
Copyright

by

Behnam Robatmili

2011

The Dissertation Committee for Behnam Robatmili
certifies that this is the approved version of the following dissertation:

Efficient Execution of Sequential Applications on

Multicore Systems

Committee:

Doug C. Burger, Supervisor

Kathryn S. McKinley, Supervisor

Stephen W. Keckler

Calvin Lin

Steve Reinhardt

Efficient Execution of Sequential Applications on

Multicore Systems

by

Behnam Robatmili, M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011

Dedicated to my wife Sahar.

Acknowledgments

I wish to thank the multitudes of people who helped me along the

way to completing this dissertation. I thank my committee, Doug Burger ,

Kathryn McKinley, Steve Keckler, Calvin Lin, and Steve Reinhardt, for their

valuable feedback on my research. I am particularly indebted to my advisor,

Doug Burger for his supervision of this work. I also thank several colleagues

and friends who helped me along the way to completing this work including

Katie Coons, Bert Maher, Dong Li, Hadi Esmaeilzadeh, Sibi Govindan, Jeff

Diamond, Boris Grot, and Mark Gebhart.

v

Efficient Execution of Sequential Applications on

Multicore Systems

Publication No.

Behnam Robatmili, Ph.D.

The University of Texas at Austin, 2011

Supervisors: Doug C. Burger
Kathryn S. McKinley

Conventional CMOS scaling has been the engine of the technology revo-

lution in most application domains. This trend has changed as in each technol-

ogy generation, transistor densities continue to increase while due to the lim-

its on threshold voltage scaling, per-transistor energy consumption decreases

much more slowly than in the past. The power scaling issues will restrict the

adaptability of designs to operate in different power and performance regimes.

Consequently, future systems must employ more efficient architectures for op-

timizing every thread in the program across different power and performance

regimes, rather than architectures that utilize more transistors. One solution

is composable or dynamic multicore architectures that can span a wide range

of energy/performance operating points by enabling multiple simple cores to

compose to form a larger and more powerful core.

vi

Explicit Data Graph Execution (EDGE) architectures represent a highly

scalable class of composable processors that exploit predicated dataflow block

execution and distributed microarchitectures. However, prior EDGE architec-

tures suffer from several energy and performance bottlenecks including expen-

sive intra-block operand communication due to fine-grain instruction distri-

bution among cores, the compiler-generated fanout trees built for high-fanout

operand delivery, poor next-block prediction accuracy, and low speculation

rates due to predicates and expensive refills after pipeline flushes. To design

an energy-efficient and flexible dynamic multicore, this dissertation employs a

systematic methodology that detects inefficiencies and then designs and eval-

uates solutions that maximize power and performance efficiency across dif-

ferent power and performance regimes. Some innovations and optimization

techniques include: (a) Deep Block Mapping extracts more coarse-grained

parallelism and reduces cross-core operand network traffic by mapping each

block of instructions into the instruction queue of one core instead of dis-

tributing blocks across all composed cores as done in previous EDGE designs,

(b) Iterative Path Predictor (IPP) reduces branch and predication over-

heads by unifying multi-exit block target prediction and predicate path predic-

tion while providing improved accuracy for each, (c) Register Bypassing

reduces cross-core register communication delays by bypassing register val-

ues predicted to be critical directly from producing to consuming cores, (d)

Block Reissue reduces pipeline flush penalties by reissuing instructions in

previously executed instances of blocks while they are still in the instruction

vii

queue, and (e) Exposed Operand Broadcasts (EOBs) reduce wide-fanout

instruction overheads by extending the ISA to employ architecturally exposed

low-overhead broadcasts combined with dataflow for efficient operand delivery

for both high- and low-fanout instructions.

These components form the basis for a third-generation EDGE mi-

croarchitecture called T3. T3 improves energy efficiency by about 2× and

performance by 47% compared to previous EDGE architectures. T3 also per-

forms in a highly power efficient manner across a wide spectrum of energy and

performance operating points (low-power to high-performance), extending the

domain of power/performance trade-offs beyond what dynamic voltage and

frequency scaling offers on state-of-the-art conventional processors. This high

level of flexibility and power efficiency makes T3 an attractive candidate for

future systems which need to operate on a wide range of workloads under

varying power and performance constraints.

viii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Dissertation Contributions . 3

1.1.1 T3: An Energy-Efficient Dynamic Uniprocessor 3

1.1.2 Systematic Bottleneck Detection and Reduction 7

1.2 Dissertation Organization . 9

Chapter 2. Related Work 12

2.1 Distributed Uniprocssors . 12

2.1.1 Fully Dynamic Distributed Uniprocessors 13

2.1.2 Compiler-assisted Distributed Uniprocessors 15

2.2 Efficiency Optimizations . 16

2.2.1 Instruction Mapping . 16

2.2.2 Instruction Communication Mechanisms 17

2.2.2.1 Instruction Communication via Registers 18

2.2.2.2 Broadcast Bypass Network 19

2.2.2.3 Dataflow Communication 20

2.2.2.4 Hybrid Instruction Communication 22

2.2.3 Distributed Register or Memory Bypassing 24

2.2.4 Instruction Reuse . 25

2.2.5 Path and Predicate Prediction 26

2.3 Criticality Analysis . 27

ix

Chapter 3. Background 30

3.1 EDGE ISAs . 30

3.2 The TRIPS Tiled Architecture 31

3.3 The TFlex Composable Microarchitecture 32

3.4 T3 Microarchitectural Features 37

3.5 Summary . 39

Chapter 4. Bottleneck Analysis for EDGE Architectures 43

4.1 Introduction . 43

4.2 Criticality-based Bottleneck Analysis 45

4.2.1 System and Component-level Analyses 47

4.2.2 Speculation-Aware Mode 51

4.3 Analysis Results . 52

4.3.1 Methodology . 52

4.3.2 Critical Path Statistics 53

4.3.3 Scalability Bottlenecks 55

4.3.4 Speculation Bottleneck 57

4.3.5 Communication and Fetch Bottlenecks 59

4.4 Summary . 61

Chapter 5. Strategies for Mapping Dataflow Blocks to Distributed
Hardware 65

5.1 Balancing Concurrency and Communication 66

5.2 EDGE Hardware Software Components 67

5.3 Block Mapping Strategies . 69

5.3.1 Compiler/Hardware Contract 70

5.3.2 Fixed Mapping Strategies 73

5.3.2.1 Flat Mapping 73

5.3.2.2 Deep Mapping 76

5.3.3 Adaptive Mapping . 77

5.3.4 Reducing Communication Between Blocks 80

5.3.5 Hardware Complexity and Cost 81

5.4 Results . 82

x

5.5 Detecting Next Dominant Bottlenecks 86

5.6 Summary . 91

Chapter 6. Critical Inter-Block Value Bypassing 94

6.1 Communication Criticality Predictor 95

6.1.1 Communication Criticality Predictor 98

6.1.2 Selective Register Value Bypassing 101

6.2 Results . 103

6.3 Summary . 105

Chapter 7. Reducing Pipeline Flush Penalty using Block Reis-
sue 106

7.1 Introduction . 106

7.2 Tracking Previously Executed/Flushed Blocks 107

7.3 Reissuing Blocks . 108

7.4 Results . 108

7.5 Detecting the Next Dominant Bottlenecks 111

7.6 Summary . 113

Chapter 8. Efficient Distributed Speculation using Iterative Path
Prediction 114

8.1 Introduction . 114

8.2 Prediction and Predication Overheads 115

8.2.1 Integrated Predicate and Branch Predictor 117

8.2.2 Speculative Execution of Predicate Paths 124

8.3 Design Exploration Results . 125

8.4 Summary . 127

Chapter 9. Efficient Operand Delivery using Exposed Operand
Broadcasts 129

9.1 Introduction . 129

9.2 Dataflow Fanout Overhead . 131

9.2.1 EOB Assignment and Instruction Encoding 132

9.2.2 Microarchitectural Support for EOBs 135

9.3 Design Space Exploration Results 137

9.4 Summary . 140

xi

Chapter 10. Integrated T3 Power and Performance Results 141

10.1 Methodology . 141

10.2 Performance and Energy Scalability Results 143

10.3 T3 Power Performance Tradeoffs 146

10.4 Final Bottleneck Analysis . 149

10.5 Summary . 152

Chapter 11. Conclusions 154

11.1 Dissertation Contributions . 155

11.2 Future Directions . 158

11.2.1 Compiler Improvements 158

11.2.1.1 Improved Instruction Placement 159

11.2.1.2 Better Code Generation 160

11.2.2 E2: Next EDGE ISA and Microarchitecture 161

11.2.2.1 Variable Block Sizes 162

11.2.2.2 SIMD/Vector Optimizations 163

Bibliography 165

Vita 182

xii

List of Tables

3.1 TRIPS and TFlex microarchitecture comparison in 45nm. . . 34

3.2 Features supported by different EDGE architectures. 40

6.1 An example of mapping 4 loop iterations each with 2 blocks A
and B, across 8 cores (C1 to C7). 98

7.1 Percentage breakdown of all reissued blocks with instruction
queue block capacity of two. 110

8.1 Accuracy and speedups of different proposed IPP designs. . . 126

8.2 Accuracy and speedups of the pipelined IPP when varying num-
ber of predicted predicates per block. 126

10.1 T3 optimizations. 143

10.2 Configurations for T3, Core2 and Atom platforms [1, 25]. . . . 149

xiii

List of Figures

1.1 Iterative bottleneck analysis and reduction methodology. . . . 8

3.1 TRIPS and TFlex block diagrams 33

3.2 T3 Block Diagram. 37

4.1 Percent and average delay (in number of clock cycles) of the
critical events for SPEC INT and FP benchmarks. 54

4.2 Critical path breakdown for different micro-architectural com-
ponents. 56

4.3 Speculation-aware critical path breakdown for different micro-
architectural components. 58

4.4 Breakdown of critical cycles for system bottlenecks (Network
and Fetch) for SPEC INT benchmarks. 60

4.5 Workflow of the iterative bottleneck reduction for TFlex. . . 62

5.1 Runtime and compile time system components. 67

5.2 Information encoded in the instruction IDs for fixed and adap-
tive mapping strategies. 72

5.3 A sample DFG consisting of two blocks mapped using the flat,
deep and adaptive mapping strategies. Solid and dotted lines
represent intra and inter-block communication, respectively. . 78

5.4 Average speedup over a single core for the SPEC benchmarks
with varying numbers of cores and varying core issue widths. . 83

5.5 Percent of blocks with different maximum concurrency values
for SPEC benchmarks. 84

5.6 Communication overhead in terms of hop count for the SPEC
benchmarks running on 16 composed dual-issue cores. 85

5.7 Critical path breakdown for different micro-architectural com-
ponents when applying deep block mapping. 87

5.8 Speculation-aware critical path breakdown for different micro-
architectural components when applying deep block mapping. 89

xiv

5.9 Breakdown of critical cycles for on-chip network and fetch bot-
tlenecks for SPEC INT benchmarks using deep block mapping. 90

6.1 Components used in the distributed block criticality analyzer
to reduce bottlenecks in T3. 96

6.2 Critical-communication edges breakdown for SPEC benchmarks. 100

6.3 Block distances between register data producer and consumer
blocks running on 16 merged cores. 102

6.4 16-core speedups achieved using value bypassing. 104

7.1 16-core block reissue hit rate with varying instruction queue
block capacity per core. 109

7.2 16-core block reissue speedups with varying instruction queue
block capacity per core. 110

7.3 System-level breakdown when applying deep block mapping,
register bypassing and block reissue. 112

8.1 Sample code, its equivalent predicated dataflow representation,
and the code diagram for the corresponding predicated dataflow
block including two predicated execution paths and three pos-
sible exits. 118

8.2 Block diagram of TFlex block predictor and T3 iterative path
predictor. 120

8.3 Basic OGEHL predictor. 122

8.4 Three OGEHL-based pipeline designed used for the T3 predi-
cate predictor. 123

9.1 T3 instruction encoding with support for EOBs. S, R, and B
refer to Send, Receive, and Broadcast enable, respectively. . . 133

9.2 A sample code and corresponding code conversions in the mod-
ified compiler for the hybrid dataflow/EOB model. 134

9.3 Execution of a broadcast instruction in the IQ (top) and the
compare logic for each EOB CAM (bottom). 136

9.4 Averaged energy breakdown between move instructions and broad-
casts for various numbers of available EOBs for SPEC bench-
marks. 138

10.1 Average speedups, energy, and inverse of energy-delay-product
over single core for the SPEC benchmarks with varying the
numbers of merged cores and optimization mechanisms. 144

xv

10.2 Average speedups, energy, and inverse-EDP over single core
with varying the numbers of merged cores. 148

10.3 System-level breakdown when applying deep block mapping,
register bypassing, block reissue and iterative path predictor. . 151

11.1 TRIPS compiler overview. 160

11.2 E2 microarchitecture block diagram[59]. 163

xvi

Chapter 1

Introduction

Future systems will support different types of workloads in a power ef-

ficient manner by employing heterogeneous processors on the same chip. For

example, throughput applications such as graphics run on highly optimized

throughput processors such as GPUs [3, 4]. Control- and memory-intensive

threads, however, run on CPUs. CPUs traditionally employ power scaling

methods to achieve power efficiency. However, the traditional power scaling

methods such as dynamic voltage and frequency scaling (DVFS) are becoming

less effective given the current trends of transistor scaling [36, 93]. The reason

is partially related to the fact that as maximum supply voltage has declined

over the several years, minimum supply voltage has almost remained con-

stant [93]. This shrinking operating voltage ranges highly reduces achievable

DVFS ranges. There have been several proposals in recent years to achieving

energy-proportional computing for control-intensive and single-thread codes.

An asymmetric multicore (A-CMP) [47] has a collection of cores of differ-

ent execution granularities. For example, an A-CMP can have a few high-

performance cores for running single-threaded code and several light-weight

cores for running parallel code. A-CMPs can work efficiently for some types

of workloads but they are not flexible enough to adapt to a wide range of

1

workload characteristics. This lack of flexibility is due to the fixed issue width

and execution bandwidth of the large cores allocated to sequential codes. One

other alternative is to use architectural innovations to distribute execution

of each thread across variable number of processing cores in a flexible man-

ner [33, 36, 39, 41, 93]. Such dynamic distributed microarchitectures, which are

called composable or dynamic multicores, can operate at different energy and

performance operating points without relying on traditional DVFS methods.

Additionally, to meet power constraints, such systems have to rely on microar-

chitecture or ISA features to achieve high energy and performance efficiency

at each unique power/performance operating point.

Among those dynamic architectures, Explicit Data Graph Execution

(EDGE) [75] architectures were conceived with the goal of enabling energy-

efficient high performance, by distributing computation across simple tiles.

By raising the level of control abstraction to an atomic predicated multi-exit

block of instructions, in which branches are converted to predicates, control

overheads such as branch prediction and commit can be amortized. By incor-

porating dataflow semantics into the ISA, aggressive out-of-order execution is

possible while using less energy than RISC or CISC designs. The intra-block

data-flow encodings push much of the run-time dependence graph construc-

tion to the compiler, reducing the energy required to support out-of-order

execution through construction and traversal of those graphs. To date, EDGE

architectures have not yet demonstrated these potential advantages [32].

2

1.1 Dissertation Contributions

This dissertation examines inefficiencies in early EDGE microarchitec-

tures such as TRIPS and TFlex. We use a critical path systematic analysis

for detecting inefficiencies and reducing these bottlenecks. Guided by this

approach, this dissertation proposes the T3 EDGE microarchitecture [69] by

re-inventing several important microarchitectural and ISA components in pre-

vious designs. This new design eliminates the issues associated with previous

microarchitectures and maximizes power and performance efficiency for differ-

ent power and performance regimes. Most of these innovations reduce critical

delay and energy consumption of the system simultaneously, thus raising the

energy efficiency of the entire system.

1.1.1 T3: An Energy-Efficient Dynamic Uniprocessor

This dissertation proposes few novel microarchitectural and ISA com-

ponents for a third-generation EDGE microarchitecture called T3. These new

features include:

• Block mapping: Intra-block dataflow communication across cores is a

major bottleneck in early EDGE architectures. The deep block mapping

mechanism [67] reduces operand network traffic and saves energy by

mapping each block to the instruction queue of one core. Although

this mechanism limits the intra-block parallelism to the issue width of

each core, it improves inter-block parallelism by removing fine-grained

3

network traffic. Deep mapping reduces the cross-core communication

traffic by 50%, resulting in major delay and energy savings.

• Cross-core register bypassing: Another network bottleneck in early

EDGE architectures is the inter-block cross-core register communication

delay. The Register bypassing mechanism [68] reduces cross-core register

communication delay by bypassing critical register values directly from

producing to consuming cores. To predict critical cross-core communi-

cations, this mechanism employs a low-overhead distributed framework

called Distributed Block Criticality Analyzer [68] (DBCA) that exploits

different types of criticality information collected at block boundaries.

• Pipeline flush handling: Supporting large distributed instruction win-

dows, the EDGE architectures suffer from pipeline flush delay and energy

penalties when mispredictions occur. The Block reissue mechanism [68]

reduces pipeline flush penalties and saves fetch and decode energy by al-

lowing previously executed instances of a block to be reissued while they

are still in the instruction queue. This mechanism halves the number

of energy-hungry fetch and decode operations and also reduces the flush

delay in the block pipeline.

• Branch prediction: The combination of speculative block-based ex-

ecution and predication within blocks in EDGE architectures moves

branch prediction off the critical path and alleviates the fetch band-

width bottleneck. However, performing multi-exit next block prediction

4

on each block results in loss of prediction accuracy as the global history

of branches no longer includes those branches that have been converted

into predicates. Additionally, the branches that are converted to predi-

cates are evaluated at the execution stage rather than being predicted,

thus manifesting themselves as execution bottlenecks. This dissertation

proposes a mechanism called Iterative Path Prediction (IPP) [69] that

quickly predicts an approximate multi-bit predicate path through an in-

struction block, appending that path to the global history to predict the

next-block target address. The predicted path is then used to specula-

tively execute the predicates within the block, thus incorporating both

predicate and branch target prediction in one microarchitectural compo-

nent. By maximizing the speculation rate while increasing speculation

accuracy at both block and instruction levels, this mechanism harvests

15% increase in performance and 5% core-wide energy savings when com-

posing 16 cores to run each thread, as compared to TFlex [41].

• Operand delivery: The other problem with early EDGE designs such

as TRIPS and TFlex is associated with operand delivery. The use of

dataflow communication among instructions in each block eliminates the

need for a broadcast bypass network, associative tag matching, and the

register renaming logic found in conventional out-of-order processors.

However, for high-fanout operands, the compiler must generate trees of

move instructions to fanout values to destination instructions. These

fanout instructions increase execution delay and consume additional en-

5

ergy. To address this issue, this dissertation employs a mechanism called

Exposed Operand Broadcasts (EOBs) [69] proposed by Li et al. [48, 69]

and explains how to integrate EOBs into T3. This mechanism exposes

a small number of per-block broadcast identifiers to the compiler, which

assigns them to the highest-fanout operands. For the operands using

the architecturally visible broadcasts, a narrow distribution network con-

veys those operands to their consumers, eliminating most of the move

instructions, and consuming little energy to distribute the high-fanout

operands.

Exploiting these low-overhead features, the T3 microarchitecture maxi-

mizes energy and performance efficiency by saving execution latency and power

consumption at the same time. We compare the performance and energy ef-

ficiency of T3 against previous EDGE architectures. On SPEC CINT2000,

T3 increases average performance appreciably (over 47% with eight composed

cores) while simultaneously reducing the energy consumed (27% with eight

cores), which translates to about 2x improved energy delay product, as com-

pared to TFlex.

We also examine the performance/power flexibility of T3 by comparing

it to real conventional platforms by using both hardware measurements [25]

and analytical power models [49]. For high-performance (10∼30 watts range)

and low-energy references (1∼3 watts range), we use an Intel Core 2 and an

Intel Atom processors, respectively. With low core counts (one or two), T3

6

consumes energy in the low-energy region while performing close to the high-

performance region. When running with four or more composed cores per

thread, T3 improves performance significantly while it consumes energy below

the high-performance region. This degree of flexibility and energy efficiency al-

lows T3 to explore power/performance trade-offs beyond those of conventional

processors.

1.1.2 Systematic Bottleneck Detection and Reduction

Bottleneck analysis and removal is a challenging task for designing dis-

tributed systems due to their increased complexity. For example, distributed

uniprocessors such as T3 try to merge multiple independent cores, transpar-

ent to software, to accelerate single-threaded workloads. This dissertation

proposes a methodology that exploits critical path analysis for systematically

analyzing and reducing the performance and scalability bottlenecks of such

fully distributed processors [68]. In each optimization step, this method uses

criticality information at two levels to focus optimization mechanisms effi-

ciently,

A system-level breakdown of critical cycles reveals the contribution of

each micro-architectural component. For each detected bottleneck, a fine-

grained component-level breakdown indicates the scenarios under which the

corresponding component turns into a bottleneck. This fine-grain information

is then used to choose the right optimization method for the system and the

process repeats. Figure 1.1 illustrates the iterative bottleneck analysis and

7

System‐level analysis 

Component‐level analysis 

Detec3ng the scenario causing the bo9leneck 

Detec3ng Bo9leneck Component 

Choose and apply the right op3miza3on mechanism 

Figure 1.1: Iterative bottleneck analysis and reduction methodology.

8

reduction proposed by this dissertation.

1.2 Dissertation Organization

This dissertation is organized as follows. Chapter 2 reviews related

work. We focus on a few distinct areas. Distributed (composable) uniproc-

ssors is the key area of our related work. We then focus on the related work

associated with each individual mechanism used by the T3 microarchitecture

including instruction mapping, instruction reuse, predicate prediction, hybrid

operand delivery, and register bypassing between distributed cores. Finally,

we discuss the prior work on critical path analysis.

Chapter 3 presents a background on EDGE and early EDGE architec-

tures, TRIPS and TFlex, and their strengths and issues. The chapter then

gives a short overview on the T3 microarchitecture.

Chapter 4 discusses our methodology using critical path analysis for

detecting bottlenecks in early EDGE designs and presents a complete bot-

tleneck analysis of the TFlex microarchitecture. This analysis identifies the

major bottlenecks in this architecture; motivating the optimizations proposed

for T3 in the rest of this dissertation.

Chapter 5 discusses the instruction mapping used by TRIPS and TFlex

and proposes a new instruction mapping for T3 called deep mapping. This

mapping significantly reduces the delay and energy associated with intra-block

communication across the network, which is the number one bottleneck in

9

TFlex based on our initial critical path analysis presented in Chapter 4.

Chapter 6 proposes an optimization for T3 called selective register value

bypassing that alleviates the inter-core register communication bottleneck.

The proposed mechanism sends values directly from each output-critical in-

struction in one executing core to their consumer instructions in other cores,

thus bypassing shared register forwarding units.

Chapter 7 proposes an optimization for T3 called block reissue that

addresses fetch bottleneck caused by mispredictions. By keeping track of pre-

viously fetched blocks and reissuing those blocks if needed, this feature reduces

critical time between block flush and fetch after mispredictions.

Chapter 8 presents the T3 integrated next block predictor and predi-

cate predictor. This predictor, called Iterative Path Predictor (IPP), addresses

two fundamental problems associated with speculation in EDGE architectures

which are their low next-block prediction accuracy and low intra-block specu-

lation rate. To improve next block prediction accuracy and increase the spec-

ulation rate, this predictor predicts the predicate path within each block and

uses it to predict the next block and speculate on the intra-block predicates.

Chapter 9 presents an overview of exposed operand broadcasts (EOBs)

which are used by T3 to address the operand delivery bottleneck caused when

using dataflow for high-fanout instructions. This hybrid operand delivery

mechanism uses dataflow and compiler-generated light-weight broadcasts to

handle low- and high-fanout operands, respectively.

10

Chapter 10 compares the fully integrated T3 system to previous EDGE

microarchitectures (TRIPS and TFlex) that have different core composition

granularities and microarchitectural features and shows that T3 improves sig-

nificantly on latency, energy efficiency and scalability. The chapter also com-

pares the performance/power flexibility of the T3 microarchitecture against

several design points in the performance and power spectrum of production

processors such as Intel Atom and Core 2 processors. The results show that

T3 not only performs very efficiently in low-energy and high-performance re-

gions but also can perform in a much larger performance/energy space beyond

DVFS on conventional processors. For example, composing different number

of cores, not only T3 can perform in both low-energy and high-performance

regions, but it also can perform in between or above those regions. Chapter 11

summarizes the dissertation, discusses the future work, and concludes.

11

Chapter 2

Related Work

Related work falls into three main categories. The first category is

the use of distributed uniprocessors or composable cores similar to TRIPS

and TFlex for scaling single thread performance by merging distributed light-

weight cores. The second category includes microarchitectural or ISA tech-

niques that are used for optimizing the processor pipeline. We review some of

these mechanisms that are similar to the ones employed by T3 for implement-

ing efficient instruction fetch and mapping, predicate and branch prediction,

criticality prediction and analysis, hybrid operand delivery, cross-core register

bypassing and instruction reuse. The third category is the previous work on

the critical path analysis from which the bottleneck detection methodology

used by this dissertation is derived. The complete review of previous EDGE

architectures is presented in Chapter 3.

2.1 Distributed Uniprocssors

To support workloads with differing degrees of parallelism, multi-core

systems must adapt the granularity of cores to match the available number of

threads [36]. One approach to this problem is to use dynamic or composable

12

multicores that aggregate a small number of cores to form a larger core capable

of exploiting concurrency at a finer granularity [39, 41]. Recent studies propose

methods for aggregating both in-order [86, 94] and out-of-order cores [39, 41].

This study relies on out-of-order core aggregation as the underlying mechanism

for exploiting block-level concurrency in programs. Some architectures take

a dynamic approach for aggregating independent cores while others employ

compiler and ISA support to achieve this goal.

2.1.1 Fully Dynamic Distributed Uniprocessors

A recent trend has been to balance ILP and TLP by adjusting the num-

ber of distributed resources allocated to a thread, by having multiple indepen-

dent units collude to accelerate a single thread dynamically. This approach

makes distribution of instructions more challenging because the number of

participating processor elements is unknown statically and may change dy-

namically. In the Federation technique [86], two neighboring in-order cores,

similar to Niagara/T1 [44] cores, are “federated” to create an out-of-order pro-

cessor. A recent study, however, demonstrates that aggregating in-order cores,

even under idealized assumptions about aggregation overheads, leads to major

performance challenges [73].

