The Limits of Alias Analysisfor Scalar Optimizations

Rezaul A. Chowdhury, Peter Djedi, Brendon Cahodh
James H. Burrifl, and Kathryn S. McKinley

! Department of Computer Sciences, University of Texas atiAudustin, TX 78712, USA,
{shai kat, djeu, ntkinley}@s. utexas.edu
2 Conformative Systems, Austin, TX 78759, USA,
br endon. cahoon@onf or mati ve. com
3 Department of Computer Science, University of Massachsisétmherst, MA 01003, USA,
burrill @s. umass. edu

Abstract. Intheory, increasing alias analysis precision should aweicompiler
optimizations on C programs. This paper compares aliaysisalgorithms on
scalar optimizations, including an analysis that assuneesliases, to establish
a very loose upper bound on optimization opportunities. kémtmeasure opti-
mization opportunities on thirty-six C programs. In praetithe optimizations are
rarely inhibited due to the precision of the alias analyBesvious work finds sim-
ilarly that the increased precision of specific alias aldponis provide little benefit
for scalar optimizations, and that simple static alias aigms find almost all dy-
namically determined aliases. This paper, however, is theti provide a static
methodology that indicates that additional precision igkety to yield improve-
ments for a set of optimizations. For clients with higheaslaccuracy demands,
this methodology can help pinpoint the need for additiocaliaacy.

1 Introduction

An enormous amount of research develops compiler aliag/sisdlor C programs,
which determines if two distinct variables may referenaesame memory location [1,
5,9, 16, 23,28, 29, 34, 35]. The literature shows an esdénatireoff: improving the pre-
cision of alias analysis increases the cost of performiranid this increase can be sub-
stantial. In theory, a more precise alias analysis imprtveslients’ results. The clients
of alias analysis are numerous, and include improving @iogoerformance [17, 34],
finding bugs [18], and pinpointing memory leaks [19]. In sotases the theory holds
true. For instance, automatic parallelization [34] andedetection [18] benefit from
the judicious application of precise alias analysis.

This paper studies alias analysis on scalar compiler opéitioins designed to im-
prove performance. We implement three analyses: addakesstSteensgaard [29], and
Shapiro-Horwitz [27]. We also introduce an upper bound méttogy that assumes
there are no alias relations, and thus the compiler is nevbited by an alias when
applying optimizations. Previous alias analysis evatimatypically counts the static
number of aliases and assumes fewer is better. This uppedhsunot guaranteed to
be tight, and is useful only for static evaluation.

We use nine scalar optimizations to compare the alias agmlgsthis static upper
bound on thirty-six C programs from popular benchmark suitée optimizations are

sparse conditional constant propagation, global variedgdacement, loop unrolling,

loop invariant code motion, global value numbering, copgpatgation, useless copy
removal, array strength reduction, and scalar replaceméatmeasure optimization
applications individually and as a group. Experiments shwve is only a very small

gap between Shapiro-Horwitz and the static upper bound.ifidreased precision of
Shapiro-Horwitz attains minor improvements over Steeastjavith respect to opti-

mization, and both are somewhat better than address-tékerargest difference is for
loop invariant code motion, for which the upper bound mettogy detects on average
six percent more loop invariant computations than the belyais.

A few other studies on the effect of alias analysis on scaléinmozations also sug-
gest that a simple alias analysis will suffice [3,12, 14, 1%, Zor example, Hind and
Pioli show that few additional scalar analysis opport@sittome from increasing alias
precision on twenty-three C programs [21]. Diwan et al. measglynamically the ad-
ditional opportunities for two optimizations on Modula-Bograms and find that im-
proving alias analysis will not benefit these optimizationgch, if at all [14]. Das et al.
measure aliases dynamically, without respect to an opditioiz, and find that a simple
analysis misses 5% of independent memory accesses in niregéams [12].

Das et al. suggest the following [12]: “Ideally, we woulddiko repeat their study
[Diwan et al.] for every conceivable optimization and evpojnter analysis.” Although
we of course do not study “every conceivable optimizatidhg range here is more
numerous than previous work. The most important contrioudf this paper, however,
is obviating the need for evaluating all pointer analyses.thRirty-six C programs, no
matter how much additional precision an alias analysis iges/over Steensgaard or
Shapiro-Horwitz, that extra precision is unlikely to behséialar optimizations. Other
clients with higher precision needs can also use this melbgg to pinpoint opportu-
nities for improvement.

The remainder of this paper is organized as follows. Se@impmpares our method-
ology to previous pointer analysis research. Section 3vies the alias analyses:
address-taken, Steensgaard [29], Shapiro-Horwitz [2id]the no aliases upper bound.
Section 4 and 5 introduces ti$ealecompiler framework and optimizations. Section 6
presents the experimental methodology. Section 7 showsureraents of optimization
opportunities and compile times, demonstrating that auidit alias precision will not
yield many, if any, improvements to scalar optimizationd #ius performance.

2 Redated Work

This section describes comparative studies of alias aeslyse focus on the closest
related work that use the clients of the alias analyses faluation. The evaluation of
most new alias or points-to analysis algorithms reportssthe of the static points-to
information they compute. For example, Emami et al. [16{ ®ilson and Lam [34]
introduce new context-sensitive interprocedural pofaotalgorithms and evaluate them
using the size of the points-to sets.

Other researchers evaluate alias analysis algorithmsdoytieg changes to the size
of the static points-to information when the precision of @dgorithm changes. Ruf
evaluates the effect of context-sensitivity on the precisif alias analysis [25]. Ruf

concludes that adding context-sensitivity does not imptbe precision for the bench-
marks he examines. Liang and Harrold introduce a contendithee flow-insensitive
algorithm, and they compare their algorithm to three otgorithms [23]. Yong et al.
present a tunable pointer analysis framework that distshgas fields structures [35].

