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Mark/Sweep/Compact Collection

 Garbage collection is performed in two stages
— |dentify objects in memory that are live (mark)

— Make dead-object memory locations available to
the allocator by compacting live objects

 We are focusing on the compaction algorithm



Allocator Fundamentals

e Memory is allocated for cells:

— Variable sized
— Each may hold pointers and/or data
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Algorithms

e Classical
— Lisp 2
e D.E. Knuth, 1973

— Table Compactor
 Modified algorithm based on Waite and Haddon, 1967

e Modern (at the time)
— Morris” algorithm, 1978
— Jonkers” algorithm, 1979



Lisp 2

* Requires additional space in each cell for a
pointer

 Three passes:
— Compute new address of each active cell

— Update pointer fields of each active cell
— Relocate active cells



Initiallv:

After nass 1

After nass 2

After nass

Lisp 2 Compactor

ttttt



Table Compactor

e Stores relocation data in garbage cells

e Fundamental: cells are moved forward by the
total size of holes preceding the cell

e Pointers are updated similarly
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Threading

 An elegant way to answer, “Where are all the
pointers to cell X?”

— Threading the root:
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Threading

 An elegant way to answer, “Where are all the
pointers to cell X?”
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Morris’” Algorithm

 Three-passes: one forward and two backward

* Two tag bits per field overhead (one if single
cells cannot hold both pointers and data)



Morris’” Algorithm
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Jonkers’ Algorithm

 Improved on Morris’:
— Only two passes, both forward
— One bit per cell overhead

 Added assumptions:

— No pointer-to-members

— A cell containing data is always large enough to
store a pointer



Jonkers’ Algorithm
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Time-Formulas

e Create optimized versions of each algorithm

e Describe each procedure with a formula from
the type and number of operations performed

e Replace unknowns in the formula with
machine-specific constants, leaving the
following variables:

— o: Marked cell ratio (NMC/NC)
— B: Live pointer ratio (NAP-1)/(NPC*NMC)



Feature Comparison

Classical (1973) Classical (1967) Modern (1978) Modern (1979)
1 pointer/cell None 2 bits/field 1 bit/cell
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Performance Results
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Fig. 8. Time comparisons for the four compactors.



Effects of Increased Sorting in the
Table Compactor
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Effects of Cell Size
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