximum value to eM, because this is the minimum amount Metronome can defrag-
ment while still ensuring that there is sufficient space for arbitrary allocation of eM
memory in the subsequent collection cycle. This leads to a total additional space
requirement of 3eM. We then adjust this by the rate of internal fragmentation due to
the design of the segregated free list yielding:

sM = (m + 3eM) · (1 + ρ) (5.4)

Although in the common case space usage will be less, this is the tightest bound
that can be placed on maximum space requirements. Note that the bound for eM
shown above depends on sM. This circular dependency makes it necessary to ei-
ther: ignore the cost of sweeping given tracing costs dominate (as in the original
Metronome paper); conservatively overestimate the cost of sweeping (as in Bacon
et al. [2003a]); or solve Eq. (5.4) for sM.

5.2.4 Bounds for Our Generational Collector

Given a fixed time budget for total collection activity, time spent collecting the nurs-
ery in a generational collection reduces the amount of time available for full-heap
collection, reducing the rate of full-heap collection progress. This in turn means that
the mutator is able to perform more allocation during a full-heap collection cycle.
However, generational collection also serves to attenuate allocation into the mature
area by the survival rate η(N). This effect is shown in Figure 5.7, and expressed
by the following equations, which introduce the generational dilation factor δ, and the
corresponding additional space requirement eG with generational collection:

δ = 1− aη(N)
RN

· γ (5.5)

eG =
aη(N)γ

δ
·
(

m
RT

+
s

RS

)
(5.6)

Since our generational collector is fully incremental, we can maintain real-time
behavior without restricting nursery size, and therefore use a nursery size which is
best suited to the survival rate of the application. However, this flexibility comes
with additional complexities in determining what that size should be.

Since η(N) is monotonically decreasing and low values are crucial to the success
of generational collection, let us consider what happens as the nursery size varies.

70 Generational Metronome

Nursery Mature

Full-Heap
Collector

Nursery
Collector

Mutator

∆t

(1-u)∆tu∆t

x = η(N).auΔt auΔt

x
RN

(1-u)∆t - x
RN

all
ocate

s
pro

motes

collects

collects

Figure 5.7: Time dilation due to generational collection causes additional allocation during a
major heap collection, but attenuates all allocation by the survival rate η(N).

§5.2 Analytical Model 71

For very small nursery sizes, the collector will spend more time performing nursery
collections because the survival rate will be higher, forcing significant copying work.
In practice, due to the elasticity of the nursery, when the nursery size is set very small,
generational collection will reach a steady-state behavior where it is continuously
collecting the nursery, using all available collection time for nursery collections:

N · η(N)
RN

= γ
N
a

(5.7)

In other words, N grows until it reaches a minimum tenable size Nmin:

η(Nmin) =
γ · RN

a
(5.8)

Note that this requires that the nursery tracing rate RN be at least (aη(N))/γ.

When the nursery size is set above this threshold, major collections are given an
opportunity to complete, and memory is bounded. If the nursery is set arbitrarily
large, overall memory consumption will increase because the nursery dominates the
mature space in size. Between these two extremes is a nursery size which minimizes
the overall heap consumption. In order to compute this point—and to compare the
generational system against the non-generational system—we need to compute the
space bounds of the system.

Because the generational version has the additional space cost of the three-part
nursery, the total space requirement for a given application is:

sG = (m + 3eG) · (1 + ρ) + 3N (5.9)

The (1 + ρ) factor is not needed in the 3N term as there is no fragmentation in
the nursery—all objects are allocated contiguously in memory using a bump pointer.
As shown in Eq. (5.8), the nursery will naturally grow in size until it meets the Nmin
threshold. If the nursery is larger than this crossover point, the heuristic will not
grow the nursery further. However, continuing to grow the nursery above this size
will actually diminish overall heap consumption. Just above the crossover point, the
term δ is infinitesimally small, making sG arbitrarily large. Similarly, as N approaches
infinity, sG is arbitrarily large. Thus, if we hold utilization constant (because it is a
target), there must exist, by continuity, a globally minimal overall heap size for some
nursery size. Inverting the function to express utilization in terms of sG gives the
achievable utilization for a particular overall heap size.

Note that we are making a steady-state assumption about η(N). Since we are col-
lecting the nursery itself incrementally and therefore handle a wide range of nursery
sizes, this is reasonable for a large class of real programs. However, there is also a
class of programs that have a setup phase which precedes a steady-state phase. For
such programs the steady-state assumption—if applied to the entire program—may
result in overly large nurseries. We will study an example of such a program in
Section 5.3.4. This effect is also present in non-generational real-time collectors, but

72 Generational Metronome

is exacerbated in generational collectors. For both types of systems, it is desirable
to allow the application to explicitly delineate the setup and mission phases, and
to either allow real-time bounds to be violated during the setup phase in favor of
reduced memory consumption, or to perform a (potentially synchronous) memory
compaction between the two phases.

5.2.5 Comparison with Syncopation

Generational collection in a Metronome-style collector was previously described us-
ing a technique called Syncopation [Bacon et al., 2005]. Syncopation uses stop-the-
world collection of the nursery combined with flood-gating—direct allocation into the
mature space—when allocation and survival rates are too high for synchronous col-
lection to be performed without violating real-time bounds.

The nursery size N with Syncopation was severely restrained, because the syn-
chronous nursery collection placed severe bounds on real-time behavior. For the
small nursery sizes that were feasible for synchronous nursery collection, real-world
programs almost always have spikes in the survival rate, pushing the survival range
η(N) to 1. Therefore it is generally necessary to use the largest possible nursery size
such that:

N
RN

= (1− u)∆t (5.10)

N = (1− u)∆tRN (5.11)

The time dilation and extra space calculations then become simpler, such that:

δ′ = 1− N
RN
· γ (5.12)

eS =
aγ

δ′
·
(

m
RT

+
s

RS

)
(5.13)

with the space bound for synchronous nursery collection:

sS = (m + 3eS) · (1 + ρ) + (1− u)∆tRN (5.14)

Although there is no factor of 3 multiplier on the nursery as for our generational
collector (Eq. (5.9)), the higher survival rates incurred by the much smaller nurseries
mean that the space consumption in the mature space increases significantly.

§5.3 Evaluation 73

5.3 Evaluation

We implemented the generational algorithm as a modification to the IBM Web-
Sphere Real Time Java virtual machine [IBM, 2006],2 which uses the non-generational
Metronome-based algorithm described in Section 2.5.1. Both collectors support the
complete Java semantics, including finalization and weak/soft/phantom references.

We did not experimentally compare our system with Syncopation [Bacon et al.,
2005]; the nursery sizes required to achieve low survival rates on non-embedded
applications—in the order of 1MB for SPECjvm98—would incur pauses in the Synco-
pation system of at least an order of magnitude beyond the worst-case latencies for
the other systems.

All experiments were run on an IBM Intellistation A Pro workstation with dual
AMD Opteron 250 processors running at 2.4 GHz with a 1 MB L2 data cache. Total
system memory was 4 GB RAM.

The operating system was IBM’s real-time version of Linux3 based on Red Hat
Enterprise Linux 4. This includes a number of modifications to reduce latency, in
particular the PREEMPT_RT patch with modifications for multicore/multiprocessor
systems.

We begin our evaluation by showing a performance comparison of the genera-
tional and non-generational systems across a range of benchmarks. We then demon-
strate the effectiveness of the dynamic nursery size at coping with short bursts of al-
location. Selecting a highly generational benchmark, jess, highlights the importance
of the large nursery sizes made possible through incremental nursery collection. We
then discuss the difficulties in evaluating real-time collectors by observing differences
between start-up and steady-state behavior.

The focus of our investigation is comparing collector performance, so we use a
modified second run methodology. This methodology involves invoking a benchmark
twice within a single JVM invocation; the first warmup run performs compilation and
optimization, while results are gathered from a second measurement run.

The just-in-time (JIT) compiler implementation in the system is not real-time, so
it is necessary to disable it during the measurement run. Between the warmup and
measurement runs the JIT is disabled by calling java.lang.Compiler.disable()
and then pausing to allow the compilation queue to drain. IBM’s real-time JVM
also includes an ahead-of-time compiler which could be used to factor out JIT in-
terference, but the generated code is slower than that produced by the JIT and
therefore—because the mutator is running slower—does not stress the garbage col-
lector as much.

74 Generational Metronome

Table 5.2: Absolute performance for full-heap collector.

Benchmark Trigger (MB) Time (s) Memory (MB) MMU
Total Mutator Collector Peak Average

compress 24 8.99 8.16 0.13 28.77 14.45 70%
jess 8 8.16 6.53 1.64 12.16 8.20 69%
raytrace 16 4.50 3.43 1.07 29.28 19.98 69%
db 24 13.18 12.38 0.80 32.62 20.17 67%
javac 24 6.37 4.99 1.38 49.27 32.78 67%
mpegaudio 8 10.24 10.24 0.00 2.47 2.41 100%
mtrt 24 3.13 2.39 0.74 82.97 46.87 69%
jack 8 4.22 3.63 0.59 10.48 6.90 69%

antlr 20 5.43 5.06 0.36 23.64 14.26 69%
bloat 24 30.83 26.99 3.83 45.62 20.24 69%
chart 36 159.80 147.50 12.24 51.14 25.55 67%
eclipse 64 90.14 77.47 12.67 80.86 66.66 56%
fop 24 3.21 2.86 0.35 27.22 22.09 70%
hsqldb 144 4.75 4.30 0.45 158.48 116.29 70%
jython 20 22.44 18.53 3.91 46.72 24.89 67%
luindex 20 17.71 16.59 1.12 21.38 14.86 68%
lusearch 36 17.29 13.18 4.11 48.75 34.79 68%
pmd 48 30.34 24.98 5.36 71.30 47.00 68%
xalan 128 12.49 11.43 1.05 136.86 87.49 64%

5.3.1 Generational versus Non-Generational Comparison

We performed a comparison of the generational and non-generational Metronome
systems using the SPECjvm98 [SPEC, 1999] and DaCapo [Blackburn et al., 2006]
benchmark suites. A summary of the results is shown in Tables 5.2 and 5.3. Ta-
ble 5.2 gives absolute figures for the non-generational system, including the mature
collection trigger, a breakdown of execution times, memory usage, and achieved min-
imum mutator utilization. Table 5.3 then shows results for generational Metronome
(normalized against the non-generational system to facilitate comparison) with two
addition columns showing the nursery trigger used, and the total fraction of collec-
tion time spent collecting the nursery. For both systems the mature trigger was held
constant, and the minimum mutator utilization target specified was 70% utilization
in each 10ms window.

The full heap triggers are based on each program’s steady-state allocation rate
and maximum live memory size; the nursery trigger was selected by evaluating a
range of possibilities (512KB through 16MB) and picking the trigger that enabled
the best time/space performance. Note that these are triggers and not heap sizes.

2In addition to adding generational capabilities, support for the Real-Time Specification for Java
(RTSJ) standard [Bollella and Gosling, 2000] was disabled, and defragmentation was enabled for both
the base and generational configurations of the JVM. This means that performance results for our base
system can not be directly compared to that of the IBM product.

3Available from ftp://linuxpatch.ncsa.uiuc.edu/rt-linux/rhel4u2/R1/rtlinux-src-2006-08-30-r541.tar.bz2

ftp://linuxpatch.ncsa.uiuc.edu/rt-linux/rhel4u2/R1/rtlinux-src-2006-08-30-r541.tar.bz2

§5.3 Evaluation 75

Table 5.3: Generational Metronome performance relative to full-heap collector.

Benchmark Trigger (MB) Time (s) Nursery (%) Memory (MB) MMU
Mature Nursery Total Mutator Collector of Collector Time Peak Average

compress 24 2 0.99 0.98 1.87 84% 1.00 1.01 69%
jess 8 2 0.84 0.94 0.43 77% 0.69 0.80 69%
raytrace 16 2 0.76 0.90 0.28 81% 0.99 0.55 70%
db 24 2 1.00 1.00 0.89 57% 1.09 1.04 68%
javac 24 2 1.14 1.09 1.35 92% 1.70 2.03 68%
mpegaudio 8 2 1.01 1.01 1.00 — 0.78 0.77 100%
mtrt 24 2 0.88 0.97 0.61 75% 0.93 0.55 67%
jack 8 2 0.92 0.97 0.64 81% 0.82 0.90 70%

antlr 20 4 0.94 0.91 1.33 59% 1.03 1.04 68%
bloat 24 4 0.88 0.94 0.47 92% 0.56 0.83 69%
chart 36 4 0.99 1.06 0.24 80% 0.80 1.10 67%
eclipse 64 8 0.95 0.98 0.78 65% 1.23 0.75 67%
fop 24 4 1.00 1.00 0.94 82% 0.89 0.83 69%
hsqldb 144 16 1.47 1.24 3.71 100% 1.11 0.89 63%
jython 20 4 0.93 0.99 0.69 69% 0.76 0.68 63%
luindex 20 4 1.06 1.03 1.41 79% 1.02 1.04 69%
lusearch 36 8 0.97 1.00 0.88 35% 1.11 0.98 66%
pmd 48 4 0.98 0.88 1.42 89% 2.48 1.68 66%
xalan 128 12 1.16 1.11 1.80 71% 1.00 1.04 68%

Geometric Mean 0.983 0.997 0.883 0.995 0.930

Because of the nature of incremental collection, for a given set of parameters the sys-
tem might require differing amounts of memory to run without violating real-time
requirements. When comparing stop-the-world collectors, a simpler methodology
may be used in which the heap size is fixed and the resulting throughput is mea-
sured. With a real-time collector there is an additional degree of freedom, so the
comparison is more complex, with an inter-relationship between total run time, total
memory usage, and MMU. For each benchmark, the first column reports the full
heap and nursery triggers used for that benchmark.

The reported memory size is inclusive of both mature and nursery memory. This
allows a fair comparison and it reflects the nature of our system, in which nursery
pages and heap pages are intermingled in physical memory. Note that the full heap
collection trigger is with respect to this total usage, inclusive of memory consumed
by the nursery.

As predicted by the model presented in Section 5.2, generational collection is
better for many, but not all benchmarks. Overall, it reduces both time and space
requirements, with most time improvements coming from a reduction in collection
time. However, time varies from a 24% speedup for raytrace to a 47% slowdown
for hsqldb, and space varies from a 44% reduction for bloat to a 148% increase for
hsqldb. Real-time performance (MMU) is essentially the same, with the largest vari-
ation being 7% degradation for hsqldb. Many benchmarks have short periods during

76 Generational Metronome

which they exhibit non-generational behavior, leading to peak memory usage higher
than the non-generational system, while average usage across the whole execution is
lower. An example is eclipse, where the generational system has a peak usage 25%
higher, but average memory use is just 75% of the base system over the entire run.
Overall, for programs that are at least somewhat generational in their memory allo-
cation and usage patterns, the generational collector offered significant performance
benefits. Our worst result is a 47% slowdown is for hsqldb, the least generational
benchmark that was tested; Blackburn et al. [2006] reported hsqldb as having a 63.4%
4MB nursery survival rate, compared with a geometric mean of 8.4% and 8.7% for
the DaCapo and SPECjvm98 suites respectively.

5.3.2 Dynamic Nursery Size

The use of a single pool of pages for both the nursery and the heap, and the ability
of the nursery to temporarily consume more than its trigger size, allows our col-
lector to gracefully handle temporary spikes in the allocation rate. Table 5.4 shows
the minimum, mean, and maximum nursery sizes for each benchmark (mpegaudio
performs so little allocation that it never fills a 2MB nursery, so there is no data for
it). Many of the benchmarks do in fact have a maximum nursery size three or more
times as large as the nursery trigger, and in the case of the multithreaded mtrt bench-
mark, the nursery can grow to nearly 16× the trigger size. As the nursery trigger
increases this effect is less dramatic, but can still be seen to some degree on most of
the benchmarks. These peaks, when compared to the low average sizes, demonstrate
the effectiveness of the elastic nursery size at absorbing short-term allocation spikes.

5.3.3 Parametrization Studies

Section 5.2 analytically described the effect of varying the nursery size on total mem-
ory consumption. Figure 5.8 shows the overall performance of the jess benchmark
as the nursery trigger is varied from 256KB to 3MB. The example uses jess because
it is known to be highly generational, allowing us to clearly see the effect of altering
the nursery trigger; non-generational programs are likely to perform poorly on all
feasible nursery sizes. Both the time and space measurements are point-wise nor-
malized against the non-generational system. The most dramatic effect is that at low
nursery triggers the memory usage spikes upwards (beyond the range of the graph),
as predicted by the divergence condition in Eq. (5.7). At a nursery trigger of approx-
imately 512KB, the memory consumption of the generational and non-generational
systems are similar. Above 1.5MB, further increases in the nursery trigger do not
improve the efficiency of nursery collections, and the space overhead from the 3N
term begins to dominate, causing memory consumption to increase. Note that to-
tal time spent in nursery collections decreases as the nursery trigger is increased,
since the total amount of data that must be promoted also decreases according to
the change in η(N). Mutator time is reasonably consistent for different nursery trig-
ger values; changes in collector time performance correspond to (smaller) changes in

§5.3 Evaluation 77

Table 5.4: Actual nursery size statistics showing dynamic nursery size variation.

Benchmark Trigger Average Maximum StdDev
(MB) (MB) ×Trigger (MB) ×Trigger (MB)

compress 2 5.3 2.65 6.0 3.00 1.37
jess 2 2.0 1.00 2.4 1.20 0.02
raytrace 2 2.2 1.10 9.6 4.80 0.85
db 2 2.2 1.10 6.2 3.10 0.67
javac 2 2.9 1.45 7.1 3.55 1.31
mpegaudio 2 — — — — —
mtrt 2 2.8 1.40 31.7 15.85 3.96
jack 2 2.0 1.00 2.1 1.05 0.01

antlr 4 4.1 1.01 4.3 1.08 0.05
bloat 4 4.1 1.01 4.3 1.08 0.02
chart 4 4.1 1.01 4.4 1.10 0.04
eclipse 8 8.0 1.01 9.0 1.12 0.07
fop 4 4.1 1.01 4.2 1.04 0.04
hsqldb 16 25.3 1.58 40.0 2.50 8.45
jython 4 4.1 1.03 5.5 1.37 0.20
luindex 4 4.0 1.01 4.1 1.02 <0.01
lusearch 8 8.1 1.01 8.4 1.05 0.07
pmd 4 5.3 1.32 17.4 4.35 2.61
xalan 12 12.0 1.00 12.1 1.00 <0.01

Arithmetic Mean 1.21 2.74

0

0.5

1

1.5

2

0.25 0.375 0.5 0.75 1 1.5 2 3

Re
su

lt
N

or
m

al
iz

ed
To

Fu
ll-

H
ea

p

Target Nursery Size (MB)

Total Time
Collection Time

Nursery Time
Memory Usage

Figure 5.8: Effect of changing nursery trigger for jess with an 8MB mature collection trigger.

78 Generational Metronome

0

10

20

30

40

50

M
em

or
y

U
sa

ge
(M

B
)

70

80

90

100

0 1 2 3 4 5 6 7 8 9

U
til

iz
at

io
n

(%
)

Time (s)

Memory Usage Utilization Target Utilization Major GC Interval

(a) 256KB Nursery Trigger

0

2

4

6

8

10

M
em

or
y

U
sa

ge
(M

B
)

70

80

90

100

0 1 2 3 4 5 6 7 8 9

U
til

iz
at

io
n

(%
)

Time (s)

Memory Usage Utilization Target Utilization Major GC Interval

(b) 512KB Nursery Trigger

0

2

4

6

8

10

M
em

or
y

U
sa

ge
(M

B
)

70

80

90

100

0 1 2 3 4 5 6 7 8 9

U
til

iz
at

io
n

(%
)

Time (s)

Memory Usage Utilization Target Utilization Major GC Interval

(c) 2MB Nursery Trigger

Figure 5.9: Performance of jess with varying nursery trigger.

§5.4 Summary 79

overall performance.
Figure 5.9 shows the dynamic behavior of memory consumption and mutator

utilization of the jess benchmark when the nursery trigger is set to 3 different val-
ues. Generally, as the nursery trigger increases, the overall efficiency of collection
improves and total time spent in garbage collection decreases. For the low nursery
trigger of 256KB in Figure 5.9(a), all the available collection time is spent in nursery
collections, starving the mature collection and preventing it from making progress.
Consequently, overall memory consumption is unbounded. The thick band shows
that the utilization is always oscillating between 72% and 85%, indicating that the
collector has little breathing room at all to satisfy the 70% MMU target. When the
nursery trigger size is doubled to 512KB, as in Figure 5.9(b), the nursery collections
complete before the subsequent nursery is filled, allowing mature collection work to
occur and leading to a bounded heap size of around 9MB. While sufficient time is
available to complete mature collections, mature collection cycles take approximately
half a second, and utilization is still kept reasonably low and only occasionally rises
to approximately 90%. When nursery size is further increased to 2MB, as in Fig-
ure 5.9(c), nursery collections complete early enough to provide a large fraction of
overall collection time for mature collection, allowing major collections to complete
in around a tenth of a second. With a 2MB nursery trigger, there are often periods
in which neither the nursery or mature collector is active, allowing utilization to sit
at 100%, with an average of around 85%. Because overall efficiency is improved, the
heap consumption is lower at only 8.25MB, even though the amount of memory used
by the nursery is larger.

5.3.4 Start-up versus Steady State Behavior

Figure 5.10 shows the memory consumption of pjbb2000 for both systems. This
benchmark begins by setting up several large data structures (the setup phase) and
then runs many transactions, each of which slightly modify the pre-existing data
structures (the steady-state phase). In the setup phase, both the allocation rate and
the survival rate are high, forcing the generational system to grow the nursery. In
this phase, the generational system uses 45% more memory than that of the non-
generational system. However, once the application reaches the mission phase (about
1.8 seconds into the run), the greater efficiency of the generational system dominates,
resulting in a 10% reduction in space consumption and reduced collection time.

5.4 Summary

This chapter presented a new algorithm for performing generational collection in-
crementally in real-time, based on a three-part nursery which overlaps allocation,
collection, and defragmentation. Nursery collection can be interleaved with incre-
mental real-time collection of the mature space at any point. The resulting algorithm
allows the use of large nurseries that lead to low survival rates, and yet is capable of
achieving sub-millisecond latencies and high worst-case utilization.

80 Generational Metronome

We have implemented this new algorithm in a product-based real-time Java vir-
tual machine, and evaluated analytically and experimentally the situations under
which our generational collector is superior to a non-generational real-time collector.
Programs that exhibit inherently non-generational behavior, or whose setup phase
includes unusually high survival and allocation rates, will require more space to
achieve corresponding real-time bounds. However, the results show that for most
programs, generational collection achieves comparable real-time bounds while lead-
ing to an improvement in space consumption, throughput, or both.