Some recent work has allowed core aggregation on a set of out-of-order

cores. CoreFusion [39, 93] is a technique that “fuses” multiple dual-issue out-

of-order cores to form a wide-issue out-of-order core. The fused cores form a

distributed instruction cache, instruction window and branch predictor, but

13

some of the structures, such as register renaming, are physically shared, which

limits the aggregate issue width to eight. When fused, each core uses its private

i-cache and branch predictor to fetch instructions and predict branches. The

information about branch prediction decisions needs to be transferred to a

central unit called the fetch management unit to arrange a consistent sequence

of executing instructions. Fetched instructions are sent to another centralized

unit for register renaming and finally to their executing cores. The use of

the physically shared register renaming and fetch units causes bottlenecks and

limits the aggregate issue width to eight.

To guide instruction wakeup, selection, and issue, Forwardflow [33],

which is another composable system, dynamically builds an internal dataflow

representation from instructions within a single thread distributed across mul-

tiple cores. To save energy, T3 uses the compiler to generate the dataflow

representation. Similarly, Hybrid Dataow Graph Execution (HeDGE) [84] ex-

plicitly maintains dependences between instructions in the issue window by

modifying the issue, register renaming, and wakeup logic. Using explicit con-

sumer encoding, this architecture employs Random Access Memory (RAM)

instead of Content Addressable Memory (CAM) needed for broadcast. WiD-

GET [93] decouples thread context management units from execution units

and can adapt resources to operate in different power-performance regimes.

Instead of using dedicated units for fine-grained control management, T3 ex-

ploits distributed ISA-supported block-level control mechanisms to improve

scalability. Also, different from both WiDGET and CoreFusion, T3 distributes

14

control and instruction sequencing across executing cores, thus avoiding cen-

tralized control units.

Multiscalar [80] and Thread-level Speculation [45] rely on discontinu-

ous instruction windows by having the hardware spawn speculative compiler-

selected threads on multiple cores.

2.1.2 Compiler-assisted Distributed Uniprocessors

Instead of resolving cross-core data/control dependences dynamically,

some approaches take advantage of compiler support to extract instruction

dependencies statically. Instruction Level Distributed Processing [42, 43] sup-

ports hierarchical register files consisting of many general purpose registers

and a few accumulator registers. The hardware steers each compiler-detected

strand of instructions to a processing element and its accumulator. The inter-

strand dependencies are handled through the general purpose registers.

Distributed dataflow-like architectures, including Explicit Dataflow Graph

Execution (EDGE) architectures can also support a varying number of dy-

namic elements assigned to a single thread. TRIPS uses the compiler to form

predicated blocks of dataflow instructions and to place each instruction on a

16-ALU grid, where they are issued dynamically [75]. TFlex is a second gen-

eration EDGE design that supports dynamic core aggregation [41], and is the

baseline distributed substrate used in this dissertation.

15

2.2 Efficiency Optimizations

This section discusses the prior work on the optimization mechanisms

used by T3 for energy efficiency. These optimizations include instruction map-

ping, instruction communication and operand delivery mechanisms, cross-core

register value bypassing, instruction reuse and path and predicate prediction.

2.2.1 Instruction Mapping

Some architectures, such as VLIW architectures and RAW, rely heavily

on the compiler to map instructions to a distributed substrate. For example,

the RAW compiler schedules instructions in time to exploit concurrency, and

places instructions on a physical substrate [92]. The Voltron architecture [94]

combines multiple in-order VLIW cores into a wide-issue VLIW core. This

statically exposed architecture relies on the compiler to schedule VLIW in-

structions and extract fine-grained communicating threads.

Fully dynamic approaches only use hardware to map instructions. These

methods do not take advantage of instruction dependencies extracted by the

compiler. Clustered superscalar processors [8, 10, 15, 26, 72, 95] rely on the

hardware to steer instructions dynamically to different clusters based on in-

struction dependencies. Complexity-Effective Superscalar Processors [57] steer

the dependent instructions into separate FIFO buffers dynamically and only

send the result tags to the heads of the FIFO buffers. The ISA for Instruc-

tion Level Distributed Processing [42, 43] supports hierarchical register files

consisting of many general purpose registers and a few accumulator registers.

16

The instruction stream is divided into short strands of dependent chains. The

instructions in each strand are steered into a processing element associated

with the accumulator accessed by those instructions. While the instructions

in each cluster are linked by the the accumulator, the inter-strand dependencies

are passed through the general purpose registers. To simplify the hardware,

this dissertation relies on the compiler to specify instruction dependencies and

concurrency, rather than discovering them at runtime.

The runtime mapping approach presented in Chapter 5, which can use

static information, is most similar to approaches in which the hardware maps

coarse chunks of work to distributed units, often with compiler support. The

compiler for Multicluster processors partitions instructions between clusters

during register allocation to minimize remote register accesses [27, 95]. In-

structions in each cluster are scheduled dynamically by the hardware. In

Multiscalar [80] and Thread-Level Speculation [45], the hardware automati-

cally spawns speculative threads, selected by the compiler, on multiple cores.

These more speculative approaches rely on discontiguous instruction windows.

Wavescalar is a dataflow processor that uses static placement of instructions

and dynamic issue on a hierarchical substrate [85].

2.2.2 Instruction Communication Mechanisms

As operand delivery and instruction communication mechanisms is the

focal points of chapters 6 and 9 in this dissertation, this subsection discusses

different instruction communication mechanisms, and how different architec-

17

tures employ them to handle different types of dependences. This section

also discusses different optimization methods applied to each communication

mechanism in the recent literature.

2.2.2.1 Instruction Communication via Registers

Registers are fast, temporary storage units for data. In superscalar

machines, registers are used for handling long dependences. In other words,

if the consumer instruction is not present in the instruction window when the

producer instruction produces its output, the consumer will read the value of

the output of the producer from a register during the dispatch phase.

Power consumption and access delay are fundamental problems when

using large register files. Therefore, many studies suggest different optimiza-

tion methods to improve the register access time or power consumption. A

register cache mechanism is proposed in [11] to reduce the length of the critical

loops in the pipeline of superscalar processors by reducing the register access

time. Using multiple-banked [9, 22] register files is another technique to re-

duce register file access time and energy. Distributing physical registers across

multiple banks, these techniques attempt to reduce the number of ports and

access time per bank. Exploiting dataflow blocks, T3 relies on registers only

for inter-block communication. Additionally, it uses direct register bypassing

to reduce long register latencies due to distributed register forwarding logic.

18

2.2.2.2 Broadcast Bypass Network

Superscalar processors use registers for handling long dependences and

a combination of register renaming and broadcast bypass networks for han-

dling short dependences. Bypass network broadcasts the result of an executed

instruction, along with a tag, previously assigned during the register renaming

phase, to all unissued instructions in the instruction queue. Those instruc-

tions compare the tags of their operands against the broadcasted tags. If the

broadcasted tag and tag of one of their operands are identical, the value of

that operand will be set to the value read from the broadcast network, and

the ready flag of that operand is set.

In superscalar processors with dispatch-bound register reads, instruc-

tions access the register file in the dispatch state [58]. Example of processors

with dispatch-bound register reads are Pentium Pro and Power PC 604. In

superscalar processors with issue-bound register reads, instructions access the

register file in the issue state [58] and the operand values are not stored in the

issue queue any more. Examples of processors with issue-bound register reads

are Pentium 4 and Alpha 21264. In these designs, instruction queue stores and

updates the status of registers corresponding to the operands of each instruc-

tion. Prior work on SPEC benchmarks shows that short dependences handled

by the broadcast network constitutes about 75% of program dependences in a

superscalar processor processor [31].

19

2.2.2.3 Dataflow Communication

Tokens or packets are used by dataflow machines for point-to-point

communication among instructions. Dennis’s dataflow machine [23] has an

instruction memory with each instruction cell corresponding to an operation

of a dataflow program. When the operands are ready, the instruction is sent

through a high bandwidth switch to an operation units to execute. After

instruction is executed in the operation unit, the result of the operation is sent

as one or two packets (or tokens), along with the address of a the destination

operand to the instruction memory. MIT TTDA dataflow machine [6] in an

abstract level is similar to MIMD machines. Each PE is a dataflow processor.

One I-structure (storage unit for function or threads) and one PE constitute

a complete dataflow computer. Each PE runs a code block and addresses

within code blocks are relative. The result token of an executed instruction is

sent back to the PE, or to another PE executing the destination code block.

In first generation dataflow machines [6, 23], different from the conventional

von Neumann machines, data values are not permanently stored in memory

or registers. Instead, data values are transmitted among instructions using

tokens allowing for massively parallel the execution. However, these machine

run programs written in special dataflow languages, which are not popular. In

addition, there are some implementation problems that were never overcome

in these machines such as difficulties in broadcasting tokens when there are

several consumers and encoding all the dependences in the program,

Wavescalar [85] uses a fetch-less instruction set with an executable L1

20

instruction cache with L2 data caches. Each instruction in the memory con-

tains all of the architectural states of that instruction. Each instruction can

encode any number of targets. To prevent code bloat, there is only one copy of

an instruction in the system. To distinguish between different instances of one

instruction, the hardware uses a field called wave. The generation and main-

tenance of the waves is handled using special instructions inserted in the code

by the compiler. In addition to complexity of the required executed memory,

high-fanout instructions is another problem in the Wavesalar architecture.

TRIPS [14] supports a very large instruction window using a hybrid

dataflow and atomic block execution model. In this processor, the instruction

window holds several blocks of instructions running in parallel speculatively.

These instruction blocks communicate through the memory and registers. In-

side each block, however, instructions execute in a dataflow order, thus di-

rectly communicating to each other. In this ISA, each instruction encodes up

to two target instructions in the same block using their offsets from the be-

ginning of the block. If an instruction has more than two targets, the EDGE

compiler [78] uses move instructions to generate a fanout tree to deliver the

output to its targets. Although this approach fixes the high-fanout instruc-

tion encoding problem, the inserted move instructions incurs a performance

penalty in terms execution latency and code size.

21

2.2.2.4 Hybrid Instruction Communication

Due to high amount of energy consumed during tag matching, the

broadcast bypass networks are a major source of high power consumption

in the instruction queue [58]. Many studies attempt to reduce the power

dissipated during the tag matching and wake up phases in the instruction

queue.

Several approaches [16, 17, 38, 62, 63] have proposed hybrid schemes which

dynamically combine broadcasts and direct dataflow to reduce the energy con-

sumed by the operand bypass. These dynamic hybrid schemes use hardware

to detect instruction dependences and dynamically select the right communi-

cation mechanism for each instruction. Gonzalez et al. [16, 17] observe that

many instructions only have small number of consumer instructions in the in-

struction window. Based on this observation, they propose a power-efficient

issue logic design for superscalar processors. The approach implements a ta-

ble called N-use table, which is indexed by physical register, to store the first

N consumer instructions of each physical register. If a physical register has

more than N consumers in the table, the next consumer instruction is put into

a small out-of-order instruction queue called I-buffer, on which broadcast is

performed. The instructions stored in the N-use table will get the operand

through point-to-point communication, when the corresponding physical reg-

ister is available. The ones in the I-buffer will get their operand through

broadcast. The ratio between point-to-point and broadcast can be adjusted

by changing the value of N. This approach eliminates most of the broadcasts

22

and tag matchings. However, the N-use table is a complex structure. Multiple

copies of an instruction in the N-use table need to maintain circular pointers

to each other. These pointers need to be updated when the corresponding

physical register is available. For an M-issue processor, it require 2*N*M read

ports and N*M writing ports, which makes it unpractical for implementation

on wide-issue superscalar processors.

Huang et al. [38] propose a full hardware pointer-based approach to

eliminate the broadcasts and the tag-matchings, which detects the one-consumer

instructions dynamically and performs point-to-point communication from

them. Any instruction targeting more than one instruction has to broadcast.

During dispatch, a consumer instruction updates a pointer to itself in the In-

struction Queue entry associated with its producer instruction. This pointer

value is used during the issue of the producer instruction to directly send the

result to the consumer. This approach avoids using the complex N-use table,

in stead, only performs point-to-point communication from the one-consumer

instructions. However, as we show in the analytical model and results sec-

tion, broadcast from any instructions with more than one consumer can not

the reach the optimal point in terms of minimizing the power consumption.

In this sense, T3 EOB hybrid instruction communication model presented in

Chapter 9 is a generalization of Huang’s model, and demonstrates that this

generalization provided enhanced benefits.

Different from dynamic hybrid models, the architecturally exposed operand

broadcasts (EOBs) discussed in Chapter 9 for T3 rely on the ISA to be con-

23

veyed into the microarchtecture. The involvement of the ISA provides some

opportunities for the compiler while causing some challenges at the same time.

The main role of the compiler is to pick the right mixture of the dataflow and

EOBs such that the total energy consumed by the move trees and the EOBs

becomes as small as possible. In addition, this mixture should guarantee an

operand delivery delay close to the one achieved using the fastest operand

delivery method (i.e. the EOB network).

2.2.3 Distributed Register or Memory Bypassing

Moshovos et al. propose memory bypassing and cloaking algorithms [55]

to reduce memory delay in superscalar processors. These mechanisms identify

dependent loads and stores early in the pipeline and speculatively bypass the

store values to dependent loads prior to address calculation and disambigua-

tion. Selective critical value bypassing proposed in Chapter 6 essentially is

similar to the memory bypassing. Selective critical value bypassing, however,

is designed for register value bypassing between blocks of a distributed instruc-

tions. Therefore, it is not speculative and does not need address calculation or

disambiguation. Moreover, it is only applied to critical communication edges.

Krishnan and Torrellas [46] propose a hardware-based cross-core reg-

ister communication in thread level speculation (TLS) systems using a syn-

chronizing scoreboard and a shared bus. Restricting register bypassing to im-

mediate successor blocks, our selective critical value bypassing proposed in

Chapter 6 does not incur any of these overheads. To further reduce the over-

24

head, it also performs cross-core value bypassing only for the predicted critical

register output values.

2.2.4 Instruction Reuse

Trace processors exploit control independence by reusing control-independent

traces in the window following misprediction events. The trace generation

hardware implements complex algorithms for detecting fine-grain, intra-trace

control-independence and coarse-grain, inter-trace global re-convergent points [54,

70, 71]. Taking advantage of the compiler-generated predicated blocks, our

block reissue mechanism for T3 proposed in Chapter 7 does not use these hard-

ware components. Moreover, each core only maintains the availability status

of its associated blocks, which amortizes the bookkeeping overhead across a

large number of instructions. Sankaralingam [74] et al. propose instruction

revitalization for TRIPS in which, the compiler adds a setup block to the be-

ginning of each loop to dynamically initiate reissuing of the loop body. The

T3 block reissue method proposed in Chapter 6 leverages the same concept of

block revitalization, but it is not limited to loops and is fully dynamic so no

setup code is added statically.

There have also been proposals for reusing control independent instruc-

tions [5, 18, 37, 79]. Most of these proposals use complicated checkpointing

mechanisms to find control/data independent instructions. This dissertation

proposes a coarse-grain reissue mechanism in which full blocks of a distributed

large instruction window get reissued. As a result, this mechanism amortizes

25

the bookkeeping overhead over a large number of instructions. Additionally,

this mechanisms eliminate a huge portion of energy-hungry accesses to instruc-

tion caches while reducing the effect of fetch bottleneck.

2.2.5 Path and Predicate Prediction

Previous approaches investigate predicate prediction schemes [7, 19, 51,

60, 61] for superscalar designs. To preserve the benefit of predication on hard-

to-predict branches, these approaches use a restricted version of selective pred-

icate prediction based on the estimated confidence of prediction. Chuang et

al. [19] propose predicate prediction for out-of-order processors to alleviate the

problem of multiple register definitions along the if-converted control paths.

They reverse if-conversions by predicting the predicates, which reduces the

predication penalty. To preserve the benefit of predication, this method uti-

lizes a replay mechanism that makes the predicate misprediction penalty less

than the branch misprediction. This work is extended through unifying the

branch and predicate predictor to recover the correlation information loss [61].

The iterative path predictor (IPP) proposed in Chapter 8 for T3 relies on fully

distributed protocols and so does not use any central integrated predictor.

A multi-level distributed branch prediction model has been used by

Multiscalar [40]. Multiscalar performs two levels of branch prediction: (1) To

find the next task, a central inter-task exit predictor predicts which of the

four exits of a the current task will be taken. (2) Within each task, an intra-

task traditional taken/not-taken predictor predicts the outcome of the branch

26

instructions in the task. The intra-task and inter-tasks predictors operate

independently. Relying on block-level distributed protocols, the T3 iterative

path predictor unifies branch and predicate path predictors while exploiting

the prediction results in a fully-distributed fashion. This leads to maximizing

both fetch and speculation across distributed cores.

2.3 Criticality Analysis

Early work on critical path analysis generally focus on predicting crit-

ical loads instructions and prioritizing them over the non-critical ones across

the cache hierarchy [30, 81, 82]. These methods only focus on predicting or

evaluating critical load instructions and cannot be easily extended to other

instructions or micro-architectural resources.

Fields et al. [28] and Tune et al. [91] propose a general profile-driven

model for estimating program’s critical path using a dependence graph. In this

graph, nodes represent micro-architectural events and links between the nodes

represent dependences between events. These dependences must comply with

the dependence constraints dictated by program data dependences and the

micro-architectural restrictions of the target processor. Several prior studies

have shown that such a simulation-based critical path analysis is more effective

for a detailed performance analysis than conventional simulation-based tech-

niques and hardware performance-monitoring techniques [29, 90, 91]. Conven-

tional techniques usually provide coarse-grained statistics, such as the number

of cache misses and branch mispredictions. These statistics although useful

27

are insufficient to find the interactions between components and detect system

bottlenecks.

In addition to simulation-based criticality analysis, Fields et al. [28] pro-

pose a state-of-the-art criticality predictor for superscalar processors. In this

design, the processor detects micro-architectural events and sends the infor-

mation about each event type and associated PC to the predictor as training

data. The predictor uses a forward token passing algorithm to detect long

lasting chains of instructions and predict them as critical instructions. The

communication criticality predictor proposed in Chapter 6 for T3 uses a sim-

ple majority vote algorithm without employing any complex token passing

hardware.

Nagarajan et al. [56] extend the simulation-based critical path analysis

for performance analysis of the TRIPS processor [75]. The TRIPS execution

model treats large blocks of instructions as atomic units for fetch, execution,

and commit. TRIPS also support a distributed microarchitecture in which

numerous computation tiles communicate across a routed network. The criti-

cal path tool implements the new micro-architectural events and dependence

constraints introduced by TRIPS ISA and micro-architectural features [56].

The tool proposed for bottleneck analysis in Chapter 4 for detecting TFlex

bottlenecks is an extension of that work [56]. We customize this tool for the

TFlex composable multicores [41]. This tool supports various configurations

of this architecture. Additionally, the tool supports different levels of granu-

larity for presenting and analyzing the criticality information, which simplifies

28

the detection of the system bottlenecks. Finally, it supports special opera-

tion modes to evaluate the effect of speculation on performance in different

configurations.

29

Chapter 3

Background

3.1 EDGE ISAs

Explicit Data Graph Execution (EDGE) ISAs [75] were designed with

the goals of high single-thread performance, ability to run on a distributed,

tiled execution substrate, and good energy efficiency. An EDGE compiler

converts program code into single-entry, multiple-exit predicated blocks. The

two main features of an EDGE ISA are block-atomic execution [53] and di-

rect instruction communication within a block. Instructions in each block

use dataflow encoding in which each instruction directly encodes its destina-

tion instructions. Using predication, all intra-block branches are converted to

dataflow instructions. Therefore, within a block, all dependences are direct

data dependences. An EDGE ISA uses architectural registers and memory for

inter-block communication.

This hybrid dataflow execution model supports efficient out-of-order

execution, using conceptually less energy to construct the dependence graphs,

but still supports conventional languages and sequential memory semantics.

In an EDGE ISA, each block is logically fetched, executed, and committed

as a single entity. This block atomic execution model amortizes the book-

30

keeping overheads across a large numbers of instructions and reduces branch

predictions and register accesses. Additionally, it reduces the frequency of

control decisions, providing the latency tolerance needed to make distributed

execution, across multiple tiles or cores, practical.

3.2 The TRIPS Tiled Architecture

TRIPS was the first-generation microarchitecture to use an EDGE ISA.

The TRIPS ISA supported fixed-size EDGE blocks of up to 128 instructions,

with 32 loads or stores per block. Instructions could have one or two dataflow

targets, so instructions with more than two consumers in a block employed

move instructions, inserted by the compiler to fan operands out to multiple

targets.

To achieve fully distributed execution, the TRIPS microarchitecture

used no global wires, but was organized as a set of replicated tiles communicat-

ing on routed networks. Figure 3.1(a) shows a TRIPS tile-level block diagram.

Each TRIPS processor used five types of tiles: one global control tile (GT),

16 execution tiles (ET), four register tiles (RT), four data tiles (DT), and five

instruction tiles (IT). The TRIPS microarchitecture could simultaneously ex-

ecute up to eight atomic blocks (one non-speculative, seven speculative) for

an aggregate instruction window size of 1024 instructions. The GT tile was

in charge of maintaining the control order of the in-flight blocks, performing

next-block prediction and initiating block allocation and block commit/flush.

The TRIPS design had a number of serious performance bottlenecks [32].

31

Misprediction flushes were particularly expensive, because the TRIPS next-

block predictor had low accuracy compared to modern predictors, and the

refill time for such a large window was significant. Since each instruction

blocks was distributed among the 16 ETs, intra-block operand communica-

tion was expensive, both in terms of energy and latency on the critical path.

The predicates used for intra-block control also caused performance losses, as

they were evaluated in the execution stage, but would have been predicted

as branches in a conventional superscalar design. Finally, the RTs and DTs

distributed around the edges of the ET array limited register and primary

memory bandwidth, and forced some instructions to have long routing paths

to access them.

3.3 The TFlex Composable Microarchitecture

TFlex was a second-generation EDGE microarchitecture [41], which

used the TRIPS ISA but improved upon the original TRIPS microarchitec-

ture. TFlex distributed the memory system and control, making each tile a

fully functional EDGE core, but permitting a dynamically determined number

of tiles to cooperate on executing a single thread. Thus, TFlex is a dynamic

multicore design, similar in spirit to CoreFusion [39]. The ability to run a

thread on a varied number of cores, from one to 32, was a major improvement

over TRIPS, which had a fixed execution granularity. That fixed granularity

made it unable to adapt the processing resources as the workload mix, appli-

cation parallelism, or energy efficiency requirements changed. The important

32

(a) TRIPS block diagram [32]

32-Core TFlex Array

One TFlex Core
Block

control

8-Kbit
next-block
predictor

Memory
network

in/out

8KB 2-way
L1 D-cache

44-entry
load/store

queue

128-entry
architectural
register file
2R, 1W port

Register
forwarding

logic & queues

Operand
buffer

128x64b

Se
le

ct
 lo

gi
c

Operand
buffer

128x64b
128-entry

instruction
window

Operand
network
in queue

Operand
network

out queue

Control networks

int
ALU

4KB block
header cache

4KB
direct-mapped

L1 I-cache
fp

ALU

2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

(b) TFlex core array and the components in a single TFlex core [41]

Figure 3.1: TRIPS and TFlex block diagrams

33

Table 3.1: TRIPS and TFlex microarchitecture comparison in 45nm.

Structures TRIPS (16-issue) TFlex-1 (2-issue)
Size Area Size Area

(mm2) (mm2)

Fetch 64-Kbit Block Pre-
dictor in [64]

16-Kbit Block Pre-
dictor in [41]

(B.Pred., I-cache) 80KB I-cache 1.45 8KB I-cache 0.73
Reg. Files 512 entries 0.57 128 entries 0.17

Exec. resources 1024 entries 7.47 128-entry 0.73
(issue window,
ALUs)

SRAM-based SRAM-based

issue window issue window
INT(16),FP(16) 2-INT ALU, 1-FP

ALU
L1 D-cache 32KB D-cache 6.35 8KB D-cache 0.68
(D-cache, LSQ) 1K-entry LSQ 44-entry LSQ
Routers OPN [32] 2.09 Dual OPN [41] 0.19
L2 Caches 4-MB NUCA Cache – 4-MB NUCA Cache –
Total 17.93 2.50

34

new features supported by TFlex are as following:

Distributed Register and Memory Systems: Unlike TRIPS, which

distributed the DTs, ITs, and RTs along the edges of the execution array, lim-

iting bandwidth and scalability, the TFlex microarchitecture distributes the

register, data caches, and instruction caches across all participating cores as

interleaved banks. This change required special functionality in the load/store

queues, using flow control to NACK loads or stores that would overflow an

LSQ bank in one of the participating cores.

Distributed Control: TRIPS maintained the processor control and

sequence of program execution in a single tile (the GT in Figure 3.1(a)). TFlex

distributes the control responsibilities across all participating cores. This mi-

croarchitecture employs distributed protocols to implement next-block pre-

diction, fetch, commit, and misprediction recovery using no centralized logic,

enabling the architecture to scale to 32 participating cores per thread.

Figure 3.1(b) illustrates the microarchitectural components of a TFlex

core [41]. Table 3.1 compares the area and size of different microarchitectural

components of TRIPS and TFlex in the 45nm technology. Each TFlex core

has the minimum resources required for running a single block, including a

128-entry RAM-based instruction queue, an L1 data cache bank, a register

file, a branch prediction table, and an instruction (block) cache bank.

When N cores are merged, they can run N blocks simultaneously, of

which one block is non-speculative and the rest are speculative. Each block

35

is mapped to the instruction queue of one core, thus all instructions inside

that block execute and communicate within the core [67]. In the merged

mode, the register banks, instruction cache banks, and data cache banks of

the cores are shared among the cores and are address interleaved. For exam-

ple, each core contains a data cache and the low-order bits of each memory

address determines the core containing the cache bank associated with that

memory address [41]. In the merged mode, a register forwarding unit and a

load store queue unit on each core are in charge of holding speculative reg-

ister and memory values produced by the running blocks. Additionally, the

register forwarding unit resolves dependences and forwards register values be-

tween blocks. Therefore, a register value produced by a block needs to be

first sent to its home core so that its consuming blocks can be identified and

it can get forwarded to the cores running those blocks. Consequently, there

is no centralized renaming mechanism for inter-block register communication.

Additionally, distributed protocols implement next block prediction, fetch, ex-

ecute, commit, and misprediction recovery using no centralized logic, which

makes this architecture very scalable. Also, the block-level prediction, fetch,

commit, misprediction recovery overheads are amortized across all instructions

in each block.