Hind and Pioli focus on the client and compare five alias asialglgorithms us-
ing scalar analyses and optimizations [21]. They use MddéRalysis, live variable
analysis, reaching definitions analysis, and interprocgdionstant propagation. We
corroborate their results, but we do so within the context oéw compiler and with a
focus on a more comprehensive selection of client optintrat rather than analyses.
In earlier work, Hind and Pioli present an empirical compani of four alias analysis
algorithms with different levels of flow sensitivity [20].HEy measure the precision of
the analysis results, and the time and space to computeghksieThey do not study
the effect of analysis quality on optimizations in this work

Shapiro and Horwitz compare the precision of four flow andtexninsensitive
pointer analysis algorithms [27, 28]. They test the precisif the pointer analyses us-
ing GMOD analysis, live variable analysis, truly live vdria analysis, and an inter-
procedural slicing algorithm. Shapiro and Horwitz con@uldat more precise analysis
does improve the results of some, but not all of the clientscl& et al. compare the
flow-sensitive and context-sensitive analysis on Mod &sigal}80]. They conclude that
more precision helps improve the precision of Mod analyBiese two papers are fo-
cused on analysis clients rather than the optimizatiomtdieve use.

Diwan et al. evaluate three alias analysis algorithms ustatic, dynamic, and up-
per bound metrics [13-15]. They demonstrate the effect eftlinee analyses using
redundant load elimination and method invocation resofutiThey show that a fast
and simple alias analysis is effective for type-safe lagggaBacon and Sweeney find
similar results for C++ method resolution [3].

Cooper and Lu use pointer analysis to perform register ptimmowhich is an op-
timization that converts references to scalar values in angito a register [10]. Iden-
tifying aliases is important for this optimization, but Gu and Lu do not show how
the precision of the analysis affects optimization oppuities.

Ghiya and Hendren empirically show that their points-tolysia and connection
analysis can improve loop-invariant removal and commoresptession elimination,
array dependence testing, and program understanding Thély do not experiment
with the precision of the analysis, and they concede thatnaawative analysis may
provide the same benefits for the scalar optimizations.

Das et al. measure the effect of pointer analysis on optiioiza[12]. Their goal is
to evaluate whether flow-insensitive pointer analysis fB@ant for compiler optimiza-
tions. Das et al. do not use any specific optimization or ctengut instead develop a
new metric for evaluating the precision of pointer analysis

Our work is in the spirit of the last four studies, all of whifibcus on the client
optimizations. We are, however, broader in scope in terntiseofange of optimizations
and the number of programs. In addition, we use a new methggdhat computes a
static upper bound that shows, for our programs and optiioizs, that no additional
precision is needed.

3 AliasAnalysis

We study the following alias analysis algorithms (1) Addrésken, (2) Steensgaard [29],
(3) Shapiro-Horwitz [28], and (4) Assume no aliases. Adshtaken is very simple and
is linear in the size of the input program. The compiler asssiail heap objects are po-
tential aliases of each other, and includes in this set aihlokes for which the program
explicitly takes their address. The address-taken algorfiroduces the most conserva-
tive set of alias relations.

Steensgaard’s algorithm is interprocedural and flow-isgiee. It has almost lin-
ear running time and linear space complexity, but does nmes®arily produce precise
results [29]. It is based upon type-inference methods usiiag relations. It results in
alias sets that are symmetric and transitive. The Shapinavhiz algorithm [28] ex-
tends and increases the precision of Steensgaard’s algowithout a significant ef-
fect on running time. A parameter specifies the precisiowéen the lowest precision
(Steensgaard) to the highest precision (Andersen’s dfgorjl]). The analysis time
varies inversely with precision. We choose an intermedgiatet for our evaluation.

Assuming no aliases serves as a static metric for evalutimgffect of alias in-
formation on clients. It simply communicates the empty deal@s relations to the
optimizations. Since the compiler makes the sometimes fsumption that there are
no aliases, the generated executable can be incorrect.Urpege of this analysis is
thus not to generate a working executable, but to establisbse upper bound for the
maximum number of optimizations the compiler could perform

4 The Scale Compilation System

This section outlines the Scale compilation framework, isepresentation of aliases.
The subsequent section enumerates the client optimizagiott how they use aliases.

Scale is a flexible, high performance research compiler fan@ Fortran, and
is written in Java [24, 32]. Scale transforms programs intmatrol flow graph, per-
forms alias analysis, and uses the results to build a statitesassignment (SSA) [11],
machine-independent intermediate representation (&)t callScribble Scale per-
forms optimizations on Scribble, and then transforms Bteilio a low-level, more
machine dependent RISC style IR on which it performs a vadélinear scan register
allocation [31]. It outputs C or assembly for the Alpha an@$processors.

Scale transforms the control flow graph (CFG) to SSA formraftperforms alias
analysis. SSA form ensures that each use of a scalar var@tdevirtual variable cre-
ated during pointer analysis, gets its value from a singfantien [11]. Scale utilizes
Chow et al.’s technique for representing pointers, whictkesaa distinction between
definitions that must occur and may occur [7]. Chow et al. defiintual variables to
represent indirect variables (e.g., *p). Chow et al. creataique virtual variable for all
indirect variables that have similar alias charactesfihey perform alias analysis on
the virtual variables and the scalar variables. Scale'tyaischas a subtle difference; it
performs alias analysis prior to creating the virtual Vialéa. After alias analysis, Scale
defines a unique virtual variable for each alias group, whighsets of variables that
share the same aliases.