§5.4 Summary 81

30

40

50

60

70

80

90

0 5 10 15 20 25

M
em

or
y

U
sa

ge
(M

B
)

Time (s)

Memory Usage Major GC Interval

(a) Non-generational.

30

40

50

60

70

80

90

0 5 10 15 20 25

M
em

or
y

U
sa

ge
(M

B
)

Time (s)

Memory Usage Major GC Interval

(b) Generational with 8MB nursery trigger.

Figure 5.10: Memory usage over time of pjbb2000 under generational and non-generational
collection.

82 Generational Metronome

Chapter 6

High-level Low-level Programming

Previous chapters presented work to address runtime support for high-level low-level
programming, in particular through the development of garbage collectors suitable
for low-level programs. This chapter looks at a separate, but equally important prob-
lem: language support for high-level low-level programming. That is, how to write
low-level programs in a high-level language. While the power of high-level lan-
guages lies in the ability to abstract over hardware and software complexity, opaque
abstractions are often show-stoppers for low-level programmers, forcing them to ei-
ther break the abstractions, or more often, simply give up and use a different lan-
guage. This chapter describes an approach to address the challenge of opening up a
high-level language to practical low-level programming, without forsaking integrity or
performance.

This chapter is structured as follows. Sections 6.2 and 6.1 expand on the defi-
nitions used in this thesis to describe low-level programming, and to differentiate
high- and low-level programming languages. Section 6.3 looks at previous shifts
in language-use of low-level programming, and Section 6.4 relates these previous
changes to our current environment. Having motivated the goal of high-level low-
level programming, Section 6.5 then provides an overview of previous work that has
combined high-level languages and low-level programming, giving a categorization
of these techniques, and identifying the work that serves as the foundation on which
the techniques described in the following chapter are built.

This chapter describes work published in the paper “Demystifying Magic: High-
level Low-level Programming” [Frampton, Blackburn, Cheng, Garner, Grove, Moss,
and Salishev, 2009a].

6.1 Low-level Programming

Recall from the introduction that high-level low-level programming was defined as
that which requires transparent, efficient access to the underlying hardware and/or
operating system. Low-level software includes operating systems, virtual machine
runtimes, hardware device drivers, software for embedded devices, and software for
real-time systems. Note that the definition excludes some programs that fall under
the broader umbrella of systems programming. Compilers, for example are a key

83

84 High-level Low-level Programming

example of systems programs that often do not require any low-level programming.
Low-level programs place unique requirements on both a language and its ex-

ecution environment. A common requirement is a greater degree of control over
low-level details, such as memory layout and machine register usage, or the ability
to access hardware-specific features such as special machine instructions. These re-
quirements often arise as the low-level software may need to conform to externally
defined interfaces, such as those required by a host operating system or hardware
devices. It may also be necessary to control interactions with cache and memory for
both correctness and performance reasons. Because low-level software is often the
foundation on which other software is built, throughput, responsiveness and determin-
istic performance may be critical concerns. It is also essential that the programmer be
able to develop an intuitive model of how the code will execute, in order to facili-
tate optimization and debugging. These requirements are very broad, and are not
universally required by every low-level program, but—in order to support low-level
programming in general—it must be possible to deliver on all these requirements,
both together and in isolation.

6.2 High- versus Low-level Languages

Recall that throughout this thesis, we define high-level languages as those languages
that are type-safe, memory-safe, provide encapsulation, and strong abstractions over
hardware (e.g., Java and C#). In contrast, low-level languages (e.g., C) are those lan-
guages that provide a transparent view onto the hardware, and do not provide rich
runtime services. While C++ [Stroustrup, 1986] includes some higher-level language
features, we class it as a low-level language in this work due to the absence of strong
type- and memory-safety, as well as the lack of enforced abstraction from low-level
detail.

Our definition does not discount the potential benefits of other high-level lan-
guages for low-level programming. The use of the described high-level languages
for low-level programming has both a well demonstrated potential [Alpern et al.,
1999; Blackburn et al., 2004b; Hunt et al., 2005; Garner et al., 2007], as well as iden-
tified and significant roadblocks [Shapiro, 2006] that need to be addressed to drive
future adoption.

6.3 From Assembler to C

The earliest computers ran without any operating system: individual jobs including
program and data were fed into machines and executed. In time, pre-loaded runtime
libraries were provided, which later evolved into complete operating systems. Note
that until recently, high-level languages were considered to include all languages that
abstracted over the level of assembly language [Sammet, 1969], and included many
languages which we now consider low-level (e.g., BLISS). Sammet [1971] provides an

§6.3 From Assembler to C 85

overview of the early usage of these higher-level languages—as opposed to assembly
language—for systems implementation. Quoting Sammet [1972]:

The use of higher level languages for systems programming has finally
been recognized as being both legitimate and practical. After almost 15
years of debate and negative views, an increasing number of systems
programs are actually being written using higher level languages. . .

There were several early and successful systems implementations using higher-
than-assembly-level languages in the 1960s and into the early 70s, including the op-
erating systems for Burroughs computers which were written using a hierarchy of
extended ALGOL languages [Lyle, 1971]. Graham [1970] reflects on the choice of
language through his experience with Multics [Corbató and Vyssotsky, 1966] which
was written almost entirely in IBM PL/I. Other languages included extensions to
common languages of the time such as Pascal and FORTRAN, as well as custom
systems programming languages such as BLISS [Wulf et al., 1971a,b].

History has judged the most significant development in systems implementation
language from this era to be C [Kernighan and Ritchie, 1988], which evolved from
BCPL and B and was the language upon which UNIX was built in the early 1970s.
Today, some 30 years later, C and C++ remain the dominant languages for systems
implementation.

6.3.1 Complexity Drives Change

The change from assembly to C was largely driven by the increasing complexity of
both hardware platforms and software requirements. Both of these trends have continued,
and one need only compare the hardware in use today to that of early computers,
or the complexity of a modern operating system to the first operating systems, to
understand why assembly language is no longer seriously considered a reasonable
implementation language (although assembly is still used for small sections of code).

Landau [1976] shows one way early hardware evolution contributed to the move
away from assembly language. When optimizing several multi-instruction calcula-
tions on a super-scalar processor, assembly programming leads to either inefficient or
obfuscated code. Ordering the instructions to maximize readability will leave parts
of the hardware idle, while optimizing for performance mixes together the parts of
each individual computation, making the code harder to read and understand. While
there are hardware designs that alleviate this particular issue through out-of-order
execution, the general principle that a level of abstraction provides an opportunity
for optimization—without affecting the readability of the source—remains.

6.3.2 Cultural Resistance

Today it is generally considered uncontroversial to implement low-level code in lan-
guages such as C. This was not always the case, and Sammet [1971] notes the signif-
icant cultural resistance to the shift from assembly programming to the adoption of
higher-level languages:

86 High-level Low-level Programming

There are many factors which go into choosing whether or not to use
a higher level language. Unfortunately, one of the major ones affecting a
decision still is the snob reaction of the systems programmers who feel
that such aids are good enough for the applications programmers but not
good enough for them.

This position persisted for some time, and is demonstrated by Fletcher [1975],
who spoke against the use of higher-level languages (emphasis added):

Our experience also contrasts with many of the assertions made about
assembly language system programs: We do not find that they are more
prone to bugs, are less clear or less well organized (structured), require a
greater investment in time or money, or are less easy to modify. We can
only suppose that findings to the contrary are saying something about the skills
of the programmers involved rather than about languages.

6.4 Looking Forward

There is, of course, cultural resistance to a change away from C for low-level pro-
gramming. While this may prove a significant barrier to adoption, we believe that
once the practical issues are understood and addressed, further increases in complex-
ity will inevitably drive the adoption of higher level languages, just as they drove the
transition from assembly to C.

While C is still the dominant language of choice for low-level programming, the
same can not be said regarding language usage for general application software.
The TIOBE Index [TIOBE, 2009] shows Java—a language that did not exist prior to
1995—as the single most popular language. As software becomes more central to
our lives, there is a demand for greater security and reliability—for safety, economic
and privacy reasons—as well as a need for increased programmer productivity.

Increases in hardware complexity appear to be accelerating. As the ability to
improve performance using traditional processor designs evaporates [Agarwal et al.,
2000], hardware vendors are increasingly turning to multi- and many-core designs.
We are also seeing an increase in heterogeneous core systems, such as the synergistic
processing elements of the Cell processor [Kahle et al., 2005] , the use of graphics
processing units for general purpose computation [Garland et al., 2008; Tarditi et al.,
2005], and the use of FPGAs to fabricate custom processors at run-time [Huang et al.,
2008]. There are also more radical designs for next generation processors such as
the EDGE architecture [Burger et al., 2004] with a programmable grid of processing
units with non-uniform access to cache and memory.

New processor designs, increasing levels of concurrency, and the addition of
dynamic power-saving features—such as scaling or shutting down various cores—
continue to increase complexity, and provide new challenges that affect how we must
write and run software.

§6.5 Related Work 87

High-level language abstractions are a well understood tool for helping to meet
these requirements. By lifting the level of abstraction from machine-specific details to
the level at which the problem is best understood, it is possible to provide increases
in productivity. Abstractions also help to address security and reliability issues by
providing features such as type and memory safety—which make some classes of
programmer error impossible—as well as creating an environment that facilitates
automated analysis and verification.

Retrospectives of C [Ritchie, 1993] and C++ [Stroustrup, 1993, 2007] indicate how
the respective languages might be designed differently in a more modern environ-
ment, if starting from scratch without the constraint of maintaining compatibility.
While identifying the benefits of garbage collection and advocating its future inclu-
sion in C++, Stroustrup [2007] notes that ‘. . . C++ would have been stillborn had it
relied on garbage collection when it was first designed’. As a community we must
continue to evolve our development methodologies and languages alongside changes
in hardware, software requirements, and our increased understanding of program-
ming language design and software engineering.

6.5 Related Work

Given the potential benefits of high-level languages, it is unsurprising that many
have sought to combine low-level programming and high-level languages. This sec-
tion outlines the main techniques that have been employed: introducing new lan-
guages, fortifying low-level languages, using two languages, and extending high-
level languages. The following two key observations help to categorize the various
approaches to combining high-level languages and low-level programming:

Observation 1 High-level languages provide abstractions that can lead to software with
greater security, better reliability, and lower development costs.

Observation 2 The goals of high-level languages tend to be at odds with low-level program-
ming [Shapiro, 2006]. This is primarily because high-level languages gain power through
abstracting over detail, while low-level programming may require transparent access to de-
tail.

There are other concerns related to performance, determinism, portability, and
existing programmer skills—among others—but they lie largely outside the scope of
this discussion.

6.5.1 Fortifying a Low-level Language

While individual motivations vary, it is clear that systems programming projects have
found it desirable to reach for higher levels of abstraction akin to those found in high-
level languages. This has a strong history stretching back to the 1970s [Fletcher, 1975;
Fletcher et al., 1972; Frailey, 1975; Horning, 1975].

88 High-level Low-level Programming

In today’s context, memory safety is an area in which C is conspicuously lacking,
and there have been countless idioms and techniques devised to improve the sit-
uation including conservative garbage collection [Boehm, 1993; Boehm and Weiser,
1988], smart pointers and reference counts [Gay et al., 2007], static and dynamic
analysis tools such as Valgrind [Nethercote and Seward, 2007], as well as custom
allocators such as talloc [Tridgell, 2004]. This fortification process also feeds into
revisions of language specifications; future versions of the C++ specification are ex-
pected to include both high-level language features (e.g., garbage collection) as well
as additional systems programming features (e.g., constexpr functions that are re-
solved at compile time).

The SAMBA Developers Guide [Vernooij, 2008] includes a set of coding suggestions
which amount to a list of conventions and idioms designed to work around language
shortcomings in areas such as safety and portability. Enforced by convention rather
than by the semantics of the underlying language, these often exist to simply work
around artificial limitations of the base language.

There is also a limit to the extent one can introduce high-level abstractions into
an existing language. High-level abstractions such as threads have been shown to
be problematic to implement [Boehm, 2005], since correctness can not be ensured
without the cooperation of the underlying language.

6.5.2 Systems Programming Languages

There has been a long history of language development targeting low-level or sys-
tems implementation, with differing degrees of innovation and success [Cardelli
et al., 1989; Kernighan and Ritchie, 1988; Richards, 1969; Stroustrup, 1986; Wulf et al.,
1971b]. The Modula series of languages [Cardelli et al., 1989] was notable in several
respects. It had a stronger notion of type safety, integrating garbage collection into
the programming environment by providing two heaps for dynamic allocation: one
garbage collected and the other explicitly managed. Modula-3 also included a mod-
ule system, now uniformly considered an important building block for developing
large and complex systems. The lack of a module system to provide intermediate
levels of visibility is noted as a shortcoming in C [Ritchie, 1993], and—prior to the
introduction of namespaces in 1994—also in C++ [Stroustrup, 1993].

There have also been attempts at creating safer derivatives of C, an example being
Cyclone [Jim et al., 2002], which introduces stronger type and memory safety, as well
as a safe approach to multithreading [Grossman, 2003].

This approach—in addition to approaches that aim to provide richer static anal-
ysis tools to prove ‘unsafe’ code correct [Ferrara et al., 2008]—focuses on proving
low-level programming techniques correct, rather than allowing high-level low-level
programming. We believe this neglects our second observation above: by maintain-
ing a transparent view to low-level details across the board, much of the potential gains
of high-level abstractions are lost.

§6.5 Related Work 89

6.5.3 Two-Language Approaches

The most common technique used to resolve the tension between high-level and low-
level programming is to simply use different languages or dialects for each task. This
general approach affords itself to several solutions, based primarily around the level
of integration of the two languages.

Extreme: Do not use high-level languages for low-level tasks. This is perhaps the
most extreme position but is also the status quo, demonstrated through the continued
dominance of C and C++ for low-level programming while other languages continue
to enjoy increased popularity for general programming tasks.

Intermediate: Call out using a Foreign Function Interface (FFI). This technique
provides an escape hatch where the programmer can call into a separate language to
implement low-level features, and is available in almost all modern language envi-
ronments, from C’s ability to call into assembly, to Java [Gosling et al., 2005] with the
Java Native Interface [Liang, 1999] and C# [Ecma, 2006a] (in the Common Language
Infrastructure [Ecma, 2006b]) with Platform Invoke. This allows some low-level pro-
gramming, such as that in Java described by Ritchie [1997], but it is a coarse approach
and the split between low-level and high-level code can compromise both software
design and performance.

Minimal: Introduce dual-semantics to the language. A refinement of the FFI tech-
nique is to introduce regions within the high-level language that allow the use of
low-level language features. This allows greater coherency between the high- and
low-level aspects of the system being implemented. Modula-3 [Cardelli et al., 1989]
achieves this through unsafe modules (where features such as the use of pointers or
unchecked type casts are allowed) and unsafe interfaces (which can only be called
from unsafe modules). Safe modules may interact with unsafe modules by exposing
an unsafe module through a safe interface. C# [Ecma, 2006a] and the CLI [Ecma,
2006b] also use a similar concept of unsafe code, but control the the interaction of
safe and unsafe code at a coarser granularity.

Techniques to reduce both the design [Hirzel and Grimm, 2007] and perfor-
mance [Stepanian et al., 2005] disadvantages of these approaches exist. There is
however a more fundamental problem in that they treat the need to perform low-
level operations as an all-or-nothing requirement. This does not resolve well with
our above observations: it should be possible to leverage high-level abstractions for
everything other than the specific low-level detail you are dealing with.

6.5.4 Extending High-level Languages for Low-level Programming

Another approach is to provide the tools with which one can extend a high-level
language to perform low-level programming. This is the general approach taken

90 High-level Low-level Programming

throughout the work in the following chapter, and this section describes the founda-
tions on which that work is built. Much of the progress in extension for low-level
programming has been through projects where the focus was not on language design
itself. Two areas of research in particular—operating systems and virtual machines—
have been largely responsible for the progress to date, although their contributions
to language design have generally been driven by other pragmatic goals.

Operating systems have been developed using high-level languages including
Modula-3 [Bershad et al., 1994], Haskell [Hallgren et al., 2005], Java [Prangsma, 2005],
and C# [Hunt et al., 2005]. SPIN [Bershad et al., 1994] is a research operating system
focused on safety, flexibility, and extensibility [Bershad et al., 1995], and is written
in an extended version of Modula-3 [Cardelli et al., 1989]. Extensions include im-
provements to allow interoperability with externally defined interfaces (such as for
accessing hardware devices), changes to improve error-handling behavior, and the
ability to safely cast raw memory into typed data [Fiuczynski et al., 1997]. Yamauchi
and Wolczko [2006] embed a small virtual machine within a traditional operating
system to allow safer drivers written in Java, while the Singularity project [Hunt
et al., 2005; Hunt and Larus, 2007] (written using Sing#, an extension of Spec#, itself
an extension of C#) aims to discover how a system should be built from the ground
up for high-level language execution, including models for inter-process communi-
cation [Aiken et al., 2006; Fähndrich et al., 2006].

There have been many examples of virtual machines written using high-level
languages [Alpern et al., 2000; Blackburn et al., 2008; Flack et al., 2003; Rigo and Pe-
droni, 2006; Simon et al., 2006; Sun; Ungar et al., 2005; Whaley, 2003], most likely
due to the combination of a systems programming task in concert with a deep
understanding of a high-level language. Virtual machine development is the con-
text within which much of our work has been undertaken. Jikes RVM, formerly
known as Jalapeño [Alpern et al., 2000] is a high-performance Java-in-Java virtual
machine, requiring extensions—known as magic—to support required low-level op-
erations [Alpern et al., 1999]. Maessen et al. [2001] provided a deeper understanding
of how magic operations interact with the compiler, and what steps must be taken
to ensure correctness in the face of compiler optimizations. OVM, a Java-in-Java vir-
tual machine designed for real-time applications, uses similar magic idioms, but has
built more principled abstractions around them [Flack et al., 2003]. Moxie [Blackburn
et al., 2008] is a clean-slate Java-in-Java virtual machine that was used to prototype
some of the ideas that have helped to feed into our approach. The sun.misc.Unsafe
API, implemented by current production virtual machines, and implemented in Jikes
RVM through our more general magic framework, provides some similar functional-
ity. Interestingly, it may be possible to use sun.misc.Unsafe as a pragmatic means
to implement a limited subset of our framework on existing production virtual ma-
chines.

§6.6 Summary 91

6.6 Summary

This chapter discussed the 1970s shift in the accepted language for low-level systems
implementation from assembler to languages such as C, and identified increases in
hardware and software complexity, alongside improvements in language technol-
ogy, as key drivers behind this change. Relating this historical shift in the accepted
low-level implementation language to our current environment serves to further
motivate our goal of high-level low-level programming. After enumerating vari-
ous approaches to combining low-level programming with high-level languages, this
chapter identified language extension as the approach with the most promise. This
approach forms the basis for the work described in the following chapter.

92 High-level Low-level Programming

Chapter 7

High-level Low-level Programming
with org.vmmagic

The previous chapter motivated the goal of high-level low-level programming. This
chapter shows how this goal can be achieved, introducing an abstract approach and
a concrete framework, org.vmmagic, that allows high-level low-level programming
in Java.

This chapter is structured around two key sections: Section 7.1, which describes
the approach to high-level low-level programming; and Section 7.2, which describes
the concrete framework, org.vmmagic, constructed using the approach. Section 7.3
then gives a brief overview of the status of the org.vmmagic framework.

This chapter describes work published in the paper “Demystifying Magic: High-
level Low-level Programming” [Frampton, Blackburn, Cheng, Garner, Grove, Moss,
and Salishev, 2009a].

7.1 The Approach

This section describes our approach to low-level programming in a high-level lan-
guage. The premise of this discussion is that high-level programming is desirable when-
ever it is reasonably achievable. High-level languages are designed to abstract over the
specifics of the target environment, shielding the programmer from complexity and
irrelevant detail so that they may focus on the task at hand. In a systems program-
ming task, however, there is often a need for transparent access to the lowest levels
of the target environment. The presence of high-level abstractions can obstruct the
programmer in this objective.

7.1.1 Key Principles

Our approach is guided by a principle of containment, whereby we minimize expo-
sure to low-level coding both in extent (the number of lines of code) and severity (the
degree to which semantics are altered). Our view is that to achieve this efficiently,
effectively, and safely, adding low-level features to high-level languages requires: (1)

93

94 High-level Low-level Programming with org.vmmagic

extensibility, (2) encapsulation, and (3) fine grained divergence. The following para-
graphs describe each of these attributes in more detail.

Extensibility. To reach beyond the semantics of a high-level language, systems pro-
grammers need to be able to either change the language (generally infeasible), use a
different language (undesirable), or extend the language. Jikes RVM took the third
approach. However, the original Jikes RVM approach had two notable shortcomings:
a) the extensions were unstructured, comprising a potpourri of ad hoc extensions
accreted over time; and b) the extensions required modification to the compiler(s)
and runtime. An extensible framework for introducing and structuring low-level
primitives is necessary. Such a framework will maximize reuse and not require mod-
ifying the source of the language runtime in order to provide new extensions. The
extensible framework is discussed in Section 7.2.

Encapsulation. Thorough containment of low-level code is essential to minimize
the erosion of any advantages of the high-level language setting. Two-level solutions,
such as those provided by foreign function interfaces (FFIs) [Liang, 1999], unsafe sub-
languages [Cardelli et al., 1989; Ecma, 2006a], or other means [Hirzel and Grimm,
2007], tend to polarize what is otherwise a rich spectrum of low-level requirements.
Consider the implementation of a managed runtime, where on one hand the object
model may internally require the use of pointer arithmetic, while the scheduler may
instead require low-level locking and scheduling controls. Simply classifying both
as ‘unsafe’ renders both contexts as equivalent, reducing them to the same rules and
exposing them to the same pitfalls. By contrast, a general mechanism for semantic
regimes may allow low-level code to be accurately scoped and encapsulated, avoiding
under- or over-specification.

Encapsulation is illustrated in Figure 7.1, where a safe method, getHeader(), is
implemented through safe use of an unsafe memory operation, loadWord().1 The
@UncheckedMemoryAccess annotation is used to scope the method to explicitly per-
mit its use of loadWord(), while the @AssertSafe annotation encapsulates the un-
safe code by asserting that calls to getHeader() are ‘safe’. This allows getHeader()
to be called from any context. The result is a more general and extensible means of
describing and encapsulating low-level behavior than the practice of simply declar-
ing entire contexts to be either ‘safe’ or ‘unsafe’. The implementation of semantic
regimes in our concrete framework is discussed in Section 7.2.2.2.