Similar to TRIPS, the original TFlex design distributed the instructions

from each in-flight block among all participating cores, increasing operand

communication latency. TFlex also had many of the same problems as the

TRIPS architecture: the software fanout trees, poor next-block prediction ac-

36

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

EO
B/
to
ke
n 

se
le
ct
 lo
gi
c 
 

2 16-Kbit
iterative path

predictor (IPP)

Block control
& reissue unit

Block
mapping unit

Register
bypassing

Spec.
predicate

32-Core T3 Array
OneT3 Core

Figure 3.2: T3 Block Diagram.

curacy, predicates not being predicted, expensive refills after pipeline flushes,

and large, fixed-size blocks that could cause significant instruction cache pres-

sure. The T3 microarchitecture was designed to address these limitations of

TFlex.

3.4 T3 Microarchitectural Features

The T3 microarchitecture currently uses the TRIPS ISA with one

change in the instruction encodings and semantics to support Exposed Operand

Broadcasts. In addition, it has five new microarchitectural features, which

affect its datapaths and design significantly. These features, which are Deep

Block Mapping, Critical Register Bypass, and Block Reissue, Exposed Operand

37

Broadcasts and the Iterative Path Predictor, mitigate all of the major perfor-

mance bottlenecks identified by the analysis of the TRIPS hardware [32] and

the TFlex design[41]. Figure 3.2 shows the T3 microarchitecture block dia-

gram; the new microarchitectural components are shaded. These five additions

achieve the following:

Reduced operand network traffic: By spreading blocks across all

participating execution tiles or cores, both TRIPS and TFlex suffer high intra-

block communication. T3 employs a mechanism called Deep Block Map-

ping [67] that maps each block to the instruction queue of one core, permitting

all instructions to execute and communicate within the core [67]. For single-

issue cores (such as the TRIPS ETs), the original block mapping shows higher

performance than the Deep Mapping, but T3, like TFlex, uses dual-issue core

for which Deep Mapping is most performant.

Critical inter-block value bypassing: To reduce inter-block register

communication delay, T3 employs an optimization mechanism called selective

register value bypassing [68] that bypasses remote register forwarding units

by sending register values predicted to be critical directly from producing to

consuming cores.

Reduced pipeline flush penalties: To alleviate branch flush penal-

ties, T3 employs a method called block reissue [68]. This technique permits

previously executed instances of a block to be reissued while they are still in

the instruction queue, even if they have been flushed. This method saves both

pipeline fill latency and energy by reducing accesses to the shared instruction

38

cache banks.

Wide-operand fanout reduction: TRIPS and TFlex rely solely

on the intra-block dataflow mechanism to communicate intra-block operands.

The resulting move instruction trees add considerable overhead, both in time

and energy. Alternatively, T3 employs architecturally exposed operand broad-

cast operations (EOB). The extended ISA combines dataflow operand delivery

and compiler assigned EOBs to handle low- and high-fanout operands each in

a power-efficient manner. EOBs nearly eliminate this overhead and results in

a major energy saving.

Branch and predication overhead reduction: T3 employs a new

predictor design called an Iterative Path Predictor, which unifies branch target

and predicate prediction while providing high accuracy for each. This predic-

tor generates four bits of a predicted path within the block per cycle, quickly

obtaining the predicated control path through the block, to generate the pre-

dicted next-block target. The bits from this path are then used to predict the

predicates within the block.

3.5 Summary

Table 3.2 compares features of the TRIPS, TFlex and T3 architectures.

TRIPS and TFlex both employ TRIPS ISA and T3, which is evaluated in this

dissertation, uses a slightly modified TRIPS ISA .

T3 can be considered a major improvement on previous EDGE archi-

39

Table 3.2: Features supported by different EDGE architectures.

ISA TRIPS E2

Category Microarchitecture TRIPS TFlex T3 E2

Distributed, tiled EDGE microarchitecture X X X X
Distributing Fully distributed register files and L1 caches X X X
instructions Variable core granularity X X X

(Dynamic Multicore Capability)
Reduced operand network traffic X1 X X
(Deep Mapping)

Operand Inter-block latencies reduced X X
delivery (Critical Register Bypassing)

Wide operand fanout reduced X X
(EOB)
Branch flush penalties reduced X X
(Block Reissue)

Distributed Predicate resolution bottleneck reduced X X
Speculation (IPP)

Improved next-block target prediction X X
(IPP)

Instruction Variable-sized blocks X
packing SIMD & vector instructions X

40

tectures in the following aspects of the microarchitecture and ISA:

Instruction distribution: Taking advantage of block-based dataflow exe-

cution, TRIPS and TFlex distribute instructions across distributed tiles with

low control synchronization overhead to maintain a distributed sequence of

instructions. In these architectures, the compiler distributes instructions in

each block across all cores. However, using this mapping, the delay of cross-

core dataflow communication among instructions is high. By mapping all

instructions in each block to only one core (which is called deep mapping in

this dissertation), T3 eliminates this bottleneck while saving energy consumed

over the on-chip network.

Operand delivery: TRIPS and TFlex exploit dataflow and registers for

intra- and inter-block operand delivery, respectively. Dataflow is inefficient for

handling high-fanout operands and inter-block register forwarding latency can

be high when using deep mapping. To address intra-block communication effi-

ciently, T3 combines dataflow with light-weight architecturally exposed broad-

casts; thus minimizing overall operand delivery energy within each core. To

speedup inter-block register communication, T3 bypasses critical late registers

directly from source cores to destination cores; thus shortening critical path

latency.

Speculation: To generate large number of in-flight instructions, EDGE ar-

chitectures use a next block predictor. As each EDGE block is multi exit, the

1The original TFlex microachitecture [41] did not use this later-proposed optimiza-
tion [67].

41

prediction accuracy of early EDGE architectures is not as high as conventional

taken/not taken predictors. To improve this accuracy, T3 exploits a predictor

that quickly obtains the predicated control path through the block, and then

uses this predicted path to generate the predicted next-block target. Another

issue with early EDGE designs is the fact that intra-block predicated branches

are evaluated in the execution stage instead of being predicted similar to the

way branches are handled in conventional architectures. T3 uses the predicted

predicate path to speculatively execute these predicates.

For completeness, Table 3.2 also shows the capabilities that will be

enabled by the E2 ISA and compiler, briefly discussed in Chapter 11. This

architecture improves EDGE design in another aspect which is instruction

packing. Enabling variable block sizes and SIMD/vector instructions, this

architecture significantly reduces the execution energy overheads.

42

Chapter 4

Bottleneck Analysis for EDGE Architectures

4.1 Introduction

Bottleneck analysis and removal of the future distributed systems can

be very challenging because of their distributed nature and use of different

micro-architectural components. For example, choosing the right microar-

chitectural optimization to improve system efficiency depends on the detailed

scenarios causing the bottlenecks in the system at a given step of optimization.

This chapter proposes a method based on the profile-driven critical

path analysis [28, 90] to perform bottleneck analysis and reduction for such

distributed systems in a very systematic way. At a system level, this analy-

sis reports the distribution of the critical cycles between different distributed

components in the system. Considering how this distribution changes be-

tween different configurations, the system-level breakdown can detect different

performance and scalability bottlenecks. At a component level, the analysis

reports the critical cycles of each system component according to detailed

micro-architectural event sequence leading to critical cycles. Combining the

two levels of analysis, the method presents a systematic way of both detecting

and reducing bottlenecks in the system iteratively. At each step of the opti-

43

mization process, the system-level breakdown reveals both performance bot-

tlenecks in each system configuration and scalability bottlenecks across a range

of configurations. The component-level analysis of each bottleneck then iden-

tifies the micro-architectural cause of that bottleneck. The right optimization

mechanism can be then selected for reducing the most dominant bottleneck

based on the detected detailed cause of that bottleneck. Then the optimiza-

tion process repeats for the one-step optimized system. This methodology for

detecting bottlenecks is general and can be employed to study inefficiencies in

future distributed systems in a methodical and automated way.

This chapter uses the proposed methodology to systematically opti-

mize the baseline TFlex EDGE dynamic uniprocessor. Using these results,

the chapter quantitatively discusses the effect of micro-architectural compo-

nents and speculation in different system configurations. The results show

how the system criticality pattern changes across different configurations in

the baseline system. Some performance bottlenecks grow from light configura-

tions with small numbers of cores to heavy configurations with high numbers

of cores. These bottlenecks are identified as scalability bottlenecks. The rest

of the dissertation then discusses several optimization steps for alleviating the

bottlenecks in this architecture using the proposed methodology. When guided

by this systematic method, the microarchitectural optimization mechanisms

can optimize the system very effectively. This analysis and iterative approach

for applying optimizations detects and reduces five inefficiencies in the studied

distributed uniprocessor. Our evaluation shows that this analysis methodology

44

is very effective in understanding the interactions between system components.

It is also very useful in detecting and analyzing performance scalability bottle-

necks and applying optimizations to remove those bottlenecks in an automatic

and systematic manner.

4.2 Criticality-based Bottleneck Analysis

Using simulation-based critical path analysis for detecting bottlenecks

in a system is more effective and reliable for performance analysis than conven-

tional simulation-based or profile-based techniques. The profile-based meth-

ods achieve a coarse-grain view of the system behavior which is not suffi-

cient for analyzing the interactions between components and detecting bottle-

necks [29]. Moreover, for simulation-based methods, the space of several pa-

rameters available to the designer can become too large, thus preventing a com-

plete analysis of different components. A simulation-based critical path anal-

ysis [28] generates and processes the program dependence graph. This depen-

dence graph is a directed acyclic graph, where nodes represent various micro-

architectural events and edges represent both data or micro-architectural de-

pendences among these events. Micro-architectural dependences are dictated

by the characteristics of the micro-architectural components of the target pro-

cessor such as branch predictor, fetch, issue, commit and memory units. Based

on a last-arriving rule, in such a graph, if a dependence edge between nodes n

and m is on the critical path, the value produced by n is the last value arriving

at m. Therefore, starting from the last program event and back tracking along

45

the last arriving edges, the tool can calculate the longest dependence path

which is the same as the program critical path.

We modify a cycle-level TFlex simulator [41] such that it outputs a

trace of the various micro-architectural events that occur during the execution

of a program. Each event in this trace includes all of the data needed to build

the dependence graph such as the cycle of the event occurrence, the block

associated with the event, etc. To generate the program dependence graph,

the critical path tool adds links between the events (nodes) according to the

dependence constraints (rules) dictated by the program data dependences and

micro-architectural characteristics. For a complete review of the dependence

constraints and rules for EDGE and superscalar architectures, please refer

to [56] and [28].

Generating the entire program dependence graph before calculating the

critical path could become intractable due to high memory requirements [56].

Nagarajan et al. [56] propose an algorithm that maintains a subgraph of events

for a sliding window of r + w blocks, where r depends on the total available

window and w is the maximum number of blocks in flight. At each step, the

algorithm constructs the graph for r consecutive blocks and then performs a

backward analysis on this subgraph. The partially collected estimated critical

path is then conveyed to the next step in which the next execution window is

processed. The algorithm continues until the end of the dependence graph is

reached [56]. We employ this algorithm for calculating the critical path. The

next subsection explains our bottleneck-detection methodology that utilizes

46

this algorithm. This methodology is general and can be applied to any archi-

tecture. Additionally, this methodology can be automated to be performed in

two levels of analysis.

4.2.1 System and Component-level Analyses

In a distributed system, several distributed components interact to-

gether to execute a program. For such a system, a designer needs to analyze

the criticality information at different levels of granularity. Categorizing the

events only according to their instruction types may not be sufficient for un-

derstanding system inefficiencies and bottlenecks. Criticality information can

be used to calculate the contribution of each micro-architectural component

to the critical path. Moreover, if a component consumes a large portion of

critical cycles during execution, the designer should be able to find out the

micro-architecutral scenario (sequence of events) leading to the states con-

suming those cycles. Knowing such scenarios can help the designer develop

mechanisms to alleviate the detected bottlenecks.

In our framework, in addition to its type (i.e. instruction fetch or ex-

ecute) and timing information, each event includes other information needed

for performance analysis and bottleneck detection. Each event has a tag in-

dicating the component in which this event took place. Summing the delays

associated with all nodes with the same tag, this analysis can estimate the

critical path contribution of the component associated with that tag. We call

this breakdown report of critical components the system-level breakdown of

47

the critical path. The following components are reported in our system-level

results for TFlex:

1) branch misprediction and 2) load violation: branch and

load/store dependence misprediction overhead, respectively.

3) data misses: the time spent on data misses.

4) instruction execution: the execution time spent in ALUs.

5) network: the time spent on value communication across the net-

work.

6) fetch stalls: the time waiting for a fetch-critical block to be fetched.

7) block commit: the time between when a block has finished exe-

cuting all its instructions and waits for the previous blocks to commit before

it can commit.

8) instruction fetch and decode.

9) write forward and 10) store forward: the times spent in register

files or load/store queues when a register or memory value is forwarded be-

tween speculative blocks, respectively.

In the system-level breakdown, each segment of the critical path is associated

with one of the explained micro-architectural components. In a given system

configuration, the component that consumes a large portion of critical cycles

can be considered as a potential performance bottleneck for that particular con-

figuration. To identify scalability bottlenecks across different core counts, we

run multiple configurations with various numbers of merged cores and observe

how the system-level distribution of critical cycles changes. If a component

48

consumes more critical cycles as the number of core goes up, this component

does not scale efficiently as more resources are added to the system. Conse-

quently this component can be considered a scalability bottleneck. A complete

analysis for detecting performance bottlenecks in different configurations and

scalability bottlenecks will be presented in this chapter.

To study the bottlenecks at a finer granularity, each event has another

tag indicating the state of the corresponding component that leads to that

event. For each detected bottleneck, the analysis reports the breakdown of

the critical cycles corresponding to different possible states of the correspond-

ing component. We call this breakdown report of an individual component

the component-level report of that component. Studying the component-level

results of a bottlenecks can help the designer understand under what scenarios

that component becomes a bottleneck. The two bottlenecks discussed later in

the section are the on-chip network and fetch stalls. For the on-chip network,

the communication events are categorized in the component-level analysis as

following:

1) register communication: inter-block communication between in-

structions producing or consuming a register value and the register forwarding

unit on the home core of that register.

2) memory communication: inter-block communication between

load and store instructions and the load/store queues on the core contain-

ing the loaded or stored memory location.

3) intra-block communication: intra-block communication needed

49

for direct data-flow operand delivery between distributed instructions of the

same block.

4) others: any other type of cross-core communication such as traffic

caused by the distributed fetch protocol.

Fetch stalls usually become critical if the input data of a block is al-

ready computed by the previous blocks while that block has not been fetched

yet. Our component-level breakdown categorizes fetch stalls into the following

categorizes:

1) full window: When the pipeline is full, no more block can be

fetched.

2) fill up: When the window is not full but the control sequence has

not reached the block corresponding to the event.

3) bpflush and 4) ldflush: When the corresponding block is the block

immediately fetched following a branch misprediction or load/store violation,

respectively.

The component-level breakdown for data misses can be categorized for L1,

L2 and memory accesses. This breakdown for instruction execution can be

categorized based on the type of the executed instructions or the ID of the

core executing each instruction. Other categorizations can be imagined for

the rest of the components reported by the analysis. This framework can be

easily extended to other architectures with distributed components by reas-

signing system-level and component-level tags in the critical path analysis of

the target architecture.

50

4.2.2 Speculation-Aware Mode

Evaluating the speculation overhead for both superscalar and compos-

able processors is important because it highly affects the efficiency of the whole

system. Accounting for speculation overhead, which is represented by branch

misprediction and load violation components in the system-level breakdown,

can be misleading. The misprediction overhead associated with a mispredic-

tion event can be defined as the time between the prediction event and the time

the misprediction is detected. During this period of time, the work done by the

instructions on the misspeculated parts of the code is wasted. However, the

instructions leading to detection of that misprediction are useful instructions

and likely to be on the critical path.

To measure the effect of speculation on the critical path, we run the crit-

ical path analysis in two different modes called speculation-aware and speculation-

unaware modes. In the speculation-aware mode, for every branch or data de-

pendence misprediction, there is a dependence between the event initiating

that prediction and the corresponding misprediction event in the program de-

pendence graph. In other words, the misprediction overhead is measured as

the amount of work between the prediction and misprediction events. In this

mode, the critical path analysis treats misspeculation overhead as a virtual

micro-architectural component. Although using the speculation-aware mode

is useful for understanding the effect of speculation overhead on the critical

path, it can hide the effect of other critical components on execution. In

the speculation-unaware mode, there is a dependence between the instruction

51

detecting each mispredction and that misprediction event in the program de-

pendence graph. Therefore, the misspeculation overhead is represented as

only the time between execution of the instruction detecting the misspecu-

lation (branch misprediction or load/store violation) and the time when the

misspeculation occurs.

4.3 Analysis Results

4.3.1 Methodology

This section presents a complete criticality analysis for the baseline

TFlex composable multicore system at both system and component levels.

We modify a cycle-level TFlex simulator [41] to add the support for generat-

ing event traces of benchmarks. We also extend the critical path tool proposed

by Nagarajan et al. [56] to work with TFlex micro-architecture and to sup-

port system-level, component-level and speculation-aware modes. We use six

integer SPEC2K [2] benchmarks, including gzip, vpr, crafty, mcf, perl and

twolf, and six floating-point SPEC benchmarks including wupwise, swim, ap-

plu, mesa, equake and ammp. Increased simulation time when running critical

path analysis prevents us from reporting the results for the other benchmarks.

The critical path analysis in both system-level and component-level increases

the simulation time by about 4x for most of the benchmarks. Unless other-

wise specified, results presented in this section are produced using speculation-

unaware analysis. Each baseline TFlex core used in this experiment is a dual-

issue, out-of-order core with a 128-instruction window. Table 3.1 shows the

52

microarchitectural parameters for each TFlex core used in this experiments.

4.3.2 Critical Path Statistics

Figure 4.1 shows the percentage of critical events (critical path length)

and the average delay of one critical event for INT and FP benchmarks across

different system configurations. Each system configuration is associated with

a fixed number of merged cores. When running on a single core, 22% and

13% of events are critical for INT and FP benchmarks, respectively. As the

number of cores goes up to 32, these rates go down to 8% and 3% for INT

and FP benchmarks, respectively. This reduction in critical path length is due

to improved block-level parallelism resulting from having more blocks inflight.

The larger percentage of critical events in INT benchmarks indicates denser

control or data dependences between instructions in these benchmarks. On

the other hand, FP benchmarks observe higher reduction rate of the critical

event portion as more cores are merged. This indicates that FP benchmarks

contain more instruction- and block-level parallelism and are able to exploit

the additional resources available as more cores are added.

As shown in Figure 4.1(b), the minimum delay of critical events is

achieved when merging 2 or 4 cores and then the delay starts to increase.

Although the portion of critical events show constant decrease for both INT

and FP benchmarks, the average delay of the events does not follow that

pattern. Consequently, a constant increase in speedup may not be expected as

more cores are merged. This increase in average delay can indicate that one

53

0 

5 

10 

15 

20 

25 

1  2  4  8  16  32 

INT 

FP 

Number of cores 

Pe
rc
en

t o
f c
ri
0
ca
l e
ve
nt
s 

(a) Percent

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  4  8  16  32 

INT 

FP 

Number of cores 

A
ve
. d

el
ay
 o
f c
ri
4
ca
l e
ve
nt
s 
(c
lo
ck
 c
yc
le
s)
 

(b) Delay

Figure 4.1: Percent and average delay (in number of clock cycles) of the critical
events for SPEC INT and FP benchmarks.

54

or more resources are not scaled properly so causing scalability bottlenecks as

the number of merged cores increases.

4.3.3 Scalability Bottlenecks

This subsection discusses the system bottlenecks using the proposed

methodology. Figure 4.2 reports the system-level critical path breakdown for

SPEC INT and FP benchmarks. Different stacked bars represent different

system configurations. Each segment of the critical path is normalized against

the corresponding segment length in the 1-core configuration. Therefore, the

total height of the stack for each configuration represents the average execution

time in that configuration normalized against the execution time in the 1-core

configuration. Because there are many components in the critical path, to

help the reader, the dotted lines in the figure highlight the major components

in the critical path.

For INT benchmarks, when running on only one core, the dominant

bottlenecks in the system are execution bandwidth, block commit, register read

and data misses. As more cores are composed, execution bandwidth, block

commit bandwidth and data cache and shared register capacity/bandwidth

are increased. Consequently, execution, block commit, register read and data

misses become less critical. This trend continues for the configurations with

core counts smaller than eight. When using eight or more cores, data misses,

instruction execution, on-chip inter-core network and fetch stalls are the major

contributors of the critical path. Among these contributors, the contributions

55

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(a) SPEC INT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(b) SPEC FP

Figure 4.2: Critical path breakdown for different micro-architectural compo-
nents.

56

of the on-chip network and fetch stalls (the lowest two segments in each

configuration shown) increase as more cores are merged. Therefore, On-chip

Network and Fetch can be considered as the system’s main scalability bot-

tlenecks. As a result of these bottlenecks, performance stops improving and

even degrades when merging 32 cores. FP benchmarks contain more paral-

lelism and less dependences therefore, their performance scales better than

INT benchmarks.

4.3.4 Speculation Bottleneck

Before we discuss component-level results for the detected scalability

bottlenecks, we discuss the speculation-aware results of the system. Figure 4.3

reports the critical path breakdown for SPEC INT and FP benchmarks when

considering speculation overhead as a virtual component (the two top most

segments in each bar). According to these results, when merging 32 cores

for the INT benchmarks, more than 60% of the critical path is composed

of the instructions leading to detection of that misprediction. This part of

execution does not take advantage of the parallel cores in the system because

the work performed in the subsequent blocks is flushed when mispredictions

occur. This overhead, however, is much smaller for FP benchmarks (30% when

merging 32 cores). This can indicate a higher branch and load dependence

prediction accuracy for for FP benchmarks compared to INT benchmarks when

having a high number of code blocks in flight. An interesting observation

in Figure 4.3 is that when only considering speculatiopn-aware results, the

57

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(a) SPEC INT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(b) SPEC FP

Figure 4.3: Speculation-aware critical path breakdown for different micro-
architectural components.

58

effect of misspeculation overhead can be misleading. For example, as shown in

Figure 4.3(a), speculation-aware results for INT benchmarks completely hides

the effect of on-chip network communication bottleneck previously observed

in Figure 4.2(a). However, the fetch stalls become more dominant when using

speculation-aware results. Chapter 8 discusses Iterative Path Prediction, an

integrated branch and predicate predictor designed for alleviating speculation

bottlenecks in TFlex.

4.3.5 Communication and Fetch Bottlenecks

To further understand the sources causing the bottlenecks discussed so

far, Figure 4.4 reports the component-level results for the on-chip network and

fetch components for INT benchmarks. The results for FP benchmarks are

similar and are not included for brevity. The on-chip network and fetch results

are normalized against 2-core and 1-core results, respectively. According to

Figure 4.4(a), as the number of cores increases, most of the critical cross-cores

communication is caused by the operand delivery between distributed instruc-

tions belonging to the same block of the code. As the core count increases,

the network distance increases and so does the average intra-block communi-

cation delay. This prevents performance scalability of the system. Chapters 5

and 6 discuss methods employed by the T3 microarchitecture for alleviating

cross-core communication bottlenecks.

As shown in Figure 4.4(b), when merging a small number of cores, most

of the critical fetch stalls happen because the instruction window is full most

59

0 

0.5 

1 

1.5 

2 

2.5 

3 

1  2  4  8  16  32 

other 

intra‐block 

reg 

store 

load 

Number of cores 

N
or
m
al
iz
ed

 1
m
e 
on

 t
he

 c
ri
1
ca
l p
at
h 

(a) Onchip Network

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

1  2  4  8  16  32 

fullwindow 

fillup 

ldflush 

bpflush 

Number of cores 

N
or
m
al
iz
ed

 1
m
e 
on

 th
e 
cr
i1
ca
l p
at
h 

(b) Fetch

Figure 4.4: Breakdown of critical cycles for system bottlenecks (Network and
Fetch) for SPEC INT benchmarks.

60

of the time. Merging more cores improves the fetch bandwidth and reduces

the critical fetch stalls. When using higher numbers of cores, fetch stalls on

the critical path are mostly associated with the blocks immediately following

misspeculation events. In these configurations, a large window of speculative

instructions is constructed and consequently fetch stalls caused by misspecula-

tion flushes are likely to end up on the critical path and become a performance

bottleneck. The effect of mispredictions becomes more dominate as more cores

are merged, causing another scalability bottleneck in the system. Chapter 8

discusses how the T3 microarchitecture alleviates this fetch bottleneck.

Figure 4.5 illustrates the workflow of the bottleneck detection and elim-

ination using our analysis applied this distributed uniprocessor. The ovals

labeled ”System” and ”Component” represent system and component level

analysis used to detect bottleneck in each step of the process, respectively.

Dashed lines in this figure represent bottleneck reductions and the name close

to each dashed line indicate the applied optimization mechanism for reducing

that bottleneck. The optimization mechanisms are discussed in the rest of this

dissertation. Finally, the rounded rectangles represent bottlenecks detected in

each step.

4.4 Summary

This chapter proposes a methodology based on critical path analysis to

detect the scalability bottlenecks of distributed uniprocessors. This analysis

is performed in different levels of granularity. First, a system-level breakdown

61

Specula(on Bo-leneck Intra‐block communica(on 
bo-leneck 

System 
Spec‐aware 

Component 
(Communica(on) 

Component 
(Fetch) 

Mispredic(on fetch 
bo-leneck 

System 

Register Inter‐block  
Communica(on bo-leneck 

Component (Exec) 

Predicate bo-leneck 

Component 
(Communica(on) 

System 

Deep mapping

Block Reissue

Register
Bypassing

ST
EP
 1
 

ST
EP
 2
 

ST
EP
 3
 
System 

Component (?) 
ST
EP
 4
 

Dataflow fanout bo-leneck 

IPP

IPP
EOB

Figure 4.5: Workflow of the iterative bottleneck reduction for TFlex.

62

of critical cycles detects the micro-architectural components in the system

that are causing scalability bottlenecks. Second, a component-level breakdown

of critical cycles for each critical component identifies the conditions under

which the bottleneck appear in the system. As a result, this analysis not only

determines the micro-architectural bottlenecks in the system but also identifies

the scenarios initiating those bottlenecks.

To effectively eliminate bottlenecks in a systematic way, this method-

ology can be used for iteratively applying new optimization mechanisms. At

every step, the next optimization mechanism is selected based on the most

dominant bottleneck detected using system- and component-level analysis. At

each step, this analysis evaluates new optimization mechanisms added to the

system. This analysis can be used for evaluating new optimization mechanisms

added to the system. A new optimization mechanism can have positive effect

on the functionality of some micro-architecutral components while underper-

forming others. Additionally, we need to evaluate the effect of the improved

or underperformed components on the critical path before and after applying

the new optimization.