In Scale, the SSA form thus includes may and must definitioaisatre linked to uses
by corresponding edges. Optimizations traverse thesesdddend definitions, recur-
rences, etc. All scalar optimizations (except useless cempval) manipulate the SSA
form of the control flow graph. The precision of disambigaatinformation derived
from alias analysis thus directly impacts the quality of #&A graph, and consequently
optimization opportunities and results.

5 Scalar Optimizations

This section describes each optimization and the optioizatuccessriteria that we
measure and report. Scale performs scalar optimizatioi®S#nScribble form except
for useless copy removal. The optimizations target scalaakles, loads, scalar expres-
sions, array address arithmetic, and heap allocated akeyexpect that alias analysis
will have more effect on additional optimizations that dfieally target heap pointers.

Loop Invariant Code Motion (LICM) LICM finds computations (including loads)
in loops that produce the same value on every iteration ancesthem to appropri-
ate locations outside the loop. For nested loops, it movegpatation out of as many
inner-loops as possible without destroying program seitgritICM thus reduces the
number of instructions executed. In Scale, SSA use-de§lindlicate where the CFG
node gets its definitions, and LICM moves computations tootliter-most basic block
in which the definition is available. More precise alias imfi@ation can reveal additional
invariant expressions. To preserve program semanticte 8oy moves stores for local
variables. It never moves procedure calls or expressiamdiimg global variables.
Criteria: number of expressions moved.

Sparse Conditional Constant Propagation (SCCP) SCCP discovers variables and
expressions that are constant and propagates them thnatthlegrogram. SCCP cor-
rectly propagates constants even in the presence of condlittontrol flow. It speeds
up program execution by evaluating expressions at conipikeinstead of run time and
improves the effectiveness of other optimizations, suckaise numbering. Scale uses
Wegman and Zadeck’s SCCP algorithm on SSA-form [33]. Sceds @alias analysis to
obtain variable values in the presence of pointer operstigiore precise alias analysis
can thus reveal more constants.
Criteria: number of constants propagated.

Copy Propagation (CP) CP discovers assignments of the foem— y and replaces
any later use of variable by y when no intervening instruction changesr y. CP
then removes the original assignment statement. Scalendd@sopagate a copy if (1)
the right-hand-side variable of the assignment statenwriamns May-Use information
indicating that it may be involved in an alias relationshop(2) if either argument in
the assignment is a global variable.

Criteria: number of copies propagated.

Global Value Numbering (GVN) GVN determines whether two computations are
equivalent and if so, removes one of them. Scale uses thendtonitree-based value
numbering technique by Briggs et al. [4]. It assignaue numbeto each computation

and exposes equivalences when it assigns distinct congmgahe same value number.
SSA form simplifies this process. GVN works on entire procedunstead of single
basic blocks, as in traditional value numbering. It imp®peogram running time by
removing redundant computations.

Criteria: number of expressions removed.

Loop Unrolling (LU) LU replaces the body of a loop by several copies of the body
and adjusts the loop control code accordingly. Aliasesbimoop unrolling only if
the loop control variables may be aliased with loop varyiagables. LU reduces the
number of instructions executed during run time at the cbstaveased code size, and
may improve the effectiveness of other optimizations, sasltcommon-subexpression
elimination and strength reduction.

Criteria: number of loops unrolled.

Scalar Replacement (SR) Register allocators usually do not allocate subscripted va
ables to registers. Scalar Replacement tricks the allobgiteeplacing subscripted vari-
ables with scalars and thus making them available for regédtocation. Dependence
analysis locates reuse of array elements and then SR reptee® with assignments
and uses of scalar temporaries. SR reduces the number sfadoadstores in programs
and is very effective in reducing execution times.

Criteria: number of array loads replaced.

Global Variable Replacement (GVR) GVR replaces references to global variables
with references to local variables by copying the globab iatlocal only when the
global is not aliased to another variable that the procenhodifies.

Criteria: number of loads to global variables replaced.

Array Access Strength Reduction (AASR) AASR uses thanethod of finite differ-
encego replace expensive operators in array element addresdat#bns with cheaper
ones. Scale targets array index calculations in the inresttoops, and replaces multi-
plications with additions when possible. It moves any résglloop invariants outside
the loop and folds constant expressions as part of this psoce

Criteria: number of array index calculations replaced.

Useless Copy Removal - (UCR) UCR removes copy statements of the farm- z in
the CFG form. Scale creates these statements when tramsiito and from SSA and
via other optimizations. Because transitioning out of S8 introduces copies and
new temporary variables based on the SSA edges, UCR isigernsitedges induced
by alias analysis and other optimizations.

Criteria: number of useless copies removed.

6 Methodology

Table 1 enumerates our test suite programs from the foligplyénchmark suites: SPEC
95, SPEC 2000, Austin from Todd Austin [2], McCAT from McGjll6], and Landi-
PROLANGS from Rutgers [22, 26, 25]. Our test suite closeljofes Hind and Pi-
oli's [21], and all but two of their programs appear in ourdstuWe omit 052.alvinn

Abbr.|Benchmark suite
A Austin's Abbr. Sc_ale Optimization
MC |McCAT option
LP [Landi-PROLANGS AASR a Array A_ccess Strength
S95 [SPEC 95 Reduction
S00 |SPEC 2000 Sparse Conditional Constapt
SCCP| ¢ P :
Table 1. Benchmark suites ropagation
GVR g |Global Variable Replacemgnt
Abbr.|Algorithm LU j |Loop Unrolling
AT |Address-taken analysis LICM| m |Loop Invariant Code Motion
ST Steensgaard’s interprocedural GVN n |Global Value Numbering
algorithm CP p |Copy Propagation
SH-4 Shapiro-Horwitz’s interprocedural UCR u |Useless Copy Removal
algorithm with 4 categories SR X |Scalar Replacement
NA |Assume no aliases

Table 3. Optimizations
Table 2. Alias analysis algorithms

from SPEC 92 because the SPEC 2000 versions subsume thermit\&7cintr from
McCAT because of a Scale compilation bug.

