CORRECTNESS-PRESERVING
DERIVATION OF CONCURRENT
GARBAGE COLLECTION
ALGORITHMS

VECHEV, YAHAV, AND BACON

PRESENTED BY

SUMAN JANA

(SOME SLIDES COURTESY SAM HARWELL)

BIG PICTURE

* Multiple known Concurrent GC algorithms.
- Different composition of same 'bag of tricks’
- Trade-offs not well understood
* Contributions
- Parametric concurrent GC
- Apex algorithm (simple/less concurrent)
- Correctness-preserving transformations
* Limitations
- Does not handle sweep phase
- No correctness proof for Apex

HIDDEN OBJECTS

* Concurrent mutator can "hide' accessible objects

from GC
. (5]
% Do &

ez
After B is marked Mark CwhenCis Mark C when link to C Rescan Bwhen Cis
linked to B (Dijkstra) is removed (Yuasa) linked to B (Steele)

PARAMETRIC CONCURRENT GG

* Atomic 'expose’ function is the single parameter

- Different ‘expose’ functions result in different
GCs

Collector mark expose m

expose atomically adds items to the mark queue
that were altered by the mutator while marking in
a way that could have hidden them.

BACKGROUND

* Precision: difference between estimated set of live
objects and actual set of live objects

- Low precision —
* Less collected garbage
* Faster termination
* Higher concurrency (less time spent in
‘expose’)
* Log: all tracing, mutation and allocation operations
are stored in the log

* Input to 'expose’ - log prefix P

APEX ALGORITHM

* An instance of the parallel concurrent GC
* Goals
- As easy as possible to show correctness
- Well-defined as a base for transformations
* Characteristics
- Sacrifices concurrency for precision and clarity

- Implements expose as rescanning, similar to
Steele

DIMENSIONS: VARIABLES IN
'EXPOSE!

Wavefront: how far has the collector progressed ?

Policy: how are modified objects behind the
wavefront treated ?

Threshold: Maximum allowed cross-wavefront
count?

Protection: which objects must be traced to ensure
all live objects are found?

Allocation: how are newly allocated objects
handled?

WAVEFRONT: DIMENSION 1

* Granularity for tracking wavefront ?
- Object Level (OL)
- Field Level (FL)

>
Per-Field Wavefront Per-Object Wavefront
-Exact information -Approximate information
-More expensive -Less expensive

-More garbage collected -Less garbage collected

POLICY: DIMENSIONZ2

* Modifications to a field can be found by
- Atomically scanning the heap (SR)
* Less concurrency
- Scanning the log (LR)
* Write barrier overheads

* SR-{x} and LR U {x} is correctness preserving and
precision reducing

- Limited wavefront tracking precision
- Limited threshold count

THRESHOLD : DIMENSIONS3

Counts cross-wavefront(behind->ahead) pointers
- Only for LR objects

Add only objects with positive counts to pending
mark queue

- Coalesces multiple changes in the same field
Threshold: Limiting counts

- Needed for space restriction

- No decrement when (obj.count==max)

Decreasing threshold results in less precision but
preserves correctness

PROTECTION : DIMENSION4

* How to handle hidden objects ?

- Track cross-wavefront (behind->ahead) pointer
installations (IS) (incremental GC)

- Track pointer deletions ahead of wavefront
(DS) (Snapshot GC)

o 8-
@)

Installation-based Deletion-based
protection protection

TRANSFORMING ALONG
PROTECTION DIMENSION

* Moving an object From IS to DS

- Constraint: object must be transitively
protected by a path of D-protected objects

- Weak precision reducing and correctness
preserving

* If GC X is weakly less precise than GC V:
transitive closure of exposed objects by Y
is a subset of transitive closure of exposed
objects by X (for any log |)

ALLOCATION : DIMENSIONDS

How to handle objects allocated during ‘mark’
- Put ahead of the wavefront (Apex)

- Put in special unmarked state (Yellow), treated
as behind the wavefront for any IS pointers
stored in the object

Allocating an object yellow instead of white
reduces precision but preserves correctness

Allocating an object black further reduces
precision
Less precision — faster termination

ALLOCATION : DIMENSIONDS

(CNTD.)
----- 07
Allocate white Allocate yellow Allocate black

— Previous pointer
===3 New pointer, cross-wavefront count incremented
------ > New pointer, no need to increment

DISCUSSION QUESTIONS

* Can we make the 'sweep’ phase parametric as well ?

* Instead of atomic ‘expose’, can we make it
concurrent to some extent ?

- More complexity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