Fine grained divergence. A key issue when altering semantics is the granularity
at which that divergence occurs with respect to program scope. Coarse grained
approaches, such as the use of FFIs, suffer both in performance and semantics. Per-
formance suffers because of the impedance mismatch between the two language do-
mains. In some cases, crossing this boundary requires heavy-weight calling conven-

1The safety of getHeader() is due to the use of the strongly typed ObjectReference. The method
would not have been safe had the weakly typed Address (i.e., void*) been used.

§7.1 The Approach 95

1 @UncheckedMemoryAccess
2 @AssertSafe
3 public Word getHeader(ObjectReference ref) {
4 return ref.loadWord(HEADER_OFFSET);
5 }

Figure 7.1: Unsafe code encapsulated within a safe method.

tions [Liang, 1999], and it is generally difficult or impossible for the high-level lan-
guage’s compiler to optimize across the boundary. (Aggressive compiler optimiza-
tions have recently been shown to reduce this source of overhead [Stepanian et al.,
2005].) Similarly, the coarse grained interface can generate a semantic impedance
mismatch, requiring programmers who work at the interface to grapple with two
distinct languages. Instead, we argue for introducing semantic deviation at as fine
a grain as possible. Thus in the example of the object model in Figure 7.1, the pro-
grammer implementing getHeader() must (of course) reason about the layout of
objects and their headers in memory, but is not required to code in an entirely dis-
tinct language, with all the nuances and subtleties that entails. Further, an optimizing
compiler can reason about loadWord(), and, if appropriate, inline the getHeader()
method and further optimize within the calling context. In practice, the result yields
performance similar to a macro in C, but retains all of the strengths of the high-
level language except for the precise concern (memory safety) that the programmer
is required to dispense with.

7.1.2 Requirements and Challenges

Having outlined our approach at a very high level, we now explore the primary
concerns that face the construction of a framework for high-level low-level program-
ming. The challenges of low-level programming in a high-level language fall broadly
into two categories: 1) the high-level language does not allow data to be represented
as required, and 2) the high-level language does not allow behavior that is required.

7.1.2.1 Representing Data

Low-level programming may often require types that are not available in the high-
level language. For example, high-level languages typically abstract over architec-
ture, but low-level programming may require a type that reflects the underlying
architectural word width. Additionally, an operating system or other interface may
expect a particular type with a certain data layout which is unsupported by the high-
level language.

Primitive types. It may be necessary to introduce new primitive types—types that
could otherwise not be represented in the language—such as architecturally depen-
dent values. In the original Jalapeño, a Java int was used to represent an architec-

96 High-level Low-level Programming with org.vmmagic

tural word. This suffered from a number of fairly obvious shortcomings: Java ints
are signed, whereas addresses are unsigned; a Java int is 32-bits, making a 64-bit
port difficult; and aliasing types is undesirable and undermines the type safety of
the high-level language. (For the 64-bit port, it was necessary to disambiguate large
numbers of ints throughout the code base, and determine whether they were re-
ally addresses or integers [Venstermans et al., 2006]). Ideally, systems programmers
would be able to introduce their own primitive types for such purposes. This objec-
tive might imply that operators over those types could be added too.

Compound types. Systems programmers must sometimes use compound types to
efficiently reflect externally defined data, such as an IP address. Because these are
externally defined, it is essential that the programmer have precise control over the
layout of the fields within the type when required. Typically, a language runtime
will by default do its best to pack the fields of a type to optimize for space, or to
improve performance through better locality, etc. However, the need to interface
with externally defined types means that the user must be able to optionally specify
the field layout. Some languages (e.g., C# [Ecma, 2006a]) provide the programmer
with fine control over field layout, but others (e.g., Java [Gosling et al., 2005]), provide
none.

Unboxed types. High-level languages allow users to define compound types. How-
ever, these types are often by default ‘boxed’. Boxing is used to give an instance of
a type its identity, typically via a header which describes the type and may include
a virtual method table (thus identifying the instance’s semantics). From a low-level
programmer’s point of view, boxing presents a number of problems, including that
the box imposes a space overhead and that the box will generally prevent direct
mapping of a type onto some externally provided data (thereby imposing a marshal-
ing/copying overhead at external interfaces). Unboxed types—types that are stripped
of their ‘box’—allow programmers to create compound types similar to C structs.
User-defined unboxed types are not uniformly supported by high-level languages
(for example, Java does not offer user-defined unboxed types). Integration of un-
boxed types into an environment implies a variety of restrictions. For example, sub-
typing is generally not possible because there is no way of reestablishing the concrete
subtype from the value due to the absence of a box that captures the instance’s type.
Furthermore, in some languages there is no way to refer to an instance of an unboxed
type (if, for example, the language does not have pointers, only object references),
which limits unboxed types to exist as fields in objects or as local variables. C# pro-
vides unboxed types, and supports interior pointers to unboxed types as fields of
objects.

References and values. Conventionally, data may be referred to directly (by value)
or indirectly (by reference). In many high-level languages, the language designers
choose not to give the programmer complete freedom, preferring instead the simplic-

§7.1 The Approach 97

ity of a programming model with fixed semantics. For example, in Java, primitive
types are values and objects are references; the system does not allow an object to be
viewed as a value. Thus Java has no concept of pointer, and no notion of type and
pointer-to-type. Since pointers are a first order concern for systems programmers, a
low-level extension to a high-level language should include pointers, and allow the
value/reference distinction to be made transparent when necessary.

7.1.2.2 Extending the Semantics

In the limit, a systems programmer will need to access the underlying hardware di-
rectly, unimpeded by any language abstractions. This problem is typically solved by
writing such code in assembler, following a two-language approach. Our alternative
is to add intrinsic functions to the language—which directly reflect the required se-
mantics, and semantic regimes—within which certain language-imposed abstractions
are suspended or altered.

Intrinsic functions. Intrinsic functions allow the addition of operations that are not
expressible in the high-level language. An example of this is a systems programmer’s
need to control the hardware caches. For example, Jikes RVM (like most virtual ma-
chines) dynamically generates code and for correctness on the PowerPC platform,
must flush the data cache and invalidate the instruction cache whenever new code is
produced. However, a high-level language such as Java abstracts over all such con-
cerns, so a programmer would typically resort to a two-language solution. Likewise,
the implementation of memory fences [Lea] and cache prefetches [Garner et al., 2007]
require semantics that are architecture-specific, and that a high-level language will
abstract over. Intrinsic functions are widely used, and in the case where the systems
programmer happens to be maintaining the very runtime on which they depend, they
may readily implement intrinsic functions to bypass the language’s restrictions. Ide-
ally, a high-level language would provide some means for extensible, user-defined
intrinsics. In that case, the user would need to provide a specification of the required
semantics. In the limit, such a specification may need to be expressed in terms of
machine instructions, augmented with type information (to ensure memory safety)
and semantic information (such as restricting code motion) essential to allowing safe
optimization within the calling context.

Semantic regimes. In addition to adding new operations to the semantics of the
high-level language, sometimes low-level coding will necessitate suspending or mod-
ifying some of the semantics of a high-level language. This scenario is particularly
common when a virtual machine is implemented in its own language, as it must cur-
tail certain semantics to avoid infinite regress; the virtual machine code that imple-
ments a language feature cannot itself use the language feature it implements. For ex-
ample, the implementation of new() cannot itself contain a new(). For semantics that
are directly expressed in the high-level source code (such as new()), this is achievable
through careful coding. However, an explicit semantic regime can be a valuable aid

98 High-level Low-level Programming with org.vmmagic

in automatically enforcing these restrictions. In other cases, the semantics that need
to be suspended are not controllable from the high-level language. For example,
low-level code may need to suspend array bounds checks, avoid runtime-inserted
scheduling yieldpoints, be compiled to use non-standard calling conventions, or be
allowed to access heap objects without executing runtime-inserted garbage collec-
tor read/write barrier sequences. By defining orthogonal and composable semantic
regimes for each of these semantic changes, the programmer can write each necessary
low-level operation while preserving a maximal subset of the high-level language se-
mantics. Thus ideally a runtime would provide a means of defining new semantic
regimes and applying such regimes to various programming scopes.

7.2 A Concrete Framework

This section takes the general approach outlined in the previous section and shows
how it is implemented it in practice. Concretely, we introduce a framework for build-
ing language extensions that allows Java to support low-level programming features.
This framework is the basis for the publicly available org.vmmagic package.2 We
characterize the extensions in terms of the same categories used in the preceding
section: extending the type system and extending language semantics.

In addition to the requirements discussed in the previous section, for our concrete
realization we added the pragmatic goal of minimizing or eliminating any changes to
the high-level language syntax. This enables us to leverage existing tools and retain
portability.

1 class Address {
2 ...
3 byte loadByte();
4 void store(byte value);
5 ...
6 }

Figure 7.2: First attempt at an Address type.

To help ground the discussion, we use a running example of the evolution of an
Address type, as shown in Figure 7.2. This is an abstraction that provides function-
ality similar to that provided by an untyped pointer (void*) in C, an unsafe feature
absent from many high-level languages but essential for many low-level tasks. For
simplicity, we show only a very minimal subset of the Address type as it evolves.
Although for concreteness the example is expressed in terms of Java syntax, the
abstract approach from Section 7.1.2 and many aspects of this concrete framework
are language-neutral, including applicability beyond Java-like languages to others
including dynamic object-oriented languages like Python.

2Available with Jikes RVM from http://www.jikesrvm.org.

http://www.jikesrvm.org

§7.2 A Concrete Framework 99

The org.vmmagic package has in various forms been both used by and shaped
by use in three Java-in-Java JVMs (Jikes RVM [Alpern et al., 1999], OVM [Flack et al.,
2003], and Moxie [Blackburn et al., 2008]), one C/C++ JVM (DRLVM [Apache; Glew
et al., 2004]), and one operating system (JNode [Prangsma, 2005]). Much of what is
described here has been publicly available since the 3.0.1 release of Jikes RVM; some
aspects are currently under development, and a few other clearly identified aspects
of the framework are more speculative.

7.2.1 Type-System Extensions

Section 7.1.2.1 discussed the system programmer’s requirement of being able to ex-
tend the type system. We address these requirements concretely through two mech-
anisms. The first, raw storage, allows the introduction of types with explicit layouts
that may depend on low-level characteristics of the target system. The second allows
us to introduce unboxed types with control over field layout.

7.2.1.1 Raw Storage

Raw storage allows the user to associate an otherwise empty type with a raw chunk
of backing data of a specified size. The size may be specified in bytes, or more
abstractly in terms of architectural width words (whose actual size will be platform
dependent). Raw storage is a contract between the writer of the type and the runtime
system which must allocate and manage the data. Raw storage is not visible to the
high-level language, and can only be accessed through the use of intrinsic functions.
In Figure 7.3, the @RawStorage annotation3 is used to associate a single architectural
word with the Address type.

1 @RawStorage(lengthInWords=true, length=1)
2 class Address {
3 ...
4 byte loadByte();
5 void storeByte(byte value);
6 ...
7 }

Figure 7.3: Associating a one word payload with Address.

This example shows how the raw storage mechanism allows systems program-
mers to fabricate basic (non-compound, unboxed) types. Section 7.2.2.1 discusses
how the programmer can define operations over such types.

At present we have limited our framework to byte-granularity storage. However,
as future work we intend to explore sub-word granularity storage and layout. Bit-
grained types are important to projects such as Liquid Metal [Huang et al., 2008],

3Here we have used the Java annotation syntax to annotate the type. As demonstrated by Flack
et al. [2003] and Alpern et al. [1999], other mechanisms such as marker interfaces can be used to similar
effect when the language does not explicitly support an annotation syntax.

100 High-level Low-level Programming with org.vmmagic

which have expressed an intention to use this framework. Prior work in the OVM
project tentatively explored this issue [Flack et al., 2003]. The SPIN project described
an example of packet filtering in Modula-3 which used bit masks and bit fields;
however, the example they gave was at a 16 bit (2 byte) granularity [Fiuczynski et al.,
1997].

7.2.1.2 Unboxed Types

We allow programmers to define unboxed types by marking class declarations with
an @Unboxed annotation. Since an unboxed type is distinguished from an object only
by syntax, we rely on the runtime compiler to ensure that unboxed types are never
used as objects. Our current implementation in Jikes RVM is limited to supporting
single field types (such as Address), which are treated like Java’s primitives and are
thus passed by value and allocated only on the stack.

Control of field layout. As Figure 7.4 shows, when specifying an unboxed type, our
framework allows the programmer to specify that field order should be respected
by setting the layout parameter to Sequential, and requires the user to pad the
type with dummy fields as necessary (as is commonly done in C). This allows the
programmer to precisely match externally defined types.

1 @Unboxed(layout=sequential)
2 class UContext {
3 UInt64 uc_flags;
4 UContextPtr uc_link;
5 StackT uc_stack;
6 ...
7 }

Figure 7.4: Unboxing with controlled field layout.

Support for compound unboxed types and pointers to unboxed types are not
available in Jikes RVM 3.1.0, but will be released in a future version.

7.2.2 Semantic Extension

Our framework follows the discussion in Section 7.1.2.2, providing two basic mecha-
nisms for extending the semantics of the language: 1) intrinsic functions, which allow
the expression of semantics which are not directly expressible in the high-level lan-
guage, and 2) semantic regimes, which allow certain static scopes to operate under
a regime of altered semantics, according to some contract between the programmer
and the language implementation.

§7.2 A Concrete Framework 101

7.2.2.1 Intrinsic Functions

Intrinsic functions amount to a contract between the programmer and the compiler,
whereby the compiler materializes the function to reflect some agreed-upon seman-
tics, inexpressible in the high-level language. In early implementations of magic in
Jikes RVM [Alpern et al., 1999], the contract was implemented by compiler writers
intercepting method calls to magic methods in the Java bytecode (identified by the
class and method being called) and then realizing the required semantics in each of
the three runtime compilers instead of inserting a method call.

1 @RawStorage(lengthInWords=true, length=1)
2 class Address {
3 ...
4 @Intrinsic(LOAD_BYTE)
5 byte loadByte()
6 ...
7 @Intrinsic(STORE_BYTE)
8 void storeByte(byte value)
9 ...

10 @Intrinsic(WORD_LT)
11 boolean LT(Address value)
12 ...
13 }

Figure 7.5: Use of intrinsics for Address.

Moxie [Blackburn et al., 2008] developed the idea further by canonicalizing se-
mantics, separating the usage of an intrinsic operation from the semantics of the
operation itself. Figure 7.5 shows how intrinsic function declarations can then ref-
erence the desired semantics, with the intrinsic function declarations of loadByte
and storeByte referring to canonical LOAD_BYTE and STORE_BYTE semantics—both
of which may be (re)used by corresponding intrinsics within other types (e.g., an
ObjectReference type). The benefit of this approach becomes clear as we extend
Address to include more intrinsic operations, such as the less-than (<) intrinsic in
Figure 7.5, which is defined in terms of canonical WORD_LT semantics, and could
again be reused by a number of word-sized types. In the Moxie implementation,
individual compilers thus needed only understand how to provide each of the full
set of intrinsic semantics once, no matter how many times they were used.

The conspicuous limitation of all the described approaches to providing intrinsic
functions is that they require the co-operation of those maintaining the host runtime.
This is convenient when the runtime itself is the coding context, but is not a general
solution. A more general approach—and the one that we have taken—is to associate
the semantics of individual intrinsic operations with IntrinsicGenerator instances.
These instances understand how to generate the appropriate code for an intrinsic op-
eration. In our current implementation IntrinsicGenerator instances are stored in
a table indexed by the unique key provided at the intrinsic function declaration (e.g.,
"LOAD_BYTE" in Figure 7.5). Currently, our IntrinsicGenerator instances must be

102 High-level Low-level Programming with org.vmmagic

implemented with knowledge of the compiler internals (to allow the intrinsics to
code their own semantics), but in the future we intend to allow intrinsics to be con-
structed more generally, through either providing a set of compiler-neutral building
blocks, or the use of a specialized language such as CISL [Moss et al., 2005].

7.2.2.2 Semantic Regimes

Recall that Section 7.1.2.2 introduced the idea of statically scoped semantic regimes
which change the default language semantics. When the compiler encounters code
that is marked with a semantic regime it treats it specially. Currently, support for
individual semantic regimes must be hard-coded into the compiler. This includes
turning on and off language features such as bounds-checks, the use of locking prim-
itives, and the presence of yield points. It also includes allowing (or disallowing) calls
to certain language features, such as calls to new(), or the use of unchecked mem-
ory operations (e.g., @UncheckedMemoryAccess in Figure 7.1). This mechanism is
essential to our objective of containment, allowing the finely specified, well scoped
declaration of a region with changed semantics.

7.3 Deployment

The framework described has emerged as the pragmatic consequence of a decade of
experience with systems programming in the context of high performance Java Vir-
tual Machines (JVMs), including real-world experience with three Java-in-Java virtual
machines [Alpern et al., 1999; Blackburn et al., 2008; Flack et al., 2003], a Java operat-
ing system [Prangsma, 2005], and a C/C++ JVM [Apache].

The use of our framework in DRLVM [Apache] (a C/C++ JVM based on the
ORP [Cierniak et al., 2005] and StarJIT [Adl-Tabatabai et al., 2003] code bases) is
particularly interesting. DRLVM uses the framework to express runtime services
such as write barriers and allocation sequences in Java. Our Java-based framework
made the code easier to express, removed the impedance mismatch between the
service code and the user context in which it is called, and allowed the service code
to be trivially inlined and optimized into application code. Previously, DRLVM had
used ORP’s LIL [Glew et al., 2004] to express service code. Aside from providing
a more natural medium to express the service code, the use of our framework was
motivated by performance [Kuksenko, 2007]. Our framework is used by DRLVM
to implement actions including object model operations, class registry access, lock
reservation (lock biasing), accessing the current Thread object, the object allocation
fast path, and garbage collection write barriers.

Jikes RVM makes extensive use of our framework and is the primary environment
from which org.vmmagic emerged. The memory management subsystem makes
particularly heavy use of org.vmmagic, principally because it is concerned with ac-
cessing raw memory, which is not supported by regular Java semantics. As the single
largest user of the framework, we have focused much of the discussion in this section
on the memory manager. However, org.vmmagic is used throughout Jikes RVM in a

§7.4 Summary 103

variety of capacities. A few examples of the wide variety of semantic regimes used by
Jikes RVM include: stipulating that an object may not move (NonMovingAllocation);
defining the special semantics of trampoline code, which by definition never returns
(DynamicBridge); preventing optimization (NoOptCompile); asserting callee save se-
mantics for volatiles (SaveVolatile); and eliding null checks (NoNullCheck). Jikes
RVM also makes use of a wide variety of compiler intrinsics, including: atomic op-
erations used to implement locks; memory barrier and cache flushing operations
(required when compiling code and initializing classes on architectures with weak
memory models); stack introspection (for exception delivery and debugging); and
persisting, modifying, and restoring thread state (to support exact garbage collection,
green thread scheduling, and exception delivery). The unboxed magic types used by
the memory manager (Word, Address, ObjectReference, Offset, and Extent) are
used throughout the JVM.

In the Jikes RVM context, the framework has shown that it is capable of achiev-
ing excellent performance [Garner et al., 2007] and design characteristics [Blackburn
et al., 2004b] in non-trivial systems. These experiences have led us to believe that the
approach is broadly applicable.

As new languages emerge [Allen et al., 2008; Chamberlain et al., 2007; Charles
et al., 2005; Huang et al., 2008], we hope the designers will carefully consider the
possibility of supporting low-level programming, and that they might find our work
useful.

7.4 Summary

Hardware and software complexity is making it harder and harder to reason about
the environment in which code is written, frustrating the objective of reliable, secure,
and maintainable software. This chapter introduced a principled approach to high-
level low-level programming, and a concrete framework derived from it. The value of
this approach will be underlined in Chapter 8, which discusses real-world experience
with the framework.

104 High-level Low-level Programming with org.vmmagic

Chapter 8

High-Performance and Flexibility
with MMTk

The org.vmmagic framework described in the previous chapter has been shaped
through use in several contexts. This chapter describes real-world experience with
high-level low-level programming in the Memory Management Toolkit [Blackburn
et al., 2004b], a high performance memory management toolkit written in Java that
has served as the primary context for the development of org.vmmagic. This chapter
discusses how MMTk benefits from being written in a high-level language, as well as
how the org.vmmagic framework has facilitated the development, debugging, and
testing of memory management strategies.

This chapter is structured as follows. Section 8.1 discusses why Java was se-
lected as the language for developing MMTk. Section 8.2 then describes some of
MMTk’s specific low-level programming requirements. The remainder of the chap-
ter is structured around two case studies. The first study, in Section 8.3, is centered
around a redesign of a core aspect of MMTk—the transitive closure—that shows how
a high-level low-level programming approach can be used to increase flexibility, with-
out sacrificing performance. The second example, in Section 8.4, describes the MMTk
harness, which takes advantage of the design of the org.vmmagic framework to al-
low MMTk to execute in a virtualized environment, providing powerful debugging,
development, and testing facilities.

Sections of this chapter describe work published in the paper “Demystifying
Magic: High-level Low-level Programming” [Frampton, Blackburn, Cheng, Garner,
Grove, Moss, and Salishev, 2009a].

8.1 Why Java?

MMTk uses Java for two distinct reasons. First, MMTk derives significant software
engineering benefits from being implemented in a high-level, strongly typed lan-
guage [Blackburn et al., 2004b]. Second, MMTk is written in the same language that
it was originally designed to support. This avoids an ‘impedance mismatch’ between
application and runtime code, which can provide a significant performance advan-
tages, as shown from the positive experience of Jalapeño [Alpern et al., 2000] and

105

106 High-Performance and Flexibility with MMTk

DRLVM [Kuksenko, 2007]. When the language impedance mismatch is removed,
performance critical code (such as object allocation and write barriers) can be inlined
and optimized into user code, allowing an optimizing compiler to produce code as
good as or better than hand-selected machine code.

The traditional language for implementing memory managers is C, but it would
be difficult to use C to build a toolkit as flexible as MMTk. Using C++ may make
it possible to achieve an equally flexible structure, but high performance allocation
and barriers would require a complex and fragile solution, such as providing hand-
crafted IR fragments to the compiler [Glew et al., 2004], or taking DRLVM’s approach
and using a framework such as org.vmmagic for the helper code and C/C++ for the
remainder of the memory manager implementation.

The competitive performance of MMTk (running on Jikes RVM) has been demon-
strated by several means, including: the inspection of compiled code fragments for
performance critical sections; a bottom line performance comparison to production
virtual machines; and a direct performance comparison to a high quality C imple-
mentation of a memory manager [Garner et al., 2007].