Our initial critical-path analysis pinpoints three major sources of bot-

tleneck for the baseline TFlex composable processor. These bottlenecks in-

clude (1) cross-core intra-block instruction communication, (2) block window

fills following misprediction, (3) speculation overhead caused by branch mis-

prediction. The next chapters will discuss the microarchitectural and compiler

methods developed for reducing system bottlenecks. For each optimization,

63

we repeat bottleneck analysis to detect the effect of that optimization on the

critical path and other bottlenecks. This methodology helps us better desgin

and select the right optimization mechanism in each step of the optimization

process.

For future distributed systems, with various components each perform-

ing a particular function, performing a systematic analysis of the system bot-

tlenecks is very important and can significantly improve the design and opti-

mization phase of the system. Additionally, performing an automated analysis

at different levels similar to the one proposed here can highly facilitate the pro-

cess of bottleneck detection and removal.

64

Chapter 5

Strategies for Mapping Dataflow Blocks to

Distributed Hardware

The first step of our bottleneck analysis indicates that cross-core com-

munication among instructions in each block is one of the most dominant

bottlenecks of the baseline TFlex system. This issue is mostly caused by the

way original EDGE architectures map dataflow instructions in different blocks

across distributed cores. To maximize parallelism in each block of the code,

in both TRIPS and TFlex, instructions in each block are distributed across

different participating cores. The location core of each instruction in a given

block is determined by the compiler considering the estimated critical path of

instructions within that block. Although maximizing parallelism may be im-

portant under certain circumstances, its effectiveness depends on the type and

intensity of communication among the distributed instructions. In general,

balancing concurrency and communication is a fundamental challenge when

mapping instructions in a single-thread program to a distributed substrate of

homogeneous cores. As the granularity of parallel computation increases, the

frequency and cost of communication changes. This chapter re-examines the

original strategy used by TRIPS and TFlex and the assumptions behind it by

comparing that strategy with other possible strategies for mapping instruc-

65

tions into homogenous cores.

5.1 Balancing Concurrency and Communication

This chapter investigates the tradeoff between communication and con-

currency for the case where the parallel unit of computation is a fixed-size block

of instructions in a distributed large instruction window. Instruction-level par-

allelism can be exploited by mapping each block of instructions to one or more

cores. Block-level parallelism can be exploited by mapping multiple blocks of

instructions to the substrate at the same time.

We first consider a spectrum of fixed policies in which each block is

mapped to a fixed number of cores. At one extreme, a flat policy spreads

the instructions within a block across all participating cores. This flat strat-

egy achieves high performance with single-issue cores, at the cost of frequent

operand communication. At the other extreme, a deep strategy maps all of

the instructions in a block to only one core. This strategy performs well for

dual-issue cores, which are able to exploit intra-block parallelism locally while

reducing operand traffic significantly.

We also explore an adaptive strategy, in which a compiler specified

concurrency value is used to adjust the number of cores to the block. Results

show that adaptive outperforms fixed strategies on both single and dual-issue

cores. When running on single-issue cores, the adaptive strategy achieves

higher performance than the flat strategy with operand traffic comparable

to that of the deep mapping strategy. However, due to complexity and the

66

 Block
Mapper

Operating
 System

Hardware

Cores available

Mapping decisions

Allocate
 cores

Compile Time Run Time

CompilerApplication

Mapping
hints

Atomic
 blocks

Figure 5.1: Runtime and compile time system components.

amount of implementation storage needed and for the purposes of brevity, the

adaptive strategy is only explained in this chapter and the presented results

only include deep and flat mapping strategies. For more details, refer to [65,

67].

5.2 EDGE Hardware Software Components

Figure 5.1 shows the components in a TFlex system. The compiler [78]

breaks the program into single-entry, predicated blocks of instructions, similar

to hyperblocks [52]. The EDGE ISA imposes several restrictions on blocks to

simplify the hardware. We chose an implementation with a maximum block

size of 128 instructions, and thus 7-bit target dataflow instruction encoding.

Each block can contain up to 32 register reads, 32 register writes, and 32

load/store instructions. The compiler currently achieves about 64 dynamic

67

instructions per block.

During compilation, the compiler’s instruction scheduler generates blocks

containing dataflow instructions in target form. Each instruction directly spec-

ifies its consumers using 7-bit instruction identifiers (IDs) assigned by the in-

struction scheduler. To generate these IDs, the scheduler takes as input the

hardware topology, which includes the number of reservation stations, the

maximum number of participating cores, network latencies, and a mapping

of IDs to cores. For a given configuration, the scheduler seeks an assignment

of IDs that minimizes the latency of the critical path through each block by

minimizing communication costs along that path and exploiting available con-

currency [20]. The compiler implicitly encodes the ID for each instruction in

the binary via its location within the block. At runtime, the hardware routes

results based on the target ID. The hardware block mapper uses IDs to map

instructions to the distributed substrate. The instruction scheduler and block

mapper agree upon a mapping contract and thus the scheduler can convey

static information about concurrency, locality, and criticality via IDs. The

next section presents more details on ID encoding.

The runtime system allocates N cores to an application based on re-

source availability. The hardware fetches and executes up to N blocks in par-

allel on the N participating cores, where N is a power of two. One executing

block is always non-speculative and the others are speculative. The mapping

strategy determines how many instructions from the same block a core exe-

cutes. For example, a core can execute up to 128 instructions from the same

68

block, or 128/N instructions from N different blocks. Inter-block communica-

tion occurs via registers, cache, and memory based on hash functions. Intra-

block communication between instructions depends on the dataflow graph,

the number of participating cores, and the mapping of blocks to participating

cores.

5.3 Block Mapping Strategies

For a given block, the block mapper may choose to distribute the block across

all participating cores, a subset of these cores, or a single core. Each strategy

represents a different tradeoff between parallelism and communication over-

head. We explore fixed and adaptive strategies. The fixed mapping strategies

choose the same number of cores for all blocks in a program. At one extreme,

the fixed flat strategy partitions the block across all participating cores, ex-

ploiting intra-block concurrency. At the other extreme, the fixed deep strategy

puts the entire block on a single core, minimizing intra-block communication.

The adaptive strategy seeks a better tradeoff by choosing the number of cores

based on block characteristics. For each of these block mapping strategies, the

block mapper interprets IDs assigned to each instruction by the compiler. We

next describe this software/hardware contract in more detail, and then discuss

each mapping strategy.

69

5.3.1 Compiler/Hardware Contract

We use IDs to express criticality and locality. The block mapper reinterprets

these IDs to allow programs to run on a different number of cores without

being recompiled. Because there are at most 128 instructions in a block,

the compiler assigns each instruction a 7-bit ID that determines where the

instruction will execute, i.e., on which core. At runtime, instructions execute

when their operands arrive. If two instructions on the same core are both

ready at the same time, the more critical instruction should execute first. The

block mapper uses the IDs to determine the order in which instructions appear

in the reservation stations on each core, thus, the ID can be used to express

criticality information as well as locality information.

The instruction IDs should preserve locality information if the block is

mapped to a smaller number of cores. We use an abstract mapping between

IDs and cores, but for ease of understanding, consider a simple mapping where

IDs directly encode instruction locations. Imagine 32 cores laid out in a 4 by

8 grid, and the compiler and hardware could agree that IDs 0-3 map to core

(0,0), 4-7 to (0,1), and so on. At runtime, if there are only four participating

cores laid out in a 2 by 2 grid, the block mapper must interpret the bits

differently, for instance by mapping IDs 0-31 to (0,0). The problem with this

simple mapping is that instructions that were one hop away, those mapped to

(2,4) and (3,4) in the 4 by 8 grid, are now assigned to (0,1) and (1,0), which

are two hops away in the 2 by 2 grid. Ideally, the IDs should be assigned and

interpreted such that instructions mapped to the same or nearby cores when

70

compiled for N cores remain on the same or nearby cores when mapped to a

smaller number of cores. We use the following abstract encoding to achieve

this versatility.

Figures 5.2(a-c) show the software/hardware contract for ID bits when

running on eight, four, and two cores, respectively. With eight cores, each core

will execute 16 of the 128 instructions and the first three bits determine the

core. The scheduler encodes locality information in these top three bits: R

(row) and C (column) in the figures. The four remaining frame (F) bits ex-

press criticality information, where lower is more critical and appears earlier

in the reservation stations. The core chooses to execute the lower numbered

instructions when two instructions are ready to issue in the same cycle. Simi-

larly, mapping to four and two cores, the microarchitecture uses two and one

locality bits, and five and six criticality bits, respectively.

By interleaving the R and C bits in the IDs, the compiler helps the hard-

ware preserve locality information when mapping blocks to different numbers

of cores. For example, in Figure 5.2(a), the scheduler maps dependent instruc-

tions a and b to two adjacent cores, and independent instructions a and h to

two distant cores. At runtime, when mapped to four and two cores, as shown

in Figures 5.2(b) and 5.2(c), the relative locality among these instructions is

preserved. This format for IDs, however, does not preserve the criticality of

instructions because as instructions are mapped to fewer cores, locality bits

are converted to criticality bits. For example, all eight instructions in Fig-

ure 5.2(a) have high criticality and are thus placed in the highest position

71

Col 0Fixed-8

(Row,Col)=(1,01)
Crit=0000

CRC FFFF

011 0000

Inst ID
a

b
c
d
e
f
g

h

0000000
0010000
1000000
1010000
0100000
0110000
1100000
1110000

Col 1 Col 2 Col 3

a b c d

e f g h

Instruction Queue

Row
0

Row
1

(a) Running on 8 cores

a
b

c
d

e
f

g
h

Fixed-4

(Row,Col)=(1,0)
Crit=10000

CR FFFFF

01 10000

Col 0 Col 1

Row
0

Row
1

(b) Running on 4 cores

Fixed-2

(Row,Col)=(0,0)
Crit=110000

C FFFFFF

0 110000
Col 0 Col 1

a
b
e
f

c
d
g
h

Row
0

(c) Running on 2 cores

010

Block
Mapper

ID

locality criticalityBlock Concurrency

of cores

Adaptive

OS
Available

cores

(d) Adaptive mapping

Figure 5.2: Information encoded in the instruction IDs for fixed and adaptive
mapping strategies.

72

in their cores’ reservation stations. When mapped to four and two cores, as

shown in Figures 5.2(b) and 5.2(c), however, the relative positions of these

instructions in their reservation stations change dramatically. Fortunately, in-

structions are allowed to issue out of order, so the criticality bits only become

a factor when multiple instructions are ready to execute at the same time.

5.3.2 Fixed Mapping Strategies

Each fixed strategy represents a different tradeoff between communication

overhead and ability to exploit concurrency. We discuss two extreme fixed

strategies in this subsection.

5.3.2.1 Flat Mapping

With a flat mapping strategy, the block mapper distributes the instruc-

tions in each block across all participating cores. This approach exploits as

much intra-block concurrency as possible, but incurs high intra-block commu-

nication overheads.

The IDs convey both locality and criticality information with the flat

mapping strategy [67]. For example, in a 2× 4 configuration containing eight

total cores, each of the eight cores executes 16 of the 128 instructions as shown

in Figure 5.2(a). The flat mapper uses four bits to indicate the location of the

instruction, two bits for the row, and two bits for the column. The remaining

three bits express criticality information – the relative issue priority that breaks

ties in the reservation stations on each core (see Figure 5.2). Instructions that

73

are close to each other when compiled to 16 cores are close, or on the same core,

when executed in a flat mapping on a smaller number of cores. The TRIPS

prototype employed what was essentially a flat mapping strategy across 16

execution tiles [75].

When using the flat mapping strategy, the compiler scheduler pre-

determines the core locations and criticality values (their order in reservation

stations) of instructions in each block [20, 21]. The scheduler minimizes the

latency of the critical path through the block by minimizing communication

costs along that path and exploiting available concurrency [20]. The spatial

path scheduling (SPS) algorithm [20] employed by TRIPS and TFlex greedily

chooses to place the most critical instruction at each step in its best location

(core). The best location and the most critical instruction are both determined

by a single number, the placement cost. The scheduler uses the following max

of mins approach: for each instruction, record the location at which the place-

ment cost is minimum. Among all of the instructions under consideration, the

one with the largest minimum placement cost is the most critical, so place

that instruction next, at its minimum cost location.

The compiler implicitly encodes this information in the binary via its

location within the block. At runtime, the hardware block mapper uses this

information to map instructions into the participating cores. Several recent

studies have proposed methods for achieving the best compiler strategies for

instruction placements when using flat mapping. There are several issues

associated with finding such a strategy statically:

74

• An optimum schedule, not only should consider the proximity of de-

pendent instructions, but also should consider the proximity between

critical instructions and their dependent registers because registers are

distributed across executing tiles (cores). However, at compile time the

register allocation [66] phase occurs before the placement which is the

last compilation phase. Using some simple heuristics, the scheduler is

able to relatively reduce the register read delay [66].

• Achieving optimum location and criticality for every instruction in each

block not only requires the information about the local critical path

within each block but also needs a more general knowledge about the

global critical path for the entire period of the program execution [21].

To evaluate the limits of static scheduling using SPS, we employ Neuro-

Evolution of Augmenting Topologies (NEAT) [83], which is a publicly

available reinforcement learning package with an active user base that

can be used to tune compiler heuristics with very little modification.

NEAT successfully tuned the placement cost heuristic in the spatial

path scheduling algorithm for individual benchmarks [21, 88, 89]. NEAT

achieved performance significantly better than both hand-tuned heuris-

tics and placements produced via simulated annealing when using spe-

cialized heuristics. Although NEAT produces good placements when

specialized for individual benchmarks, finding good general solutions is

very difficult. As a result, except for the highly regular applications

such as matrix multiply [24] achieving the best schedule statically using

75

a fixed heuristic seems not to be feasible.

5.3.2.2 Deep Mapping

With a deep mapping strategy, the block mapper assigns all instructions

within a block to a single core. This strategy eliminates cross-core communi-

cation between instructions, but provides only as much intra-block parallelism

as the issue width of the cores. Although deep mapping eliminates commu-

nication between instructions, it may increase communication between blocks

because cache banks and registers are distributed across the cores.

With the deep mapping strategy, the instruction identifiers assigned

by the scheduler are no longer used for locality at all – the entire instruction

identifier is devoted to determining the criticality of the instruction, i.e., the

instruction’s priority within the core’s reservation stations.

For the DFG in Figure 5.3(a), Figures 5.3(b) and 5.3(c) provide a simple

example of the flat and deep mapping strategies for two blocks, B0 and B1,

on a 4-core processor. Symbols a through h represent the instructions in these

blocks. Registers R0, R1, and R3 are located in cores 0, 1, and 3, respectively.

Block B0 reads registers R0 and R1, and writes register R3. Block B1 reads

register R3, which is produced by B0, and writes register R0. Block B1 also

loads a value from cache bank D3 located on core 3.

The value communicated between blocks B0 and B1 via register R3

is an example of communication between blocks, while the value produced by

instruction a and consumed by instruction b is an example of communication

76

within a block. With flat mapping, as shown in Figure 5.3(b), the instruction

scheduler tries to place instructions that access registers on the same core

as the corresponding register. With deep mapping, as shown in Figure 5.3(c),

however, the blocks are assigned to cores dynamically in a round-robin fashion,

so most register accesses go to remote cores.

5.3.3 Adaptive Mapping

Flat and deep mapping are both limited because the block mapper selects the

same number of cores, C, for all blocks in an application. The flat mapping

strategy uses C = N , where N is the number of participating cores. The deep

mapping uses C = 1. As a result, flat mapping may under-utilize cores or

experience excessive communication overheads when blocks have low concur-

rency. On the other hand, the deep mapping fails to exploit all of the available

concurrency for highly concurrent blocks.

The adaptive mapping strategy balances these tradeoffs by selecting

the number of cores based on the block’s available concurrency and then using

the IDs to map to the selected cores. The compiler evaluates the available

concurrency and encodes the concurrency value in the block header as follows:

Concurrency = BlockInstructionCount
CriticalPathLength

where BlockInstructionCount is the total number of instructions in the block

and CriticalPathLength is the length of the critical path through the block

77

a

b

c

d

R1
R0

e

R3

f g

h

R0

B0

B1

Block 0:
Concurrency = 1
of cores = 1

Block 1:
Concurrency = 4/3
of cores = 2

D3

(a) DFG

Core 0 Core 1 Core 2 Core 3

a b c d

h g f e

Legend

R0 R1 R3

D3

Register

Data cache bank

Instruction

Register communication

Memory communication

Instruction communication

R

D

(b) Flat block mapping

Core 0 Core 1 Core 2 Core 3

R0 R1 R3

D3

a

b

c

d

e

f

g

h

(c) Deep block mapping

Core 0 Core 1 Core 2 Core 3

R0 R1 R3

D3

a

b

c

d

e

f

g

h

(d) Adaptive block mapping

Figure 5.3: A sample DFG consisting of two blocks mapped using the flat,
deep and adaptive mapping strategies. Solid and dotted lines represent intra
and inter-block communication, respectively.

78

in cycles. This metric estimates the maximum achievable IPC for the block.

At runtime, the block mapper dynamically selects a set of cores for the block

based on the concurrency value provided by the compiler as follows:

C = 2dlog2 dConcurrency
IssueWidth

ee

where IssueWidth is the issue width of each core, assuming homogeneous cores.

The block mapper uses this number of cores, always a power of two, if they

are available.

Using the adaptive strategy, a round-robin algorithm chooses the cores

for the next block, similar to deep mapping, but it also accounts for requests

with varying numbers of cores. If there is not enough room in the instruction

window for the next block, then instruction fetch stalls until there is suffi-

cient space available. More sophisticated algorithms are possible, but may

make the hardware implementation impractical. Round-robin strategies can

be implemented in a distributed fashion without any centralized components.

Figure 5.3(a) shows the concurrency and core count for blocks B0 and

B1, and Figure 5.3(d) illustrates the adaptive block mapping for these blocks

on a 4-core processor. For simplicity, this example assumes that the static

execution time for all instructions is one cycle, and that all cores have an

issue width of one. B0 consists of a chain of dependent instructions, and

all of its instructions are on its critical path. As a result, its concurrency is

79

equal to 1.0, and the block mapper assigns one core to this block. On the

other hand, the length of the critical path of block B1 is three cycles, but

this block has four instructions, which results in a concurrency value of 4/3.

For this block, the number of cores chosen by the block mapper is equal to

2dlog2 d 4/3
1

ee = 2dlog2 2e = 2. If the cores were dual-issue, the concurrency values

for B0 and B1 would remain the same, but the block mapper would assign

one core to each of the blocks in this example.

As shown in Figure 5.2(d), the adaptive strategy uses the concurrency

information for each block to select an appropriate number of cores for that

block. At runtime, this number determines how many bits in the instruction

identifier specify locality and how many bits specify criticality.

5.3.4 Reducing Communication Between Blocks

One disadvantage of the deep and adaptive block mapping strategies is that

they may increase communication between blocks. One way to deal with this

problem is to use a different algorithm to select the next core in the block

mapper. We propose two possible algorithms.

Inside-Out. The Inside-Out algorithm prioritizes the cores close to the center

when selecting the next set of cores at runtime. Because the cores close to the

center have a smaller average distance to other cores, they should require a

smaller average hop count to access registers and memory locations.

Preferred-Location. The compiler encodes a list of preferred cores in the

block header. During core selection, the Preferred-Location block mapper se-

80

lects the available cores highest in this list. To prioritize the cores, the compiler

computes the static hop count required to access registers. For example, in

Figure 5.3(d), block B0 prefers core 1 to core 0 because core 1 will require

two cycles to read R0 and R1, and write R3, whereas core 0 will require three

cycles. If cores 0 and 1 are both available for B0, the block mapper will choose

core 1. A drawback of this algorithm is that the compiler must know the num-

ber of cores assigned to the program, making it less general than Inside-Out

selection.

5.3.5 Hardware Complexity and Cost

The dynamic block mapper for deep and adaptive strategies can be imple-

mented in a fully distributed way among cores, thus, there is no central unit

for making block mapping decisions. Distributing the block mapper among

cores minimizes its effect on the latency of the critical path. Here, we briefly

discuss various components in this distributed block mapper.

Next core selection mechanism. The core selection mechanisms can be

implemented in a fully distributed fashion. For the deep mapping strategy, the

selected core for the current block sends a message to the next core in round-

robin order to execute the next block. This mechanism requires no extra state

in the cores. The adaptive block mapping strategy, however, requires each

core to keep track of the allocation status of other cores in a table consisting

of N ∗ log2N flip flops, where N is the total number of cores. In addition, each

core requires a priority encoder to choose the next set of cores using the table.

81

The table and encoder incur a relatively small area overhead for each core.

Decoding IDs. The block mapper specifies how each core interprets IDs. For

example in the deep strategy, all seven ID bits determine the position of each

instruction in the core’s reservation stations. In the flat strategy, the mapper

uses 7 − log2N bits as criticality bits. In the adaptive strategy, C cores use

7− log2C bits for criticality.

5.4 Results

Figure 5.4 shows performance using the flat and deep mapping strate-

gies for the SPEC benchmarks normalized to the performance of each bench-

mark on a single dual-issue core. These experiments vary the number of cores

allocated to the application from 1 to 32 cores, and the issue width of the

cores from one to two. The baseline cores, however, are always out-of-order,

dual-issue TFlex cores.

With single issue cores, the flat strategy outperforms the deep strategy.

However, when using dual-issue cores, the deep strategy is the best performing

strategy, which indicates that dual-issue cores are enough to exploit parallelism

available in each block. For the flat strategy, on the other hand, using dual-

issue cores does not change the performance. That again indicates the limit of

the parallelism available in each block of the distributed instruction window.

Figure 5.5 shows the percentage of executed blocks with different max-

imum concurrency for the SPEC benchmarks. These concurrency values are

82

0.5 

1.0 

1.5 

2.0 

2.5 

1  2  4  8  16  32 
# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 

(a) SPEC INT

0.5 

1.5 

2.5 

3.5 

4.5 

5.5 

1  2  4  8  16  32 

DEEP/Dual Issue 

DEEP/Single Issue 

FLAT/Dual Issue 

FLAT/Single Issue 

# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 

(b) SPEC FP

Figure 5.4: Average speedup over a single core for the SPEC benchmarks with
varying numbers of cores and varying core issue widths.

83

0
10
20
30
40
50
60
70
80
90

100

am
mp

ap
plu

ap

si art

eq
ua

ke

mes
a

mgri
d

six
tra

ck

sw
im

cra
fty

gc

c
gz

ip mcf

pa
rse

r
tw

olf

vo
rte

x vp
r

av
e F

P

av
e I

NT
av

e

Pe
rc

en
t o

f b
lo

ck
s

1 2 4 larger # of cores

Figure 5.5: Percent of blocks with different maximum concurrency values for
SPEC benchmarks.

computed by the compiler as follows. The compiler evaluates the available

concurrency and encodes the concurrency value in the block header as follows:

Concurrency = BlockInstructionCount
CriticalPathLength

where BlockInstructionCount is the total number of instructions in the block

and CriticalPathLength is the length of the critical path through the block

in cycles. This metric estimates the maximum achievable IPC for the block.

80% of the blocks in the SPEC INT benchmarks can potentially achieve their

maximum IPC when each is running on dual-issue cores.

Figure 5.6 illustrates the average communication overhead for each

block mapping strategy for the SPEC benchmarks running on composed 16

dual-issue cores. These results are normalized to the total hop counts across

all executed instructions when using the flat mapping strategy. When using

84

0 

20 

40 

60 

80 

100 

Flat  Deep 

memory 

register 

intra‐block 

Pe
rc
en

t o
f t
ot
al
 n
um

be
r 
of
 h
op

s 
ac
ro
ss
 a
ll 
in
st
s 
us
in
g 
fla
t m

ap
pi
ng
 

Figure 5.6: Communication overhead in terms of hop count for the SPEC
benchmarks running on 16 composed dual-issue cores.

the flat mapping strategy, 60% of communication consists of dataflow operand

transfer for intra-block communication. With deep mapping strategy, there is

no cross-core intra-block communication and the total traffic is 50% of that of

the flat strategy. Memory accesses cause almost the same amount of traffic for

both mapping strategies, but the overhead of register accesses is reduced for

the flat mapping strategy. The static instruction scheduling algorithm con-

siders the location of registers on an abstract substrate when calculating the

placement cost for each instruction for flat mapping, thus minimizing regis-

ter latency. With the deep strategy, this traffic is almost doubled, forming

almost 67% of all traffic. The critical path analysis shows that using the deep

mapping strategy reduces communication significantly. Therefore, another ad-

85

vantage of using the deep strategy over flat strategy is its reduced inter-core

communication overhead.

Most SPEC integer benchmarks reach their maximum performance

when running on eight cores and observe a slowdown when running on 16

cores. Running on 32 cores, however, causes a significant reduction in perfor-

mance. This results indicate possible performance bottlenecks when scaling

the number of core to more than 8 cores for integer benchmarks. In the

next subsection, this study uses the critical path analysis to investigate the

remaining bottlenecks. For brevity’s sake, we only present the criticality anal-

ysis results for the deep block mapping strategy which is the best performing

block mapping strategy.

5.5 Detecting Next Dominant Bottlenecks

After reducing intra-block communication using the deep block map-

ping, we apply our bottleneck analysis again to detect the next bottlenecks

in the system for the next iterative bottleneck reduction step. This phase of

analysis is shown as the step 2 in Figure 4.5. This analysis also helps us ac-

curately evaluate the deep block mapping strategy and its effects on different

components in the system.

Figures 5.7 and 5.8 report the system-level and speculation-aware system-

level breakdowns of the critical path for INT and FP benchmarks when using

the deep block mapping. The dotted lines in the figure highlight the ma-

jor components in the critical path. Comparing speculation-unaware results

86

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(a) SPEC INT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(b) SPEC FP

Figure 5.7: Critical path breakdown for different micro-architectural compo-
nents when applying deep block mapping.

87

shown in Figures 5.7 and 4.2 shows that the deep mapping model reduces the

effect of the cross-core communication bottleneck to some extent. However, the

fetch bottleneck becomes more dominant when using this optimization, which

limits the speedup achieved. Comparing Figure 5.8 and Figure 4.3 shows that

the deep mapping model reduces the overhead caused by misspeculation in

high core-count configurations. This indicates that reducing intra-block com-

munication speedups execution of instructions leading to the detection of a

misprediction. However, the events following misspeculation events become

more critical. That is why fetch stalls are more pronounced on the critical

path when using the deep mapping optimization.

