Comparison of Compacting
Algorithms for Garbage Collection

By Jacques Cohen & Alexandru Nicolau

Presented by Sam Harwell

Mark/Sweep/Compact Collection

 Garbage collection is performed in two stages
— |dentify objects in memory that are live (mark)

— Make dead-object memory locations available to
the allocator by compacting live objects

 We are focusing on the compaction algorithm

Allocator Fundamentals

e Memory is allocated for cells:

— Variable sized
— Each may hold pointers and/or data

Incoming pointers
—

may only point to
the first element in
the cell

size ¢
npc

A hacie call-

reserved

size c

npc

—

—

—

— Pointers

J \

— Data

Algorithms

e Classical
— Lisp 2
e D.E. Knuth, 1973

— Table Compactor
 Modified algorithm based on Waite and Haddon, 1967

e Modern (at the time)
— Morris” algorithm, 1978
— Jonkers” algorithm, 1979

Lisp 2

* Requires additional space in each cell for a
pointer

 Three passes:
— Compute new address of each active cell

— Update pointer fields of each active cell
— Relocate active cells

Initiallv:

After nass 1

After nass 2

After nass

Lisp 2 Compactor

ttttt

Table Compactor

e Stores relocation data in garbage cells

e Fundamental: cells are moved forward by the
total size of holes preceding the cell

e Pointers are updated similarly

il EH I N 1IN
— AN =

Holes

Threading

 An elegant way to answer, “Where are all the
pointers to cell X?”

— Threading the root:

root node A

.

root node A

XYZ

Threading

 An elegant way to answer, “Where are all the
pointers to cell X?”

root node A

XYZ

node B

root node A

w node B

Morris’” Algorithm

 Three-passes: one forward and two backward

* Two tag bits per field overhead (one if single
cells cannot hold both pointers and data)

Morris’” Algorithm

direction —¥= Ini'l'i:|°

-
!

Cell cic reached:

direction --&—

-

meck Ji] 1 il | S | 1:

1]

c
= Cell cic reached:

r

I:1 | 1] 1 T

H |

Lindate ntr to <elf’

[
|

1] | 1] | Iz il A 1 3]

IlIndate hack ntr to ¢

I:] | 1] | F | A 1 11 1 n

Move cell containine ¢+

L1 1 1] L 41 | ENR 1] 1]

Finiched: ¢ !
[!

L

1A

Jonkers’ Algorithm

 Improved on Morris’:
— Only two passes, both forward
— One bit per cell overhead

 Added assumptions:

— No pointer-to-members

— A cell containing data is always large enough to
store a pointer

Jonkers’ Algorithm

Rack nointers to ¢c threaded:

arecin — INTtIQNIV: (

¢ ' [
f : Cells below ¢ combacted:

starc

Cell c reached in pass 1: i] .

Threaded list unrl;h:rl-

Combacted:

Time-Formulas

e Create optimized versions of each algorithm

e Describe each procedure with a formula from
the type and number of operations performed

e Replace unknowns in the formula with
machine-specific constants, leaving the
following variables:

— o: Marked cell ratio (NMC/NC)
— B: Live pointer ratio (NAP-1)/(NPC*NMC)

Feature Comparison

Classical (1973) Classical (1967) Modern (1978) Modern (1979)
1 pointer/cell None 2 bits/field 1 bit/cell

3 3 2

Co -

Performance Results

40 -
;
— — - Morris /
35 | ——— Table /
Jonkers /
+—-—- Lisp2 /.
Upper 8=0.9 /
30 |- Lower B=03 /'
/
/
/ /
25 / i
/ .
% / ’
§ ./ /
v 20
£
]
E
'—
15
10
5 -
o 1 1] 1] 1 1 i 1 1
o] 02 0.4 0.6 08 1.0

Fig. 8. Time comparisons for the four compactors.

Effects of Increased Sorting in the
Table Compactor

25 |-

20 |- Complete
Sorting of BT

Time in Seconds
o

Partial
Sorting of BT

Effects of Cell Size

Time in Seconds

24

20

B NC=500,000/Size ¢
a=05
8=09
\\ NPC=5
L g
— — - Morris
—~ == Table
\ Jonkers
|] |]] il | |]
o} 10 20 30 40 50

Size ¢