8.2 Low-level Programming Requirements

To illustrate why MMTk requires low-level access to hardware resources, consider
the process of tracing an object in a parallel copying garbage collector. Given an
object, the collector must:

1. Determine where references to other objects are located in the object, typically
by consulting a reference map linked from the object’s header; then

2. Take each reference location, load the reference and:

(a) Determine whether the reference is non-null (if not then we move on to
consider the next reference location);

(b) Determine that the reference does not point to an already copied object
(if it does, then we update the reference location to point to the new copy
and move on to consider the next reference location),

(c) Atomically mark the object to ensure only one copy is made (forcing other
threads to spin and wait for us to finish if they are also considering it);

(d) Allocate an area in the target space and copy the contents of the object to
it;

(e) Store a forwarding pointer from the old version of the object to the new
copy (also unmarking the object to allow any threads waiting in step 2(c)
to continue); and

(f) Update the reference location to point to the new copy, and then move on
to consider the next reference location.

§8.3 Case Study: An Object Model for Heap Traversal 107

Two things are clear from the above operations. First, many of the operations deal
with information that is generally not accessible in a high-level language. Second,
given that the number of objects in the heap generally runs into the millions—and
that garbage collection can take a significant fraction of execution time (a common
rule of thumb is 10%)—any unnecessary overhead (such as that from a foreign func-
tion interface) is likely to have an unacceptable performance impact.

8.3 Case Study: An Object Model for Heap Traversal

This section describes experience from a major redesign of MMTk that I led in 2005
with the assistance of Robin Garner. The focus of this discussion is on the redesign
of the heap traversal operation.

One of the key stated benefits of using a high-level language is that it allows
a more flexible design—a critical concern in the development of a research toolkit
such as MMTk. The need to scan through the reference fields of an object is almost
universal in garbage collection algorithms, forming the basis for the transitive closure
required by tracing collectors, and the recursive decrement operation of a reference
counter. The redesign discussed in this section made MMTk more flexible in terms
of the types of collectors that could be naturally supported, by changing the design
of the heap traversal operation.

8.3.1 Original Design

In the original MMTk [Blackburn et al., 2004b], the importance of a transitive closure
was reflected by the inclusion of the mechanics to perform such a closure into the
base class of all garbage collectors. The base class also managed a parallel work stack,
taking objects in turn off the work stack, scanning each for outgoing references, and
calling the traceObject() method of the concrete garbage collector type for each
one. The individual collector could determine what actions needed to be performed,
such as marking, copying, and/or pushing the object onto the work stack.

There was one key limitation in the original design: only a single style of transi-
tive closure could be supported in any given configuration. Collection policies that
required multiple logical closures over the heap were forced to either include (poten-
tially expensive) branches at the leaf methods, or to duplicate the base functionality
supplied by MMTk. Original MMTk generational collectors took the first option, in-
cluding conditional branches in the leaf methods to detect if a full-heap or nursery
collection was in progress, while an initial implementation of a compacting collec-
tor took the second, duplicating the MMTk transitive closure functionality to allow
two-phase collection [Frampton, 2003].

8.3.2 Solution

During the redesign, we actively sought to take full advantage of the capabilities
of high-level languages—particularly object-oriented programming features. In line

108 High-Performance and Flexibility with MMTk

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

N
or

m
al

iz
ed

C
ol

le
ct

io
n

Ti
m

e

Heap Size Relative to Minimum

Original
Redesigned

Figure 8.1: Garbage collection performance for the production configuration before and after
the redesign.

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

N
or

m
al

iz
ed

C
ol

le
ct

io
n

Ti
m

e

Heap Size Relative to Minimum

Original
Redesigned

Figure 8.2: Garbage collection performance for the full-heap mark-sweep configuration before
and after the redesign.

§8.3 Case Study: An Object Model for Heap Traversal 109

with this goal, the concept of a transitive closure over the heap was brought into a
single coherent object model consisting of three key classes:

TransitiveStep Declares a single abstract method processEdge(), which is called
for each reference location found in the object. To trigger these calls, the object to be
processed and the TransitiveStep to call are passed as a pair to the VM supplied
utility method scanObject().

Trace Holds the global work stack structures used during a transitive closure over
the heap.

TraceLocal Manages the thread-local work stack structures, and provides the main
processing loop for performing the transitive closure. TraceLocal extends the class
TransitiveStep, implementing processEdge() to read the reference value from the
location and then call the abstract method traceObject().

This change pushed MMTk toward a more object-oriented programming style,
paving the way for research into advanced collection techniques such as Immix
[Blackburn and McKinley, 2008], which uses separate TraceLocal classes depend-
ing on the type of collection. In Immix, this means that the additional checks that
are required during a defragmentation collection are performed only when required,
allowing a faster non-copying TraceLocal class to be used for regular collections.

By structuring the tracing operation around well defined interfaces, the design
described in this section also makes it easier to implement some classes of optimiza-
tions to the tracing loop, such as specialized scanning. This involves adding a hidden
virtual method to each class, which is a specialized scan method tailored to both
the precise layout of references in that class, as well as the appropriate concrete sub-
class of TransitiveStep. These specialized methods are then called in place of the
generic scanObject() method by the garbage collector.

8.3.3 Performance Evaluation

Figure 8.1 shows the performance of the production configuration of the system
immediately before and after the redesign was implemented. Despite the greater
reliance on instance methods and a more object-oriented design, the results show
that performance was not adversely affected. In fact, garbage collection performance
was slightly improved. Recall that the original implementation only allowed each
collector to provide a single transitive closure. Because the production configura-
tion of Jikes RVM uses a generational garbage collector, an additional check during
tracing is required to determine whether a full-heap or nursery collection is being
performed. This check marginally degrades performance, and is not required in the
redesigned system. Comparisons of collectors which require only a single type of
trace, such as the results for full-heap mark-sweep shown in Figure 8.2, show no
performance difference between the original and redesigned systems.

110 High-Performance and Flexibility with MMTk

These results have demonstrated that the changes have come at no cost to ab-
solute performance, which is of critical concern to our research. The flexibility im-
provements are harder in general to quantify, but the implementation of collectors
not readily supported by the previous design (e.g., sliding mark-compact and Immix)
suggests that the redesign has been a success.

8.4 Case Study: MMTk Harness

While the previous case study showed how MMTk takes advantage of high-level lan-
guages to increase flexibility, this section looks at how MMTk harnesses the abstrac-
tive power of these languages to help simplify the development of garbage collectors.

Garbage collectors are notoriously difficult to debug, even when written in a
type-safe high-level language. They are very tightly bound to the environment in
which they execute: an error in write barrier code could cause pointers to become
corrupted, manifesting as errors in user code with no apparent link to the code that
produced the error. Modern garbage collectors also tend to be parallel and concur-
rent, with multiple collector and mutator threads executing at the same time. Modern
programming styles also dictate that memory managers support parallel allocation
and write barriers, due to the prevalence of multithreaded user code. These charac-
teristics tend to conspire to make debugging a garbage collector within a production
JVM a significant challenge.

Our approach is to take the production JVM completely out of the picture, by
seamlessly rehosting MMTk in a synthetic, controlled, yet still rich environment: the
MMTk harness. MMTk can be debugged in this controlled environment using scripts
expressed in a simple domain-specific language executed by an interpreter written
in Java.

This is possible because all of the low-level functionality required by MMTk is
provided by delegating to org.vmmagic, whose methods and classes appear as reg-
ular Java abstractions. This allows switching between native and virtualized imple-
mentations of org.vmmagic without requiring changes to MMTk itself.

8.4.1 Harness Architecture

The basic structure of the MMTk harness is illustrated in Figure 8.3, which shows
how MMTk is deployed first in a native (production) configuration, and then within
the MMTk harness environment. The figure shows that rehosting MMTk onto the
interpretive debugging engine requires a) the implementation of a simple virtual
machine interface layer targeted at the harness, and b) a virtualized implementation
of org.vmmagic written in pure Java. This figure shows the dependencies of the
components, but is not drawn to scale. When running on the MMTk harness, MMTk
itself makes up the vast majority of the code complexity. The virtual org.vmmagic
classes replace the raw memory accesses provided by the virtual machine’s compiler
intrinsics with a virtualized view of memory, simulated within the harness as a hash
table of memory pages (each in turn implemented as an array of integers).

§8.4 Case Study: MMTk Harness 111

MMTk

Native
org.vmmagic

(zero overhead)

Physical Memory
Pr

od
uc

tio
n

V
ir

tu
al

 M
ac

hi
ne

(a) Production MMTk.

MMTk

Virtualized
org.vmmagic

Simulated Memory M
M

Tk
 D

eb
ug

gi
ng

 H
ar

ne
ss

(b) MMTk harness.

Figure 8.3: MMTk configured to run under a production virtual machine (left) and the MMTk
harness (right).

We used a custom domain-specific language for pragmatic reasons. The language
syntax is a cut down version of Java syntax, and the language has the minimal set
of features required to exercise and validate key memory management functionality.
It provides an environment in which it is possible to write simple tests in a clear
and concise form. The front-end of the harness is not tied closely to this language,
and we have contemplated other front-ends. A Java front-end, for example, could be
used to provide access to a wider variety of applications with which to test MMTk
collector implementations.

1 class Address {
2 int address;
3

4 byte loadByte() {
5 return SimMemory.loadByte(address);
6 }
7

8 void storeByte(byte value) {
9 SimMemory.storeByte(address, value);

10 }
11 }

Figure 8.4: Virtualized version of Address.

The actual implementation of the virtualized org.vmmagic is quite straightfor-
ward, with required operations (rather than being executed natively as intrinsics by
the host runtime) simply coded as a pure Java implementation within our virtual-
ized memory environment. Figure 8.4 shows an example of how Address can be
implemented on top of the virtualized memory.

112 High-Performance and Flexibility with MMTk

Note that in org.vmmagic, magic types such as Address and ObjectReference
are implicitly value types, so need to be passed by value. However, in a pure Java
implementation the magic types will be realized as regular Java objects and thus
be subject to Java’s pass-by-reference semantics. In our current implementation of
org.vmmagic all magic types are immutable,1 so pass-by-value and pass-by-reference
are semantically equivalent and our pure Java virtualization is trivial. While this is
appropriate for the magic types we have required to date, we envisage that requiring
immutability will not always appropriate. In such cases, a trivial byte-code rewriting
tool could be used to simulate pass-by-value semantics for the appropriate types by
inserting copy operations.

8.4.2 Usage Scenarios

The MMTk harness provides many debugging options that are unavailable in exist-
ing virtual machine implementations. The following sections describe some of the
key scenarios supported by the harness.

8.4.2.1 Unit Testing

One of the primary benefits of the harness environment is that developers can write
and execute simple unit tests. This is not possible when running MMTk within Jikes
RVM, where both the virtual machine and application allocate and manipulate ob-
jects within a single managed heap. Figure 8.5 shows an example test which creates a
large volume of cyclic garbage. This test continues to allocate and then discard cycles
of garbage. By restricting the heap size and running sufficient iterations, a collector
that does not correctly handle cyclic garbage—such as a reference counter without a
cycle collector—will run out of memory and crash.

Such unit tests can serve both as development milestones in the construction of
a garbage collection algorithm, or as the basis for automated regression testing to
ensure the stability of implemented algorithms.

8.4.2.2 Garbage Collector Development

The harness hosts MMTk within a pure Java environment, making it is possible to
take advantage of existing debugging tools—such as the Eclipse Java debugger—
during the development of garbage collection algorithms. The number, types, and
sizes of allocated objects can then be precisely controlled, making it is possible to
incrementally develop and test different aspects of a memory management strategy.
Programs within the harness can also trigger collection events (such as full heap or
nursery collections), as well as intercept key operations performed on objects during
collection. This allows simple scenarios to be modeled and then played through the
harness to verify that objects are treated as expected by the implementation.

1For example, a field ptr of type Address cannot be incremented. Instead, a reassignment idiom
must be used: ptr = ptr.plus(1);.

§8.5 Summary 113

1 /**
2 * Create lots of cyclic garbage.
3 */
4 void main() {
5 int cycles = 300;
6 int cycleSize = 100;
7

8 int i = 1;
9 while (i < cycles) {

10 /* Create a garbage cycle by discarding returned value */
11 createCycle(cycleSize);
12 i = i + 1;
13 }
14 }
15

16 /**
17 * Create a cycle of objects of the specified size.
18 */
19 object createCycle(int size) {
20 object head = alloc(1, 10);
21 object tail = head;
22 while(size > 0) {
23 tail.object[0] = alloc(1, 10);
24 tail = tail.object[0];
25 size = size - 1;
26 }
27 tail.object[0] = head;
28 return head;
29 }

Figure 8.5: MMTk harness unit test that creates cyclic garbage using the MMTk harness
scripting language.

It is also possible to modify the MMTk harness to perform more targeted debug-
ging. This includes placing watch-points at specific addresses within the simulated
memory, to either log updates or monitor activity at certain key addresses. This
approach is fruitful because the harness provides a controlled environment where
scripted operations occur in a deterministic order.

8.5 Summary

This chapter introduced two case studies of high-level low-level programming, both
using the org.vmmagic framework described in Chapter 7. These studies demon-
strate the potential of the high-level low-level programming approach in two key
areas. First, in terms of performance, MMTk was competitive with other garbage
collection implementations, irrespective of language. Second, in terms of software
engineering, the use of a high-level language—and the org.vmmagic framework in
particular—has made it possible to build more powerful designs and richer tools to
assist with testing and debugging. The following chapter continues the theme of

114 High-Performance and Flexibility with MMTk

building richer development tools, but shifts focus to discussing the role of visual-
ization in helping to understand complex software systems.

Chapter 9

Visualization with TuningFork

A high-level low-level programming approach provides low-level programmers with
only some of the tools they need to combat increasing hardware and software com-
plexity. It is also necessary to provide programmers with improved means to un-
derstand, debug, and evaluate software. The use of a high-level language may make
this need more confronting to some, but it is important to realize that the need exists
independent of the use of a high-level programming language.

Applications running on modern runtimes yield a complex multi-layered system.
Injecting instrumentation into these layers can be a valuable tool to help us to under-
stand their behavior, but as complexity increases the volume of data produced be-
comes unmanageable. While gross aggregate statistics (e.g., means, maxima, minima,
and order statistics) can be helpful, they are of little value in analyzing fine-grained
behavior. The large volumes of information involved suggest taking advantage of the
capacity of the human eye to detect patterns and anomalies. This chapter describes
TuningFork—a visualization tool that I was heavily involved in both designing and
developing—that has proven extremely effective in understanding and debugging
both real-time applications, and the complex runtime systems upon which these ap-
plications execute.

This chapter is structured as follows. First, Section 9.1 gives a brief overview of
the environment in which TuningFork was developed. Section 9.2 then discusses
how TuningFork relates to other visualization tools. Next, Section 9.3 lists the key
requirements for TuningFork, while Section 9.4 shows the architecture TuningFork
uses to support these requirements. The oscilloscope, a novel visualization technique
built using this architecture, is then described in Section 9.5. Last, Section 9.6 details
a case study where TuningFork was able to help identify an interesting anomaly in
the scheduling behavior of a real-time garbage collector.

This chapter describes work presented in “TuningFork: Visualization, Analy-
sis and Debugging of Complex Real-time Systems” [Bacon, Cheng, Frampton, and
Grove, 2007a]. TuningFork was also demonstrated at CC 2006 [Bacon et al., 2006]
and OOPSLA 2007 [Bacon et al., 2007b], and is now an open-source project available
from http://tuningforkvp.sourceforge.net.

115

http://tuningforkvp.sourceforge.net

116 Visualization with TuningFork

9.1 Introduction

TuningFork is a visualization tool developed as part of the Metronome real-time
garbage collection project at IBM Research. Real-time systems are increasing in
prevalence and complexity, with automotive, financial, aerospace, telecommunica-
tion, and military applications. As the complexity of these systems increases, and
the individual cost of developing these systems is driven down, more attention is be-
ing focused on the way that the software for such systems is engineered. TuningFork
is an Eclipse-based tool that supports the online visualization and analysis of data
collated from multiple streams generated in real-time by instrumented subsystems
(e.g., applications, virtual machines, and operating systems). TuningFork was the
tool used for gathering the data reported on Generational Metronome in Chapter 5.

9.2 Related Work

A large body of work exists on performance visualization and analysis tools.
The concept of dealing with complexity through vertical profiling, where multiple

layers of complex systems are instrumented and the resulting data correlated, was
introduced by Kimelman et al. [1994] with Program Visualizer. This approach was
extended by Hauswirth et al. [2005] through the use of auto-correlation techniques,
rather that relying on user-performed visual correlation.

Parallel and distributed systems are by nature difficult to understand, so it is
natural that the use of visualization techniques is prevalent in these communities.
Several performance analysis tools have been developed, but the Pablo performance
analysis environment [Reed et al., 1993] is one of the more complete contributions.
Pablo introduces an environment for tracing and analysis, specifies a self-describing
trace format (SDDF), and advocates an extensible approach to visualization. Message
passing systems have also taken advantage of visualization tools to observe commu-
nication activity. Jumpshot [Zaki et al., 1999; Wu et al., 2000] is one such system that is
targeted at large-scale parallel computations, uses a flexible log file format, and can
automatically detect some anomalous behaviors.

Other visualization systems are targeted at application profiling, where the goal
is to understand where time is spent during program execution. These tools in-
clude HPCView [Mellor-Crummey et al., 2002] and SvPablo [Rose et al., 1998], which
use a combination of hardware performance counters and sampling to hierarchically
aggregate the counts and attribute them back to areas of the source code. Jinsight [Se-
vitsky et al., 2001] is a tool designed to assist with the development of Java appli-
cations, and consists of a heavily instrumented JVM and a visualization tool. Due
to the overheads involved, Jinsight is unsuitable for online usage, although Pauw
et al. [2001] show how to restrict it to instrumenting short sections of an execution,
allowing the partial analysis of long running programs. Paradyn [Miller et al., 1995;
Xu et al., 1999; Newhall and Miller, 1999] introduces the ability to dynamically alter
what instrumentation is active, in addition to monitoring overheads and adjusting

§9.3 Requirements 117

which instrumentation is active based on acceptable overheads supplied as user pa-
rameters.

9.3 Requirements

As discussed earlier, the demands placed on a system for visualizing real-time sys-
tems are significant. The more difficult requirements for TuningFork are discussed
in this section.

Finding needles in haystacks. There is often a vast amount of information that
needs to be generated, processed, and visualized. While for some systems it is ap-
propriate to simply aggregate or summarize information for display, this is not the
case for real-time systems in general. Retaining complete raw information can be
necessary for debugging or observing some errors; information from a few events in
a trace of millions or billions of events may be crucial.

High accuracy timing. Given the tight deadlines that must be met in a real-time
system, it is essential that accurate timing information be available when performing
analysis. The need to ensure timing accuracy is made more difficult when dealing
with multiprocessor systems, where the available timers can be both unsynchronized
and have skew relative to each other.

Minimal interference. It is important for the instrumentation not to significantly
affect program behavior. In a real-time setting this is a very strict requirement. While
it is inevitable that there will be some interference, such interference must be highly
predictable, and thus cannot require I/O, allocation, or synchronization. Under load,
when the real-time system is having trouble meeting deadlines, it may also be neces-
sary for the logging system to drop events. The rest of the TuningFork system must
be robust to this occurrence. Losing events in these circumstances is problematic, but
in a live system it is a choice that users may be forced to make.

Live instrumentation. In addition to performing post-mortem offline visualization
and analysis, TuningFork is intended to be used in the field as an aid to help diagnose
and monitor the behavior of live systems. This makes it necessary to be able to
connect to such a system and begin observing behavior.

Vertical integration. Because TuningFork is designed to capture and analyze the
behavior of complex systems composed of many smaller components and layers, it
is necessary to allow the collection and integration of multiple traces. This allows
instrumentation of operating systems, runtime systems, applications, libraries, and
other devices to be brought together and analyzed within a single system.

118 Visualization with TuningFork

Flexibility and extensibility. The requirement for flexibility and extensibility is
broad and has several implications. Trace files need to be self-describing, so that
traces from many different sources can be easily generated and added. To allow rich
visualization of data from different problem domains, it must be possible to integrate
custom filters and visualizations. Extensibility allows for the processing and visual-
ization of new types of information, such as creating a musical score from raw midi
events, or showing the measured position of a body in space from raw sensor data.

9.4 TuningFork Architecture

In order to meet the requirements set out in the previous section, we developed a
software architecture for TuningFork structured around the key components of traces,
streams, and figures. Figure 9.1 shows TuningFork’s high-level architecture. Each key
element of the design is discussed in the following paragraphs.

StreamsTraces Sequencing Filters Figures

Histogram

SampleSample

Difference

Derivative

......

Base Derived

Figure 9.1: The architecture of the TuningFork visualization platform.

Traces. The process of collecting data for visualization begins in an instrumentation
layer that generates a trace. To date, we have implemented instrumentation layers in
Java applications, a real-time Java virtual machine, and the Linux kernel (using Sys-
temTap [SystemTap]). However, any program can generate a trace by complying
with a simple binary format. A single TuningFork instance can be simultaneously
connected to multiple trace sources, via direct connections over a socket (for online
analysis), or via saved binary trace files (for offline analysis). Due to the potentially
large size of the underlying trace, TuningFork performs indexing, caching, and sum-
marization of the data stream so that only a manageable portion or summary of the
data is held in memory at any time, but it is still possible to analyze all data captured
in the trace precisely.

Global event sequencing. A multithreaded application may generate a single trace.
To allow this, without requiring significant synchronization and instrumentation

§9.5 Oscilloscope Figure 119

overhead, traces are composed of multiple feedlets. Events for each feedlet are time-
monotone, and a feedlet is typically produced by a single thread. All feedlets from
all traces (remembering that TuningFork can be connected to multiple traces) are
subject to a simple merge sort by the global event sequencer as the traces are processed
by TuningFork.

Filters and base streams. For a given TuningFork configuration, a set of filters are
run across all events to generate base streams. Examples of fundamental base streams
include sample streams, which consist of a sequence of (time, value) pairs, and interval
streams, which consist of a sequence of (possibly overlapping) time intervals as (start,
stop) pairs.

Derived streams. Basic aggregate statistics, such as minimum, maximum, and av-
erage values, are available for all streams. For richer analysis, TuningFork provides
a derived stream facility, in which new streams can be created based on processing
data from other streams. Common uses of this are calculating the rate of change
for an underlying stream, filtering out (or in) information in one stream based on
intervals in a second stream, or smoothing noisy input functions by averaging their
values over larger time windows. Depending on the function being applied, derived
streams may create new raw data or be calculated on demand.