Figure 5.9 illustrates the component-level results for the on-chip net-

work and fetch components when applying the deep mapping strategy for

INT benchmarks. For INT benchmarks, when using eight or more cores, data

misses, instruction execution, on-chip inter-core network and fetch stalls are

the major contributors of the critical path. Among these factors, the contribu-

tions of the on-chip network and fetch stalls (the lowest two segments in each

configuration shown) still increase as more cores are merged. The following

two components can be considered as the system’s main bottlenecks:

On-chip Network: When applying deep mapping, the on-chip net-

work is only used for inter-block communication between instructions running

on different merged cores. Figure 5.9(a) shows that in absence of intra-block

cross-core communication, register communication becomes more dominate

and occupies most of the critical cycles on the on-chip network. This result

88

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(a) SPEC INT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(b) SPEC FP

Figure 5.8: Speculation-aware critical path breakdown for different micro-
architectural components when applying deep block mapping.

89

0 

1 

2 

3 

4 

5 

6 

7 

1  2  4  8  16  32 

other 

reg 

store 

load 

Number of cores 

N
or
m
al
iz
ed

 1
m
e 
on

 th
e 
cr
i1
ca
l p
at
h 

(a) Onchip Network

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

1  2  4  8  16  32 

fullwindow 

fillup 

ldflush 

bpflush 

Number of cores 

N
or
m
al
iz
ed

 1
m
e 
on

 th
e 
cr
i1
ca
l p
at
h 

(b) Fetch

Figure 5.9: Breakdown of critical cycles for on-chip network and fetch bottle-
necks for SPEC INT benchmarks using deep block mapping.

90

shows that most critical network traffic is caused by register communication

between distributed instructions. A producer instruction sends a new value

of an architectural register to the home core of that register. Resolving de-

pendences, the register forwarding unit of that core then forwards the value

to its consumer core(s). When the core count increases, the network distance

increases and so does the average inter-block communication delay.

Fetch: Figure 5.9(b) does not show major changes in the breakdown of

fetch critical cycles when using the deep block mapping strategy. Comparing

this figure to Figure 4.4(b), however, shows that the number of critical fetch

cycles increases for the configurations with high numbers of cores as a result

of this optimization. When a large number of cores are merged, the system

constructs a large window of speculative instructions. Consequently fetch stalls

caused by misspeculation flushes are likely to end up on the critical path and

become a performance bottleneck. This phenomenon explains the increase in

fetch stall segments of the critical path when merging more cores.

5.6 Summary

This chapter explores various strategies to dynamically map blocks of

instructions to a distributed hardware substrate consisting of composed cores

acting as a single processor. A run-time block mapper, implemented in hard-

ware, maps instructions to cores. We explore a spectrum of fixed policies, in

which a block mapper maps each block of instructions to the same number of

cores. At one extreme, a flat mapping policy partitions the instructions in each

91

block among all participating cores, emphasizing intra-block parallelism, but

increasing intra-block communication. At the other extreme, a deep mapping

policy maps all of the instructions in a block to a single core, but succes-

sively maps blocks to different cores. The deep strategy minimizes intra-block

communication delays, but allows no intra-block parallelism beyond the is-

sue width of the individual cores, and makes inter-block communication more

expensive.

For single-issue cores, like the ones used for TRIPS, a flat mapping

policy is the highest-performing fixed choice. Although the flat mapping pol-

icy increases the processor’s complexity and communication overheads, single-

issue cores need the additional intra-block concurrency that the flat mapping

provides. The low additional complexity of dual-issue cores, however, harvests

enough of the intra-block parallelism to change the ideal mapping to a deep

mapping. The deep mapping eliminates substantial intra-block operand com-

munication, and the dual-issue cores provide enough intra-block parallelism

that a flatter mapping provides no benefit. Both of these policies are limited,

however, because they are fixed: each block is mapped to the same number

of cores, regardless of the variance in ILP across different blocks. Considering

these observation, we propose the deep strategy as the efficient strategy for

the T3 microarchitecture.

Our bottleneck analysis shows when using this strategy, the intra-block

communication is no longer the dominant bottleneck in the system. However,

in absence of this bottleneck, the inter-block register communication and block

92

fetch become the major bottlenecks in the system. The following two chapters

propose microarchitectural optimizations to address these two bottlenecks.

93

Chapter 6

Critical Inter-Block Value Bypassing

Our bottleneck analysis shown in Figure 5.7 indicates that the most

critical bottleneck in the TFlex substrate after applying deep mapping, is

the coarse-grained, inter-core register communication, which occurs through

shared forwarding units. To alleviate this bottlenecks, this chapter proposes

and evaluates a distributed framework called Distributed Block Criticality An-

alyzer (DBCA) that exploits different types of criticality information collected

at block boundaries to implement low-overhead optimizations at fine or coarse

execution granularities. This general and flexible framework is implemented in

a fully distributed fashion across multiple cores. Such a framework can be used

for exploiting different types of criticality to optimize applications dynamically

in future distributed systems. Although the proposed framework is general,

for the purpose of this study, we only focus on the communication criticality

and fetch criticality. The communication criticality and fetch criticality are

addressed in this chapter and the next chapter, respectively.

DBCA predicts critical communication instructions at block boundaries

using a low-overhead criticality predictor located in a coordinator core, which

is not necessarily the same as the core executing those instructions. After these

94

critical instructions are predicted, they are selectively optimized according to

their criticality types at a pipeline-stage granularity in their executing. An

optimization called selective register value bypassing discussed in this chapter,

sends values directly from each output-critical instruction in one executing core

to their consumer instructions in other cores, thus bypassing shared register

forwarding units.

6.1 Communication Criticality Predictor

This section explains a distributed block criticality analyzer (DBCA)

used by T3 that exploits criticality information to optimize critical instructions

or code blocks based on their criticality characteristics. In this dissertation,

DBCA is restricted to cross-core communication and fetch criticality. How-

ever, it can be extended to include other types of criticality such as memory

and execution criticality. Figure 6.1 highlights the components added to each

T3 core by this analyzer. To minimize the communication overhead, DBCA

piggybacks on the next block prediction distributed protocol. Each block is

assigned a fixed core as its coordinator core, which is selected based on a few

low-order bits of the PC of the first instruction in the block (block PC). The

coordinator core contains next block prediction tables for all of the blocks as-

signed to it. When a new block is requested, its coordinator core is signaled

by the coordinator of the previous block to allocate an idle core (a core not

executing any block) to execute the new block and predict the next block and

then signal the coordinator core of the predicted block.

95

Criticality related components and entry format
in block status table indexed by block PC

Requested block PC

Predicted critical IO insts
pred_input  Cri,cality Predictor 

Block Reissue Engine 

i_counter 

available_core_bitvector 

pred_output  o_counter  Requested block PC

Selected executing core

Next block predic/on table  Next Block Predictor 
Signal next block coordinator

Signal from prev coordinator

(a) Tables and components added for coordinating.

Fetch 
Decode 

DecodeMerg 

Issue  Execute 
RegWrite 

RegWriteBypass 

Commit 

criticality type

ou
tp

ut

cr
iti

ca
l

in
pu

t
cr

iti
ca

l

block reissue

(b) Augmented instruction pipeline.

Figure 6.1: Components used in the distributed block criticality analyzer to
reduce bottlenecks in T3.

96

DBCA extends this protocol by augmenting the coordinator core with

a table called the block status information table shown in Figure 6.1(a). This

table contains the criticality information of blocks assigned to this coordinator

core and is maintained by two hardware components located on the coordinator

core. A communication criticality predictor predicts both the communication-

critical instructions and their criticality type and a block reissue component

maintains the information required for reissuing the non-running instances of

fetch-critical blocks. When a block is allocated, the corresponding coordina-

tor core accesses these hardware components, extracts and sends the criticality

information of that block to the selected executing core. The executing core

uses that information to optimize the pipeline of critical instructions according

to their criticality types. Communication critical instructions are treated spe-

cially in a fine-grained manner in the pipeline according to their predicted crit-

icality type. Output-critical instructions go through a value bypassing stage

which sends the produced critical register values directly from their producer

cores to their consumer cores, thus bypassing the shared register forwarding

units. For reissued fetch-critical blocks as will be discussed in the next chapter,

all instructions skip their fetch and decode stages in a coarse-grained manner.

Note that in this distributed framework, coordinator and executing

cores do not have to be physically separated and a core executing a block can

simultaneously act as the coordinator core of other blocks. Table 6.1 shows

coordination and execution orders in a system running 4 iterations of a loop

across 8 cores. Each iteration has 2 blocks A and B (block PCs) assigned

97

Table 6.1: An example of mapping 4 loop iterations each with 2 blocks A and
B, across 8 cores (C1 to C7).

Fetch order
Blockiteration A1 B1 A2 B2 A3 B3 A4 B4

Coordinator cores C0 C1 C0 C1 C0 C1 C0 C1

Executing cores C0 C1 C2 C3 C4 C5 C6 C7

to coordinator cores C0 and C1, respectively. If all cores are idle at first, the

coordinator cores select idle cores in a round-robin fashion for running the

iterations.

6.1.1 Communication Criticality Predictor

Predicting critical communication instructions of each block can be

done using a state-of-the-art criticality predictor [28] explained in Section 2.3.

Although proven effective [28], using such a criticality predictor in a distributed

multicore system can have high hardware complexity, communication, and

storage overheads. In this subsection, we describe a low-overhead communi-

cation criticality predictor used by DBCA. For each block, block inputs refer

to the register operands used by instructions in that block, but produced by

other blocks. Block outputs, on the other hand, refer to the register operands

produced by the instructions in that block but used by other blocks in the win-

dow. As long as all inputs of a block have not arrived from previous blocks,

some instructions in that block remain uncompleted. Finally, the block can-

not commit until all its outputs are sent to other blocks. Therefore, late

communication edges (last-departing register outputs produced by a block be-

98

fore the block commits or the last-arriving register inputs received by a block)

are likely to be on the critical path. To verify this, we use the critical path

analysis discussed in Chapter 4 to find the breakdown of the critical com-

munication edges. In this breakdown, the critical communication edges are

divided into four categories: last-departing outputs, non-last-departing out-

puts, last-arriving inputs and non-last-arriving inputs. Figure 6.2 presents

this breakdown for the SPEC2K benchmarks running across 16 merged cores

(a few benchmarks are missing due to critical path tool complications). Note

that the critical output and input edges are the edges on the critical path

from a producing core to the corresponding forwarding unit on the home core

of the corresponding register and from the forwarding unit to a consuming

core, respectively. For INT benchmarks, 70% of all register critical inputs and

outputs are late communication edges (the sum of the first and third segments

from below in each bar). For FP benchmarks, late communication edges may

be less critical because only 52% of critical register inputs and output are late.

Given the high criticality of the late communication edges, to reduce

overheads, the predictor used by DBCA predicts late communication edges in-

stead of critical communication edges. We only explain the algorithm for pre-

dicting the last-arriving register inputs of each block; predicting last-departing

outputs is similar. The coordinator core stores late input predictions for its

assigned blocks (pred input in Figure 6.1(a)). For critical register inputs, the

actual predicted value is the register number associated with the last-arriving

99

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra>
y 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

av
e 

in 

last‐arr in 

out 

last‐dep out 

Figure 6.2: Critical-communication edges breakdown for SPEC benchmarks.

register input of the block. When a block is allocated and mapped to a core,

its coordinating core predicts the last-arriving register input of that block and

sends it to the core executing that block. When the block ends execution, its

executing core appends the last-arrived input observed during execution to a

dealloc message and sends it to the coordinator core along with other data

needed for deallocation. The coordinator core updates the prediction entry of

that block using Boyer and Moore’s majority vote algorithm [12]. Each entry

in the table includes the predicted last-arriving input for a block and a ma-

jority vote counter (i counter in Figure 6.1(a)). When the predictor updates

the entry, if the new last-arriving input is the same as the predicted one, the

majority counter is incremented. Otherwise, the counter is decremented but

the predicted input does not change. If the counter reaches zero, the predicted

input will be updated by the current last-arriving input. To reduce the effect

of the stale data in the prediction table, the predictor uses an epoch-based

100

algorithm. This algorithm uses two prediction entries per block, each with an

input number and a majority counter. During each fixed epoch, the algorithm

uses one of the two entries for training and the other entry that was trained

in the previous epoch, for predicting. When an epoch ends, the two entries

are switched. Our accuracy evaluation of this predictor shows that when run-

ning the SPEC benchmarks across 16 cores, late register inputs and outputs

of blocks can be predicted correctly 80% of the time.

6.1.2 Selective Register Value Bypassing

Before we discuss the register bypassing used by executing cores for crit-

ical instructions, we briefly discuss the the original register forwarding mech-

anism used by TFlex. The original mechanism uses distributed forwarding

units in participating cores to resolve inter-block instruction register depen-

dences. As each speculative block is allocated, it allocates an entry for each

of its output registers in the forwarding unit of the home core of that regis-

ter. Also, it sends its register read requests to corresponding home cores of

its input registers. When a block produces a register output, the core running

the block sends the output value to the home core of the corresponding reg-

ister. In the home core, the register forwarding unit accesses the forwarding

entry allocated to that register to look up the destination cores and instruc-

tions before sending the value. In this mechanism, the inter-block register

dependences are resolved at the home core. This forwarding mechanism is

indirect because it does not provide direct communication between source and

101

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

> 3 

3 

2 

1 

block 
distance 

%
 o
f i
nt
er
‐c
or
e 
re
gi
st
er
 d
at
a 
tr
an
sf
er
s 

Figure 6.3: Block distances between register data producer and consumer
blocks running on 16 merged cores.

destination cores. The communication delay associated with this forwarding

increases as the network grows larger. An alternative communication model

uses direct communication between different blocks. In this model, register

dependences are resolved in the producer cores and each producer instruction

in one core sends its output directly to the consumer instruction(s) in other

cores. Such a mechanism requires that each core maintain a synchronizing

scoreboard table [46] that tracks the status of all shared registers. To keep

the tables updated and coherent, cores need to be connected though a shared

broadcast bus, which can reduce scalability as high numbers of cores are used.

DBCA uses a low-overhead, direct communication mechanism called

value bypassing for critical output instructions. However, other instructions

use the original indirect forwarding mechanism. We restrict register value for-

warding to only immediate successive speculative blocks. Figure 6.3 shows

102

block forwarding distances between producer and consumer blocks for the

SPEC benchmarks running on 16 cores. The block forwarding distance in this

figure is the number of speculative blocks between a producer block and its

consumer blocks. On average, 74% of the value forwarding happens between

two subsequent speculative blocks. Considering the aforementioned simplifi-

cations, the bypass mechanism for critical registers no longer needs to track

the status of all registers using synchronizing scoreboards. When the last-

departing register of a block is predicted, the core executing the block sets a

flag if the subsequent block reads that register. When the last-departing value

is produced, the producer core sends the value directly to the core executing

the next speculative block if the flag is set. The destination core forwards

the value to its instructions waiting for the that register value. The value also

needs to be sent to the home core of that register so that non-critical consumer

cores can also receive it through the original forwarding mechanism.

6.2 Results

Figure 6.4 shows the speedups achieved using selective register value

bypassing for SPEC benchmarks when using 16 merged cores. To control the

number of forwarded critical values per block, we use a parameter called crit-

icality factor. This factor determines the number of forwarded last-departing

register values per block. For instance, using a criticality factor of one means

that every block bypasses its last-departing register output to the core run-

ning the subsequent speculative block. In this graph, bypass cfactor 1 to 3

103

1 

1.02 

1.04 

1.06 

1.08 

1.1 

1.12 

1.14 

1.16 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

bypass cfactor 1  bypass cfactor 2  bypass cfactor 3  dir reg 

Sp
ee
du

p 
ov
er
 1
6‐
co
re
 b
as
el
in
e 

Register forwarding mechanisms 

Figure 6.4: 16-core speedups achieved using value bypassing.

represent the selective bypass runs with criticality factors of 1 to 3. Dir reg

represents a high-overhead register forwarding mechanism in which all produc-

ers forward their values directly to their consumers in all consecutive blocks.

Dir reg can be used as an upper limit for measuring value bypassing speedups.

For SPEC-INT benchmarks, the maximum speedup over the original bypass-

ing model on average is 8%, which is achieved using dir reg. Only bypassing

one last-departing register output of each block will achieve about 6% speedup

on average. This speedup increases to more than 7% as we raise the criticality

bypass factor to 3. For FP benchmarks, the maximum speedup is about 8%,

while using criticality factor of 1 results in 3% speedup. Raising the criticality

factor to 3 increases the speedup to 6%. As shown in Figure 6.2, the last-

departing register values are not as critical for FP benchmarks as they are for

INT benchmarks.

104

6.3 Summary

To alleviate EDGE cross-core register communication delay, this chap-

ter proposes a flexible framework for exploiting different types of instruction

criticality in a distributed dynamic multicore system. This framework aug-

ments each core with several very low-complexity distributed components and

implements a distributed protocol to optimize different types of critical in-

structions at different levels of pipeline across cores. This framework detects

critical outputs of each block using an MJRT epoch-based majority vote al-

gorithm. The predicted critical output instructions are prioritized over other

outputs and go through a fast register forward stage for communicating their

results to remote cores. This mechanism bypasses the critical values directly

to destination cores; thus skipping the distributed register forwarding units

used by T3 for resolving registering dependences.

105

Chapter 7

Reducing Pipeline Flush Penalty using Block

Reissue

7.1 Introduction

EDGE compilers detect useful global re-convergent points and combine

basic blocks statically to create large predicated blocks. The support for pred-

icated blocks in TFlex reduces the fetch criticality for the instructions within

each block because of the bulk fetch of the block’s instructions. However, as the

number of in-flight blocks increases, block fetch becomes a system bottleneck

as the blocks immediately following a misspeculation become fetch-critical.

The bottleneck analysis shown in Figure 5.7 indicates that the second

most dominant critical bottleneck in the TFlex after applying deep mapping, is

a fetch bottleneck caused by mispredictions. To alleviate this bottleneck, this

chapter exploits the Distributed Block Criticality Analyzer (DBCA) framework

proposed in the previous chapter. To reduce fetch criticality, the coordinator

core maintains availability status of previously fetched blocks and reissues

those blocks without fetching them again if needed. Consequently, this method

saves latency and energy by short-circuiting the fetch and decode operations

of all instructions in the reissued block.

106

7.2 Tracking Previously Executed/Flushed Blocks

The block reissue component in T3 tracks and reissues instances of

blocks previously-executed in the distributed instruction window. Different

from trace processors [54, 71], this block reissue mechanism does not rely on

complex hardware for tracking and combining the blocks inflight and finding

global re-convergent points. Instead, it relies on the compiler to detect re-

convergent points and create large predicated blocks by combining basic blocks.

All instructions in each block remain in the instruction window of the executing

core until the block commits or is flushed. So, distributed instruction queues on

the participating cores can be used as intermediate instruction storage. Also,

by shortcutting critical fetch and decode operations as shown in Figure 6.1(b),

the mechanism achieves energy savings. For example, when the first iteration

of the loop in Table 6.1 commits, A1 and B1 available instances of blocks A

and B in the instruction queue can be immediately reissued to run iteration

5 on cores C0 and C1.

This power saving is not limited just to reissuing control-independent

blocks. This mechanism can also reissue other frequently executed blocks in a

program. For example when running a large loops, the program needs to fetch

the same group of blocks for each iteration of the loop while most of those

blocks can be reissued as they are in the instruction queue.

107

7.3 Reissuing Blocks

To support block reissue, a coordinator core stores a bit vector (available

cores bitvector in Figure 6.1(a)) for each block assigned to it, which repre-

sents the idle cores in which a non-running copy of the block is available.

When a block is allocated/committed, its coordinator core resets/sets the bit

corresponding to the executing core of that block. When a block is requested,

its coordinator core searches the corresponding bit vector to find a core with

a non-running instance of the block and reissue that block and reset the cor-

responding bit in its bit vector. If the block is not available in any of the idle

cores, the executing core selects an idle core to fetch the block from i-cache and

execute it. In this case, the selected core deallocates its previously-executed

block and informs the coordinator core of that block to update the bit vector

of the deallocated block. To increase the hit rate of the block reissue mecha-

nism, we can use more than one instruction queue in each core. For instance,

when using two instruction queues per core, each core can store up to two

decoded blocks. At a given time, however, each core can only execute one of

its two stored blocks and the other instruction queue is used as an instruction

storage. Studying locality of reissued blocks and exploring different search and

replacement policies is a part of the future work of this dissertation.

7.4 Results

For the block reissue experiments, we implement an LRU block re-

placement policy and a first-match search on the available cores bitvector bit

108

0 

20 

40 

60 

80 

100 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

1  2  4  8 

Bl
oc
k 
re
is
su
ed

 h
it 
ra
te
 

IQ block capacity per core 

Figure 7.1: 16-core block reissue hit rate with varying instruction queue block
capacity per core.

vector of each allocated block. More complex search and replacement poli-

cies can improve reissue hit rate of fetch-critical blocks. Figure 7.1 reports

the block hit rates for our block reissue mechanism using 16 merged cores for

SPEC benchmarks. When storing one block in the instruction queue of each

core, the reissue hit rate is about 50%, which translates to decreasing the en-

ergy consumed by fetch and decode by half. Doubling the instruction queue

storage (with only one block running), the reissue hit rate increases to 60%.

Raising the storage size from 2x to 8x results in a hit rate of more than 75%.

The hit rate is higher for FP benchmarks most probably due to their smaller

code size and abundance of loops. Figure 7.2 reports the 16-core execution

times normalized against a 16-core baseline which does not use block reissue.

For some benchmarks, we observe a slowdown when applying block reissue.

Our investigation shows that for these benchmarks, block reissue has a nega-

tive effect on the accuracy of the data dependence predictor. Ignoring those

109

0.96 

1.00 

1.04 

1.08 

1.12 

1.16 

1.20 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

1  2  4  8 

IQ block capacity per core 

Sp
ee
du

p 
ov
er
 1
6‐
co
re
 b
as
el
in
e 

Figure 7.2: 16-core block reissue speedups with varying instruction queue block
capacity per core.

Table 7.1: Percentage breakdown of all reissued blocks with instruction queue
block capacity of two.

Benchmarks After branch After load Single block loops others
mispredictions violations

INT 54.4% 20.0% 1.9% 23.7%
FP 26.0% 9.8% 11.9% 52.3%

benchmarks, average speedups across INT and FP benchmarks for different

block storage size per core are very similar. The reissued blocks come from

different sources on the INT and FP benchmarks. The hit rate is higher for

FP benchmarks most probably due to their smaller code size and abundance

of loops. Table 7.1 includes the breakdown of reissued blocks for the runs

with instruction queue block capacity of two. For INT benchmarks, the ma-

jority of the reissued blocks are reissued after block misprediction events. For

FP benchmarks, large loops and other repetitive code patterns comprises the

majority of reissued blocks.

110

7.5 Detecting the Next Dominant Bottlenecks

The section presents the critical path analysis the system after having

cross-core register communication and fetch bottlenecks reduced. Figure 7.3

compares the critical path pattern for different optimization mechanisms so

far proposed in this dissertation when applied iteratively in the three discussed

steps. Each bar is labeled by an optimization mechanism added in a optimiza-

tion step. The right most bar in this graph shows the results for our analysis

including all three used optimizations for the 16-core configuration normal-

ized against the 1-core results. For brevity, we do not report the results for

other configurations and core counts. The steps shown in the figure are our

bottleneck analysis steps shown in Figure 4.5. The communication and fetch

stall segments of the critical path (the two lowest segments of each stack) are

significantly reduced after applying the register bypassing and block reissue

mechanisms. The new critical path comprises mostly instruction execution.

The other important component is data misses. This criticality pattern is

nearly ideal for a system with distributed partitions of a large instruction win-

dow. According to this graph, most useful cycles of a program execution are

now spent on instruction execution and data misses.

These results indicate that the last remaining bottleneck in the system

is instruction execution. Although instruction execution is not a scalability

bottleneck but it is still a large critical component when merging a large num-

ber of cores. The component-level analysis indicates the execution is now

limited only by program data dependencies, including intra-block predicates,

111

 0

 0.2

 0.4

 0.6

 0.8

 1

1deep 16flat 16deep 16bypass 16breissue

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Number of cores

brmispred

loadviolation

instfetch

writefwd

regread

datamiss

storefwd

instexecute

blockcommit

blockfetch

icachemiss

oprnetwork

fetchstall

STEP 1 STEP 2 STEP 3

Base line

Figure 7.3: System-level breakdown when applying deep block mapping, reg-
ister bypassing and block reissue.

and next block prediction accuracy. As a result, even further performance can

be squeezed by extending the framework for execution criticality and branches.

When running SPEC INT benchmarks across 16 TFlex cores, a large

portion of critical cycles is spent by the instructions waiting for predicate

values (branches converted to predicts). Additionally a significant portion of

executed instructions are dataflow fanout instructions inserted by the compiler

for high fanout instructions. Finally our speculation-aware results (not shown

here for brevity) indicate that the speculation bottleneck is also more dominant

that before. The next two chapters address these new bottlenecks.

112

7.6 Summary

At the block level, the DBCA framework implements a mechanism that

reissues blocks of instructions while they are still in the instruction window.

The results show that this mechanism reduces the number of expensive fetch

and decode operations by at least 50% translating to significant energy and de-

lay savings. This framework can be implemented on other distributed systems

and can exploit other criticality types. Moreover, coarse-grained grouping of

related instructions at compile-time similar to the one used in this study can

simplify the implementation and reduce its overheads.

The bottleneck analysis shows that the optimization mechanisms pro-

posed in this chapter and the previous chapter successfully reduce register

communication and fetch bottlenecks. Moreover, the analysis shows that at

this point, the time spent waiting for critical predicate values and execution

of move instruction pose a dominant execution bottleneck on the system. Ad-

ditionally, low next block prediction accuracy also limits performance.

113

Chapter 8

Efficient Distributed Speculation using

Iterative Path Prediction

8.1 Introduction

By exploiting predicated atomic blocks, EDGE architectures do not suf-

fer from control bottlenecks when distributing computation. To scale, EDGE

architectures rely on speculative execution of several of these blocks. Perform-

ing block-level speculation requires predicting the next block when fetching

each block. However, as each EDGE block is multi-exit block, an accurate

next block predictor needs to predict which of these exits from the block will

be taken. Given that the intra-block control flow points are converted to pre-

dicts, the global history of branches no longer includes those branches, which

degrades the accuracy of the next block predictor. Also, the branches that are

converted to predicates are evaluated at the execution stage instead of being

predicted similar to how they are handled in conventional architectures.

This chapter proposes a mechanism called Iterative Path Prediction

(IPP) to alleviate these major overheads. IPP quickly predicts an approxi-

mate multi-bit predicate path through each block and uses this predicted path

combined with the global history to predict the next-block block address. The

114

predicted path is also used to speculatively execute the predicates within the

block.

The next block prediction accuracy is also affected by the compiler poli-

cies employed to merge basic blocks and generate EDGE predicated blocks.