We use the October 2003 development version of Scale wittafault parameters
except as noted. We specify the alias analysis from TabIgtagiro-Horwitz with one
category behaves the same as Steensgaard although thenenpdéions are distinct).
We select four categories as the input parameter to Shifare4tz so that it behaves
as an intermediate point that is more precise than Steemkda# not as expensive
as Andersen [1]. We either select a fixed sequence of optiibiaor choose a single
optimization and turn off the others. Table 3 enumerate®finizations, their Scale
option letter, and our abbreviation.

Scale also implements Partial Redundancy Elimination (Rigihg Chow et al.’s
algorithm for SSA [6]. This algorithm requires SSA form, luldes not produce SSA,
which makes it difficult to measure and use in Scale. Furtbeemour PRE results
show more optimization opportunities with Steensgaard3imabiro-Horwitz than with
no aliases. We believe this anomaly results from either aitb&gale or an interaction
with SSA. We omit the PRE results here since we believe thetlyidg problem is
orthogonal to alias analysis. A companion technical repontains these results [8].

We measure compile times on a 502 MHz UltraSPARC-lle Sun@IHD running
SunOS 5.8 with 256 MB of RAM. Since our compiler is written iava, we specify
an initial heap size of 100 MB and a maximum heap size of 1000fMBSun’s Java
virtual machine running Scale.

7 Results

We vary the alias analysis and compare compilation timesémh benchmark. For
scalar optimization opportunities, the results summaaess benchmarks; a compan-
ion technical report [8] contains complete per programligsu

7.1 CompileTime

Table 4 describes some characteristics of the 36 benchmagtgms. The column
marked “Src” identifies the benchmark suite to which the paagbelongs. The col-
umn marked “NCLC” reports the number of non-blank and nomiemnted lines of
code in the program. The column marked “CFG Nodes” shows timeber of nodes
in the control flow graph created by Scale for the programs Thimber more accu-
rately represents the program size as experienced by thpileonThe table arranges
the programs in ascending order of the number of CFG nodesn&kt three columns
list the compile times (in seconds) of the program with altimrations turned on
in order “jgcamnpxnmpu”. The first column uses addressrtak®alysis, the second
uses Steensgaard’s interprocedural algorithm, and tretubes Shapiro-Horwitz’s in-
terprocedural analysis with 4 categories. Each compile tisnthe smallest among 5
independent compiles of the same program with the same péeanvalues. Figure 1
shows the compile times from Table 4 as a bar graph.

The last two rows of Table 4 report the normalized averagepilentimes over
all the programs. We divide the compile time of the programdach alias analysis
algorithm by the compile time of the program using addregen analysis. Then, we
take the arithmetic and geometric means (AM & GM) of thosenmadized compile
times. The geometric mean reduces the effect of extremesalthe means suggest
that using Steensgaard instead of address-taken incrégsesmpile time by 5-6%
on the average while the average increase in compile timealtree use of Shapiro-
Horwitz is 20-30%. For large programs (like 186.crafty, 36@lf, and 099.go), these
percentages may grow to 150-200% and 350-400%, respaciiVelbelieve this result
is due to paging.

7.2 Optimization Opportunities

We measure the optimization opportunities utilized by e#¢he 9 scalar optimizations
over each of the 36 benchmark programs over each of the 4amlagses based on the
selectectriteria (see Section 5). For each optimization, we report thisgaiteounter.
Higher criteria counter values indicate more effectivarojation results.

For a given optimization, we report the criteria counteng®ach of the 4 alias anal-
yses and normalize the counters by dividing by the valueindtifor NA (no aliases).
To avoid dividing by zero ilnumerator = denominator = 0, we assume the nor-
malized value is 1. lhumerator = 0 # denominator, we set thevumerator t0 0.5
and proceed with the division. Although the casaifnerator = denominator = 0”
occurs many times in our experiments, the caserfierator = 0 # denominator”
occurs only once: in 01.gbsort for LICM in Table 6. We take gle®@metric mean of the
normalized counters for all programs for each alias anglysi

We perform two sets of experiments. In the first set, we enalb® optimizations
in the order “jgcamnpxnmpu” (see Table 3) during each coatipih. In the second set,
we enable only one optimization per compilation. Table 5 mamzes the results for
all optimizations enabled, and Table 6 for each one ind&figuTable 5 contains one
row for each of the 9 optimizations and one column for eacthef4 alias analyses.
In each optimization row, the each alias analysis columontgghe geometric mean of

