CORRECTNESS-PRESERVING DERIVATION OF CONCURRENT GARBAGE COLLECTION ALGORITHMS

VECHEV, YAHAV, AND BACON

PRESENTED BY

SUMAN JANA

(SOME SLIDES COURTESY SAM HARWELL)

BIG PICTURE

- Multiple known Concurrent GC algorithms.
 - Different composition of same 'bag of tricks'
 - Trade-offs not well understood
- Contributions
 - Parametric concurrent GC
 - Apex algorithm (simple/less concurrent)
 - Correctness-preserving transformations
- Limitations
 - Does not handle sweep phase
 - No correctness proof for Apex

HIDDEN OBJECTS

 Concurrent mutator can 'hide' accessible objects from GC

PARAMETRIC CONCURRENT GC

- · Atomic 'expose' function is the single parameter
 - Different 'expose' functions result in different
 GCs

expose atomically adds items to the mark queue that were altered by the mutator while marking in a way that could have hidden them.

BACKGROUND

- Precision: difference between estimated set of live objects and actual set of live objects
 - Low precision →
 - Less collected garbage
 - Faster termination
 - Higher concurrency (less time spent in 'expose')
- Log: all tracing, mutation and allocation operations are stored in the log
- Input to 'expose' log prefix P

APEX ALGORITHM

- An instance of the parallel concurrent GC
- · Goals
 - As easy as possible to show correctness
 - Well-defined as a base for transformations
- Characteristics
 - Sacrifices concurrency for precision and clarity
 - Implements expose as rescanning, similar to Steele

DIMENSIONS: VARIABLES IN

- Wavefront: how far has the collector progressed?
- Policy: how are modified objects behind the wavefront treated?
- Threshold: Maximum allowed cross-wavefront count?
- Protection: which objects must be traced to ensure all live objects are found?
- Allocation: how are newly allocated objects handled?

WAVEFRONT: DIMENSION 1

- Granularity for tracking wavefront?
 - Object Level (OL)
 - Field Level (FL)

Per-Field Wavefront

- -Exact information
- -More expensive
- More garbage collected

Per-Object Wavefront

- -Approximate information
- -Less expensive
- -Less garbage collected

POLICY: DIMENSION2

- Modifications to a field can be found by
 - Atomically scanning the heap (SR)
 - Less concurrency
 - Scanning the log (LR)
 - Write barrier overheads
- $SR-\{x\}$ and $LR\ U\ \{x\}$ is correctness preserving and precision reducing
 - Limited wavefront tracking precision
 - Limited threshold count

THRESHOLD: DIMENSION3

- Counts cross-wavefront(behind->ahead) pointers
 - Only for LR objects
- Add only objects with positive counts to pending mark queue
 - Coalesces multiple changes in the same field
- Threshold: Limiting counts
 - Needed for space restriction
 - No decrement when (obj.count==max)
- Decreasing threshold results in less precision but preserves correctness

PROTECTION: DIMENSION4

- How to handle hidden objects?
 - Track cross-wavefront (behind->ahead) pointer installations (IS) (incremental GC)
 - Track pointer deletions ahead of wavefront (DS) (Snapshot GC)

TRANSFORMING ALONG PROTECTION DIMENSION

- Moving an object From IS to DS
 - Constraint: object must be transitively protected by a path of D-protected objects
 - Weak precision reducing and correctness preserving
 - If GC X is weakly less precise than GC Y: transitive closure of exposed objects by Y is a subset of transitive closure of exposed objects by X (for any log I)

ALLOCATION: DIMENSION5

- · How to handle objects allocated during 'mark'
 - Put ahead of the wavefront (Apex)
 - Put in special unmarked state (Yellow), treated as behind the wavefront for any IS pointers stored in the object
- Allocating an object yellow instead of white reduces precision but preserves correctness
- Allocating an object black further reduces precision
- Less precision → faster termination

ALLOCATION: DIMENSION5 (CNTD.)

Allocate white

Allocate yellow

Allocate black

Previous pointer

---> New pointer, cross-wavefront count incremented

----> New pointer, no need to increment

DISCUSSION QUESTIONS

• Can we make the 'sweep' phase parametric as well?

- Instead of atomic 'expose', can we make it concurrent to some extent?
 - More complexity