Additionally encoding fine-grained control flow information into the ISA, the

compiler can potentially improves the next block prediction accuracy. This dis-

sertation only focuses on the microarchitectural methods for improving EDGE

next block prediction and predication. A followup study can analyze the sen-

sitivity of the propose hardware mechanisms in this Chapter to the compiler

policies used to form blocks.

8.2 Prediction and Predication Overheads

The EDGE compiler uses predication to generate large blocks by con-

verting multiple nested branches into predicates. Therefore, all control points

within a block are converted into predicated values generated by dataflow

test instructions. By speculatively executing several of these large predicated

dataflow blocks, the EDGE microarchitectures can reduce fetch, prediction

and execution overhead, and can distribute single-threaded code across light-

weight cores. In these architectures, instead of predicting each single branch

instruction, prediction is performed on a block-granularity using a next block

predictor or target predictor. This predictor predicts the next block that will

be fetched following the current block. As EDGE blocks can have multiple

exits, each block can have multiple next block addresses depending on the

115

history of the previously executed blocks and the execution path within the

block determined by the predicates. As an example, Figure 8.1 shows a sample

code, its dataflow representation and a diagram corresponding to the predi-

cated dataflow block of the code. In the dataflow representation, the target

fields of each instruction, represent a destination instruction and the type of

the target. For example, p and op1 represent the predicate and first operand

target types, respectively. The two branches in the original code (I1 and I3)

are converted to dataflow test instructions (i1 and i3). During execution, once

a test instruction executes, its predicate value (1 or 0) is sent to the consuming

instructions of that test instruction. The small circles in the diagram indicate

the predicate consumer instructions and their predicate polarity. The white

and black circles indicate the instructions predicated on true and false, respec-

tively. For instance, the subi only executes if the i1 test instruction evaluates

to zero. Depending on the value of the predicate instructions, this block takes

one of three possible exits. If i1 evaluates to 1, the next block will be block

B2. If both i1 and i3 evaluate to 0, this block loops back to itself (block B1).

Finally, if i1 and i3 evaluate to 0 and 1, this block branches to block B3.

This model of predicated execution changes the control speculation problem

from one-bit taken/not-taken prediction to multi-bit predicate path prediction

when fetching each block. Thus, an accurate predictor for EDGE must use

a global history of the predicates in previous blocks to predict the predicate

path that will execute in the current block and then use that predicate path

information to predict the next block. This section proposes the first such fast

116

and accurate predictor called Iterative Path Predictor (IPP).

One drawback associated with predicated dataflow blocks is that the

test instructions producing the predicates within blocks are executed and not

predicted like normal branches. Our critical path analysis shows that when

running SPEC benchmarks across 16 TFlex merged cores, on average about

50% of the critical cycles belong to instructions waiting for predicates. In

Figure 8.1(c), i1 will not execute until the value of R1 has arrived. Similarly,

i3 will not execute until both R1 and R2 have arrived and the result of the i2

(SUBI) instruction is evaluated. To mitigate this execution bottleneck caused

by intra-block predicates, IPP uses the predicted predicate path of each block

to speculate on the value of predicates within that block, thus increasing the

speculation rate among the distributed cores.

8.2.1 Integrated Predicate and Branch Predictor

Previous EDGE microarchitectures predict the block exit in order to

perform next block prediction. Figure 8.2(a) illustrates the block diagram of

the next block predictor in each TFlex core. This 16K-bit predictor consists of

two major components: (a) an exit predictor that is an Alpha 21264-like tour-

nament predictor that predicts a three-bit exit code (the ISA allows between

one and eight unique exits from each block) of the current block, and (b) a tar-

get predictor that uses the predicted exit code and the current block address

to predict the next block address (PC). Because each exit can result from a

different branch type, the target predictor supports various types of targets

117

I1:   bz R1, B2 
I2:   subi a, R2, 1 
I3:   bz a, B3 
I4:   ST ADDR 
I5:   j B1 

(a) Initial representation

Read R1 <i1,op1> 
Read R2 <i2,op1> 
i1:   tz <e2,p><i2,p> 
i2:   subi_f 1 <i3,op1> 
i3:   tz <e1,p> <e3,p> <i4,p> 
i4:   ST_f ADDR 
e1:  br_f B1 
e2:  br_t B2 
e3:  br_t B3 

(b) Dataflow representation

R1 
1

R2 

TZ 

BR B2  TZ 

BR B3 BR B1 

B1 

B3 
B2 

SUBI 

Exit 3

Exit 1

Exit 2

i1

i3
i2

ST i4

(c) Dataflow diagram

Figure 8.1: Sample code, its equivalent predicated dataflow representation, and
the code diagram for the corresponding predicated dataflow block including
two predicated execution paths and three possible exits.

118

such as sequential, branch, call, and return targets. For the block shown in

Figure 8.1(c), the TFlex exit predictor predicts which of the three exits from

the block (Exit 1 to 3 in the figure) will be taken and then the target predictor

maps the predicted exit value to one of the target block addresses (B1 to B3

in the figure).

Similar to the TFlex predictor, IPP is a fully distributed predictor

with portions of prediction tables distributed across participating cores. Fig-

ure 8.2(b) shows the block diagram of the IPP predictor. Instead of predicting

the exit code of the current block, IPP contains a predicate predictor that

iteratively predicts the values of the predicates (predicate paths) in the cur-

rent block. The predicted values are grouped together as a predicted predicate

bitmap in which each bit represents a predicate in the block. For example,

for the block shown in Figure 8.1(c), the bitmap will have two bits with the

first and second bits predicting the results of the test instructions i1 and i3,

respectively. The target predictor is similar to the target predictor used by the

TFlex block predictor. It uses the predicted predicate bits (values) along with

the block address to predict the target of the block. The rest of this subsection

discusses the structure of the predicate predictor component in IPP.

Predicting predicates in each block is challenging since the number

of dynamically executed predicates in each block is not known at prediction

time. For simplicity, the predicate predictor used by IPP assumes a fixed

number of predicates in each block. The predicate predictor component must

predict multiple predicate values as quickly as possible so it will not become the

119

2-level
Local

Predictor

2-level
Global

Predictor

2-level
Choice

Predictor

Exit Predictor

Branch
Type

Predictor
(BTP)

Sequential
Predictor

(SP)

Branch
Target
Buffer
(BTB)

Call Target
Buffer
(CTB)

Return
Address

Stack
(RAS)

Target Predictor

3-bit
predicted

exit

Block Address

predicted
next block
address

Branch
 Type

(a) TFlex next block predictor

Block Address

Branch
Type

Predictor
(BTP)

Sequential
Predictor

(SP)

Branch
Target
Buffer
(BTB)

Call Target
Buffer
(CTB)

Return
Address

Stack
(RAS)

predicted
next block
address

Branch
 Type

Target PredictorPredicate Predictor

predicted
predicate &
confidence

bits

OGEHL Predicate predictor

+

predicted
predicate &
confidence

bitmaps

(b) T3 iterative path predictor (IPP)

Figure 8.2: Block diagram of TFlex block predictor and T3 iterative path
predictor.

120

bottleneck. After studying LTAGE [77], OGEHL [76] and other state-of-the-

art predictors, we designed an optimized geometric history length (OGEHL)

predictor [76] for predicate value (path) speculation. Figure 8.3 shows the

original OGEHL branch predictor. The predictor predicts each branch in three

steps. First, in the hash compute step, the branch address is hashed with the

contents of the global history register (GHR) using multiple hash functions.

Then, the produced hash values are used to index multiple prediction tables

in the table access step. Each entry in these tables is a signed saturating

counter. Finally, in the prediction step, the sum of the indexed counters in

the prediction tables is calculated and its sign is used to perform prediction.

Positive and negative correspond to taken and not-taken branches or true

and false predicate values, respectivey. The absolute value of the sum is the

estimated confidence level of the prediction. By comparing the confidence level

to a threshold, a confidence bit is generated for each prediction. When the

prediction is performed, the corresponding counters in the tables and the GHR

value are updated speculatively. We use the best reported O-GEHL predictor

in [76] with eight tables and a 200-bit global history register (modified from the

original 125-bit GHR). Assuming this best-performing predictor distributed

across 16 T3 merged cores, the size of the prediction tables stored on each core

is about 8Kbits, which is equal to the size of the exit predictor in the original

TFlex predictor shown in Figure 8.2(a). Therefore, using IPP does not incur

any additional area overhead. To keep the global history registers consistent

across cores, when a core performs a next block prediction, it broadcasts its

121

∑ 

L(4) 

L(3) 

L(2) 

L(1) 

L(0) 

H1 

H2 

H3 

H4 

Block PC 

T0 

T1 

T2 

T3 

T4 

1-bit prediction
Spec update

8-bit
indexes 4-bit

counters

Predicte
d path

Spec
update

40 bits

200
bits

H1 GHR 

Figure 8.3: Basic OGEHL predictor.

changes to the GHR to other cores.

To accelerate the predicate path prediction, we optimize the OGEHL

predictor by converting each step in the OGEGL predictor into a pipeline stage

as shown in Figure 8.4(a). Although, this predictor can predict one predicate

in each cycle, due to the speculative updates of GHR and prediction counters,

there are possible data hazards in this pipeline when predicting back-to-back

dependent predicates in one block. For example, if the second predicate in

a block is false only when the first predicate is true, this correlation is not

captured in this pipeline because when the first prediction is still in flight, in

the prediction stage, the second prediction is in the access stage. To address

this issue, a hazard-free pipelined OGEHL shown in Figure 8.4(b) reads dual

prediction values from each prediction table in the table access stage. The

correct value is selected at the end of that stage depending on the prediction

value computed in the prediction stage (selecting the second prediction based

on the first prediction). Extending the same technique of reading dual predic-

122

Prediction sum stage

∑ H1 

H2 

H3 

H4 

Block PC 

T0 

T1 

T2 

T3 

T4 

1-bit prediction
Spec update

8-bit
indexes

4-bit counters

Predicted
path

Index compute stage Table access stage

40 bits

200
bits

H1 GHR 

L(0) 

L(1) 

L(2) 

L(3) 

L(4) 

Possible
Hazards

(a) Pipelined OGEHL predictor

Prediction sum stage

∑ H1 

H2 

H3 

H4 

Block PC 

1-bit prediction
Spec update

7-bit
indexes

4-bit counters

Predicted
path

Index compute stage Table access stage

40 bits

200
bits

H1 GHR 

L(4) 

L(3) 

L(2) 

L(1) 

TO 

T1 

T2 

T3 

T4 

L(0) 

(b) Hazard-free pipelined OGEHL predictor

Prediction sum

∑ 

L(4) 

L(3) 

L(2) 

L(1) 

T0 

T1 

T2 

T3 

T4 

L(0) 

H1 

H2 

H3 

H4 

Block PC 

Spec update

5-bit
indexes

7 x 4-bit
counters

Pr
ed

ic
te

d
pa

th

Initial index compute Table access

40 bits

200
bits

H1 GHR 
∑ ∑ 

∑  ∑ ∑ ∑ 

0 1

00 10 10 11

(c) Aggressive pipelined OGEHL predictor

Figure 8.4: Three OGEHL-based pipeline designed used for the T3 predicate
predictor. 123

tions from the table, an aggressive pipelined predictor shown in Figure 8.4(c)

reads dual predictions for multiple predicates within the same block in order

to maximize prediction speed. In this predictor, seven counters are read from

each table in the table access stage and then an adder tree is used to extract

three prediction bits in the prediction stage. Such an aggressive predictor can

perform three predictions in each cycle.

8.2.2 Speculative Execution of Predicate Paths

When the next target of a block is predicted, the predictor sends the

predicted predicate bitmap to the core executing that block. It also sends

another bitmap called a confidence bitmap with each bit representing the con-

fidence of its corresponding predicted predicate. When an executing core re-

ceives the predication and confidence bitmaps, it stores the information re-

quired for speculative execution of the predicates in the instruction queue.

The instruction queue is extended to contain one confidence bit and one pre-

diction bit for each predicate-generating test instruction. For each predicate

with its confidence bit set, the speculation starts immediately after receiving

these bits by sending the predicted value to its destination instructions. For

example, assume the bitmap associated with the block shown in Figure 8.1(c)

is 00, meaning that the i1 and i3 predicates are both predicted to be 0. In

this case, the store instruction, i4, is executed and block loops through Exit1

immediately, thus avoiding waiting for predicates to be computed and input

registers R1 and R2 to arrive. If the bitmap is 10 or 11, then Exit2 is immedi-

124

ately taken, thus ignoring all instructions in the block and branching directly

to block B2.

For detecting predicate misspeculations, this mechanism relies on the

dataflow execution model used by T3. The speculated test instructions in a

block still receive their input values from other instructions inside the block.

Once all inputs of such a speculated test instruction have arrived, that in-

struction executes as a normal instruction but does not send its output to

its destination instructions again. Instead, the output of the test instruction

is compared against the predicted value of that predicate and if the two do

not match, a misspeculation flag is raised. Consequently, the block and all of

the blocks that depend on it are flushed from the pipeline and the prediction

tables are updated for that block.

8.3 Design Exploration Results

Table 8.1 compares different proposed pipelined IPP designs including

the pipelined IPP, the hazard-free pipelined , and the aggressive pipelined IPP

shown in Figures 8.4. In this experiment, each SPEC benchmark runs using 16

merged cores. This table presents MPKI (mispredictions per kilo instructions)

for both next block prediction and predicate value speculation. It also presents

speedups compared to the original TFlex predictor show in Figure 8.2(a). Us-

ing the basic pipelined IPP improves next block prediction MPKI from 4.03

to 3.29. By capturing the correlation between consecutive predicates in each

block, the hazard-free pipeline improves MPKI to 2.93, while improving pred-

125

Table 8.1: Accuracy and speedups of different proposed IPP designs.

TFlex Basic Hazard-free Aggressive
next block pipelined pipelined pipelined
predictor IPP IPP IPP

Next block prediction MPKI 4.03 3.29 2.93 2.92
Predicate prediction MPKI N/A 0.65 0.54 0.54
Average speedup 1.0 1.11 1.14 1.15

Table 8.2: Accuracy and speedups of the pipelined IPP when varying number
of predicted predicates per block.

Number of predicted predicates per block 1 2 3 4 5
Next block prediction MPKI 4.43 4.00 2.86 2.93 2.96
Predicate prediction MPKI 0.10 0.29 0.44 0.54 0.57
Average speedup over TFlex 1.03 1.04 1.12 1.14 1.13

icate prediction MPKI from 0.65 down to 0.54. Of the 14% speedup achieved

by the hazard-free IPP pipeline, the contributions of speculative execution of

predicates and improved next block prediction accuracy are 12% and 2%, re-

spectively. This predictor increases core-level energy consumption by 1.2%,

most of which is consumed by the O-GEHL adders. However, energy saved

by this predictor because of the improved next block and predicate prediction

accuracy is about 6%, resulting in an overall energy improvement of 4.8%. The

aggressive pipelined design results in slightly higher speedup compared to the

hazard-free pipeline, which considering the design overhead and complexity of

both designs, the hazard-free pipeline is a preferred candidate for T3.

126

Table 8.2 evaluates the hazard-free IPP design when varying the num-

ber of predicted predicate values per block. The next block prediction accuracy

first improves when increasing predicted branches (predicate values) from 1 to

3 and then degrades. This observation is supported by the fact that for most

SPEC benchmarks, the average number of executed predicates per block is

three. The predicate prediction MPKI, however, increases consistently as the

number of speculated predicates increases from 1 to 5. However, these MPKIs

are very low and do not highly affect performance. Although the best next

block prediction is achieved when predicting three predicates per block, the

best speedup is achieved when predicting 4 predicates per block due to the

increased intra-block speculation. This speedup is only slightly better than

the speedup achieved when predicting 3 predicates per block. So, considering

the increase in the next block prediction misses when predicting 4 predicates,

predicting three predicates per block can potentially result in higher power

efficiency.

8.4 Summary

This chapter proposes a combined branch and predicate predictor for

T3 called Iterative Path Predictor. This predictor solves the low multi-exit

next bock prediction accuracy issue and low speculation rate issue caused by

heavy predicate execution. The predictor predicts a multi-bit predicate path

within each block and uses it to accurately predict the next block following

that block. In order to accelerate the prediction of intra-block predicate path,

127

IPP employs a novel pipelined OGEHL predictor with no area overhead. The

predicted predicate path is used for both improving next block predictor ac-

curacy and speculative execution of predicates. This predictor does not incur

any area overheads while saving 14% execution delay and 5% core-wide energy

with 16 composed T3 cores.

128

Chapter 9

Efficient Operand Delivery using Exposed

Operand Broadcasts

9.1 Introduction

Communicating operands between instructions is a major source of

energy consumption in modern processors. A wide variety of operand com-

munication mechanisms have been employed by different architectures. For

example in superscalar processors, to wake up all consumer instructions of a

completing instruction, physical register tags are broadcast to power-hungry

Content Addressable Memories (CAMs), and operands are obtained from a

complex bypass network or by a register file with many ports. A mechanism

commonly used for operand communication in dataflow architectures such as

EDGE designs, is point-to-point communication. Dataflow is highly efficient

when a producing instruction has a single consumer; the operand is directly

routed to the consumer, often just requiring a random-access write into the

consumer’s reservation station. If the producer has many consumers, however,

dataflow implementations typically build an inefficient software fanout tree of

operand-propagating instructions (that we call move instructions). These two

mechanisms are efficient under different scenarios: broadcasts should be used

when there are many consumers currently in flight (meaning they are in the

129

instruction window), dataflow should be used when there are few consumers,

and registers should be used to hold values when the consumers are not yet

present in the instruction window.

The chapter discusses and evaluates a compiler-assisted hybrid instruc-

tion communication mechanism proposed by Li et al. [48, 69] called Exposed

Operand Broadcasts (EOBs). This mechanism augments EDGE dataflow in-

struction communication model with a small number of architecturally exposed

broadcasts within the instruction window. A narrow CAM uses high-fanout

instructions to send their operands to their multiple consumers, but only unis-

sued instructions waiting for an architecturally specified broadcast actually

perform the CAM matches. The other instructions in the instruction window

do not participate in the tag matching, thus saving energy. All other instruc-

tions, which have low-fanout, rely on the point-to-point token communication

model. The determination of which instructions use tokens and which use

broadcasts is made statically by the compiler and is communicated to the

hardware via the modified ISA. As a result, this method does not require in-

struction dependence detection and instruction categorization at runtime. In

addition, the compiler can reduce the bit width of the needed CAM by effi-

ciently reusing the tags for non-overlapping live range broadcasts. The rest of

the chapter gives an overview on EOBs and their required compiler analysis,

and then discusses how their support is added to T3, and finally presents a

design exploration of the EOBs integrated in T3.

130

9.2 Dataflow Fanout Overhead

By eliminating register renaming, result broadcast, and associative tag

matching in the instruction queue, the direct dataflow intra-block communi-

cation achieves major energy savings for low-fanout operands compared to

conventional out-of-order designs. However, the energy savings are limited in

the case of high-fanout instructions for which the compiler needs to generate

software fanout trees [32]. Each instruction in the EDGE ISA can encode

up to two destinations. As a result, if an instruction has a fanout of more

than two, the compiler inserts two- or three-target move instructions to form

a dataflow fanout tree for operand delivery. Previous work [32] has shown that

for the SPEC benchmarks, 25% of all instructions are move instructions. These

fanout move trees manifest themselves at runtime in the form of extra power

consumption and execution delay. To alleviate this issue, this dissertation pro-

poses a novel hybrid operand delivery that exploits compile-time analysis to

minimize both the delay and energy overhead of operand delivery within each

distributed T3 core. This mechanism uses direct dataflow communication for

low-fanout operands and compiler-generated ISA-exposed operand broadcasts

(EOBs) for high-fanout operands. These limited EOBs eliminate almost all

of the fanout overhead of the move instructions. Move instruction removal re-

sults in fetch and execution of fewer instructions, fewer blocks (through more

efficient block formation), and large energy savings.

131

9.2.1 EOB Assignment and Instruction Encoding

This subsection briefly discusses EOBs and how the compiler generates

them. For a more detailed discussion, please refer to [48, 69]. The original

EDGE compiler [78] generates blocks containing instructions in dataflow for-

mat in which each instruction directly specifies each of its consumers using

a 7-bit instruction identifier. As shown in Figure 9.1, each instruction can

encode up to two target instructions in the same block. The xop field in

this figure is an extended opcode that contains multiple unused bits. During

block formation, the compiler identifies and marks the instructions that have

more than two targets. Later, the compiler adds move fanout trees for those

high-fanout instructions during the code generation phase.

The modified EOB-enabled compiler accomplishes two additional tasks,

choosing which high-fanout instructions should be selected for one of the lim-

ited intra-block broadcasts, and assigning one of the static EOBs to each

selected instruction. The compiler uses a greedy algorithm, sorting all instruc-

tions in a block with more than two targets and selecting those instructions

based on the number of targets. Starting from the beginning of the list, the

compiler assigns each instruction in the list an EOB from fixed number of

available EOBs. The number of available EOBs is determined by a microar-

chitectural parameter called MaxEOB. The send and receive EOBs must be

encoded in both operand broadcast producing and consuming instructions.

Figure 9.2 illustrates a sample program, its equivalent dataflow repre-

sentation, and its equivalent hybrid dataflow/EOB representation generated

132

opcode  xop  target1  target2 

7 bits  9 bits 

type  S‐EOB 

2  3 
bits 

9 bits 

4 bits 

7bits 

R‐EOB  B 

1
3 
bits 

type  Des=na=on ID 

2  7 bits 

Original dataflow encoding

EOB encoding

Figure 9.1: T3 instruction encoding with support for EOBs. S, R, and B refer
to Send, Receive, and Broadcast enable, respectively.

by the modified compiler. In Figure 9.2(a), a, b, d, g and x are the inputs

read from registers and except for stores, the first operand of each instruction

is the destination. In the dataflow code shown in Figure 9.2(b), instruction i1

only encodes two of its three targets. Therefore, the compiler inserts a move

instruction, instruction i1a, to generate the fanout tree for that instruction.

For the hybrid communication model shown in Figure 9.2(c), the compiler

assigns an EOB (1 in this example) to i1, the instruction with high fanout,

and encodes the broadcast information into both i1 and its consuming instruc-

tions (instructions i2, i3 and i5). Finally, the compiler uses dataflow direct

communiction for the remaining low-fanout instructions, e.g. instruction i2

in Figure 9.2. The branch instruction i4 in the original code is converted to

a predicate using a test instruction, i4 in the dataflow code. The two store

instructions are on the true and false predicated paths of this predicate.

133

I1:  add c, a, b 
I2:  sub e, c, d 
I3:  add f, c, g 
I4:  bz x L1 
I5:  st c, f 
I5a:  j EXIT 
L1: 
I6:  st e, f 

(a) Initial representation

i1:  add <i2, op1> <i1a, op1>  
i1a:  mov <i3, op1> <i5 op1>  
i2:  sub <i6, op1>  
i3:  add <i5, op2> <i6, op2>  
i4:  testnz <i5, pred><i6, pred> 
i5:  st_t 
i6:  st_f 

(b) Dataflow representation

i1:  add [S‐EOB=1, op1] 
i2:  sub [R‐EOB=1] <i6, op1> 
i3:  add [R‐EOB=1] <i5, op2><i6, op2> 
i4:  testnz <i5, pred><i6, pred> 
i5:  st_t [R‐EOB=1] 
i6:  st_f 

(c) Hybrid dataflow/EOB representation

Figure 9.2: A sample code and corresponding code conversions in the modified
compiler for the hybrid dataflow/EOB model.

134

9.2.2 Microarchitectural Support for EOBs

This subsection discusses how EOBs are integrated into the T3 system.

To implement EOBs in T3 cores, a small EOB CAM array stores the receive

EOBs of broadcast receiver instructions in the instruction queue. Figure 9.3 il-

lustrates the instruction queue of a single T3 core when running the broadcast

instruction i1 in the sample code shown in Figure 9.2(c). When the broad-

cast instruction executes, its send EOB (value 001 in this example) is sent to

be compared against all the potential broadcast receiver instructions in the

instruction queue. Only a subset of instructions in the instruction queue are

broadcast receivers, while the rest need no EOB comparison. Operands that

have already received their broadcast do not have to perform CAM matches,

saving further energy. Upon an EOB CAM match, the hardware generates a

write-enable signal to write the operand into the instruction queue entry of

the corresponding receiver instruction. The broadcast type field of the sender

instruction (operand1 in this example) is used to select the column corre-

sponding to the receivers. Tag delivery and operand delivery do not happen

on the same cycle. Similar to superscalar operand delivery networks, the EOB

of the executing sender instruction is first delivered one cycle before instruc-

tion execution completes. On the next cycle, when the result of the broadcast

instruction is ready, its output is written simultaneously into all matching

operand buffers in the instruction window.

Figure 9.3 also illustrates a sample circuit implementation for the com-

pare logic in each EOB CAM entry. The CAM tag size in this figure is three

135

operand 1  issued operand 2  target1  target2  op1 op2 p opc 

Send EOB = 001 

Type = op1 

(E
O
B,
 ty

pe
, v
al
ue

) 

EOB CAM 

i1 

i2 

i3 

i5 

✓ 

✓ 
a�

b�

a� b�

d�

g�

000� i6 

001� ✓ 

add�

add�

sub �

st_t�

st_f �

S‐EOB=1 �

001�

001�

✓ ✓  ✓ 

✓ 

✓ 

i6 , op1�

match 

= = = 

R‐EOB [2‐0] 

B

R‐EOB‐valid 

Issued 

3 

Send 
EOB 
[2‐0] 

3 

EOB CAM 

1

1

test� i4 

i5 , op2� i6 , op2�

i5 , pred� i6 , pred�

Figure 9.3: Execution of a broadcast instruction in the IQ (top) and the
compare logic for each EOB CAM (bottom).

136

bits which represents the bit width of EOBs. In this circuit, the compare

logic is disabled if one of the following conditions is true: (1) if the instruction

corresponding to the CAM entry has been previously issued, (2) if the receive

EOB of the instruction corresponding to the CAM entry is not valid, which

means the instruction is not a broadcast receiver (for example instruction i5

in Figures 9.2 and 9.3), or (3) if the executed instruction is not a broadcast

sender. Despite the fact that they both use CAMs, EOBs are more energy

efficient than the instruction communication model in superscalar processors

for several reasons. First, because EOBs use small identifiers, the bit width

of the CAM is small compared to a superscalar design which must track a

larger number of renameable physical registers. Second, the compiler can se-

lect which instruction operands are broadcast, which in practice is a small

fraction of the total instruction count. Third, only a portion of instructions

in the queue are broadcast receivers and perform an EOB comparison during

each broadcast.