CFG|Compile time (seq
progam | STEINCLE| odeq AT | ST [SH-4 Comparison of Compile Times of the Benchmark
15.trie MC 311 197 5.0 5.1 5.5 Programs Used
fixoutput [P| 368 206 6.0 5.7 5.9
allroots LP 155 272 10.00 9.9 10.2 15.trie —
Ol.gbsort |MC| 200 294 6.9 7.5| 8.0 fixoutput =
O4.gisect MC| 217] 331 11.1 11.8 12.0 allroots
O6.matx [MC| 191l 439 7.9 78 79 | wene
anagram A 352 532 9.9 9.4 9.3 06.matx | E—
1ex315 [P| 598 658 8.2 8.1 9.0 anagram [—
ul LP| 472 773 11.2] 11.0 11.2 lexals [——
129.compred$95 1457 923 12.1 12.4 12.9 u ——
ks A | 585 08/ 116 10.9 109 |2cmres —_—
0ovor |MC| 984 1031 12.0 12.0 12.5 o —
loader LP 802 1082 15.8 16.00 17.0 loader
ansitape [P| 1203 1113 17.0 16.4] 17.1 ansitape —
08.main MC| 990 1115 12.0 11.7] 12.§ 08.main E——
ft A | 1113 111§ 12.1 12.9 13.1 " ——,
compress |LP| 1071] 1119 10.3 9.8 10.7 §°°”;g’:i§%
05.eks MC| 575 1498 22.0 21.9 230 |5 ynosen s
xmodem LP| 13921 1718 19.0 19.6 20.0 O 1glmel —
181.mcf S00 1482 1722 24.3 29.9 29.5 compler [—
compiler [P| 2079 1789 19.00 18.1] 19.0 _—
assembler |LP| 1891 2052 21.0] 22.9 23.9 unzip EE———
unzip LP| 2808 2637 26.1 29.1 29.7 e %
patch LP| 2461 3248 24.1] 24.4 27.2 a2 —
simulator LP| 2881 3532 29.8 30.1 30.7| 256.hzip2 —
yacr2 A | 2710 3753 27.2 27.8 315 flex
256.bzip2 |S00 3236 4888 38.0] 35.4 39.8 be
flex LP| 4841 5405 42.5 44.1 48.2 football
bc A | 5449 5618 36.1 40.1 48.8 197‘;;'3
football [P| 1975 5765143.1140.4 149.7 175
agrep LP| 3434 8185 745 70.0 73.2 186 crafty
197.parser |S0Q 7921 15419 72.0] 81.9 99.8 300.twolf
175.vpr 500 11301 17935111.0144.2 238.9 099.go ‘ ‘ ;
186.crafty |S00 12985 22379388.1595.9 691.4 1 10 100 1000
300.twolf |S0Q 17934 31414209.3365.9 788.1 — Compile Time in Seconds
099.90 S95 25895 35019232.2256.4 814.6 ast (Logarithmic Scale)
[AM of norm. comp. times (wrt AT)1.0001.062 1.277) Ost4
[GM of norm. comp. times (wrt AT)L.0001.054 1.199
Table4. Lines of code, CFG nodes, and com- Fig. 1. Compile times.

pile times (in seconds).

the normalized optimization counters of all 36 programstEaean is subscripted by
the average deviation of the counter values from that meamnalfgiven optimization,
the column marked “Total for NA” contains the summation of tdA counter values
for that optimization over all programs. The bar graph indf&@2 graphs this table. To
explain these results, we first define a sequence anomaly.

Sequence Anomaly: When the compiler applies a sequence of optimizations, fthe e
fectiveness of the optimizations later in the sequenceflaanced by the type and
number of opportunities exposed by earlier optimizati@isce optimizations interact
with each other in a non-linear fashion, it is possible for@enprecise alias analysis
to have a negative impact on optimizations that come latdrarsequence. We refer to
these effects asequence anomalieSequence anomalies cannot occur when only one
optimization is applied to a program.

. Total
Opt. Criteria AT ST SH-4 NA for NA
LU |00p$ unrolled 0.999 (0.002) 0.999 (0.002) 0.999 (0.002) 1.000 (0.000) 1004
GVR |0adS replaced 0999 (0.001) 0999 (0.001) 0999 (0.001) 1000 (0.000) 16825
SCCP| constants propagated.967 (o o46)|0.970 (0.043)[0-970 (0.043)|1.000 (0.000)| 25258
AASR| calculations replaced0.992 (9.006)[0-999 (0.003)|0-999 (0.003)|1.000 (0.000)| 799§
LICM | expressions moved|0.912 (g.123)|0.940 (0.0s6) [0.940 (0.086)|1.000 (0.000)| 2136
GVN | expressions removef).979 (4.030) |0.992 (0.010)[0-992 (0.010)|1.000 (0.000)| 24054
CP copies propagated |0.978 (9.032)|0-987 (0.020)|0-987 (0.020y|1.000 (0.000)| 21247
SR array loads replaced0.999 (0.002)|0-999 (0.001)|0.998 (0.003)|1.000 (0.000)| 8143
UCR |useless copies removad17 (o.025)|1.007 (9.012)|1.006 (0.012)|1.000 (0.000)|101543

Table 5. Effectiveness of alias analysis on optimizations with <tem enabled in order “jg-
camnpxnmpu” (Geometric mean of normalized (w.r.t. NA) enih counts with avg. deviation

from the mean as subscript)

o Total
Opt. Criteria AT ST SH-4 NA for NA
LU loops unrolled {0.999 (6.002)|0-999 (0.002)|0-999 (0.002)[1-000 (0.000)| 1004
GVR loads replaced |1.000 (0.000)|1.000 (0.000)|1-000 (5.000)|1-000 (9.000y| 10701
SCCP|constants propagat#io48 (. os9)|0.948 (0.070)|0.948 (0.070)|1-000 (0.000)| 9357
AASR|calculations replaced.993 (9.013)[0.993 (0.013)|0-993 (0.013)|1-000 (0.000)| 2679
LICM | expressions moveD.924 (g.101)|0.924 (0.101)|0-924 (0.101)|1-000 (0.000)| 1236
GVN |expressions removel953 (9.061)|0-985 (0.020)|0-985 (0.020y|1-000 (0.000)| 13273
CP copies propagated0.968 (9.041)|0.968 (9.041)[0-968 (0.041)|1.000 (.000)| 9203
SR array loads replace®.998 (4.003)|0.999 (0.002)|1-000 (0.001)|1-000 (.000y| 5139