Figures. At the heart of TuningFork is its ability to visualize data by rendering fig-
ures. TuningFork is capable of rendering figures to various screen and print formats
including SWT, PDF, and OpenGL. This is achieved through the TuningFork paint-
ing API, which also simplifies the construction of new visualizations by providing
appropriate high-level drawing operations. TuningFork provides fundamental vi-
sualizations, including time series charts, pie charts, and an oscilloscope (discussed
below), but is designed to be extensible. Each application area in which we have
used TuningFork has made use of this facility, from custom visualizations of the
garbage-collected heap in Metronome [Bacon et al., 2003b], to the visualization of
MIDI events as a musical score in Harmonicon [Auerbach et al., 2007a].In the design
of TuningFork figures, we expended significant effort ensuring they communicate in-
formation with efficiency and clarity. This effort has been guided by basic principles
on the display of quantitative information—as discussed by Edward R. Tufte in his
series of books [Tufte, 1986, 1990, 1997, 2006]—in addition to paying close attention
to feedback from users during the development process.

9.5 Oscilloscope Figure

One of the more novel features of TuningFork—described here at length for both its
novelty and due to my central role in both design and implementation—is the oscillo-
scope figure, designed to allow the visualization of high-frequency periodic data. The
oscilloscope view visualizes time intervals, showing many strips of time progressing

120 Visualization with TuningFork

(a) Unfolded view showing a total of 2.3ms of data.

(b) Folded view visualizing over 2 seconds of data.

Figure 9.2: Folding in the oscilloscope for a task with a period of 45.3515µs.

§9.5 Oscilloscope Figure 121

from left to right, and from top to bottom. As illustrated through the examples in
Figure 9.2, colored blocks represent time intervals in which particular events occur:
in this case it is the activity of a periodic real-time task.

The oscilloscope view allows the visualization of large spans of time while still
retaining fine detail. For example, using a 1600×1200 pixel display it is possible
to precisely visualize events at millisecond resolution while displaying over eight
minutes of execution.1 Even at this resolution, the ability of the human eye to detect
patterns makes it quite simple to identify anomalous behavior.

However, there are situations where one needs to view even more data. One
application using TuningFork is an audio generator that produces a sound sample at
a frequency of 22.05KHz. Each time a sample is generated an event is recorded for the
start and end of the operation, resulting in 44,100 events per second (averaging one
every 23µs). Visualizing behavior at this timescale requires microsecond resolution,
which would allow the precise display of only half of one second at any time when
working with the above display.

Folding multiple periods into a single strip makes it possible to visualize an even
greater volume of data. When folded, the color intensity at a particular pixel is given
by averaging the values at that offset for the periods being displayed in that strip.
Thus, periodic behavior shows as dense color, while aperiodic behavior results in a
blurred region of lighter color. Naturally this technique is most useful for systems
with vast amounts of data and periodic behavior. If the time represented by each
strip is set to the natural period of the application, then perfectly scheduled tasks
will display as perfectly aligned dark events. Any blurred region shows variance
in the scheduling of the tasks. The effect of folding is illustrated by Figure 9.2,
which shows a periodic event displayed unfolded (with a single period per strip),
and then folded (with 1024 periods per strip). Folding has proven effective at factors
up to 1000 and more, making it possible for the display to show minutes of execution
while still observing some detail at microsecond resolution. When the natural period
of the application is not known in advance, the user can use a slider to vary the
display period to discover it. Visual feedback makes it immediately apparent when
the correct period has been found, as the image suddenly appears in focus, with
concentrated regions of color.2

The oscilloscope has proved highly effective at finding interference patterns from
other periodic events. For instance, when zoomed out on the view of the audio gen-
eration task discussed earlier, we observed a periodic interruption of about 300µs
occurring every 50ms. On further investigation this interruption turned out to be the
operating system resynchronizing the cycle counter—on which the timing measure-
ments were based—with the lower-frequency crystal oscillator.

1This calculation is based on using strips 4 pixels high and a horizontal resolution of 1 pixel per
millisecond.

2As noted by a reviewer, this view naturally lends itself to autofocus techniques such as analysis
in the frequency domain. During the initial development of the oscilloscope we prototyped such a
solution, but as the frequency of the events being studied was generally known ahead of time, this
feature was not tuned and implemented in later versions.

122 Visualization with TuningFork

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time Offset (ms)

7035

7014

6993

6972

6950

6929

6908

6887

6866

6845

6823

6802

6781

6760

6739

Ti
m

e
(m

s)

(a) Original (unexpected) behavior.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time Offset (ms)

7070

7049

7028

7007

6986

6965

6943

6922

6901

6880

6859

6837

6816

6795

6774

Ti
m

e
(m

s)

(b) Corrected behavior.

Figure 9.3: Oscilloscope view of unexpected and expected scheduling of collector quanta
(colors indicate the type of collection activity occurring, which is not relevant to this discus-
sion).

§9.6 Case Study: Unexpected Collector Scheduling Decisions 123

9.6 Case Study: Unexpected Collector Scheduling Decisions

TuningFork was used throughout the development of the Metronome real-time gar-
bage collector for IBM’s Real-Time Java product [IBM, 2006]. This section describes
an interesting behavioral anomaly in the collector that TuningFork allowed us to
diagnose.

Recall from Chapter 2 that Metronome [Bacon et al., 2003b] is an incremental,
real-time garbage collector that divides the work of a single garbage collection cycle
into a large number of collector quanta. Metronome uses a scheduling algorithm to
intersperse mutator execution with collector quanta to achieve a Minimum Mutator
Utilization (MMU) [Cheng and Blelloch, 2001] target. As an example, the default
settings for the production version of Metronome specify collector quanta of 500µs,
and a target MMU of 70% within each 10ms window. This guarantees (when the
system is working as designed) that in any 10ms window of execution there will be
at most 6 collector quanta, each of 500µs duration.

Visualizing Metronome collector scheduling behavior with TuningFork led to an
unexpected discovery of unusually long mutator pauses. This was due to a subopti-
mal scheduler implementation within Metronome.

First, some background on the Metronome scheduler, which is responsible for
controlling mutator and collector interleavings to ensure that both the MMU require-
ment is satisfied, and that sufficient collector activity is undertaken. In satisfying the
MMU bound, the scheduler has some flexibility in how to interleave collector and
mutator activity. To ensure that MMU is not violated, the scheduler dynamically
computes the current MMU based on a trailing window of previous scheduling de-
cisions. Using the default parameters described above (500µs collector quanta and
an MMU target of 70% measured over a 10ms window), it is safe for the scheduler to
decide to schedule a collector quantum any time that the current dynamic MMU is
at least 75%. When a collection is in progress, the scheduler is invoked every 500µs
to make this decision.

The initial implementation of the scheduler strictly followed a simple MMU-
centric policy, greedily scheduling collector quanta whenever doing so would not
violate the MMU specification. This resulted in the irregular scheduling pattern
shown in Figure 9.3(a). At the start of the collection cycle, dynamic MMU was 100%,
so the scheduler would initiate several consecutive collector quanta. This clumping
quickly dampened as collection proceeded, but it resulted in an irregular schedule
with perceived application pauses of up to 3ms. This scheduling algorithm was in
use for over a year before visualizing it in TuningFork made the undesirable (but
technically correct) behavior immediately obvious. We then revised the scheduling
algorithm to avoid this behavior, resulting in the more predictable scheduling behav-
ior shown in Figure 9.3(b).

This is an example of where visualization enables the observation of unexpected
or unintuitive behavior, allowing the resolution of issues earlier in the development
process. While it may be possible to develop non-visual tools to inspect traces to
discover known issues, it is difficult to match the ability of an expert user to take

124 Visualization with TuningFork

visual information and identify anomalous conditions by relating observed behavior
to their intuitive models of expected behavior.

9.7 Summary

Previous chapters focused on techniques to allow low-level programs to be both
expressed and executed within a high-level language environment. This chapter
highlighted the important role that visualization tools can play in helping us to better
understand the software that executes in this increasingly complex environment.
In our experience with TuningFork and Metronome, visualization proved to be of
enormous value in understanding and evaluating complex real-time systems. We
believe the utility of visualization techniques is only set to increase, given the current
trajectory of hardware and software complexity.

Chapter 10

Conclusion

The benefits of modern managed languages—and the type- and memory-safety prop-
erties they provide—are evidenced by the position they hold as the standard for im-
plementation in a wide range of application areas. Their use is still far from universal,
however, and critical application areas, such as real-time and systems software have
been slow to move to these languages, despite being desperate to make improve-
ments in security and reliability.

This thesis seeks to bring the advantages of high-level languages to low-level pro-
gramming, showing both why high-level languages will benefit low-level program-
ming, and demonstrating how we can write and run high-level low-level software.

To understand why we must turn to high-level languages, this thesis relates our
current environment to that of the 1970s, a period when changes in the demands
placed on software—alongside increases in hardware complexity—led to a signifi-
cant shift in the dominant language for programming low-level applications. Look-
ing forward, changes in hardware complexity appear to be accelerating, with trends
towards increased levels of concurrency, greater heterogeneity, and complex non-
uniform memory hierarchies conspiring to make developing low-level programs in-
creasingly difficult. This raises the question of whether it is again time to look to-
wards higher levels of abstraction to assist with the development of these programs.

Experience we have gained through the continued development of MMTk serves
to underscore the value high-level programming languages can bring to low-level
programming. Taking advantage of high-level language features, while writing code
that expresses low-level concerns, can greatly simplify the process of developing
low-level systems. That the resultant system can deliver equivalent, or improved,
performance is a compelling justification of the high-level low-level programming
approach.

To address how to write high-level low-level programs, this thesis identifies three
key technical issues holding back the use of high-level languages for low-level pro-
grams: 1) the inability to express low-level concerns, 2) garbage collectors that do not
meet key performance requirements, and 3) inadequate development tools hindering
the low-level programmer in attempts to truly understand program behavior. Each
of these concerns have been addressed by work in this dissertation.

We addressed the need to express low-level ideas in high-level languages through
the development of the org.vmmagic framework. This framework allows the seam-

125

126 Conclusion

less integration of low-level abstractions into a high-level language, allowing a more
controlled and gradual progression between high-level and low-level programming
concerns.

Two novel garbage collection algorithms, Cycle Tracing and Generational Metro-
nome, demonstrate that it is possible to develop garbage collection algorithms that
can satisfy the stringent requirements of low-level programs. The two algorithms
take complementary approaches. Cycle Tracing is based on a state-of-the-art genera-
tional reference counting collector, improving its behavior for programs that exhibit
cyclic garbage. Generational Metronome is based on a real-time garbage collector,
attaining significant throughput and memory consumption improvements by bring-
ing incremental generational collection to a real-time collector, while retaining the
original system’s real-time guarantees.

It is clear from trends in hardware and software complexity that the problem
of truly understanding the behavior of low-level systems is one that is becoming in-
creasingly difficult. Experience with TuningFork has demonstrated the power of
visualization techniques, as it makes it possible to interrogate and reason across vast
volumes of data, such as is required to observe the behavior of each layer of the
software stack.

In combination, these contributions demonstrate that it is both possible and bene-
ficial to use high-level languages to build high-performance low-level applications.

10.1 Future Work

Each of the lines of investigation described in this thesis has a future—from extend-
ing the effective prefetch mechanism to copying garbage collectors; to implementing
Cycle Tracing in a fully concurrent reference counting environment; to building on
the extensible TuningFork framework to bring richer visualizations to a whole range
of potential applications. The following two sections, however, focus on directions
that may have the most significant impact in shifting us toward general acceptance
and use of the high-level low-level programming approach.

10.1.1 Garbage Collection for Low-level Programs

Generational Metronome provides significant throughput and memory usage im-
provements over previous real-time garbage collectors. The increased throughput
is partly due to improved mutator performance from the use of bump pointer al-
location. Immix [Blackburn and McKinley, 2008] has demonstrated the potential of
the mark-region approach, which combines fast bump pointer allocation in a mostly
non-moving collector. It may be challenging to develop an accurate model of Im-
mix for real-time collection, but the core ideas seem a natural fit for a concurrent or
incremental setting.

Avoiding copying has additional advantages in a real-time setting, making the
exploration of non-copying generational approaches a natural extension of Gener-
ational Metronome. Applying techniques similar to the sticky mark bit collection

§10.1 Future Work 127

technique of Demers et al. [1990] could dramatically improve the collection rate of
nursery collections. This would have implications beyond simply reducing collection
time, because, as our model shows, collection rate dictates the amount of memory
required to hold the smallest possible nursery for a given application. A non-copying
nursery would also make it more feasible to transition to concurrent (rather than in-
cremental) collection; the additional cost of performing concurrent (as opposed to
incremental) copying collection would be necessary only when defragmenting the
mature space.

10.1.2 High-level Low-level Programming

The approach to high-level low-level programming outlined in this thesis has evolved
from a decade of real-world experience, and has been proven in practice through
several projects. However, there is significant promise for future work in a number
of directions.

Currently, the definition of semantic regimes and intrinsics in our framework is
essentially restricted to developers who are able to modify the language runtime. We
have considered two alternatives to address this shortcoming. First, it may be ben-
eficial to design a standard set of semantic regimes and intrinsics; this would avoid
individual users reinventing the wheel, as well as provide a basic set of function-
ality to make the framework more approachable. The process of developing such
a standard set could also allow additional thought to be put into how the various
components of the set may interact. While extensibility would remain an essential
component of our approach, we feel that providing such a set may make the frame-
work a more useful starting point for other projects. Such an effort could be along
the lines of the org.vmmagic.unboxed.Address family of classes, which are used
across several projects. A second alternative for opening up the framework would
be providing the tools to allow users to specify language extensions, in the form of
intrinsics and possibly semantic regimes, in a form independent of the internals of a
particular virtual machine implementation.

128 Conclusion

Bibliography

Abrahams, P. W.; Barnett, J. A.; Book, E.; Firth, D.; Kameny, S. L.; Weissman, C.;
Hawkinson, L.; Levin, M. I.; and Saunders, R. A., 1966. The LISP 2 program-
ming language and system. In AFIPS ’66 (Fall): Proceedings of the November 7–10,
1966, Fall Joint Computer Conference (San Francisco, California, USA, Nov. 1966),
661–676. ACM, New York, New York, USA. doi:10.1145/1464291.1464362.
(cited on page 9)

Adl-Tabatabai, A.-R.; Bharadwaj, J.; Chen, D.-Y.; Ghuloum, A.; Menon, V.;
Murphy, B.; Serrano, M.; and Shpeisman, T., 2003. The StarJIT compiler: A
dynamic compiler for managed runtime environments. Intel Technology Journal,
7, 1 (Feb. 2003), 19–31. (cited on page 102)

Agarwal, V.; Hrishikesh, M. S.; Keckler, S. W.; and Burger, D., 2000. Clock
rate versus IPC: The end of the road for conventional microarchitectures. In
ISCA ’00: Proceedings of the 27th Annual International Symposium on Computer
Architecture (Vancouver, British Columbia, Canada, Jun. 2000), 248–259. ACM,
New York, New York, USA. doi:10.1145/339647.339691. (cited on pages 1
and 86)

Aiken, M.; Fähndrich, M.; Hawblitzel, C.; Hunt, G.; and Larus, J., 2006. De-
constructing process isolation. In MSPC ’06: Proceedings of the 2006 Workshop
on Memory System Performance and Correctness (San Jose, California, USA, Oct.
2006), 1–10. ACM, New York, New York, USA. doi:10.1145/1178597.1178599.
(cited on page 90)

Allen, E.; Chase, D.; Hallett, J.; Luchangco, V.; Maesse, J.-W.; Ryu, S.; Steele,
G. L., Jr.; and Tobin-Hochstadt, S., 2008. The Fortress Language Specification,
Version 1.0. Sun Microsystems. (cited on page 103)

Alpern, B.; Attanasio, C. R.; Cocchi, A.; Lieber, D.; Smith, S.; Ngo, T.; Bar-
ton, J. J.; Hummel, S. F.; Sheperd, J. C.; and Mergen, M., 1999. Implementing
Jalapeño in Java. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (Den-
ver, Colorado, USA, Nov. 1999), 314–324. ACM, New York, New York, USA.
doi:10.1145/320384.320418. (cited on pages 7, 36, 48, 84, 90, 99, 101, and 102)

Alpern, B.; Attanasio, D.; Barton, J. J.; Burke, M. G.; Cheng, P.; Choi, J.-
D.; Cocchi, A.; Fink, S. J.; Grove, D.; Hind, M.; Hummel, S. F.; Lieber, D.;
Litvinov, V.; Mergen, M.; Ngo, T.; Russell, J. R.; Sarkar, V.; Serrano, M. J.;
Shepherd, J.; Smith, S.; Sreedhar, V. C.; Srinivasan, H.; and Whaley, J., 2000.
The Jalapeño virtual machine. IBM Systems Journal, 39, 1 (Jan. 2000). (cited on

129

http://dx.doi.org/10.1145/1464291.1464362
http://dx.doi.org/10.1145/339647.339691
http://dx.doi.org/10.1145/1178597.1178599
http://dx.doi.org/10.1145/320384.320418

130 Bibliography

pages 36, 48, 90, and 105)

Apache. DRLVM: Dynamic Runtime Layer Virtual Machine. The Apache Soft-
ware Foundation. http://harmony.apache.org/subcomponents/drlvm/. Accessed
Oct. 2009. (cited on pages 99 and 102)

Appel, A. W.; Ellis, J. R.; and Li, K., 1988. Real-time concurrent collection on stock
multiprocessors. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and Implementation (Atlanta, Georgia, USA,
Jun. 1988), 11–20. ACM, New York, New York, USA. doi:10.1145/53990.53992.
(cited on page 20)

Auerbach, J.; Bacon, D. F.; Bömers, F.; and Cheng, P., 2007a. Real-time mu-
sic synthesis in Java using the Metronome garbage collector. In ICMC 2007:
Proceedings of the 2007 International Computer Music Conference (Copenhagen,
Denmark, Aug. 2007), 103–110. (cited on page 119)

Auerbach, J.; Bacon, D. F.; Cheng, P.; Grove, D.; Biron, B.; Gracie, C.; Mc-
Closkey, B.; Micic, A.; and Sciampacone, R., 2008a. Tax-and-spend: Demo-
cratic scheduling for real-time garbage collection. In EMSOFT ’08: Proceed-
ings of the 8th ACM & IEEE International Conference on Embedded Software (At-
lanta, Georgia, USA, Oct. 2008), 245–254. ACM, New York, New York, USA.
doi:10.1145/1450058.1450092. (cited on page 17)

Auerbach, J.; Bacon, D. F.; Guerraoui, R.; Spring, J. H.; and Vitek, J., 2008b.
Flexible task graphs: A unified restricted thread programming model for Java.
In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (Tucson, Arizona, USA, Jun.
2008), 1–11. ACM, New York, New York, USA. doi:10.1145/1375657.1375659.
(cited on page 17)

Auerbach, J.; Bacon, D. F.; Iercan, D. T.; Kirsch, C. M.; Rajan, V. T.; Roeck,
H.; and Trummer, R., 2007b. Java takes flight: Time-portable real-time pro-
gramming with exotasks. In LCTES ’07: Proceedings of the 2007 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (San Diego, California, USA, Jun. 2007), 51–62. ACM, New York, New
York, USA. doi:10.1145/1254766.1254775. (cited on page 17)

Azatchi, H.; Levanoni, Y.; Paz, H.; and Petrank, E., 2003. An on-the-fly mark
and sweep garbage collector based on sliding views. In OOPSLA ’03: Pro-
ceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (Anaheim, California, USA, Oct.
2003), 269–281. ACM, New York, New York, USA. doi:10.1145/949305.949329.
(cited on pages 19 and 62)

Azatchi, H. and Petrank, E., 2003. Integrating generations with advanced ref-
erence counting garbage collectors. In CC 2003: Proceedings of the 12th Interna-
tional Conference on Compiler Construction, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2003, vol. 2622 of Lecture Notes

http://harmony.apache.org/subcomponents/drlvm/
http://dx.doi.org/10.1145/53990.53992
http://dx.doi.org/10.1145/1450058.1450092
http://dx.doi.org/10.1145/1375657.1375659
http://dx.doi.org/10.1145/1254766.1254775
http://dx.doi.org/10.1145/949305.949329

Bibliography 131

in Computer Science (Warsaw, Poland, Apr. 2003), 185–199. Springer, Berlin/Hei-
delberg, Germany. doi:10.1007/3-540-36579-6_14. (cited on page 24)

Bacon, D. F.; Attanasio, C. R.; Lee, H. B.; Rajan, V. T.; and Smith, S., 2001.
Java without the coffee breaks: A nonintrusive multiprocessor garbage collec-
tor. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Conference on Program-
ming Language Design and Implementation (Snowbird, Utah, USA, Jun. 2001),
92–103. ACM, New York, New York, USA. doi:10.1145/378795.378819. (cited
on pages 23 and 24)

Bacon, D. F.; Cheng, P.; Frampton, D.; and Grove, D., 2007a. TuningFork: Vi-
sualization, analysis and debugging of complex real-time systems. Technical
Report RC24162, IBM Research. (cited on page 115)

Bacon, D. F.; Cheng, P.; Frampton, D.; Grove, D.; Hauswirth, M.; and Ra-
jan, V. T., 2006. Demonstration: On-line visualization and analysis of real-time
systems with TuningFork. In CC 2006: Proceedings of the 15th International Con-
ference on Compiler Construction, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2006, vol. 3923 of Lecture Notes in Com-
puter Science (Vienna, Austria, Mar. 2006), 96–100. Springer, Berlin/Heidelberg,
Germany. doi:10.1007/11688839_8. (cited on page 115)

Bacon, D. F.; Cheng, P.; and Grove, D., 2007b. TuningFork: A platform for vi-
sualization and analysis of complex real-time systems. In Companion to OOP-
SLA ’07: Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Montreal, Quebec, Canada,
Oct. 2007), 854–855. ACM, New York, New York, USA. doi:10.1145/1297846.
1297923. (cited on page 115)

Bacon, D. F.; Cheng, P.; Grove, D.; and Vechev, M. T., 2005. Syncopation: Genera-
tional real-time garbage collection in the Metronome. In LCTES ’05: Proceedings
of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (San Diego, California, USA, Jun. 2005), 183–192. ACM,
New York, New York, USA. doi:10.1145/1065910.1065937. (cited on pages
57, 59, 72, and 73)

Bacon, D. F.; Cheng, P.; and Rajan, V. T., 2003a. Controlling fragmentation and
space consumption in the Metronome, a real-time garbage collector for Java.
In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN Conference on Languages,
Compilers, and Tools For Embedded Systems (Chicago, Illinois, USA, Jun. 2003),
81–92. ACM, New York, New York, USA. doi:10.1145/780732.780744. (cited
on pages 26, 67, and 69)

Bacon, D. F.; Cheng, P.; and Rajan, V. T., 2003b. A real-time garbage collector
with low overhead and consistent utilization. In POPL ’03: Proceedings of the
30th ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages
(New Orleans, Louisiana, USA, Jan. 2003), 285–298. ACM, New York, New
York, USA. doi:10.1145/604131.604155. (cited on pages 21, 26, 57, 58, 68, 119,
and 123)

http://dx.doi.org/10.1007/3-540-36579-6_14
http://dx.doi.org/10.1145/378795.378819
http://dx.doi.org/10.1007/11688839_8
http://dx.doi.org/10.1145/1297846.1297923
http://dx.doi.org/10.1145/1297846.1297923
http://dx.doi.org/10.1145/1065910.1065937
http://dx.doi.org/10.1145/780732.780744
http://dx.doi.org/10.1145/604131.604155