9.3 Design Space Exploration Results

Increasing the number of the available EOBs (MaxEOBs) from zero

to 128 (the maximum number of instructions in each EDGE block) produces

fewer fanout trees and adds more broadcasts to the code. By choosing an ap-

propriate value for this ISA parameter, the compiler is able to minimize total

energy consumed by fanout trees and EOBs, while achieving a decent speedup

as a result of using EOBs for high-fanout instructions. Figure 9.4 illustrates

137

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1 2 4 8 16 32 64 128

En
er
gy
 c
on
su
m
p
ti
on
 r
el
at
iv
e 
to
  t
h
e 
or
ig
in
al
 

T
Fl
ex
 o
p
er
an
d
 d
el
iv
er
y 
m
od
el
 (
M
ax
EO
B
s 
=
 0
) 

Max EOBs 

Moves  Broadcasts 

Figure 9.4: Averaged energy breakdown between move instructions and broad-
casts for various numbers of available EOBs for SPEC benchmarks.

the energy breakdown into executed move and broadcast instructions for a

variety of MaxEOBs values on the SPEC benchmarks each running across

16 merged cores. The energy models used to generate this graphs are derived

from the validated TRIPS energy models. Chapter 10 discusses our detailed

and accurate energy modeling methodology. The energy values are normalized

to the total energy consumed by move instructions when instructions within

each block communicate only using dataflow (MaxEOBs = 0). When only

using dataflow (the original TFlex operand delivery), all operand delivery en-

ergy overheads are caused by the move instructions. Allowing one or two

broadcast operations in each block, MaxEOBs of 1 and 2, we observe a sharp

reduction in the energy consumed by move instructions. The compiler chooses

the instructions with highest fanout first when assigning EOBs. For these

138

MaxEOBs values, the energy consumed by EOBs is very low. As we increase

the total number of EOBs, the energy consumed by broadcast operations in-

creases dramatically and fewer move instructions are removed. At some point,

the broadcast energy becomes dominant. For high numbers of MaxEOBs, the

broadcast energy is an order of magnitude larger than the energy consumed

by move instructions. The key observation in this graph is that allowing only

4 to 8 broadcasts in each block minimizes the total energy consumed by moves

and broadcasts. For such MaxEOBs, the total energy is about 28% lower

than the energy consumed by the baseline TFlex (MaxEOBs = 0) and about

2.7x lower than when MaxEOBs is equal to 128. These results show that the

compiler is able to achieve a better trade-off in terms of power breakdown by

selecting a critical subset of high-fanout instructions in each block. We also

note that for MaxEOBs larger than 32, the energy consumed by move in-

structions is at a minimum and does not change, but the EOB CAM becomes

wider so the energy consumed by EOBs continues growing.

Using 3-bit EOBs removes 73% of dataflow fanout instructions and

instead 8% of all instructions are encoded as the EOB senders. These instruc-

tions send EOBs to 34% of instructions (EOB receivers). Using 3-bit EOBs

results in about 10% total energy reduction on T3 cores. The consumed en-

ergy is reduced in two ways: (1) it saves the energy consumed during execution

of the fan-out trees which constituent more than 24% of all instructions; and

(2) by better utilizing the instruction blocks, it reduces the fetch and decode

operations by executing 5% fewer blocks.

139

9.4 Summary

This chapter discusses a compiler-assisted hybrid operand delivery mech-

anism proposed by Li et al. [48] and explains how it is integrated into T3. In-

stead of using dynamic hardware-based pointer chasing, this mechanism relies

on the compiler to categorize instructions for token or broadcast operations.

In this model, the compiler assigns broadcasts for critical operands that had

many consumers, and dataflow for the rest of operands. The compiler analyzes

the program to select the best operand communication mechanism for each in-

struction. At the same time, the block-atomic EDGE model made it simple to

perform that analysis in the compiler, and allocate a number of architecturally

exposed broadcasts to each instruction block. Furthermore, compiler performs

complex optimizations without hardware cost and execution-time penalty like

the dynamic approaches. By limiting the number of broadcasts, the CAMs

searching for broadcast IDs can be kept narrow, and only those instructions

that have not yet issued and that actually need a broadcast operand need to

be performing CAM matches. Exploiting both low-overhead architecturally

exposed broadcasts and direct dataflow communication, T3 supports fast and

energy-efficient operand delivery for high- and low-fanout instructions. By us-

ing 3-bit wide EOBs, the overall operand delivery overhead is minimize, which

translates to 10% core-wide energy reduction and 5% increase in performance

when running across 16 composed cores.

140

Chapter 10

Integrated T3 Power and Performance Results

This chapter first presents a power/performance evaluation of all T3

components across a range of core counts. After discussing our methodology

for power and performance analysis, the chapter then compares the fully inte-

grated T3 system to previous EDGE microarchitectures (TRIPS and TFlex)

that have different core composition granularities and microarchitectural fea-

tures. To illustrate power/performance tradeoffs achieved by T3, the chapter

then compares the performance/power flexibility of the T3 microarchitecture

against several design points in the performance and power spectrum of pro-

duction processors such as Intel Atom and Core 2 processors. Finally, the

chapter presents the final critical path analysis of T3 in order to find the last

remaining bottlenecks and possible opportunities for further improvements.

10.1 Methodology

We use an execution-driven, cycle-accurate simulator to simulate the

TRIPS, TFlex, and T3 processors [41]. The simulator is validated against the

cycles collected from the TRIPS prototype chip. In TFlex or T3 modes, the

simulator supports different configurations in which a single thread can run

141

across a number of cores ranging from 1 to 16 cores in powers of 2. We limit the

number of merged cores between 1 and 16 as performance and power scaling

does not improve much when merging more than 16 cores. The power model

uses CACTI [87] models for all major structures such as instruction and data

caches, SRAM arrays, register arrays, branch predictor tables, load-store queue

CAMs, and on-chip network router FIFOs to obtain a per-access energy for

each structure. Combined with access counts from the architectural simulator,

these per-access energies provide the energy dissipated in these structures.

The power models for integer and floating point ALUs are derived from both

Wattch [13] and the TRIPS hardware design database. The combinational

logic power in various microarchitectural units is modeled based on detailed

gate and parasitic capacitances extracted from RTL models and activity factor

estimates from the simulator. The baseline EDGE power models at 130nm are

suitably scaled down to 45nm using linear technology scaling. For a complete

review of out power modeling methodology, please refer to [34, 35].

We use a supply voltage of 1.1 Volts and a core frequency of 2.4 GHz

for the TRIPS, TFlex, and T3 platforms. Our benchmarks include 15 SPEC

2000 [2] benchmarks (7 integer and 8 floating point) each simulated with a sin-

gle simpoint region of 100 million instructions (the Fortran and non-compilable

SPEC benchmarks are excluded).

We accurately model the delay of each optimization used by the T3

simulator. Also, we use CACTI and scaled TRIPS power models to estimate

the power consumed by the tables or combinational logics used by various

142

Table 10.1: T3 optimizations.

Optimization Configuration

EOB Each core supports hybrid communication explained in
Chapter 9 using 3-bit EOBs (MaxEOB equal to eight) + IPP.

IPP Instead of block predictor in [41], each core uses the
hazard-free pipelined IPP and predicts 4 predicates per
block explained in Chapter 8 + BYPASS.

BYPASS Enabling last-arriving register bypass [68] from producer
cores to consumers (explained in Chapter 6) + BREISSUE.

BREISSUE Enabling block reissue mechanism [68] explained in
Chapter 7 + DEEP.

DEEP Using the deep block mapping [67]explained in Chapter
5, in which all instructions in each block are mapped to

just one core.

T3 features, such as the O-GEHL tables used by IPP or the EOB CAM and

comparators.

Table 10.1 lists the optimization mechanisms that we model for the

integrated T3 processor. The EOBs used in these experiments are 3 bits wide,

IPP uses the hazard-free pipeline predicting up to 4 predicates per blocks.

10.2 Performance and Energy Scalability Results

Figure 10.1 shows the average speedup, energy consumption (L2 en-

ergy excluded), and inverse energy-delay-product for TRIPS, TFlex, and T3

configurations. These graphs are normalized against runs on a single TFlex

core. The T3 experiments are inclusive meaning that each experiment includes

143

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 
(IN

T)
 

(a) SPEC INT Speedup

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

6.5 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 
(F
P)
 

(b) SPEC FP Speedup

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

En
er
gy
 o
ve
r 
si
ng
le
 d
ua
l‐i
ss
ue

 c
or
es
 (I
N
T)
 

(c) SPEC INT Energy

0 

0.5 

1 

1.5 

2 

2.5 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

En
er
gy
 o
ve
r 
si
ng
le
 d
ua
l‐i
ss
ue

 c
or
es
 (F
P)
 

(d) SPEC FP Energy

0 

0.5 

1 

1.5 

2 

2.5 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

In
ve
rs
e 
of
 E
D
P 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 
(IN

T)
 

(e) SPEC INT Inverse Energy-delay-
product

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

1  2  4  8  16 

EOB 

IPP 

BREISSUE 

BYPASS 

DEEP 

TFlex 

TRIPS 

# of cores 

In
ve
rs
e 
of
 E
D
P 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 
(F
P)
 

(f) SPEC FP Inverse Energy-delay-product

Figure 10.1: Average speedups, energy, and inverse of energy-delay-product
over single core for the SPEC benchmarks with varying the numbers of merged
cores and optimization mechanisms. 144

features added by all its previous experiments. For example, DEEP only in-

cludes the deep mapping model but EOB represents the complete integrated

T3 system including deep mapping, register bypass, block reissue, iterative

path prediction, and dataflow/EOB communication. In these graphs, T3 and

TFlex charts are reported in different configurations each running different

core counts ranging from 1 to 16. TRIPS results are straight lines as that

microarchitecture does not support composability.

For INT benchmarks, Figures 10.1(a) and 10.1(c) show that TFlex-8

(TFlex using 8 cores) outperforms TRIPS by about 1.12× while consuming

slightly more energy. However, relying on the optimized microarchitectural

components, T3-8 (EOB charts across 8 cores in the figure), significantly out-

performs TRIPS by 1.43× while consuming about 25% less energy. This signif-

icant simultaneous reduction in consumed energy and increase in performance

of the T3 system translates to a major increase in energy efficiency, which

is mostly attributed to the IPP and EOBs. T3-4 achieves the best inverse-

energy-delay-product (EDP) as shown in Figure 10.1(a). This value is 1.8× of

that of TFlex-4 EDP with more than half of this increase caused by the combi-

nation of IPP and EOBs. For FP benchmarks, TFlex-16 outperforms TRIPS

by about 1.7× while consuming 30% more energy. T3-16 (EOB charts), on

the other hand, outperforms TRIPS by about 2.5× while consuming 1.1× less

energy. T3-16 reaches the best inverse-EDP and inverse-ED2P which are 2.6×

and 7× better than those of TRIPS.

To better quantify power and performance benefits of the features pro-

145

posed in this dissertation for the T3 system, we focus on the speed and power

breakdown for INT benchmarks, which are inherently hard for a compiler to

parallelize automatically. On average, T3-16 outperforms TFlex-16 by about

1.5× across both INT and FP benchmarks, which translates to a speedup of

about 50%. For the INT benchmarks, the speedups stem primarily from the

IPP (14%), deep block mapping (7%), and block reissue (11%). As shown in

the energy graphs, the T3 optimized cores save significant energy compared to

the TFlex. For example T3-16 consumes about 38% less energy than TFlex-16

for SPEC INT benchmarks. The main energy savers are EOBs (10%), deep

block mapping (8%), and block reissue (7%). These energy savings come from

(a) reduction in executed blocks and fanout move instructions as a result of

using EOBs, (b) skipped fetch and decode operations as a result of reissuing

blocks as they are still in the window, and (c) the reduction in cross-chip com-

munication as a result of localizing intra-block communication within cores.

10.3 T3 Power Performance Tradeoffs

To examine the performance/power flexibility of the T3 microarchitec-

ture, we compare it to several design points in the performance and power spec-

trum of production processors. An exact comparison is extremely challenging

because publicly-available validated x86 power and performance models do

not exist. We use the Intel Core 2 and Atom as representatives for high per-

formance and lower power platforms respectively, and rely on the chip power

and performance measurement results reported in [25] for these platforms with

146

the technology node identical to T3, 45nm. We use the McPAT [49] models

to estimate the core power consumption to compare against T3. We choose

Core 2 and Atom as their power breakdowns are close to the high-performance

and low-energy cores presented supported by McPAT [49]. The main idea of

such a comparison is not a detailed, head-to-head comparison of T3 to these

platforms, but to demonstrate the power/performance flexibility offered by T3

in the context of such platforms. While we recognize that our methodology

is not ideal, we believe it has sufficient fidelity to demonstrate the potential

of one T3 processor that operates on a wide spectrum of power/performance

regions covered by a number of commercial products.

Figure 10.2 reports relative performance, energy and inverse-EDP re-

sults of various platforms. In each graph, different voltage and frequency op-

erating points of Core 2 represent high-performance operating region (marked

P). Similarly, operating points of Atom represents the low-energy operating

region (marked E). Table 10.2 summarizes the operating points of different

platforms in this experiment, which are extracted from [1, 25]. T3 runs only

vary the number of composed cores with a fixed frequency and voltage equal to

that of the the CORE2/H operating point. As shown in Figure 10.2, T3 achieves

high energy efficiency in both low-energy and high-performance regions. By

fusing a few of these T3 optimized cores, we can achieve major performance

boosts in low-energy regimes. For example, while the energy consumed by

T3-2 falls within the low-energy region (Figures 10.2(c) and 10.2(d)), its per-

formance is close to the range of the high-performance region (Figures 10.2(a)

147

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

Sp
ee
du

p 
ov
er
 o
ne

 d
ua
l‐i
ss
ue

 T
3 
co
re
 (I
N
T)
 

P 

E 

(a) SPEC INT Speedup

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

6.5 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

Sp
ee
du

p 
ov
er
 o
ne

 d
ua
l‐i
ss
ue

 T
3 
co
re
 (F
P)
 

P 

E 

(b) SPEC FP Speedup

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

En
er
gy
 o
ve
r 
on

e 
du

al
‐is
su
e 
T3
 c
or
e 
(IN

T)
 

P 

E 

(c) SPEC INT Energy

0 

0.5 

1 

1.5 

2 

2.5 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

En
er
gy
 o
ve
r 
on

e 
du

al
‐is
su
e 
T3
 c
or
e 
(F
P)
 

P 

E 

(d) SPEC FP Energy

0 

0.5 

1 

1.5 

2 

2.5 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

In
ve
rs
e 
of
 E
D
P 
ov
er
 o
ne

 d
ua
l‐i
ss
ue

 T
3 
co
re
 (I
N
T)
 

E 

P 

(e) SPEC INT Inverse Energy-delay-
product

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

1  2  4  8  16 

T3 

CORE2/H 

CORE2/L 

ATOM/H 

ATOM/L 

# of cores 

In
ve
rs
e 
of
 E
D
P 
ov
er
 o
ne

 d
ua
l‐i
ss
ue

 T
3 
co
re
 (F
P)
 

P 

E 

(f) SPEC FP Inverse Energy-delay-product

Figure 10.2: Average speedups, energy, and inverse-EDP over single core with
varying the numbers of merged cores.

148

Table 10.2: Configurations for T3, Core2 and Atom platforms [1, 25].

T3 CORE2/H CORE2/L ATOM/H ATOM/L

Vdd (volts) 1.1 1.1 0.9 1.1 0.8
Frequency 2.4GHz 2.4GHz 1.6GHz 1.6GHz 800MHz

and 10.2(b)). On the other hand, merging more cores significantly boosts per-

formance at a relatively small energy cost. For example, while T3-4 and T3-8

perform in or above the high-performance region, their consumed energy is

below this region.

Finally, T3 not only performs in these energy/performance regions, but

also covers a much larger space of operating points, which is covered partially

by the Core 2 and Atom processors in this case study, thus extending the

range of power/performance trade-offs beyond DVFS on conventional proces-

sors. This degree of energy efficiency and flexibility in T3 is an independent

feature in addition to DVFS. T3 can combine this feature with DVFS to fur-

ther extend the range of power/performance trade-offs. For instance, 1, 2, 4, 8

or 16 composed cores with 5 DVFS points provides 25 different highly energy-

efficient operating points in the power/performance spectrum as opposed to

just 5 via DVFS alone.

10.4 Final Bottleneck Analysis

Figure 10.3 compares the critical path pattern for flat mapping, deep

mapping, register bypassing, block reissues and IPP proposed in this disser-

149

tation when applied cumulatively. Each bar is labeled by the optimization

mechanism added the previous set to the left. The right most bar in this

graph shows the results for the last step of our analysis including all four used

optimizations for the 16-core configuration normalized against the 1-core re-

sults. We do not include the results for EOBs as they are very similar to the

ones for IPP. The only difference is that the contribution of the instruction

execution component will be slightly reduced as a result of elimination of the

fanout move trees.

Applying IPP reduces the criticality of instruction execute, register

reads and data cache misses. This is mostly the effect of intra-block spec-

ulation enabled by IPP as predicate values are predicted, instead of being

evaluated in the execution stage. Whereas without this feature, before getting

executed, the intra-block predicates have to wait for memory or register input

values used in computing those predicates. Consequently, IPP reduces the

contribution of register reads and memory accesses on the critical path.

The combination of different mechanisms proposed for T3 in this dis-

sertation almost eliminates cross-core communication, fetch stalls predicate

execution and move fanout trees from the critical path. At this point, In-

struction execution is the only dominant critical resource in T3. This includes

mostly the time spent on executing instructions in the functional units. As a

result, the order of instructions in each T3 core can affect the delay associated

with this resource. The current spatial path scheduling SPS [20] for placing in-

structions in the instruction queue of each core operates based on the statically

150

 0

 0.2

 0.4

 0.6

 0.8

 1

1deep 16flat 16deep 16bypass 16breissue 16ipp

N
or

m
al

iz
ed

 ex
ec

ut
io

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

STEP 1 STEP 2 STEP 3 STEP 4

Figure 10.3: System-level breakdown when applying deep block mapping, reg-
ister bypassing, block reissue and iterative path predictor.

estimated critical path within each block. This algorithm does not consider

the predicate prediction enabled using IPP proposed in Chapter 8. When the

predicates are predicted, the critical path within the block changes from the

critical path of the baseline TFlex in which the predicates are evaluated. With

predicate prediction enabled, register reads or loads leading to predicate test

instructions are no longer on the critical if that test instruction is critical.

Therefore, a revision of the SPS scheduling algorithm for changing the issue

order (criticality) of instructions of each block in the instruction queue of the

core executing that block, can further improve performance.

151

10.5 Summary

Exploiting novel mechanisms, T3 demonstrates significant performance

and energy advantages over previous composable EDGE architectures. We

compare the performance and energy efficiency of T3 against previous EDGE

architectures. On SPEC CINT2000, T3 increases average performance ap-

preciably (over 47% with eight composed cores) while simultaneously reduc-

ing the energy consumed (27% with eight cores), which translates to about

2x improved energy delay product, as compared to TFlex. Furthermore, T3

achieves high energy efficiency at different power and performance operating

points across a wide power/performance spectrum.

We examine the performance/power flexibility of T3 by comparing it

to real conventional platforms by using both hardware measurements [25] and

analytical power models [49]. For high-performance (10∼30 watts range) and

low-energy references (1∼3 watts range), we use an Intel Core 2 and an In-

tel Atom processors, respectively. With low core counts (one or two), T3

consumed energy is in the low-energy region while performing close to the

high-performance region. When running with four or more composed cores

per thread, T3 improves performance significantly while its consumed energy

is below the energy ranges of the high-performance region. This degree of flex-

ibility and energy efficiency allows T3 to explore power/performance trade-offs

beyond those of conventional processors.

Our final critical path analysis shows that all dominant bottlenecks are

almost eliminated using the proposed mechanisms for T3 in this dissertation.

152

The only dominant critical resource is the time spent in ALUs for executing

instructions. This resource can be further sped up by employing an instruction

scheduling algorithm rearranging the issue order of instructions considering the

T3 predicate prediction feature enabled by IPP.

153

Chapter 11

Conclusions

As voltage scaling diminishes, processors need to rely on scalable ar-

chitectural innovations to operate at different energy/performance operating

points while maximizing energy efficiency at each point. Composable archi-

tectures can span a wide range of energy/performance operating points by

enabling multiple simple cores to compose a larger and more powerful core.

Explicit Data Graph Execution (EDGE) architectures represent a highly scal-

able class of composable processors that exploit predicated dataflow block

execution and distributed microarchitectures. However, prior EDGE architec-

tures suffer from major energy and performance bottlenecks. This disserta-

tion studies these bottlenecks and proposes a new EDGE architecture called

T3 [69], addressing these issues and fulfilling the original composition and

power efficiency promises of EDGE. To conclude this dissertation, we discuss

the bottlenecks reported in this study and the methods T3 employs to ad-

dresses those bottlenecks. While this dissertation resolves most fundamental

issues associated with composable architectures, a few more optimizations are

still possible, which will also be discussed briefly.

154

11.1 Dissertation Contributions

This dissertation studies and addresses inefficiencies and bottlenecks in

previous EDGE architectures. Early EDGE designs, TRIPS and TFlex, have

a number of serious performance bottlenecks [32]. They distribute the instruc-

tions in each in-flight dataflow block among all participating cores, increasing

cross-core operand communication latency and consumed energy. These ar-

chitectures exploit pipelines of large blocks, and thus next-block misprediction

flushes were particularly expensive in terms of delay and energy consumed

for refilling the blocks after each misprediction. Additionally, because EDGE

blocks are multi exit, next-block predictor had low accuracy compared to con-

ventional taken/not taken predictors. The intra-block branches that are con-

verted to predicates, are evaluated in the execution stage, but would have been

predicted as branches in a conventional processor. Finally, for high fanout

operands, the early EDGE compiler generates trees of move instructions in

oder to handle operand fanout using dataflow. These overhead move instruc-

tions consume additional power and increases the dependence height in the

program’s critical path.

By addressing these issues, the T3 dynamic multicore EDGE architec-

ture proposed in this dissertation operates efficiently in a wide spectrum of

energy and performance operating points ranging from low-power to high-

performance. To achieve a high degree of energy efficiency, T3 addresses

several fundamental issues associated with composable block-based dataflow

execution:

155

• By mapping each dataflow block to only one executing core [67], T3

halves the cross-core network traffic by eliminating cross-core dataflow

communication, which is a major bottleneck in previous EDGE archi-

tectures. As a result, intra-block dataflow operand delivery is only used

within cores and only inter-block register communication occurs between

cores.

• The Iterative Path Predictor [69] solves the low multi-exit next bock

prediction accuracy and low speculation rate problems caused by heav-

ily predicated execution. By predicting multiple branches in the same

block very quickly, this predictor predicts the taken predicate path within

each block and then uses that estimated path to predict the predicates

instead of evaluating them in the execution stage. Additionally, using

this predicted predicate path improves the next block prediction accu-

racy compared to TFlex.

• The Exposed Operand Broadcasts [69] proposed by Li et al. [48, 69] ad-

dress another major issue, the energy consumed and latency incurred

by compiler-generated trees of move instructions built for wide-fanout

operands. Exploiting both low-overhead architecturally exposed broad-

casts and direct dataflow communication, T3 supports fast and energy-

efficient operand delivery for high- and low-fanout instructions. By ex-

posing different operand delivery mechanisms to the compiler, T3 re-

duces the total energy consumed for operand delivery beyond what both

156

dataflow machines and hybrid operand delivery in superscalar machines

can achieve.

• T3 employs register bypassing [68] to speedup cross-core inter-block reg-

ister communication by bypassing late register outputs between producer

and consumer blocks. Relying on block-based EDGE execution model,

different from previous cross-core register bypassing mechanism used by

other composable designs [46], this method does not require a synchro-

nizing score board nor shared buses.

• By reissuing previously executed or flushed blocks while they are still in

the instruction queue [68], T3 saves both delay and energy by skipping

fetch and decode of the reissued blocks. As T3 relies on statically formed

dataflow blocks, this mechanism does not incur any major hardware

overhead for finding global re-convergent points as done by trace caches

dynamically [71].

Exploiting these novel mechanisms, T3 demonstrates significant per-

formance and energy advantages over previous composable EDGE designs.

Furthermore, T3 achieves high energy efficiency at different power and perfor-

mance operating points across a wide power/performance spectrum. T3 ex-

tends the power/performance tradeoffs beyond what conventional processors

can offer using traditional voltage and frequency scaling. These features make

T3 an attractive candidate for a wide range of control- and memory-intensive

workloads under varying power and performance constraints.

157

In order to design and guide these new optimization mechanisms, this

dissertation proposes a methodical approach [68] using critical path analysis to

detect performance and scalability bottlenecks of these designs. The criticality

analysis indicates that using these optimizations, T3 almost eliminates most

previously detected bottlenecks such as cross-core communication, fetch stalls,

delayed predicates and fanout moves. As the only major T3 critical resource

is instruction execution, further improvements are still possible.

11.2 Future Directions

While this dissertation has contributed a good deal towards designing

energy-efficient dynamic multicore EDGE architectures, there is more research

to be done. Additional research work could improve the compilers code for

this new architecture. Also, the ISA and microarchitecture can be further

optimized for energy efficiency. We outline these areas of future work here.

11.2.1 Compiler Improvements

This dissertation only investigates methods to improve EDGE microar-

chitecture and ISA for better power efficiency. Evaluating the sensitivity of

the proposed mechanisms to different compiler analyses and optimizations is

one interesting future direction. For example, different block formation strate-

gies [50] can directly affect the accuracy and performance of our iterative path

predictor proposed in Chapter 8. Also, as EDGE architectures depend partly

on compiler technology to obtain performance and power efficiency from a

158

range of microarchitecture features, we believe our results can be further im-

proved by employing more fitting and advanced compiler techniques. This

section discusses two of the possible opportunities.

11.2.1.1 Improved Instruction Placement

Instruction scheduling [20] used by the EDGE compiler [78] employs

Spatial Path Scheduling (SPS) algorithm for assigning instruction IDs to in-

structions in each block. In each pass, this algorithm assigns a placement cost

to each instruction and uses these assigned costs to prioritize the most critical

instructions and find the location and criticality for each instruction in the

block. When using deep mapping, these IDs determine the location of the in-

structions in the issue queue (reservation stations) of the core executing that

block, and so can affect the order, in which instructions are issued. Given that

each T3 is 2-wide issue, if more than two instructions are ready in a given

cycle, the instruction IDs determine which instruction must be issued first.