Table 6. Effectiveness of alias analysis on optimizations with oofe optimization enabled at
a time (Geometric mean of normalized (w.r.t. NA) criteriaints with avg. deviation from the
mean as subscript)

7.3 Optimizationsin Sequence

We first summarize the average effect of AT, ST, and SH-4 uaifiged sequence of
optimizations, and then summarize the results for eaclicpéat optimization.
Address-taken: For LU, GVR, and SR, the effectiveness of address-takerysisal
is within 0.1% of that of any alias analysis, no matter howcige it is. For AASR,
it is within 1%, and for SCCP, GVN and CP it is within 3% of the sh@recise alias
analysis. It is least effective on LICM, but still within 9% the effectiveness of the
best possible analysis.

Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-
4) perform essentially the same on all the optimizationsL Lt GVR, AASR, and SR,
they are within 0.1% of the most precise analysis. For GVdythre within 1%, for
CP, within 1.5%, and for SCCP, within 3% of the best possiblysis. Again, they are
least effective on LICM, but still within 6% of the most preeialias analysis.

LU: Very little opportunity (only 0.1%) is left for improving LUeyond what AT, ST,
or SH-4 already achieve. We find that for each program, extio same number of

loops were unrolled when using AT, ST and SH-4. LU unrolledw iore loops when
“no aliases” (NA) is assumed on only 3 programs (175.vpr,8@8lf and 099.9o).

GVR: GVR behaves exactly like LU.

SCCP: ST and SH-4 already achieve about 97% of what NA achievesulrexperi-
ments, ST and SH-4 behave identically with respect to SCC&tl @nograms. For only
4 programs (loader, simulator, flex and 175.vpr), ST and SHgger more constant
propagation than AT does. However, for about 40% (14 out 9fd3@he programs,
there is still a little room to improve SCCP.

AASR: The room for improvement is less than 1% and is, in fact, aBolfo with
respect to ST and SH-4. For each program, AASR behaves éaddiptwith respect to
ST and SH-4 and for only 3 programs (04.bisect, simulatat,Jatb.vpr) does applying
ST or SH-4 instead of AT have any positive impact. NA improwesr ST and SH-4
on ASSR for only 2 programs (04.bisect and simulator). H@ves sequence anomaly
occurs for 099.go with NA.

LICM: The room for improvementis about 9% with respect to AT and G respect
to ST and SH-4. However, the large improvement opportunith wespect to AT is
slightly misleading because for half of the programs (3 dui)acon which LICM im-
proves when assuming NA instead of AT, the number of exprasdilCM removes is
quite low (AT vs. NA: 1 vs. 3 for 01.gbsort, 2 vs. 6 for loadensl. 2 for 181.mcf). For
LICM, ST and SH-4 behave identically for all programs and/@programs (compress
and simulator) improve using AT. However, NA again producesquence anomaly for
099.go.

GVN: The room for improvement is about 2% with respect to AT anduali®s with
respect to ST and SH-4. Again, ST and SH-4 behave identioallgll programs. For
15 programs ST and SH-4 improve over AT, and for 14 programsmigroves over
ST and SH-4. NA, ST, and SH-4 produce sequence anomalie9%g® and 04.bisect
when compared to AT.

CP: The room for improvement is slightly more than 2% with regpecAT and
about 1.5% with respect to ST and SH-4. For 3 programs (18%cess, simulator and
175.vpr) ST improves over AT, for one program (197.parsét)y4Smproves over ST
and for 11 programs NA improves over SH-4. For CP, five seqa@momalies occur.
For 099.g0, AT is the most effective alias analysis for CP ldAds the least effective
one. For 197.parser, SH-4 is the most effective analysisbaitl ST and NA are the
least effective. For 300.twolf, AT is the most effective s and the rest are identical
to each other. A similar pattern occurred with ST on 256 .Bzifor 186.crafty, AT was
better than ST and SH-4, but using NA propagates the largesbar of copies.

SR: Alias analysis has very little impact on SR and the only ro@mifnprovement,
if any, is around 0.1%. NA slightly influences only 4 prograf256.bzip2, 197.parser,
175.vpr and 099.go), but none of AT, ST, and SH-4 providerdre

UCR: Alias analysis influences UCR in a very complex fashion bseahe resulting
SSA graph and changes made by other optimizations both aticeamove copies. In
these experiments, a more precise alias analysis creates fiseless copy statements
than a less precise one.

Effectiveness of Alias Analysis on Optimizations Effectiveness of Alias Analysis on Optimizations

(All Optmizations are Enabled) (Only One Optimization Enabled at a Time)
} T) I ! ']
Lu — L -
9 I 9 I]
[] |]
GVR —‘ GVR ﬁ
9 I 9 I
[I []
scep ——‘ sece
9 I 9 I I
» [1 - []
S AASR —‘ § AASR —j
g g
£ £
& Lcm & ucm
9 I 9 I ‘
[1 [1
GVN —ﬁ GWN —ﬁ
9 I 9 I I
[1 []
cP —ﬁ cP —ﬁ
9 I 9 I I
[] [1
SR - SR ﬁ
OAT } f T T T T T T OAT | I I
OST |oge 0.88 09 092 094 096 098 1 1.02| OST |o86 088 09 092 094 096 098 1 1.02|
ESH-4 ESH-4

Number of Optimizations Performed ENA Number of Optimizations Performed

BNA (Normalized w.r.t. NA) (Normalized w.r.t. NA)

Fig. 2. Effectiveness of alias analysis on ogfig. 3. Effectiveness of alias analysis on opti-
mizations (all optimizations enabled). mizations (one optimization enabled at a time).