132 Bibliography

Bacon, D. F. and Rajan, V. T., 2001. Concurrent cycle collection in reference
counted systems. In ECOOP 2001: Proceedings of the 15th European Conference on
Object-Oriented Programming, vol. 2072 of Lecture Notes in Computer Science (Bu-
dapest, Hungary, Jun. 2001), 207–235. Springer, Berlin/Heidelberg, Germany.
doi:10.1007/3-540-45337-7_12. (cited on pages 24, 25, 46, and 47)

Baker, H. G., 1992. The Treadmill: Real-time garbage collection without motion
sickness. ACM SIGPLAN Notices, 27, 3 (Mar. 1992), 66–70. doi:10.1145/130854.
130862. (cited on page 20)

Barth, J. M., 1977. Shifting garbage collection overhead to compile time. Com-
munications of the ACM, 20, 7 (Jul. 1977), 513–518. doi:10.1145/359636.359713.
(cited on page 23)

Ben-Yitzhak, O.; Goft, I.; Kolodner, E. K.; Kuiper, K.; and Leikehman, V., 2002.
An algorithm for parallel incremental compaction. In ISMM ’02: Proceedings of
the 3rd International Symposium on Memory Management (Berlin, Germany, Jun.
2002), 100–105. ACM, New York, New York, USA. doi:10.1145/512429.512442.
(cited on page 21)

Berger, E. D.; McKinley, K. S.; Blumofe, R. D.; and Wilson, P. R., 2000. Hoard: A
scalable memory allocator for multithreaded applications. In ASPLOS-IX: Pro-
ceedings of the Ninth International Conference on Architectural Support For Program-
ming Languages and Operating Systems (Cambridge, Massachusetts, USA, Nov.
2000), 117–128. ACM, New York, New York, USA. doi:10.1145/378993.379232.
(cited on page 7)

Bershad, B. N.; Chambers, C.; Eggers, S.; Maeda, C.; McNamee, D.; Pardyak,
P.; Savage, S.; and Sirer, E. G., 1994. SPIN: An extensible microkernel for
application-specific operating system services. In EW 6: Proceedings of the 6th
Workshop on ACM SIGOPS European Workshop: Matching Operating Systems To
Application Needs (Wadern, Germany, Sep. 1994), 68–71. ACM, New York, New
York, USA. (cited on page 90)

Bershad, B. N.; Savage, S.; Pardyak, P.; Sirer, E. G.; Fiuczynski, M. E.; Becker,
D.; Chambers, C.; and Eggers, S., 1995. Extensibility, safety and performance
in the SPIN operating system. In SOSP ’95: Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (Copper Mountain, Colorado, USA,
Dec. 1995), 267–283. ACM, New York, New York, USA. doi:10.1145/224056.
224077. (cited on page 90)

Blackburn, S. M.; Cheng, P.; and McKinley, K. S., 2004a. Myths and realities:
The performance impact of garbage collection. In SIGMETRICS/Performance
’04: Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems (New York, New York, USA, Jun. 2004), 25–36. ACM, New
York, New York, USA. doi:10.1145/1005686.1005693. (cited on pages 33, 36,
and 48)

Blackburn, S. M.; Cheng, P.; and McKinley, K. S., 2004b. Oil and water? High
performance garbage collection in Java with MMTk. In ICSE 2004: Proceedings

http://dx.doi.org/10.1007/3-540-45337-7_12
http://dx.doi.org/10.1145/130854.130862
http://dx.doi.org/10.1145/130854.130862
http://dx.doi.org/10.1145/359636.359713
http://dx.doi.org/10.1145/512429.512442
http://dx.doi.org/10.1145/378993.379232
http://dx.doi.org/10.1145/224056.224077
http://dx.doi.org/10.1145/224056.224077
http://dx.doi.org/10.1145/1005686.1005693

Bibliography 133

of the 26th International Conference on Software Engineering (Edinburgh, Scotland,
UK, May 2004), 137–146. IEEE Computer Society, Los Alamitos, California,
USA. doi:10.1109/ICSE.2004.1317436. (cited on pages 36, 84, 103, 105, and 107)

Blackburn, S. M.; Garner, R.; Hoffmann, C.; Khan, A. M.; McKinley, K. S.;
Bentzur, R.; Diwan, A.; Feinberg, D.; Frampton, D.; Guyer, S. Z.; Hirzel,
M.; Hosking, A.; Jump, M.; Lee, H.; Moss, J. E. B.; Phansalkar, A.; Ste-
fanović, D.; VanDrunen, T.; von Dincklage, D.; and Wiedermann, B.,
2006. The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In OOPSLA ’06: Proceedings of the 21st Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (Port-
land, Oregon, USA, Oct. 2006), 169–190. ACM, New York, New York, USA.
doi:10.1145/1167473.1167488. (cited on pages 32, 37, 48, 50, 74, and 76)

Blackburn, S. M. and Hosking, A. L., 2004. Barriers: Friend or foe? In ISMM
’04: Proceedings of the 4th International Symposium on Memory Management (Van-
couver, British Columbia, Canada, Oct. 2004), 143–151. ACM, New York, New
York, USA. doi:10.1145/1029873.1029891. (cited on page 14)

Blackburn, S. M. and McKinley, K. S., 2002. In or out? Putting write barriers
in their place. In ISMM ’02: Proceedings of the 3rd International Symposium on
Memory Management (Berlin, Germany, Jun. 2002), 175–184. ACM, New York,
New York, USA. doi:10.1145/512429.512452. (cited on page 14)

Blackburn, S. M. and McKinley, K. S., 2003. Ulterior reference counting: Fast
garbage collection without a long wait. In OOPSLA ’03: Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (Anaheim, California, USA, Oct. 2003), 344–358. ACM,
New York, New York, USA. doi:10.1145/949305.949336. (cited on pages 24,
41, 43, and 46)

Blackburn, S. M. and McKinley, K. S., 2008. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In
PLDI ’08: Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Tucson, Arizona, USA, Jun. 2008), 22–32.
ACM, New York, New York, USA. doi:10.1145/1375581.1375586. (cited on
pages 13, 109, and 126)

Blackburn, S. M.; Salishev, S. I.; Danilov, M.; Mokhovikov, O. A.; Nashatyrev,
A. A.; Novodvorsky, P. A.; Bogdanov, V. I.; Li, X. F.; and Ushakov, D.,
2008. The Moxie JVM experience. Technical Report TR-CS-08-01, Department
of Computer Science, Faculty of Engineering and Information Technology, The
Australian National University. (cited on pages 90, 99, 101, and 102)

Blanchet, B., 2003. Escape analysis for Java: Theory and practice. ACM Trans-
actions on Programming Languages and Systems, 25, 6 (Nov. 2003), 713–775.
doi:10.1145/320385.320386. (cited on page 34)

Blelloch, G. E. and Cheng, P., 1999. On bounding time and space for multi-
processor garbage collection. In PLDI ’99: Proceedings of the ACM SIGPLAN

http://dx.doi.org/10.1109/ICSE.2004.1317436
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1029873.1029891
http://dx.doi.org/10.1145/512429.512452
http://dx.doi.org/10.1145/949305.949336
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1145/320385.320386

134 Bibliography

1999 Conference on Programming Language Design and Implementation (Atlanta,
Georgia, USA, May 1999), 104–117. ACM, New York, New York, USA. doi:
10.1145/301618.301648. (cited on page 26)

Boehm, H.-J., 1993. Space efficient conservative garbage collection. In PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language De-
sign and Implementation (Albuquerque, New Mexico, USA, Jun. 1993), 197–206.
ACM, New York, New York, USA. doi:10.1145/155090.155109. (cited on page
88)

Boehm, H.-J., 2000. Reducing garbage collector cache misses. In ISMM ’00: Pro-
ceedings of the 2nd International Symposium on Memory Management (Minneapo-
lis, Minnesota, USA, Oct. 2000), 59–64. ACM, New York, New York, USA.
doi:10.1145/362422.362438. (cited on pages 30 and 32)

Boehm, H.-J., 2005. Threads cannot be implemented as a library. In PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (Chicago, Illinois, USA, Jun. 2005), 261–268. ACM, New
York, New York, USA. doi:10.1145/1065010.1065042. (cited on page 88)

Boehm, H.-J. and Weiser, M., 1988. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18, 9 (Sep. 1988), 807–820.
doi:10.1002/spe.4380180902. (cited on pages 7 and 88)

Bollella, G. and Gosling, J., 2000. The real-time specification for Java. IEEE
Computer, 33, 6 (Jun. 2000), 47–54. doi:10.1109/2.846318. (cited on pages 17
and 74)

Borman, S., 2002. Sensible sanitation: Understanding the IBM Java garbage col-
lector, part 1: object allocation. http://www.ibm.com/developerworks/ibm/library/
i-garbage1/. Accessed Oct. 2009. (cited on page 13)

Brooks, R. A., 1984. Trading data space for reduced time and code space in real-
time garbage collection on stock hardware. In LFP ’84: Proceedings of the 1984
ACM Symposium on LISP and Functional Programming (Austin, Texas, USA, Aug.
1984), 256–262. ACM, New York, New York, USA. doi:10.1145/800055.802042.
(cited on pages 20 and 27)

Burger, D.; Keckler, S. W.; McKinley, K. S.; Dahlin, M.; John, L. K.; Lin, C.;
Moore, C. R.; Burrill, J.; McDonald, R. G.; Yoder, W.; and the TRIPS Team,
2004. Scaling to the end of silicon with edge architectures. IEEE Computer, 37,
7 (Jul. 2004), 44–55. doi:10.1109/MC.2004.65. (cited on page 86)

Cardelli, L.; Donahue, J.; Glassman, L.; Jordan, I.; Kalsow, B.; and Nelson,
G., 1989. Modula-3 report (revised). Technical Report 52, DEC SRC: Digital
Equipment Corporation Systems Research Center. (cited on pages 88, 89, 90,
and 94)

Chamberlain, B. L.; Callahan, D.; and Zima., H. P., 2007. Parallel programma-
bility and the Chapel language. International Journal of High Performance Com-

http://dx.doi.org/10.1145/301618.301648
http://dx.doi.org/10.1145/301618.301648
http://dx.doi.org/10.1145/155090.155109
http://dx.doi.org/10.1145/362422.362438
http://dx.doi.org/10.1145/1065010.1065042
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1109/2.846318
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://dx.doi.org/10.1145/800055.802042
http://dx.doi.org/10.1109/MC.2004.65

Bibliography 135

puting Applications, 21, 3 (Aug. 2007), 291–312. doi:10.1177/1094342007078442.
(cited on page 103)

Charles, P.; Grothoff, C.; Saraswat, V.; Donawa, C.; Kielstra, A.; Ebcioglu,
K.; von Praun, C.; and Sarkar, V., 2005. X10: An object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (San Diego, California, USA, Oct. 2005), 519–538. ACM, New
York, New York, USA. doi:10.1145/1094811.1094852. (cited on page 103)

Cheney, C. J., 1970. A nonrecursive list compacting algorithm. Communications of
the ACM, 13, 11 (Nov. 1970), 677–678. doi:10.1145/362790.362798. (cited on
page 11)

Cheng, P. and Blelloch, G. E., 2001. A parallel, real-time garbage collector. In
PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (Snowbird, Utah, USA, Jun. 2001), 125–
136. ACM, New York, New York, USA. doi:10.1145/378795.378823. (cited on
pages 16, 26, 67, and 123)

Cher, C.-Y.; Hosking, A. L.; and Vijaykumar, T. N., 2004. Software prefetch-
ing for mark-sweep garbage collection: Hardware analysis and software re-
design. In ASPLOS-XI: Proceedings of the 11th International Conference on Ar-
chitectural Support For Programming Languages and Operating Systems (Boston,
Massachusetts, USA, Oct. 2004), 199–210. ACM, New York, New York, USA.
doi:10.1145/1024393.1024417. (cited on pages 30 and 32)

Chin, W.; Craciun, F.; Qin, S.; and Rinard, M., 2004. Region inference for
object-oriented language. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation (Wash-
ington, D.C., USA, Jun. 2004), 243–354. ACM, New York, New York, USA.
doi:10.1145/996841.996871. (cited on page 34)

Choi, J.; Gupta, M.; Serrano, M. J.; Sreedhar, V. C.; and Midkiff, S. P., 2003.
Stack allocation and synchronization optimizations for Java using escape anal-
ysis. ACM Transactions on Programming Languages and Systems, 25, 6 (Nov. 2003),
876–910. doi:10.1145/945885.945892. (cited on page 34)

Christopher, T. W., 1984. Reference count garbage collection. Software: Practice
and Experience, 14, 6 (Jun. 1984), 503–507. doi:10.1002/spe.4380140602. (cited
on pages 24 and 25)

Cierniak, M.; Eng, M.; Glew, N.; Lewis, B.; and Stichnoth, J., 2005. The Open
Runtime Platform: A flexible high-performance managed runtime environ-
ment. Concurrency and Computation: Practice and Experience, 17, 5-6 (Apr. 2005),
617–637. doi:10.1002/cpe.v17:5/6. (cited on page 102)

Click, C.; Tene, G.; and Wolf, M., 2005. The pauseless GC algorithm. In VEE ’05:
Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments (Chicago, Illinois, USA, Jun. 2005), 46–56. ACM, New York, New
York, USA. doi:10.1145/1064979.1064988. (cited on page 21)

http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/362790.362798
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/1024393.1024417
http://dx.doi.org/10.1145/996841.996871
http://dx.doi.org/10.1145/945885.945892
http://dx.doi.org/10.1002/spe.4380140602
http://dx.doi.org/10.1002/cpe.v17:5/6
http://dx.doi.org/10.1145/1064979.1064988

136 Bibliography

Collins, G. E., 1960. A method for overlapping and erasure of lists. Communica-
tions of the ACM, 3, 12 (Dec. 1960), 655–657. doi:10.1145/367487.367501. (cited
on pages 9 and 22)

Corbató, F. J. and Vyssotsky, V. A., 1966. Introduction and overview of the Mul-
tics system. In AFIPS ’65 (Fall, Part I): Proceedings of the November 30–December 1,
1965, Fall Joint Computer Conference, Part I (Las Vegas, Nevada, USA, Nov. 1966),
185–196. ACM, New York, New York, USA. doi:10.1145/1463891.1463912.
(cited on page 85)

Demers, A.; Weiser, M.; Hayes, B.; Boehm, H.; Bobrow, D.; and Shenker, S.,
1990. Combining generational and conservative garbage collection: Frame-
work and implementations. In POPL ’90: Proceedings of the 17th ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages (San Fran-
cisco, California, USA, Jan. 1990), 261–269. ACM, New York, New York, USA.
doi:10.1145/96709.96735. (cited on page 127)

Deutsch, L. P. and Bobrow, D. G., 1976. An efficient, incremental, automatic
garbage collector. Communications of the ACM, 19, 9 (Sep. 1976), 522–526. doi:
10.1145/360336.360345. (cited on pages 23 and 24)

Dijkstra, E. W.; Lamport, L.; Martin, A. J.; Scholten, C. S.; and Steffens, E.
F. M., 1978. On-the-fly garbage collection: An exercise in cooperation. Commu-
nications of the ACM, 21, 11 (Nov. 1978), 965–975. doi:10.1145/359642.359655.
(cited on pages 6, 17, and 19)

Doligez, D. and Gonthier, G., 1994. Portable, unobtrusive garbage collec-
tion for multiprocessor systems. In POPL ’94: Proceedings of the 21st ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages (Port-
land, Oregon, USA, Jan. 1994), 70–83. ACM, New York, New York, USA.
doi:10.1145/174675.174673. (cited on pages 19 and 57)

Doligez, D. and Leroy, X., 1993. A concurrent, generational garbage collector
for a multithreaded implementation of ML. In POPL ’93: Proceedings of the
20th ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages
(Charleston, South Carolina, USA, Jan. 1993), 113–123. ACM, New York, New
York, USA. doi:10.1145/158511.158611. (cited on pages 19 and 57)

Domani, T.; Kolodner, E. K.; Lewis, E.; Salant, E. E.; Barabash, K.; Lahan, I.;
Levanoni, Y.; Petrank, E.; and Yanorer, I., 2000a. Implementing an on-the-
fly garbage collector for Java. In ISMM ’00: Proceedings of the 2nd International
Symposium on Memory Management (Minneapolis, Minnesota, USA, Oct. 2000),
155–166. ACM, New York, New York, USA. doi:10.1145/362422.362484. (cited
on pages 19 and 57)

Domani, T.; Kolodner, E. K.; and Petrank, E., 2000b. A generational on-the-
fly garbage collector for Java. In PLDI ’00: Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation (Vancouver,
British Columbia, Canada, Jun. 2000), 274–284. ACM, New York, New York,
USA. doi:10.1145/349299.349336. (cited on pages 19 and 57)

http://dx.doi.org/10.1145/367487.367501
http://dx.doi.org/10.1145/1463891.1463912
http://dx.doi.org/10.1145/96709.96735
http://dx.doi.org/10.1145/360336.360345
http://dx.doi.org/10.1145/360336.360345
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1145/174675.174673
http://dx.doi.org/10.1145/158511.158611
http://dx.doi.org/10.1145/362422.362484
http://dx.doi.org/10.1145/349299.349336

Bibliography 137

Ecma, 2006a. C# Language Specification, ECMA-334. Ecma International.
http://www.ecma-international.org/publications/standards/ecma-334.htm.
(ISO/IEC 23270:2006). Accessed Oct. 2009. (cited on pages 89, 94, and 96)

Ecma, 2006b. Common Language Infrastructure (CLI), ECMA-335. Ecma In-
ternational. http://www.ecma-international.org/publications/standards/ecma-335.
htm. (ISO/IEC 23271:2006). Accessed Oct. 2009. (cited on page 89)

Fähndrich, M.; Aiken, M.; Hawblitzel, C.; Hodson, O.; Hunt, G.; Larus,
J. R.; and Levi, S., 2006. Language support for fast and reliable message-
based communication in Singularity OS. In EuroSys ’06: Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006 (Leu-
ven, Belgium, Sep. 2006), 177–190. ACM, New York, New York, USA. doi:
10.1145/1217935.1217953. (cited on page 90)

Fenichel, R. R. and Yochelson, J. C., 1969. A LISP garbage-collector for virtual-
memory computer systems. Communications of the ACM, 12, 11 (Nov. 1969),
611–612. doi:10.1145/363269.363280. (cited on page 11)

Ferrara, P.; Logozzo, F.; and Fähndrich, M., 2008. Safer unsafe code for
.NET. In OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Nashville,
Tennessee, USA, Oct. 2008), 329–346. ACM, New York, New York, USA.
doi:10.1145/1449764.1449791. (cited on page 88)

Fiuczynski, M. E.; Hsieh, W. C.; Sirer, E. G.; Pardyak, P.; and Bershad, B. N.,
1997. Low-level systems programming with Modula-3. Threads: A Modula-3
Newsletter, 3 (Fall 1997). (cited on pages 90 and 100)

Flack, C.; Hosking, T.; and Vitek, J., 2003. Idioms in OVM. Technical Report
CSD-TR-03-017, Purdue University. (cited on pages 90, 99, 100, and 102)

Fletcher, J. G., 1975. No! High level languages should not be used to write
systems software. In ACM 75: Proceedings of the 1975 Annual Conference (Min-
neapolis, Minnesota, USA, Oct. 1975), 209–211. ACM, New York, New York,
USA. doi:10.1145/800181.810319. (cited on pages 86 and 87)

Fletcher, J. G.; Badger, C. S.; Boer, G. L.; and Marshall, G. G., 1972. On the
appropriate language for system programming. ACM SIGPLAN Notices, 7, 7
(Jul. 1972), 28–30. doi:10.1145/953360.953361. (cited on page 87)

Frailey, D. J., 1975. Should high level languages be used to write systems soft-
ware? In ACM 75: Proceedings of the 1975 Annual Conference (Minneapo-
lis, Minnesota, USA, Oct. 1975), 205. ACM, New York, New York, USA.
doi:10.1145/800181.810317. (cited on page 87)

Frampton, D., 2003. An Investigation into Automatic Dynamic Memory Management
Strategies using Compacting Collection. Honours thesis, Australian National Uni-
versity. (cited on page 107)

Frampton, D.; Bacon, D. F.; Cheng, P.; and Grove, D., 2007. Generational real-
time garbage collection: A three-part invention for young objects. In ECOOP

http://www.ecma-international.org/publications/standards/ecma-334.htm
http://www.ecma-international.org/publications/standards/ecma-335.htm
http://www.ecma-international.org/publications/standards/ecma-335.htm
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/363269.363280
http://dx.doi.org/10.1145/1449764.1449791
http://dx.doi.org/10.1145/800181.810319
http://dx.doi.org/10.1145/953360.953361
http://dx.doi.org/10.1145/800181.810317

138 Bibliography

2007: Proceedings of the 21st European Conference on Object-Oriented Programming,
vol. 4609 of Lecture Notes in Computer Science (Berlin, Germany, Jul. 2007), 101–
125. Springer, Berlin/Heidelberg, Germany. doi:10.1007/978-3-540-73589-2_6.
(cited on page 57)

Frampton, D.; Blackburn, S. M.; Cheng, P.; Garner, R. J.; Grove, D.; Moss,
J. E. B.; and Salishev, S. I., 2009a. Demystifying magic: High-level low-level
programming. In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (Washington, D.C., USA,
Mar. 2009), 81–90. ACM, New York, New York, USA. doi:10.1145/1508293.
1508305. (cited on pages 83, 93, and 105)

Frampton, D.; Blackburn, S. M.; Quinane, L. N.; and Zigman, J., 2009b. Ef-
ficient concurrent mark-sweep cycle collection. Technical Report TR-CS-09-02,
School of Computer Science, College of Engineering and Computer Science,
The Australian National University. (cited on page 41)

Garland, M.; Grand, S. L.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton,
S.; Phillips, E.; Zhang, Y.; and Volkov, V., 2008. Parallel computing experi-
ences with CUDA. IEEE Micro, 28, 4 (Jul. 2008), 13–27. doi:10.1109/MM.2008.
57. (cited on pages 1 and 86)

Garner, R.; Blackburn, S. M.; and Frampton, D., 2007. Effective prefetch for
mark-sweep garbage collection. In ISMM ’07: Proceedings of the 6th International
Symposium on Memory Management (Montreal, Quebec, Canada, Oct. 2007), 43–
54. ACM, New York, New York, USA. doi:10.1145/1296907.1296915. (cited
on pages 29, 84, 97, 103, and 106)

