
Comparison of Compacting 

Algorithms for Garbage CollectionAlgorithms for Garbage Collection

By Jacques Cohen & Alexandru Nicolau

Presented by Sam Harwell



Mark/Sweep/Compact Collection

• Garbage collection is performed in two stages

– Identify objects in memory that are live (mark)

– Make dead-object memory locations available to 

the allocator by compacting live objectsthe allocator by compacting live objects

• We are focusing on the compaction algorithm



Allocator Fundamentals

• Memory is allocated for cells:

– Variable sized

– Each may hold pointers and/or data

reserved

size c

npc

Pointers

Data

si
ze

 c

n
p

c
Incoming pointers 

may only point to 

the first element in 

the cell



Algorithms

• Classical

– Lisp 2

• D.E. Knuth, 1973

– Table Compactor– Table Compactor

• Modified algorithm based on Waite and Haddon, 1967

• Modern (at the time)

– Morris’ algorithm, 1978

– Jonkers’ algorithm, 1979



Lisp 2

• Requires additional space in each cell for a 

pointer

• Three passes:

– Compute new address of each active cell– Compute new address of each active cell

– Update pointer fields of each active cell

– Relocate active cells



Lisp 2 Compactor



Table Compactor

• Stores relocation data in garbage cells

• Fundamental: cells are moved forward by the 

total size of holes preceding the cell

• Pointers are updated similarly• Pointers are updated similarly

Holes



Threading

• An elegant way to answer, “Where are all the 

pointers to cell X?”

– Threading the root:

XYZ

root node A

XYZ

root node A



Threading

• An elegant way to answer, “Where are all the 

pointers to cell X?”

XYZ

root node A

node Bnode B

XYZ

root node A

node B



Morris’ Algorithm

• Three-passes: one forward and two backward

• Two tag bits per field overhead (one if single 

cells cannot hold both pointers and data)



Morris’ Algorithm



Jonkers’ Algorithm

• Improved on Morris’:

– Only two passes, both forward

– One bit per cell overhead

• Added assumptions:• Added assumptions:

– No pointer-to-members

– A cell containing data is always large enough to 

store a pointer



Jonkers’ Algorithm



Time-Formulas

• Create optimized versions of each algorithm

• Describe each procedure with a formula from 

the type and number of operations performed

• Replace unknowns in the formula with • Replace unknowns in the formula with 

machine-specific constants, leaving the 

following variables:

– α: Marked cell ratio (NMC/NC)

– β: Live pointer ratio (NAP-1)/(NPC*NMC)



Feature Comparison

Lisp 2 Table compact Morris’ Jonkers’

Age Classical (1973) Classical (1967) Modern (1978) Modern (1979)

Space 1 pointer/cell None 2 bits/field 1 bit/cell

Passes 3 3 3 2

Member ptr No No Yes No



Performance Results



Effects of Increased Sorting in the 

Table Compactor



Effects of Cell Size