7.4 Optimizations Enabled Independently

Table 6 summarizes the results obtained by performing eatimization indepen-

dently. This table is structured almost identically to Eabl It does not include UCR
since Scale UCR is only applicable after other optimizatidfig. 3 graphs this data.
The last column of Table 6 indicates that optimization opyities are, in general,
greatly reduced when the compiler applies each optimiaatidependently. This re-
duction is reflected in higher percentages when the alialysisaloes influence indi-

vidual optimization opportunities in isolation. For alltopizations except Scalar Re-
placement, ST and SH-4 behave identically on all progranefisst summarize the
trends, and then examine each optimization.

Address-taken: For GVR, address-taken analysis is as good as any aliassialy
For LU and SR, its effectiveness is within 0.2%, for AASR, hiiit 1%, and for SCCP,
GVN, and CP, within 5% of that of the most precise analysis.[HEM, it is within
8% of the best possible analysis.

Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-
4) essentially have the same effect on all these optimizstieor GVR, they are as good
as the most precise analysis. For LU and SR, they are withi#b0for AASR, within
1%, for GVN, within 1.5%, and for SCCP and CP, within 5% of tlffeetiveness of the
best possible alias analysis. Again, they are least effeoti LICM, but still within 8%

of the best possible analysis.

LU: This optimization behaves exactly in the same way in all eispghen the compiler
enables all optimizations. This similarity results be@al¥ is the first optimization in
the sequence of optimizations applied on programs in théqurs set of experiments.

GVR: Alias analysis precision does not have any effect.

SCCP: For SCCP, the improvement opportunity is slightly more tB& For 13 pro-
grams, NA has a more positive impact on SCCP compared to STSkind. ST and
SH-4 provide a benefit to SCCP compared to AT for only one gl 75.vpr).

AASR: AT, ST, and SH-4 behave identically for every program. Fdy @programs
(04.bisect and simulator) further improvements (less tttah are possible.

LICM: About 8% improvement is possible for LICM. For each progrém,ST, and
SH-4 identically influence LICM. NA exposed more optimizatiopportunities than
did AT, ST or SH-4 for 7 programs.

GVN: The margin for improvement is about 5% with respect to AT abdud 1.5%
with respect to ST and SH-4. For 10 programs, ST and SH-4 drowere effective
than AT and for 13 programs, NA exposed more optimizatioroopmities than did ST
or SH-4.

CP: The room for improvementis slightly more than 3%. For eacgpaim, the impact
of AT, ST and SH-4 on CP were identical. For 12 programs, tiie@e gap between
ST/SH-4 and NA.

SR: Alias analysis precision has very little effect.

8 Conclusion

The “assume no aliases” methodology provides upper boualysis that is surpris-
ingly tight for scalar optimizations and easy to implemétr results are for the do-
main of scalar optimizations, and show that there is litlern to improve scalar opti-
mization by improving alias analysis. For this client, atfasd less precise analysis is
good enough. Within other domains, such as parallelizaémor detection, and mem-
ory leak detection, precise pointer disambiguation is noften required for correctness
or critical for good performance [34, 18, 19]. However, hydsting the upper bound for
these clients, researchers can explore the limits of afialyais. When the bound and
analysis match, there is no need to test more precise asalpsethe methodology ob-
viates an entire class of iterative testing. When they donmatich, the mismatch can
reveal where and how to apply more precise and costly asalysi

References

1. L. O. Andersen.Program Analysis and Specialization for the C Programmiregduage
PhD thesis, DIKU, University of Copenhagen, May 1994.

2. T. Austin. Pointer-intensive benchmark suite, version .1.1
http://www.cs.wisc.edutaustin/ptr-dist.html, 1995.

3. D. F. Bacon and P. F. Sweeney. Fast static analysis of Qtdalifunction calls. IPACM
Conference Proceedings on Object—Oriented Programmiste8ys, Languages, and Appli-
cations pages 324-341, San Jose, CA, Oct. 1996.

4. P. Briggs, K. D. Cooper, and L. T. Simpson. Value numberiggpftware—Practice and
Experience27(6):701-724, June 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. J. Choi, M. Burke, and P. Carini. Efficient flow-sensitiveeirprocedural computation of
pointer-induced aliases and side effectsPtaceedings of the 20th Annual ACM Symposium
on the Principles of Programming Languagesges 232—245, Charleston, SC, Jan. 1993.

. F. Chow, S. Chan, R. Kennedy, S. Lo, and P. Tu. A new algariitr partial redundancy
elimination based on SSA form. IRroceedings of the SIGPLAN '97 Conference on Pro-
gramming Language Design and Implementatjmages 273-286, Las Vegas, NV, June 1997.

. F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effectivpresentation of aliases and
indirect memory operations in SSA form. In T. Gyimothy, editnternational Conference
on Compiler Constructionvolume 1060 of_ecture Notes in Computer Scienpages 253—
267, Linkoping, Sweden, Apr. 1996. Springer-Verlag.

. R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and KM&Kinley. The limits of alias
analysis for scalar optimizations. Technical Report TR503University of Texas at Austin,
Oct. 2003.

. K. D. Cooper and K. Kennedy. Fast interprocedural aliadyais. InProceedings of the

16th Annual ACM Symposium on the Principles of Programmimgguagespages 49-59,

1989.