Garthwaite, A. and White, D., 1998. The GC interface in the EVM1. Technical
report, Sun Microsystems. (cited on page 7)

Gay, D.; Ennals, R.; and Brewer, E., 2007. Safe manual memory management. In
ISMM ’07: Proceedings of the 6th International Symposium on Memory Management
(Montreal, Quebec, Canada, Oct. 2007), 2–14. ACM, New York, New York,
USA. doi:10.1145/1296907.1296911. (cited on page 88)

Gay, D. and Steensgaard, B., 2000. Fast escape analysis and stack allocation for
object-based programs. In CC 2000: Proceedings of the 9th International Confer-
ence on Compiler Construction, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2000, vol. 1781 of Lecture Notes in Com-
puter Science (Berlin, Germany, Mar. 2000), 82–93. Springer, Berlin/Heidelberg,
Germany. doi:10.1007/3-540-46423-9_6. (cited on page 34)

Glew, N.; Triantafyllis, S.; Clerniak, M.; Eng, M.; Lewis, B.; and Stichnoth, J.,
2004. LIL: An architecture-neutral language for virtual-machine stubs. In VM
’04: Proceedings of the 3rd Virtual Machine Research and Technology Symposium
(San Jose, California, USA, May 2004), 111–125. USENIX, Berkeley, California,
USA. (cited on pages 99, 102, and 106)

Gosling, J.; Joy, B.; Steele, G. L., Jr.; and Bracha, G., 2005. The Java Language

http://dx.doi.org/10.1007/978-3-540-73589-2_6
http://dx.doi.org/10.1145/1508293.1508305
http://dx.doi.org/10.1145/1508293.1508305
http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1145/1296907.1296915
http://dx.doi.org/10.1145/1296907.1296911
http://dx.doi.org/10.1007/3-540-46423-9_6

Bibliography 139

Specification, Third Edition. Addison-Wesley Professional, 3rd edn. ISBN 0-321-
24678-0. (cited on pages 89 and 96)

Graham, R. M., 1970. Use of high level languages for systems programming. Tech-
nical report, Massachusetts Institute of Technology. (cited on page 85)

Grossman, D., 2003. Type-safe multithreading in Cyclone. In TLDI ’03: Proceedings
of the 2003 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation (New Orleans, Louisiana, USA, Jan. 2003), 13–25. ACM,
New York, New York, USA. doi:10.1145/604174.604177. (cited on page 88)

Guyer, S. Z.; McKinley, K. S.; and Frampton, D., 2006. Free-Me: A static analysis
for automatic individual object reclamation. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Ottawa, Ontario, Canada, Jun. 2006), 364–375. ACM, New York, New York,
USA. doi:10.1145/1133981.1134024. (cited on page 29)

Hallgren, T.; Jones, M. P.; Leslie, R.; and Tolmach, A., 2005. A principled
approach to operating system construction in Haskell. In ICFP ’05: Proceedings
of the Tenth ACM SIGPLAN International Conference on Functional Programming
(Tallinn, Estonia, Sep. 2005), 116–128. ACM, New York, New York, USA. doi:
10.1145/1086365.1086380. (cited on page 90)

Hauswirth, M.; Diwan, A.; Sweeney, P. F.; and Mozer, M. C., 2005. Automating
vertical profiling. In OOPSLA ’05: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(San Diego, California, USA, Oct. 2005), 281–296. ACM, New York, New York,
USA. doi:10.1145/1094811.1094834. (cited on page 116)

Henry G. Baker, J., 1978. List processing in real time on a serial computer. Com-
munications of the ACM, 21, 4 (Apr. 1978), 280–294. doi:10.1145/359460.359470.
(cited on pages 16, 20, and 26)

Herlihy, M. P. and Moss, J. E. B., 1992. Lock-free garbage collection for multipro-
cessors. IEEE Transactions on Parallel and Distributed Systems, 3, 3 (May 1992),
304–311. doi:10.1109/71.139204. (cited on page 21)

Hicks, M.; Morrisett, G.; Grossman, D.; and Jim, T., 2004. Experience with safe
manual memory-management in Cyclone. In ISMM ’04: Proceedings of the 4th
International Symposium on Memory Management (Vancouver, British Columbia,
Canada, Oct. 2004), 73–84. ACM, New York, New York, USA. doi:10.1145/
1029873.1029883. (cited on page 34)

Hirzel, M.; Diwan, A.; and Henkel, J., 2002. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM Transactions
on Programming Languages and Systems, 24, 6 (Nov. 2002), 593–624. doi:10.1145/
586088.586089. (cited on page 33)

Hirzel, M. and Grimm, R., 2007. Jeannie: Granting Java Native Interface develop-
ers their wishes. In OOPSLA ’07: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications

http://dx.doi.org/10.1145/604174.604177
http://dx.doi.org/10.1145/1133981.1134024
http://dx.doi.org/10.1145/1086365.1086380
http://dx.doi.org/10.1145/1086365.1086380
http://dx.doi.org/10.1145/1094811.1094834
http://dx.doi.org/10.1145/359460.359470
http://dx.doi.org/10.1109/71.139204
http://dx.doi.org/10.1145/1029873.1029883
http://dx.doi.org/10.1145/1029873.1029883
http://dx.doi.org/10.1145/586088.586089
http://dx.doi.org/10.1145/586088.586089

140 Bibliography

(Montreal, Quebec, Canada, Oct. 2007), 19–38. ACM, New York, New York,
USA. doi:10.1145/1297027.1297030. (cited on pages 89 and 94)

Horning, J. J., 1975. Yes! High level languages should be used to write systems
software. In ACM 75: Proceedings of the 1975 Annual Conference (Minneapolis,
Minnesota, USA, Oct. 1975), 206–208. ACM, New York, New York, USA. doi:
10.1145/800181.810318. (cited on page 87)

Hosking, A. L.; Moss, J. E. B.; and Stefanovic, D., 1992. A comparative perfor-
mance evaluation of write barrier implementations. In OOPSLA ’92: Proceed-
ings of the 7th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Vancouver, British Columbia, Canada, Oct.
1992), 92–109. ACM, New York, New York, USA. doi:10.1145/141936.141946.
(cited on page 14)

Huang, S. S.; Hormati, A.; Bacon, D. F.; and Rabbah, R., 2008. Liquid
Metal: Object-oriented programming across the hardware/software bound-
ary. In ECOOP 2008: Proceedings of the 22nd European Conference on Object-
Oriented Programming, vol. 5142 of Lecture Notes in Computer Science (Paphos,
Cyprus, Jul. 2008), 76–103. Springer, Berlin/Heidelberg, Germany. doi:10.1007/
978-3-540-70592-5_5. (cited on pages 1, 86, 99, and 103)

Hudson, R. L. and Moss, J. E. B., 2001. Sapphire: Copying GC without stopping
the world. In JGI ’01: Proceedings of the 2001 Joint ACM-ISCOPE Conference on
Java Grande (Palo Alto, California, USA, Jun. 2001), 48–57. ACM, New York,
New York, USA. doi:10.1145/376656.376810. (cited on page 22)

Hunt, G.; Larus, J.; Abadi, M.; Aiken, M.; Barham, P.; Fähndrich, M.; Haw-
blitzel, C.; Hodson, O.; Levi, S.; Murphy, N.; Steensgaard, B.; Tarditi, D.;
Wobber, T.; and Zill, B., 2005. An overview of the Singularity project. Techni-
cal Report MSR-TR-2005-135, Microsoft Research. (cited on pages 84 and 90)

Hunt, G. C. and Larus, J. R., 2007. Singularity: Rethinking the software stack.
ACM SIGOPS Operating Systems Review, 41, 2 (Apr. 2007), 37–49. doi:10.1145/
1243418.1243424. (cited on page 90)

IBM, 2006. WebSphere Real Time Java Virtual Machine. IBM Corporation. http://www.
ibm.com/software/webservers/realtime. Accessed Oct. 2009. (cited on pages 73
and 123)

Inoue, H.; Stefanović, D.; and Forrest, S., 2003. Object lifetime prediction in
Java. Technical Report TR-CS-2003-28, University of New Mexico. (cited on
pages 33 and 34)

Jim, T.; Morrisett, J. G.; Grossman, D.; Hicks, M. W.; Cheney, J.; and Wang, Y.,
2002. Cyclone: A safe dialect of C. In ATEC ’02: Proceedings of the General Track
of the 2002 USENIX Annual Technical Conference (Monterey, California, USA, Jun.
2002), 275–288. USENIX Association, Berkeley, California, USA. (cited on page
88)

http://dx.doi.org/10.1145/1297027.1297030
http://dx.doi.org/10.1145/800181.810318
http://dx.doi.org/10.1145/800181.810318
http://dx.doi.org/10.1145/141936.141946
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1145/376656.376810
http://dx.doi.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1243418.1243424
http://www.ibm.com/software/webservers/realtime
http://www.ibm.com/software/webservers/realtime

Bibliography 141

Johnson, R. E., 1992. Reducing the latency of a real-time garbage collector. ACM
Letters on Programming Languages and Systems, 1, 1 (Mar. 1992), 46–58. doi:10.
1145/130616.130621. (cited on page 21)

Johnstone, M. S. and Wilson, P. R., 1998. The memory fragmentation problem:
Solved? In ISMM ’98: Proceedings of the 1st International Symposium on Memory
Management (Vancouver, British Columbia, Canada, Oct. 1998), 26–36. ACM,
New York, New York, USA. doi:10.1145/286860.286864. (cited on page 20)

Joisha, P. G., 2006. Compiler optimizations for nondeferred reference-counting
garbage collection. In ISMM ’06: Proceedings of the 5th International Symposium
on Memory Management (Ottawa, Ontario, Canada, Jun. 2006), 150–161. ACM,
New York, New York, USA. doi:10.1145/1133956.1133976. (cited on page 23)

Joisha, P. G., 2007. Overlooking roots: A framework for making nondeferred
reference-counting garbage collection fast. In ISMM ’07: Proceedings of the 6th
International Symposium on Memory Management (Montreal, Quebec, Canada,
Oct. 2007), 141–158. ACM, New York, New York, USA. doi:10.1145/1296907.
1296926. (cited on page 23)

Jones, R. E. and Lins, R. D., 1996. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, Ltd., New York, New York,
USA. ISBN 0-471-94148-4. (cited on pages 5, 7, 18, 24, and 31)

Kahle, J. A.; Day, M. N.; Hofstee, H. P.; Johns, C. R.; Maeurer, T. R.; and Shippy,
D., 2005. Introduction to the Cell multiprocessor. IBM Journal of Research and
Development, 49, 4/5 (Jul. 2005), 589–604. (cited on pages 1 and 86)

Kermany, H. and Petrank, E., 2006. The Compressor: Concurrent, incremen-
tal, and parallel compaction. In PLDI ’06: Proceedings of the 2006 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Ottawa,
Ontario, Canada, Jun. 2006), 354–363. ACM, New York, New York, USA.
doi:10.1145/1133981.1134023. (cited on pages 13 and 21)

Kernighan, B. W. and Ritchie, D. M., 1988. The C Programming Language. Prentice
Hall, Upper Saddle River, New Jersey, USA. ISBN 0-13-110362-8. (cited on
pages 85 and 88)

Kimelman, D.; Rosenburg, B.; and Roth, T., 1994. Strata-various: Multi-layer
visualization of dynamics in software system behavior. In Visualization ’94:
Proceedings of the IEEE Conference on Visualization ’94 (Washington, D.C., USA,
Oct. 1994), 172–178. IEEE Computer Society, Los Alamitos, California, USA.
doi:10.1109/VISUAL.1994.346322. (cited on page 116)

Kuksenko, S., 2007. Suggestion: Let’s write some small and hot native(kernel)
methods on vmmagics. http://www.mail-archive.com/dev@harmony.apache.org/
msg07606.html. Accessed Oct. 2009. (cited on pages 102 and 106)

Landau, C., 1976. On high-level languages for system programming. ACM SIG-
PLAN Notices, 11, 1 (Jan. 1976), 30–31. doi:10.1145/987324.987328. (cited on
page 85)

http://dx.doi.org/10.1145/130616.130621
http://dx.doi.org/10.1145/130616.130621
http://dx.doi.org/10.1145/286860.286864
http://dx.doi.org/10.1145/1133956.1133976
http://dx.doi.org/10.1145/1296907.1296926
http://dx.doi.org/10.1145/1296907.1296926
http://dx.doi.org/10.1145/1133981.1134023
http://dx.doi.org/10.1109/VISUAL.1994.346322
http://www.mail-archive.com/dev@harmony.apache.org/msg07606.html
http://www.mail-archive.com/dev@harmony.apache.org/msg07606.html
http://dx.doi.org/10.1145/987324.987328

142 Bibliography

Lea, D. Low-level memory fences. http://gee.cs.oswego.edu/dl/concurrent/dist/docs/
java/util/concurrent/atomic/Fences.html. Accessed Oct. 2009. (cited on page 97)

Levanoni, Y. and Petrank, E., 2001. An on-the-fly reference counting garbage col-
lector for Java. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (Tampa
Bay, Florida, USA, Oct. 2001), 367–380. ACM, New York, New York, USA.
doi:10.1145/504282.504309. (cited on pages 23, 43, and 47)

Levanoni, Y. and Petrank, E., 2006. An on-the-fly reference-counting garbage
collector for Java. ACM Transactions on Programming Languages and Systems, 28,
1 (Jan. 2006), 1–69. doi:10.1145/1111596.1111597. (cited on page 23)

Liang, S., 1999. The Java Native Interface: Programmer’s Guide and Specification.
The Java Series. Addison-Wesley Longman Publishing Co., Inc., Boston, Mas-
sachusetts, USA. ISBN 0-201-32577-2. (cited on pages 89, 94, and 95)

Lieberman, H. and Hewitt, C., 1983. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 26, 6 (Jun. 1983), 419–429. doi:
10.1145/358141.358147. (cited on page 14)

Lins, R. D., 1992. Cyclic reference counting with lazy mark-scan. Information Pro-
cessing Letters, 44, 4 (Dec. 1992), 215–220. doi:10.1016/0020-0190(92)90088-D.
(cited on pages 24 and 25)

Lyle, D. M., 1971. A hierarchy of high order languages for systems programming.
In Proceedings of the SIGPLAN Symposium on Languages For System Implementa-
tion (Lafayette, Indiana, USA, Oct. 1971), 73–78. ACM, New York, New York,
USA. doi:10.1145/800234.807061. (cited on page 85)

Maessen, J.-W.; Sarkar, V.; and Grove, D., 2001. Program analysis for safety
guarantees in a Java virtual machine written in Java. In PASTE ’01: Proceedings
of the 2001 ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (Snowbird, Utah, USA, Jun. 2001), 62–65. ACM, New York,
New York, USA. doi:10.1145/379605.379668. (cited on page 90)

Marinov, D. and O’Callahan, R., 2003. Object equality profiling. In OOPSLA
’03: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Anaheim, California, USA,
Oct. 2003), 313–325. ACM, New York, New York, USA. doi:10.1145/949305.
949333. (cited on page 34)

Martínez, A. D.; Wachenchauzer, R.; and Lins, R. D., 1990. Cyclic reference
counting with local mark-scan. Information Processing Letters, 34, 1 (Feb. 1990),
31–35. doi:10.1016/0020-0190(90)90226-N. (cited on pages 24, 25, and 46)

McCarthy, J., 1960. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Communications of the ACM, 3, 4 (Apr. 1960), 184–195.
doi:10.1145/367177.367199. (cited on page 10)

McCloskey, B.; Bacon, D. F.; Cheng, P.; and Grove, D., 2008. Staccato: A paral-
lel and concurrent real-time compacting garbage collector for multiprocessors.

http://gee.cs.oswego.edu/dl/concurrent/dist/docs/java/util/concurrent/atomic/Fences.html
http://gee.cs.oswego.edu/dl/concurrent/dist/docs/java/util/concurrent/atomic/Fences.html
http://dx.doi.org/10.1145/504282.504309
http://dx.doi.org/10.1145/1111596.1111597
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1016/0020-0190(92)90088-D
http://dx.doi.org/10.1145/800234.807061
http://dx.doi.org/10.1145/379605.379668
http://dx.doi.org/10.1145/949305.949333
http://dx.doi.org/10.1145/949305.949333
http://dx.doi.org/10.1016/0020-0190(90)90226-N
http://dx.doi.org/10.1145/367177.367199

Bibliography 143

Technical Report RC24504, IBM Research. (cited on page 22)

Mellor-Crummey, J.; Fowler, R. J.; Marin, G.; and Tallent, N., 2002.
HPCVIEW: A tool for top-down analysis of node performance. The Journal
of Supercomputing, 23, 1 (May 2002), 81–104. doi:10.1023/A:1015789220266.
(cited on page 116)

Meyer, M., 2006. A true hardware read barrier. In ISMM ’06: Proceedings of the 5th
International Symposium on Memory Management (Ottawa, Ontario, Canada, Jun.
2006), 3–16. ACM, New York, New York, USA. doi:10.1145/1133956.1133959.
(cited on page 21)

Miller, B. P.; Callaghan, M. D.; Cargille, J. M.; Hollingsworth, J. K.; Irvin,
R. B.; Karavanic, K. L.; Kunchithapadam, K.; and Newhall, T., 1995. The
Paradyn parallel performance measurement tool. IEEE Computer, 28, 11 (Nov.
1995), 37–46. doi:10.1109/2.471178. (cited on page 116)

Minsky, M., 1963. A LISP garbage collector algorithm using serial secondary stor-
age. Technical report, Massachusetts Institute of Technology. (cited on page
11)

Moon, D. A., 1984. Garbage collection in a large LISP system. In LFP ’84:
Proceedings of the 1984 ACM Symposium on LISP and Functional Programming
(Austin, Texas, USA, Aug. 1984), 235–246. ACM, New York, New York, USA.
doi:10.1145/800055.802040. (cited on page 14)

Moss, J. E. B.; Palmer, T.; Richards, T.; Edward K. Walters, I.; and Weems, C. C.,
2005. CISL: A class-based machine description language for co-generation of
compilers and simulators. International Journal of Parallel Programming, 33, 2
(Jun. 2005), 231–246. doi:10.1007/s10766-005-3587-1. (cited on page 102)

Nethercote, N. and Seward, J., 2007. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Implementation (San
Diego, California, USA, Jun. 2007), 89–100. ACM, New York, New York, USA.
doi:10.1145/1250734.1250746. (cited on page 88)

Nettles, S. and O’Toole, J., 1993. Real-time replication garbage collection. In
PLDI ’93: Proceedings of the ACM SIGPLAN 1993 Conference on Programming Lan-
guage Design and Implementation (Albuquerque, New Mexico, USA, Jun. 1993),
217–226. ACM, New York, New York, USA. doi:10.1145/155090.155111. (cited
on page 21)

Newhall, T. and Miller, B. P., 1999. Performance measurement of dynamically
compiled Java executions. In JAVA ’99: Proceedings of the ACM 1999 Conference
on Java Grande (San Francisco, California, USA, Jun. 1999), 42–50. ACM, New
York, New York, USA. doi:10.1145/304065.304093. (cited on page 116)

Oracle. Oracle JRockit JVM. Oracle Corporation. http://www.oracle.com/
technology/products/jrockit/index.html. Accessed Oct. 2009. (cited on page 13)

http://dx.doi.org/10.1023/A:1015789220266
http://dx.doi.org/10.1145/1133956.1133959
http://dx.doi.org/10.1109/2.471178
http://dx.doi.org/10.1145/800055.802040
http://dx.doi.org/10.1007/s10766-005-3587-1
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/155090.155111
http://dx.doi.org/10.1145/304065.304093
http://www.oracle.com/technology/products/jrockit/index.html
http://www.oracle.com/technology/products/jrockit/index.html

144 Bibliography

Pauw, W. D.; Mitchell, N.; Robillard, M.; Sevitsky, G.; and Srinivasan, H.,
2001. Drive-by analysis of running programs. In Proceedings of the ICSE 2001
Workshop on Software Visualization, 17–22. (cited on page 116)

Paz, H.; Bacon, D. F.; Kolodner, E. K.; Petrank, E.; and Rajan, V. T., 2007. An
efficient on-the-fly cycle collection. ACM Transactions on Programming Languages
and Systems, 29, 4 (Aug. 2007), 20. doi:10.1145/1255450.1255453. (cited on
page 46)

Pizlo, F.; Frampton, D.; Petrank, E.; and Steensgaard, B., 2007. Stopless: A
real-time garbage collector for multiprocessors. In ISMM ’07: Proceedings of the
6th International Symposium on Memory Management (Montreal, Quebec, Canada,
Oct. 2007), 159–172. ACM, New York, New York, USA. doi:10.1145/1296907.
1296927. (cited on page 22)

Pizlo, F.; Petrank, E.; and Steensgaard, B., 2008. A study of concurrent
real-time garbage collectors. In PLDI ’08: Proceedings of the 2008 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Tuc-
son, Arizona, USA, Jun. 2008), 33–44. ACM, New York, New York, USA.
doi:10.1145/1375581.1375587. (cited on page 22)

Prangsma, E., 2005. Libre software meeting presentation: Why Java is practical
for modern operating systems. http://www.jnode.org/node/681. Accessed Oct.
2009. (cited on pages 90, 99, and 102)

Qian, F. and Hendren, L., 2002. An adaptive, region-based allocator for Java. In
ISMM ’02: Proceedings of the 3rd International Symposium on Memory Management
(Berlin, Germany, Jun. 2002), 127–138. ACM, New York, New York, USA. doi:
10.1145/512429.512446. (cited on page 34)

Reed, D. A.; Aydt, R. A.; Noe, R. J.; Roth, P. C.; Shields, K. A.; Schwartz, B. W.;
and Tavera, L. F., 1993. Scalable performance analysis: The Pablo performance
analysis environment. In SPLC ’93: Proceedings of the 1993 Scalable Parallel Li-
braries Conference (Starkville, Mississippi, USA, Oct. 1993), 104–113. IEEE Com-
puter Society, Los Alamitos, California, USA. doi:10.1109/SPLC.1993.365577.
(cited on page 116)

Richards, M., 1969. BCPL: A tool for compiler writing and system programming.
In AFIPS ’69 (Spring): Proceedings of the May 14-16, 1969, Spring Joint Computer
Conference (Boston, Massachusetts, USA, May 1969), 557–566. ACM, New York,
New York, USA. doi:10.1145/1476793.1476880. (cited on page 88)

Rigo, A. and Pedroni, S., 2006. PyPy’s approach to virtual machine construction.
In Companion to OOPSLA ’06: Companion to the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Portland, Oregon, USA, Oct. 2006), 944–953. ACM, New York, New York,
USA. doi:10.1145/1176617.1176753. (cited on page 90)