K. D. Cooper and J. Lu. Register promotion in C program&rbceedings of the SIGPLAN

'97 Conference on Programming Language Design and Impleatien, pages 308-319, Las

Vegas, NV, June 1997.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zad&ualefficient method of com-

puting static single assignment form. Rioceedings of the 16th Annual ACM Symposium

on the Principles of Programming Languag@sges 25-35, Austin, TX, Jan. 1989.

M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimatihg impact of scalable pointer

analysis on optimization. Ifhe 8th International Static Analysis Symposivwiume 2126

of Lecture Notes in Computer Sciengages 260-278, Paris, France, July 2001. Springer-

Verlag.

A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-basedslanalysis. IProceedings

of the SIGPLAN '98 Conference on Programming Language Deaigl Implementatign

pages 106-117, Montreal, June 1998.

A. Diwan, K. S. McKinley, and J. E. B. Moss. Using types talgze and optimize object-

oriented programsACM Transactions on Programming Languages and Syst2&($):30—

72, Jan. 2001.

A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and efiiee analysis of statically-

typed object-oriented languages.A@M Conference Proceedings on Object—-Oriented Pro-

gramming Systems, Languages, and Applicatipages 344—-355, San Jose, CA, Oct. 1996.

M. Emami, R. Ghiya, and L. J. Hendren. Context-sensititerprocedural points-to analysis

in the presence of function pointers. Rroceedings of the SIGPLAN '94 Conference on

Programming Language Design and Implementatjmmges 242-256, June 1994,

R. Ghiya and L. J. Hendren. Putting pointer analysis tckwdén Proceedings of the 25th

Annual ACM Symposium on the Principles of Programming Laggg San Diego, CA, Jan.

1998.

S. Z. Guyer and C. Lin. Client-driven pointer analysi® Iiternational Static Analysis

Symposiumpages 214-236, San Diego, CA, June 2003.

D. L. Heine and M. S. Lam. A practical flow-sensitive anahteat-sensitive C and C++

memory leak detector. IRroceedings of the SIGPLAN 2003 Conference on Programming

Language Design and Implementatigrages 168—181, San Diego, CA, June 2003.

M. Hind and A. Pioli. Assessing the effects of flow-sawgit on pointer alias analysis. In

The 5th International Static Analysis Symposiuniume 1503 of ecture Notes in Computer

Sciencepages 57-81, Pisa, Italy, Sept. 1998. Springer-Verlag.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M. Hind and A. Pioli. Which pointer analysis should | useProceediings of the ACM SIG-
SOFT International Symposium on Software Testing and Asa(ySSTA’0Q)pages 112—
123, Portland, OR, Aug 2000.

W. Landi, B. G. Ryder, and S. Zhang. Interprocedural fication side effect analysis with
pointer aliasing ACM SIGPLAN Notice28(6):56—67, 1993.

D. Liang and M. J. Harrold. Efficient points-to analysis ¥hole-program analysis. Fro-
ceedings of the 7th ACM SIGSOFT International SymposiurheRdundations of Software
Engineering pages 199-215, Toulouse, France, Sept. 1999.

K. S. McKinley, J. Burrill, B. Cahoon, J. E. B. Moss, Z. Vigarand C. Weems. The Scale
compiler. Technical report, University of Massachuse2®)1. http://ali-www.cs.umass.-
edukscale/.

E. Ruf. Context-insensitive alias analysis reconsidemProceedings of the SIGPLAN '95
Conference on Programming Language Design and Implenientatages 13-22, La Jolla,
CA, June 1995.

Rutgers. PROLANGS benchmark suite, data programs.
http://www.prolangs.rutgers.edu/public.html, 1999.

M. Shapiro and S. Horwitz. The effects of the precisiopaifhter analysis. In P. V. Henten-
ryck, editor,Lecture Notes in Computer Science, 130&ges 16—34. Springer-Verlag, 1997.
Proceedings from théth International Static Analysis Symposium

M. Shapiro and S. Horwitz. Fast and accurate flow-insgagpoints-to analysis. |fPro-
ceedings of the 24th Annual ACM Symposium on the Principlesogramming Languages
pages 1-14, Paris, France, Jan. 1997.

B. Steensgaard. Points-to analysis in almost linea.timProceedings of the 23rd Annual
ACM Symposium on the Principles of Programming Langugogges 21-24, St. Petersburg,
FL, Jan. 1996.

P. A. Stocks, B. G. Ryder, W. Landi, and S. Zhang. Compdlaw and context sensitivity on
the modifications-side-effects problem. Rmoceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysagles 21-31, Clearwater, FL, Mar. 1998.

O. Traub, G. Haolloway, and M. D. Smith. Quality and spe&etinear-scan register allo-
cation. InProceedings of the SIGPLAN '98 Conference on Programmingglage Design
and Implementatiorpages 142-151, Montreal, June 1998.

Z. Wang, D. Burger, K. S. McKinley, S. Reinhardt, and C.\M@&ems. Guided region
prefetching: A cooperative hardware/software approacProceedings of the 30th Interna-
tional Symposium on Computer Architectysages 388—-398, San Diego, CA, June 2003.
M. N. Wegman and F. K. Zadeck. Constant propagation vatiditional branchesACM
Transactions on Programming Languages and Syst&B(2):181-210, Apr. 1991.

R. P. Wilson and M. S. Lam. Efficient context-sensitivénger analysis for C programs.
In Proceedings of the SIGPLAN '95 Conference on Programmingguage Design and
Implementationpages 1-12, La Jolla, CA, June 1995.

S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis fagmms with structures and
casting. InProceedings of the SIGPLAN '99 Conference on Programminguage Design
and Implementatiorpages 91-103, Atlanta, GA, June 1999.