Ritchie, D. M., 1993. The development of the C language. In HOPL-II: Proceedings
of the 2nd ACM SIGPLAN Conference on History of Programming Languages (Cam-

http://dx.doi.org/10.1145/1255450.1255453
http://dx.doi.org/10.1145/1296907.1296927
http://dx.doi.org/10.1145/1296907.1296927
http://dx.doi.org/10.1145/1375581.1375587
http://www.jnode.org/node/681
http://dx.doi.org/10.1145/512429.512446
http://dx.doi.org/10.1145/512429.512446
http://dx.doi.org/10.1109/SPLC.1993.365577
http://dx.doi.org/10.1145/1476793.1476880
http://dx.doi.org/10.1145/1176617.1176753

Bibliography 145

bridge, Massachusetts, USA, Apr. 1993), 201–208. ACM, New York, New York,
USA. doi:10.1145/154766.155580. (cited on pages 87 and 88)

Ritchie, S., 1997. Systems programming in Java. IEEE Micro, 17, 3 (May 1997),
30–35. doi:10.1109/40.591652. (cited on page 89)

Rose, L. D.; Zhang, Y.; and Reed, D. A., 1998. SvPablo: A multi-language perfor-
mance analysis system. In Tools ’98: Proceedings of the 10th International Confer-
ence on Computer Performance Evaluation: Modelling Techniques and Tools (Palma
de Mallorca, Spain, Sep. 1998), 352–355. Springer, Berlin/Heidelberg, Germany.
doi:10.1007/3-540-68061-6_31. (cited on page 116)

Sammet, J. E., 1969. Programming Languages: History and Fundamentals. Prentice
Hall, Upper Saddle River, New Jersey, USA. ISBN 0-13-729988-5. (cited on
page 84)

Sammet, J. E., 1971. Brief survey of languages used for systems implementation. In
Proceedings of the SIGPLAN Symposium on Languages For System Implementation
(Lafayette, Indiana, USA, Oct. 1971), 1–19. ACM, New York, New York, USA.
doi:10.1145/800234.807055. (cited on pages 84 and 85)

Sammet, J. E., 1972. Programming languages: History and future. Communications
of the ACM, 15, 7 (Jul. 1972), 601–610. doi:10.1145/361454.361485. (cited on
page 85)

Sansom, P., 1991. Dual-mode garbage collection. In Proceedings of the Workshop
on the Parallel Implementation of Functional Languages, 283–310. Department of
Electronics and Computer Science, University of Southampton, Southampton,
UK. Technical Report CSTR 91-07. (cited on page 13)

Sevitsky, G.; Pauw, W. D.; and Konuru, R., 2001. An information exploration tool
for performance analysis of Java programs. In TOOLS Europe 2001: Proceedings
of the 38th International Conference on the Technology of Object-Oriented Languages
and Systems (Zürich, Switzerland, Mar. 2001), 85–101. IEEE Computer Soci-
ety, Los Alamitos, California, USA. doi:10.1109/TOOLS.2001.911758. (cited
on page 116)

Shaham, R.; Kolodner, E. K.; and Sagiv, M., 2001. Heap profiling for space-
efficient Java. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation (Snowbird, Utah, USA, Jun.
2001), 104–113. ACM, New York, New York, USA. doi:10.1145/378795.378820.
(cited on page 33)

Shapiro, J., 2006. Programming language challenges in systems codes: Why sys-
tems programmers still use C, and what to do about it. In PLOS ’06: Proceedings
of the 3rd Workshop on Programming Languages and Operating Systems: Linguistic
Support For Modern Operating Systems (San Jose, California, USA, Oct. 2006), 9.
ACM, New York, New York, USA. doi:10.1145/1215995.1216004. (cited on
pages 84 and 87)

http://dx.doi.org/10.1145/154766.155580
http://dx.doi.org/10.1109/40.591652
http://dx.doi.org/10.1007/3-540-68061-6_31
http://dx.doi.org/10.1145/800234.807055
http://dx.doi.org/10.1145/361454.361485
http://dx.doi.org/10.1109/TOOLS.2001.911758
http://dx.doi.org/10.1145/378795.378820
http://dx.doi.org/10.1145/1215995.1216004

146 Bibliography

Siebert, F., 2000. Eliminating external fragmentation in a non-moving garbage
collector for Java. In CASES ’00: Proceedings of the 2000 International Confer-
ence on Compilers, Architecture, and Synthesis For Embedded Systems (San Jose,
California, USA, Nov. 2000), 9–17. ACM, New York, New York, USA. doi:
10.1145/354880.354883. (cited on page 20)

Simon, D.; Cifuentes, C.; Cleal, D.; Daniels, J.; and White, D., 2006. Java on
the bare metal of wireless sensor devices: The Squawk Java virtual machine.
In VEE ’06: Proceedings of the 2nd International Conference on Virtual Execution
Environments (Ottawa, Ontario, Canada, Jun. 2006), 78–88. ACM, New York,
New York, USA. doi:10.1145/1134760.1134773. (cited on page 90)

SPEC, 1999. SPECjvm98, Release 1.03. Standard Performance Evaluation Corpora-
tion. http://www.spec.org/jvm98. Accessed Oct. 2009. (cited on pages 32, 37, 50,
and 74)

SPEC, 2001. SPECjbb2000 (Java Business Benchmark), Release 1.01. Standard Per-
formance Evaluation Corporation. http://www.spec.org/jbb2000. Accessed Oct.
2009. (cited on pages 32, 37, and 50)

Spoonhower, D.; Auerbach, J.; Bacon, D. F.; Cheng, P.; and Grove, D., 2006.
Eventrons: A safe programming construct for high-frequency hard real-time
applications. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implementation (Ottawa, Ontario, Canada,
Jun. 2006), 283–294. ACM, New York, New York, USA. doi:10.1145/1133981.
1134015. (cited on page 17)

Spring, J. H.; Pizlo, F.; Guerraoui, R.; and Vitek, J., 2007. Reflexes: Abstrac-
tions for highly responsive systems. In VEE ’07: Proceedings of the 3rd Interna-
tional Conference on Virtual Execution Environments (San Diego, California, USA,
Jun. 2007), 191–201. ACM, New York, New York, USA. doi:10.1145/1254810.
1254837. (cited on page 17)

Stanchina, S. and Meyer, M., 2007. Mark-sweep or copying? a “best of both
worlds” algorithm and a hardware-supported real-time implementation. In
ISMM ’07: Proceedings of the 6th International Symposium on Memory Manage-
ment (Montreal, Quebec, Canada, Oct. 2007), 173–182. ACM, New York, New
York, USA. doi:10.1145/1296907.1296928. (cited on page 21)

Steele, G. L., Jr., 1975. Multiprocessing compactifying garbage collection. Com-
munications of the ACM, 18, 9 (Sep. 1975), 495–508. doi:10.1145/361002.361005.
(cited on pages 17 and 19)

Stepanian, L.; Brown, A. D.; Kielstra, A.; Koblents, G.; and Stoodley,
K., 2005. Inlining Java native calls at runtime. In VEE ’05: Proceedings of
the 1st ACM/USENIX International Conference on Virtual Execution Environments
(Chicago, Illinois, USA, Jun. 2005), 121–131. ACM, New York, New York, USA.
doi:10.1145/1064979.1064997. (cited on pages 89 and 95)

Stroustrup, B., 1986. The C++ Programming Language. Addison-Wesley Longman

http://dx.doi.org/10.1145/354880.354883
http://dx.doi.org/10.1145/354880.354883
http://dx.doi.org/10.1145/1134760.1134773
http://www.spec.org/jvm98
http://www.spec.org/jbb2000
http://dx.doi.org/10.1145/1133981.1134015
http://dx.doi.org/10.1145/1133981.1134015
http://dx.doi.org/10.1145/1254810.1254837
http://dx.doi.org/10.1145/1254810.1254837
http://dx.doi.org/10.1145/1296907.1296928
http://dx.doi.org/10.1145/361002.361005
http://dx.doi.org/10.1145/1064979.1064997

Bibliography 147

Publishing Co., Inc., Boston, Massachusetts, USA. ISBN 0-201-12078-X. (cited
on pages 84 and 88)

Stroustrup, B., 1993. A history of C++: 1979–1991. In HOPL-II: Proceedings of the
2nd ACM SIGPLAN Conference on History of Programming Languages (Cambridge,
Massachusetts, USA, Apr. 1993), 271–297. ACM, New York, New York, USA.
doi:10.1145/154766.155375. (cited on pages 87 and 88)

Stroustrup, B., 2007. Evolving a language in and for the real world: C++ 1991-
2006. In HOPL-III: Proceedings of the 3rd ACM SIGPLAN Conference on History
of Programming Languages (San Diego, California, USA, Jun. 2007), 4–1–4–59.
ACM, New York, New York, USA. doi:10.1145/1238844.1238848. (cited on
page 87)

Styger, P., 1967. LISP 2 garbage collector specifications. Technical Report TM-
3417/500/00 1, System Development Cooperation. (cited on pages 9 and 11)

Sun. Maxine Research Project. Sun Microsystems. http://research.sun.com/projects/
maxine. Accessed Oct. 2009. (cited on page 90)

SystemTap. SystemTap. http://sourceware.org/systemtap/. Accessed Oct. 2009. (cited
on page 118)

Tarditi, D.; Puri, S.; and Oglesby, J., 2005. Accelerator: Simplified programming
of graphics-processing units for general-purpose uses via data-parallelism.
Technical Report MSR-TR-2004-184, Microsoft Research. (cited on page 86)

TIOBE, 2009. TIOBE Programming Community Index for September 2009. TIOBE
Software. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html. Ac-
cessed Oct. 2009. (cited on page 86)

Titzer, B. L., 2006. Virgil: Objects on the head of a pin. In OOPSLA ’06: Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Portland, Oregon, USA, Oct. 2006), 191–
208. ACM, New York, New York, USA. doi:10.1145/1167473.1167489. (cited
on page 17)

Tofte, M. and Talpin, J., 1997. Region-based memory management. Informa-
tion and Computation, 132, 2 (Feb. 1997), 109–176. doi:10.1006/inco.1996.2613.
(cited on page 34)

Tridgell, A., 2004. Using talloc in Samba4. Samba Team. http://samba.org/ftp/
unpacked/talloc/talloc_guide.txt. Accessed Oct. 2009. (cited on page 88)

Tufte, E. R., 1986. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, USA. ISBN 0-9613921-0-X. (cited on page 119)

Tufte, E. R., 1990. Envisioning Information. Graphics Press, Cheshire, Connecticut,
USA. ISBN 0-9613921-1-8. (cited on page 119)

Tufte, E. R., 1997. Visual Explanations: Images and Quantities, Evidence and Narrative.
Graphics Press, Cheshire, Connecticut, USA. ISBN 0-9613921-2-6. (cited on
page 119)

http://dx.doi.org/10.1145/154766.155375
http://dx.doi.org/10.1145/1238844.1238848
http://research.sun.com/projects/maxine
http://research.sun.com/projects/maxine
http://sourceware.org/systemtap/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://dx.doi.org/10.1145/1167473.1167489
http://dx.doi.org/10.1006/inco.1996.2613
http://samba.org/ftp/unpacked/talloc/talloc_guide.txt
http://samba.org/ftp/unpacked/talloc/talloc_guide.txt

148 Bibliography

Tufte, E. R., 2006. Beautiful Evidence. Graphics Press, Cheshire, Connecticut, USA.
ISBN 0-9613921-7-7. (cited on page 119)

Ungar, D., 1984. Generation scavenging: A non-disruptive high performance stor-
age reclamation algorithm. In SDE 1: Proceedings of the 1st ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development Environ-
ments (Pittsburgh, Pennsylvania, USA, Apr. 1984), 157–167. ACM, New York,
New York, USA. doi:10.1145/800020.808261. (cited on pages 14 and 33)

Ungar, D.; Spitz, A.; and Ausch, A., 2005. Constructing a metacircular vir-
tual machine in an exploratory programming environment. In Companion
to OOPSLA ’05: Companion to the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (San Diego,
California, USA, Oct. 2005), 11–20. ACM, New York, New York, USA. doi:
10.1145/1094855.1094865. (cited on page 90)

Vechev, M. T. and Bacon, D. F., 2004. Write barrier elision for concurrent garbage
collectors. In ISMM ’04: Proceedings of the 4th International Symposium on Memory
Management (Vancouver, British Columbia, Canada, Oct. 2004), 13–24. ACM,
New York, New York, USA. doi:10.1145/1029873.1029876. (cited on page 14)

Vechev, M. T.; Bacon, D. F.; Cheng, P.; and Grove, D., 2005. Derivation and eval-
uation of concurrent collectors. In ECOOP 2005: Proceedings of the 19th European
Conference on Object-Oriented Programming, vol. 3586 of Lecture Notes in Computer
Science (Glasgow, Scotland, UK, Jul. 2005), 577–601. Springer, Berlin/Heidel-
berg, Germany. doi:10.1007/11531142_25. (cited on page 18)

Vechev, M. T.; Yahav, E.; and Bacon, D. F., 2006. Correctness-preserving deriva-
tion of concurrent garbage collection algorithms. In PLDI ’06: Proceedings of the
2006 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Ottawa, Ontario, Canada, Jun. 2006), 341–353. ACM, New York, New
York, USA. doi:10.1145/1133981.1134022. (cited on page 18)

Venstermans, K.; Eeckhout, L.; and De Bosschere, K., 2006. 64-bit versus 32-bit
virtual machines for Java. Software: Practice and Experience, 36, 1 (Jan. 2006),
1–26. doi:10.1002/spe.v36:1. (cited on page 96)

Vernooij, J. R., 2008. SAMBA developers guide. http://www.samba.org/samba/docs/
Samba-Developers-Guide.pdf. Accessed Oct. 2009. (cited on page 88)

Whaley, J., 2003. Joeq: A virtual machine and compiler infrastructure. In IVME
’03: Proceedings of the 2003 Workshop on Interpreters, Virtual Machines and Emu-
lators (San Diego, California, USA, Jun. 2003), 58–66. ACM, New York, New
York, USA. doi:10.1145/858570.858577. (cited on page 90)

Whaley, J. and Rinard, M., 1999. Compositional pointer and escape analysis for
Java programs. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (Den-
ver, Colorado, USA, Nov. 1999), 187–206. ACM, New York, New York, USA.
doi:10.1145/320385.320400. (cited on page 34)

http://dx.doi.org/10.1145/800020.808261
http://dx.doi.org/10.1145/1094855.1094865
http://dx.doi.org/10.1145/1094855.1094865
http://dx.doi.org/10.1145/1029873.1029876
http://dx.doi.org/10.1007/11531142_25
http://dx.doi.org/10.1145/1133981.1134022
http://dx.doi.org/10.1002/spe.v36:1
http://www.samba.org/samba/docs/Samba-Developers-Guide.pdf
http://www.samba.org/samba/docs/Samba-Developers-Guide.pdf
http://dx.doi.org/10.1145/858570.858577
http://dx.doi.org/10.1145/320385.320400

Bibliography 149

Wilson, P. R., 1992. Uniprocessor garbage collection techniques. In IWMM 92:
Proceedings of the 1992 International Workshop on Memory Management, vol. 637 of
Lecture Notes in Computer Science (St. Malo, France, Sep. 1992), 1–42. Springer,
Berlin/Heidelberg, Germany. doi:10.1007/BFb0017182. (cited on page 5)

Wilson, P. R.; Johnstone, M. S.; Neely, M.; and Boles, D., 1995. Dynamic storage
allocation: A survey and critical review. In IWMM 95: Proceedings of the 1995
International Workshop on Memory Management, vol. 986 of Lecture Notes in Com-
puter Science (Kinross, Scotland, UK, Sep. 1995), 1–116. Springer, Berlin/Hei-
delberg, Germany. doi:10.1007/3-540-60368-9_19. (cited on page 7)

Wu, C. E.; Bolmarcich, A.; Snir, M.; Wootton, D.; Parpia, F.; Chan, A.; Lusk, E.;
and Gropp, W., 2000. From trace generation to visualization: A performance
framework for distributed parallel systems. In SC2000: Proceedings of SC2000:
the ACM/IEEE Conference on High Performance Networking and Computing (Dallas,
Texas, USA, Nov. 2000), 50. IEEE Computer Society, Los Alamitos, California,
USA. doi:10.1109/SC.2000.10050. (cited on page 116)

Wulf, W.; Geschke, C.; Wile, D.; and Apperson, J., 1971a. Reflections on a sys-
tems programming language. In Proceedings of the SIGPLAN Symposium on Lan-
guages For System Implementation (Lafayette, Indiana, USA, Oct. 1971), 42–49.
ACM, New York, New York, USA. doi:10.1145/800234.807059. (cited on page
85)

Wulf, W. A.; Russell, D. B.; and Habermann, A. N., 1971b. BLISS: A language
for systems programming. Communications of the ACM, 14, 12 (Dec. 1971), 780–
790. doi:10.1145/362919.362936. (cited on pages 85 and 88)

Xu, Z.; Miller, B. P.; and Naim, O., 1999. Dynamic instrumentation of threaded
applications. In PPoPP ’99: Proceedings of the 7th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Atlanta, Georgia, USA, May
1999), 49–59. ACM, New York, New York, USA. doi:10.1145/301104.301109.
(cited on page 116)

Yamauchi, H. and Wolczko, M., 2006. Writing Solaris device drivers in Java. In
PLOS ’06: Proceedings of the 3rd Workshop on Programming Languages and Oper-
ating Systems: Linguistic Support For Modern Operating Systems (San Jose, Cal-
ifornia, USA, Oct. 2006), 3. ACM, New York, New York, USA. doi:10.1145/
1215995.1215998. (cited on page 90)

Yuasa, T., 1990. Real-time garbage collection on general-purpose machines. Journal
of Systems and Software, 11, 3 (Mar. 1990), 181–198. doi:10.1016/0164-1212(90)
90084-Y. (cited on pages 19, 26, and 62)

Zaki, O.; Lusk, E.; Gropp, W.; and Swider, D., 1999. Toward scalable performance
visualization with Jumpshot. International Journal of High Performance Comput-
ing Applications, 13, 3 (Aug. 1999), 277–288. doi:10.1177/109434209901300310.
(cited on page 116)

http://dx.doi.org/10.1007/BFb0017182
http://dx.doi.org/10.1007/3-540-60368-9_19
http://dx.doi.org/10.1109/SC.2000.10050
http://dx.doi.org/10.1145/800234.807059
http://dx.doi.org/10.1145/362919.362936
http://dx.doi.org/10.1145/301104.301109
http://dx.doi.org/10.1145/1215995.1215998
http://dx.doi.org/10.1145/1215995.1215998
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1177/109434209901300310

	Acknowledgments
	Abstract
	Contents
	Introduction
	Definitions
	Problem Statement
	Scope and Contributions
	Thesis Outline

	Garbage Collection
	The Anatomy of a Garbage Collector
	Taxonomy of Garbage Collection Algorithms
	Object Allocation
	Garbage Identification
	Garbage Reclamation

	Canonical Algorithms
	Reference Counting
	Mark-Sweep
	Semi-Space
	Mark-Compact
	Mark-Region

	Generational Collection
	Barriers

	Garbage Collection for Low-level Programs
	Measuring Garbage Collection Interference
	Throughput
	Responsiveness and Predictability

	Concurrent and Incremental Tracing Collection
	The Tricolor Abstraction
	The Mutator--Collector Race
	Incremental-Update Algorithms
	Snapshot-at-the-Beginning Algorithms

	Incremental and Concurrent Copying
	Incremental Copying Algorithms
	Concurrent Copying Algorithms

	Reference Counting Collection
	Reducing Performance Overheads
	Compiler Optimization
	Deferred Reference Counting
	Coalescing Reference Counting
	Ulterior Reference Counting

	Collecting Cyclic Garbage
	Backup Tracing
	Trial Deletion

	Real-Time Collection
	Metronome

	Summary

	High-Performance Garbage Collection
	Effective Prefetch for Garbage Collection
	Related Work
	Edge Enqueuing
	Buffered Prefetch
	Results

	Free-Me: Prompt Reclamation of Garbage
	Related Work
	Runtime Mechanism
	Free List Implementation
	Bump Pointer Implementations

	Results
	Effectiveness of Analysis
	Performance Evaluation

	Summary

	Cycle Tracing
	The Cycle Tracing Algorithm
	Base Backup Tracing Algorithm
	A Lightweight Snapshot Write Barrier
	Concurrency Optimization
	Marking Optimization
	Sweeping Optimization
	Interaction With The Reference Counter
	Invocation Heuristics

	Evaluation
	Implementation Details
	Experimental Platform
	Benchmarks
	Throughput Limit Study
	Concurrency
	Overall Performance

	Summary

	Generational Metronome
	Real-Time Generational Collection
	Key Challenges
	Basic Structure
	Three Stage Nursery Life Cycle
	Incremental Nursery Collection
	Outside Nursery Collection
	Start of Nursery Collection
	During Nursery Collection
	End of Nursery Collection

	Mature--Nursery Collection Interactions
	Mature Collector References to the Nursery
	Mark State of Promoted Objects
	Sweeping Objects Stored in Remembered Sets

	Analytical Model
	Definitions
	Steady-State Assumption and Time Conversion
	Bounds for Non-Generational Metronome Collectors
	Bounds for Our Generational Collector
	Comparison with Syncopation

	Evaluation
	Generational versus Non-Generational Comparison
	Dynamic Nursery Size
	Parametrization Studies
	Start-up versus Steady State Behavior

	Summary

	High-level Low-level Programming
	Low-level Programming
	High- versus Low-level Languages
	From Assembler to C
	Complexity Drives Change
	Cultural Resistance

	Looking Forward
	Related Work
	Fortifying a Low-level Language
	Systems Programming Languages
	Two-Language Approaches
	Extending High-level Languages for Low-level Programming

	Summary

	High-level Low-level Programming with org.vmmagic
	The Approach
	Key Principles
	Requirements and Challenges
	Representing Data
	Extending the Semantics

	A Concrete Framework
	Type-System Extensions
	Raw Storage
	Unboxed Types

	Semantic Extension
	Intrinsic Functions
	Semantic Regimes

	Deployment
	Summary

	High-Performance and Flexibility with MMTk
	Why Java?
	Low-level Programming Requirements
	Case Study: An Object Model for Heap Traversal
	Original Design
	Solution
	Performance Evaluation

	Case Study: MMTk Harness
	Harness Architecture
	Usage Scenarios
	Unit Testing
	Garbage Collector Development

	Summary

	Visualization with TuningFork
	Introduction
	Related Work
	Requirements
	TuningFork Architecture
	Oscilloscope Figure
	Case Study: Unexpected Collector Scheduling Decisions
	Summary

	Conclusion
	Future Work
	Garbage Collection for Low-level Programs
	High-level Low-level Programming

	Bibliography