In evaluating this cost value for each instruction, the SPS algorithm also

considers the costs assigned to the instructions on which the current instruction

is dependent. When enabling predicate prediction in T3, the predicate test

instructions are predicted, and so the data dependences between them and

their producing instructions, register reads or memory accesses, will not exist

any more. An SPS algorithm revised for T3 should consider this observation

when assigning the placement cost to all predicate tests instruction and also

its producing instructions. For example, when IPP is enabled, if a predicted

159

If-conversion
Loop peeling

While loop unrolling
Instruction merging

Predicate optimizations

TRIPS block
Formation

Register allocation
Reverse if-conversion & split
Load/store ID assignment
SSA for constant outputs

Fanout insertion
Instruction placement

Target form generation

Resource
Allocation

Scheduling

TASL

TIL

Constraints
128 instructions

32 load/store IDs

32 reg. read/write
(8 per 4 banks)
constant output

Figure 11.1: TRIPS compiler overview.

predicate is on the critical path, its producing register read is less likely to

also be on the critical path because the predicate is predicted and does not

wait for that register value. Consequently, the register read should be given

less priority by the scheduling algorithm.

11.2.1.2 Better Code Generation

We anticipate that our results can further improve by employing a

highly tuned production compiler rather than our current research compiler [78].

As shown in Figure 11.1, the current TRIPS compiler back end [78] has three

major phases. The first phase is block formation [50], in which the compiler

combines basic blocks into a set of EDGE blocks. This phase uses if-conversion,

predication, unrolling, tail duplication, and head duplication as necessary to

160

form optimized blocks [52]. The compiler also performs scalar optimizations

that merge redundant instructions and eliminate unnecessary predicates as an

integrated step of block formation. During block formation, the compiler as-

sumes an infinite virtual register set and uses a RISC-like intermediate form

called TIL (TRIPS Intermediate Language). The second phase applies ISA

and microarchitectural restrictions such as register allocation and load/store

ID assignments. The last phase in the TRIPS compiler backend is instruction

scheduling, which outputs TRIPS Assembly Language (TASL) after assigning

instruction IDs of instructions in each block.

This research compiler can be improved in several aspects. First, the

compiler does not consider any high-level front end related information when

performing block formation for EDGE. Second, the block formation, register

allocation and instruction scheduling happen in completely different phases

whereas they are indeed inter related. An alternative solution is to use a

production front end and back end and then translate the fully optimized code

into EDGE ISA. To determine how much additional performance and energy

efficiency is achievable with better compilation, a highly optimized compiler

is under developement.

11.2.2 E2: Next EDGE ISA and Microarchitecture

In addition to improving code generation, other optimizations are pos-

sible via ISA and microarchitectural extensions. The next EDGE ISA and mi-

croarchitecture, which is called E2 [59], incorporates variable-size blocks [50]

161

and support for SIMD and vector operations in addition to the EOBs, IPP

and other T3 optimizations. Figure 11.2 shows the basic architecture of an E2

microarchitecture with 32 cores, and a block diagram of the internal structure

of each E2 core. An E2 core contains four lanes, with each lane consisting

of a 64-bit ALU and one bank of the instruction window (with the capacity

needed for 32 instructions), operand buffers, and register file. ALUs support

both integer and floating point operations, as well as fine-grained SIMD exe-

cution (eight 8-bit, four 16-bit, or two 32-bit integer operations per cycle, or

two single-precision floating point calculations per cycle). Breaking the win-

dow into these four lanes allows high vector throughput with little additional

hardware complexity. It also facilitates the support for variable-size blocks.

This section briefly discusses these novel features in E2.

11.2.2.1 Variable Block Sizes

Variable-size blocks [50] improve resource utilization and power effi-

ciency in E2. The block size is a multiple of the size of each instruction lane.

So, this ISA supports four possible block sizes of 32, 64, 96 and 128 instruc-

tions. The total capacity of the instruction queue of each E2 core (4 lanes

together) is 128 instructions, which is the maximum block size. Each E2 core

can allocate and run up to 4 blocks at the same time (four 32-instruction

blocks). Consequently, an E2 architecture with 16 composed cores can sup-

port 64 in-flight blocks. This high number of in-flight blocks and flexibility

of each E2 core for mapping multiple blocks result in a large space of possi-

162

!
"#

$%&'()*+(,-&$

.,&/-0$

12$3$456$

!
"#

$%&'()*+(,-&$

.,&/-0$

12$3$456$

!
"#

$%&'()*+(,-&$

.,&/-0$

12$3$456$

!
"#

$%&'()*+(,-&$

.,&/-0$

12$3$456$

"7$

%&'()*+(,-&$

89+:;$

$

12$<=$

"7$>9(9$89+:;$

$

12$<=$

8-&()-?$

=)9&+:$

@);/,+(-)$

AB;)9&/$

=*CC;)$

12$3$D56$

E;F,'(;)'$

GHI74J$

7D3D56$

E;F,'(;)'$

G7DI17J$

7D3D56$

E;F,'(;)'$

G12I5KJ$

7D3D56$

E;F,'(;)'$

G5LID1J$

7D3D56$

M;N-)O$

%&(;)C9+;$

8-&()-??;)$

"-9/PQ(-);$

R*;*;$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

AB;)9&/$

=*CC;)$

12$3$D56$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

"2$

"2$ "2$

"2$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

8-);$ 8-);$8-);$ 8-);$

"2$

"2$ "2$

"2$

"9
&
;
$7
$
"9
&
;
$2
$
"9
&
;
$1
$
"9
&
;
$5
$

Figure 1: E2 microarchitecture block diagram. In vector mode, each core is composed of four independent vector lanes,
each with a 32-instruction window, two 64-bit operand buffers, an ALU for both integer and floating point operations,
and 16 registers. In scalar mode, the ALUs in lanes 3 and 4 are powered down, and the instruction windows, operand
buffers, and registers are made available to the other two lanes.

2. THE E2 ARCHITECTURE
E2 is a tiled architecture that consists of low power, high

performance, decentralized processing cores connected by
an on-chip network. This design provides E2 with the bene-
fits of other tiled architectures - namely simplicity, scalabil-
ity, and fault tolerance. Figure 1 shows the basic architecture
of an E2 processor containing 32 cores, and a block diagram
of the internal structure of one physical core.

A core contains N lanes (in this paper we choose four),
with each lane consisting of a 64-bit ALU and one bank
of the instruction window, operand buffers, and register file.
ALUs support both integer and floating point operations, as
well as fine-grained SIMD execution (eight 8-bit, four 16-
bit, or two 32-bit integer operations per cycle, or two single-
precision floating point calculations per cycle). This innova-
tion of breaking the window into lanes allows for high vector
throughput with little additional hardware complexity.

E2’s EDGE ISA restricts blocks in several ways to sim-
plify the hardware that maps blocks to the execution sub-
strate and detect when blocks are finished executing. Blocks
are variable-size: they contain between 4 and 128 instruc-
tions and may execute at most 32 loads and stores. The hard-
ware relies on the compiler to break programs into blocks
of dataflow instructions and assign load and store identifiers
to enforce sequential memory semantics [12]. To improve
performance, the compiler uses predication to form large
blocks filled with useful instructions. To simplify commit,
the architecture relies on the compiler to ensure that a sin-
gle branch is produced from every block, and to encode the
register writes and the set of store identifiers used.

E2 cores operate in two execution modes: scalar mode
and vector mode. In scalar mode, any instruction can send
operands to any other instruction in the block, and all but

two of the ALUs are turned off to conserve power. In vec-
tor mode, all N ALUs are turned on, but instructions can
only send operands to instructions in the same vector lane.
The mode is determined on a per-block basis from a bit in
the block header. This allows each core to adapt quickly to
different application phases on a block-by-block basis.

2.1 Composing Cores
One key characteristic that distinguishes E2 from other

processors is the ability to dynamically adapt the architec-
ture for a given workload by composing and decomposing
cores. Rather than fixing the size and number of cores at de-
sign time, one or more physical cores can be merged together
at runtime to form larger, more powerful logical cores. For
example, serial portions of a workload can be handled by
composing every physical core into one large logical proces-
sor that performs like an aggressive superscalar. Or, when
ample thread-level parallelism is available, the same large
logical processor can be split so each physical processor can
work independently and execute instruction blocks from in-
dependent threads. Merging cores together is called compos-
ing cores, while splitting cores is called decomposing cores.

Logical cores interleave accesses to registers and memory
among the physical cores to give the logical core the com-
bined computational resources of all the composed physical
cores. For example, a logical core composed of two physi-
cal cores uses an additional bit of the address to choose be-
tween the two physical caches, effectively doubling the L1
cache capacity. The register files are similarly interleaved,
but since only 64 registers are supported by the ISA, the
additional register file capacity is powered gated to reduce
power consumption.

Each instruction block is mapped to a single physical pro-

Figure 11.2: E2 microarchitecture block diagram[59].

ble policies for distributed block mapping and next-block prediction protocols.

An effective policy should be able to sustain a high prediction accuracy, low

instruction cache miss rate and high number of in-flight blocks. Exploring

different policies and mechanisms for block mapping and next-block predic-

tion for such a high number of in-flight blocks is an interesting future research

direction.

11.2.2.2 SIMD/Vector Optimizations

E2 also supports instruction set extensions such as SIMD/vector op-

erations [59] and out-of-order execution of both vectors and scalars. The E2

instruction set and execution model supports three new capabilities that enable

efficient vectorization across a broad range of codes. First, the E2 compiler

slices up the issue window into vector lanes and so it can achieve highly con-

163

current, out-of-order issue of mixed scalar and vector operations with lower

energy overhead than scalar mode. Second, the statically allocated reservation

stations treat the issue window as a vector register file, with wide fetches to

memory and limited copying between a vector load and the vector operations.

Third, similar to T3, the atomic block-based execution in E2 allows reissuing

of both vector and scalar instruction blocks mapped to different lanes of the

issue window. This enables repeated vector operations to issue with no fetch

or decode energy overhead after the first loop iteration [59].

E2 cores operate in the scalar mode or vector mode. In the scalar mode,

an instruction can send operands to any other instruction in the block, and

two of the four ALUs are turned off to save power. In the vector mode, all four

ALUs are turned on, but instructions can only send operands to instructions

in the same lane. The mode is determined based on a bit in each block

header. So two consecutive blocks could configured in two separate modes.

Moreover, since each block is mapped to one core, each core can adapt quickly

to different application phases on a block-by-block basis. We expect that the

combination of better compilation and common-practice ISA extensions will

further enhance the capabilities of EDGE architectures.

164

Bibliography

[1] Low power optimization datasheet for intel Atom processor, Embedded

Insights, www.embeddedinsights.com/ei download.php?file=basicslpdint01.

[2] The standard performance evaluation corporation (SPEC), http://www.spec.org/.

[3] NVIDIA. NVIDIAs Next Generation CUDA Compute Architecture: Fermi.

http://nvidia.com/content/PDF/fermi white papers/ NVIDIA Fermi Com-

pute Architecture Whitepaper.pdf, 2009.

[4] AMD. HD 6900 Series Instruction Set Architecture. http://developer.amd.com/

gpu/amdappsdk/assets/AMD HD 6900 Series Instruction Set Architecture.pdf,

February 2011.

[5] Ahmed S. Al-Zawawi, Vimal K. Reddy, Eric Rotenberg, and Haitham H.

Akkary. Transparent control independence (tci). In ISCA ’07: Proceed-

ings of the 34th Annual International Symposium on Computer Architec-

ture, pages 448–459, San Diego, California, USA, 2007.

[6] K. Arvind and Rishiyur S. Nikhil. Executing a program on the mit

tagged-token dataflow architecture. IEEE Trans. Computer, 39(3):300–

318, March 1990.

[7] David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework

for balancing control flow and predication. In Proceedings of the 30th

165

Symposium on Microarchitecture, pages 92–103, Research Triangle Park,

North Carolina, United States, December 1997.

[8] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically man-

aging the communication-parallelism trade-off in future clustered proces-

sors. In International Symposium on Computer Architecture, pages 275–

286, San Diego, California, June 2003.

[9] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi.

Reducing the complexity of the register file in dynamic superscalar pro-

cessors. In MICRO 34: Proceedings of the 34th Annual ACM/IEEE

International Symposium on Microarchitecture, pages 237–248, Austin,

Texas, December 2001.

[10] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for

quad-cluster, dynamically-scheduled, superscalar processors. In 33rd

International Symposiumon Microarchitecture, pages 337–347, Monterey,

California, December 2000.

[11] Eric Borch, Srilatha Manne, Joel Emer, and Eric Tune. Loose loops sink

chips. In HPCA ’02: Proceedings of the 8th International Symposium on

High-Performance Computer Architecture, page 299, Washington, DC,

USA, February 2002.

[12] Robert S. Boyer and J Strother Moore. MJRTY - a fast majority vote

algorithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe,

of Automated Reasoning Series, pages 529–543, 1977.

166

[13] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a frame-

work for architectural-level power analysis and optimizations. SIGARCH

Computer Architecture News, 28(2):83–94, June 2000.

[14] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin,

C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and others. Scaling

to the end of silicon with EDGE architectures. IEEE Computer, pages

44–55, July 2004.

[15] R. Canal, J. Parcerisa, and A. Gonzalez. Dynamic cluster assignment

mechanisms. In 6th International Symposium on High Performance Com-

puter Architecture, pages 133–142, Toulouse, France, January 2000.

[16] Ramon Canal and Antonio González. A low-complexity issue logic. In

Conference on Supercomputing, pages 327–335, Santa Fe, New Mexico,

May 2000.

[17] Ramon Canal and Antonio González. Reducing the complexity of the

issue logic. In Conference on Supercomputing, pages 312–320, Sorento;

Italy, June 2001.

[18] Chen-Yong Cher and T. N. Vijaykumar. Skipper: A microarchitecture for

exploiting control-flow independence. In MICRO 34: Proceedings of the

34th Annual ACM/IEEE International Symposium on Microarchitecture,

pages 4–15, Austin, Texas, December 2001.

167

[19] Weihaw Chuang and Brad Calder. Predicate prediction for efficient out-

of-order execution. In the 17th Annual International Conference on Su-

percomputing, pages 183–192, San Francisico, June 2003.

[20] Katherine E. Coons, Xia Chen, Doug Burger, Kathryn S. McKinley, and

Sundeep K. Kushwaha. A spatial path scheduling algorithm for EDGE

architectures. In International Conference on Architectural Support for

Programming Languages and Operation Systems, pages 129–140, San Jose,

December 2006.

[21] Katherine E. Coons, Behnam Robatmili, Matthew E. Taylor, Betrand A.

Maher, Doug Burger, and Kathryn S. McKinley. Feature selection and

policy optimization for distributed instruction placement using reinforce-

ment learning. In The 17th Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 32–42, Toronto, Canada, Octo-

ber 2008.

[22] José-Lorenzo Cruz, Antonio González, Mateo Valero, and Nigel P. Topham.

Multiple-banked register file architectures. SIGARCH Comput. Archit.

News, 28(2):316–325, June 2000.

[23] Jack B. Dennis and David P. Misunas. A preliminary architecture for a

basic data-flow processor. In Proceedings of the 2nd Annual Symposium

on Computer architecture, pages 126–132, New York, December 1975.

[24] Jeff Diamond, Behnam Robatmili, Stephen W. Keckler, Kazushige Goto,

Doug Burger, and Robert van de Geijn. High performance dense linear

168

algebra on spatially partitioned processors. In Symposium on Principles

and Practice of Parallel Programming (PPOPP), pages 63–72, Salt Lake

City, February 2008.

[25] Hadi Esmaeilzadeh, Ting Cao, Xi Yang, Stephen Blackburn, and Kathryn

McKinley. Looking back on the language and hardware revolution: Mea-

sured power performance, and scaling. In 16th International Conference

on Architectural Support for Programming Languages and Operating Sys-

tems, pages 319–332, Newport Beach, California, 2011.

[26] E.Oezer, S. Banerjia, and T. Conte. A new approach to scheduling

for clustered registerfile microarchitectures. In The 31st International

Symposiumon Microarchitecture, pages 308–315, Dallas, December 1998.

[27] K. L. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multi-

cluster architecture: Reducing processor cycle time through partitioning.

In 30th International Symposium on Microarchitecture, pages 327–356,

North Carolina, December 1997.

[28] Brian Fields, Shai Rubin, and Rastislav Bodik. Focusing processor poli-

cies via critical-path prediction. In International Symposium on Com-

puter Architecture, pages 74–85, July 2001.

[29] Brian A. Fields, Rastislav Bod́ık, Mark D. Hill, and Chris J. Newburn.

Using interaction costs for microarchitectural bottleneck analysis. In

International Symposium on Microarchitecture, pages 228–240, San Diego,

December 2003.

169

[30] Brian R. Fisk and R. Iris Bahar. The non-critical buffer: Using load

latency tolerance to improve data cache efficiency. In International Con-

ference on Computer Design, pages 538–545, October 1999.

[31] Manoj Franklin and Gurindar S. Sohi. Register traffic analysis for stream-

lining inter-operation communication in fine-grain parallel processors. In

Proceedings of the 25th Annual International Symposium on Microarchi-

tecture, pages 236–245, Portland, OR, December 1992.

[32] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Diamond,

Paul V. Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili,

Aaron Smith, James Burrill, Stephen W. Keckler, Doug Burger, and

Kathryn S. McKinley. An evaluation of the TRIPS computer system. In

The 14th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 1–12, March

2009.

[33] Dan Gibson and David A. Wood. Forwardflow: a scalable core for power-

constrained CMPs. In Proceedings of the 37th annual international sym-

posium on Computer architecture, pages 14–25, Saint-Malo, France, June

2010.

[34] Madhu Saravana Sibi Govindan. E3 : Energy-Efcient EDGE Architec-

tures. PhD thesis, Austin, TX, USA, 2010. Supervised by Stephen W.

Keckler.

170

[35] Madhu Saravana Sibi Govindan, Behnam Robatmili, Hadi Esmaeilzadeh,

Bertrand Maher, Dong Li, Aaron Smith, Stephen W. Keckler, and Doug

Burger. Scaling power and performance via processor composability.

Technical report, 2010. UT Austin, Department of Computer Sciences

TR-10-14.

[36] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era.

In IEEE Computer, volume 41, pages 33–38, July 2008.

[37] Andrew D. Hilton and Amir Roth. Ginger: Control independence using

tag rewriting. In ISCA ’07: Proceedings of the 34th Annual International

Symposium on Computer Architecture, pages 436–447, San Diego, June

2007.

[38] Michael Huang, Jose Renau, and Josep Torrellas. Energy-efficient hybrid

wakeup logic. In Proceedings of the 2002 International Symposium on

Low Power Electronics and Design, pages 196–201, Monterey, California,

August 2002.

[39] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core

fusion: accommodating software diversity in chip multiprocessors. In

International Symposium on Computer Architecture, pages 186–197, San

Diego, June 2007.

[40] Quinn Jacobson, Steve Bennett, Nikhil Sharma, and James E. Smith.

Control flow speculation in multiscalar processors. In 3rd IEEE Sym-

171

posium on High-Performance Computer Architecture, HPCA, pages 218–

229, San Antonio, February 1997.

[41] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan, Nitya Ran-

ganathan, Divya Gulati, Doug Burger, and Stephen W. Keckler. Com-

posable lightweight processors. In International Symposium on Microar-

chitecture, pages 381–394, Chicago, December 2007.

[42] Ho-Seop Kim and James E. Smith. Instruction level distributed process-

ing. In IEEE Computer 34, 4, pages 59–65, 2001.

[43] Ho-Seop Kim and James E. Smith. An instruction set and microar-

chitecture for instruction level distributed processing. In International

Symposium on Computer Architecture, pages 71–81, Anchorage, Alaska,

May 2002.

[44] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Nia-

gara: A 32-way multithreaded Sparc Processor. IEEE Micro, 25(2):21 –

29, 2005.

[45] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architec-

ture with speculative multithreading. IEEE Transactions on Computers,

48(9):866–880, September 1999.

[46] Venkata Krishnan and Josep Torrellas. Fast communication in hardware-

based speculative chip multiprocessors. International Journal of Parallel

Programing, 29(1):3–33, February 2001.

172

[47] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-

ganathan, and Dean M. Tullsen. Single-ISA heterogeneous multi-core

architectures: The potential for processor power reduction. In Interna-

tional Symposium on Microarchitecture, pages 81–93, December 2003.

[48] Dong Li, Behnam Robatmili, and Doug Burger. Hybrid operand com-

munication for dataflow processors. In Workshop on Parallel Execution

of Sequential Programs on Multi-core Architectures, in conjunction with

35th Intl. Symposium on Computer Architecture, pages 61–71, Austin,

TX, June 2009.

[49] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: an integrated power, area, and

timing modeling framework for multicore and manycore architectures. In

42nd IEEE/ACM International Symposium on Microarchitecture, pages

469–480, New York, New York, December 2009.

[50] Bert Maher. Atomic Block Formation for Explicit Data Graph Execution

Architectures. PhD thesis, Austin, TX, USA, 2010. Supervised by Doug

Burger.

[51] Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. Au-

gust, and Wen-Mei W. Hwu. A comparison of full and partial predicated

execution support for ILP processors. In 22nd annual international sym-

posium on Computer architecture, pages 138–150, Santa Margherita Lig-

ure, Italy, May 1995.

173

[52] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and

Roger A. Bringmann. Effective compiler support for predicated execution

using the hyperblock. In International Symposium on Microarchitecture,

pages 45–54, November 1992.

[53] S Melvin and Yale Patt. Enhancing Instruction Scheduling With a Block-

Structured ISA. International Journal on Parallel Processing, 23(3):221–

243, June 1995.

[54] S. W. Melvin, M. C. Shebanow, and Y. N. Patt. Hardware support

for large atomic units in dynamically scheduled machines. In Workshop

on Microprogramming and Microarchitecture, pages 60–63, Austin, TX,

November 1988.

[55] Andreas Moshovos and Gurindar S. Sohi. Speculative memory cloaking

and bypassing. Int. J. Parallel Program., 27(6):427–456, 1999.

[56] R. Nagarajan, Xia Chen, R.G. McDonald, D. Burger, and S.W. Keckler.

Critical path analysis of the TRIPS architecture. In International Sym-

posium on Performance Analysis of Systems and Software, pages 37–47,

March 2006.

[57] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-

effective superscalar processors. SIGARCH Comput. Archit. News,

25(2):206–218, May 1997.

174

[58] Dmitry V. Ponomarev, Gurhan Kucuk, Oguz Ergin, Kanad Ghose, and

Peter M. Kogge. Energy-efficient issue queue design. IEEE Trans. Very

Large Scale Integr. Syst., 11(5):789–800, October 2003.

[59] Andrew Putnam, Aaron Smith, and Doug Burger. Dynamic vectorization

in the e2 dynamic multicore architecture. SIGARCH Comput. Archit.

News, 38:27–32, January 2011.

[60] Eduardo Quinones, Joan-Manuel Parcerisa, and Antonio Gonzalez. Se-

lective predicate prediction for out-of-order processors. In Conference on

Supercomputing, pages 46–54, Tampa, June 2006.

[61] Eduardo Quinones, Joan-Manuel Parcerisa, and Antonio Gonzalez. Im-

proving branch prediction and predicated execution in out-of-order pro-

cessors. In International Symposium on High Performance Computer

Architecture, 2007, pages 75–84, Phoenix, Arizona, February 2007.

[62] Marco A. Ramirez, Adrian Cristal, Mateo Valero, Alexander V. Veiden-

baum, and Luis Villa. A new pointer-based instruction queue design

and its power-performance evaluation. In International Conference on

Computer Design, pages 647–653, Las Vegas, Nevada, October 2005.

[63] Marco A. Ramı́rez, Adrian Cristal, Alexander V. Veidenbaum, Luis Villa,

and Mateo Valero. Direct instruction wakeup for out-of-order processors.

In Innovative Architecture for Future Generation High-Performance Pro-

cessors and Systems, pages 2–9, January 2004.

175

[64] Nitya Ranganathan, Doug Burger, and Stephen W. Keckler. Analysis of

the TRIPS Prototype Block Predictor. In International Symposium on

Performance Analysis of Systems and Software, pages 195 – 206, April

2009.

[65] Behnam Robatmili, Katherine Coons, and Doug Burger. Balancing lo-

cal and global parallelism for single-thread applications in a composable

multi-core system. In Workshop on Parallel Execution of Sequential Pro-

grams on Multi-core Architectures, in conjunction with 34th Intl. Sympo-

sium on Computer Architecture, pages 2–10, Beijing, China, June 2008.

[66] Behnam Robatmili, Katherine E. Coons, Doug Burger, and Kathryn S.

McKinley. Register bank assignment for spatially partitioned proces-

sors. In 21st Annual Languages and Compilers for Parallel Computing

Workshop (LCPC), pages 64–79, Edmonton, Alberta, Canada, July 2008.

[67] Behnam Robatmili, Katherine E. Coons, Doug Burger, and Kathryn S.

McKinley. Strategies for mapping dataflow blocks to distributed hard-

ware. In International Symposium on Microarchitecture (MICRO), pages

23–34, November 2008.

[68] Behnam Robatmili, Madhu Saravana Sibi Govindan, Doug Burger, and

Steve Keckler. Exploiting criticality to reduce bottlenecks in distributed

uniprocessors. In 17th International Symposium on High-Performance

Computer Architecture (HPCA), pages 431–442, San Antonio, December

2011.

176

[69] Behnam Robatmili, Dong Li, , Hadi Esmaeilzadeh, Madhu Saravana Sibi

Govindan, Doug Burger, and Steve Keckler. T3: An Energy-Efcient Dy-

namic Multicore Architecture. submitted to The 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-44), 2011.

[70] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: a low

latency approach to high bandwidth instruction fetching. In MICRO 29:

Proceedings of the 29th annual ACM/IEEE international symposium on

Microarchitecture, pages 24–35, Paris, France, 1996.

[71] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith.

Trace processors. In International Symposium on Microarchitecture,

pages 138–148, December 1997.

[72] Pierre Salverda and Craig Zilles. A criticality analysis of clustering in

superscalar processors. In MICRO 38: Proceedings of the 38th annual

IEEE/ACM International Symposium on Microarchitecture, pages 55–66,

Barcelona, Spain, December 2005.

[73] Pierre Salverda and Craig Zilles. Fundamental performance challenges in

horizontal fusion of in-order cores. In International Symposium on High-

Performance Computer Architecture, pages 252–263, Salt Lake City, UT,

2008.

[74] Karthikeyan Sankaralingam, Stephen W. Keckler, William R. Mark, and

Doug Burger. Universal mechanisms for data-parallel architectures. In

177

International Symposium on Microarchitecture, pages 303–314, December

2003.

[75] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu

Kim, Jaehyuk Huh, Nitya Ranganathan, Doug Burger, Stephen W. Keck-

ler, Robert G. McDonald, and Charles R. Moore. Exploiting ILP, TLP,

and DLP with the polymorphous TRIPS architecture. In International

Symposium on Computer Architecture, pages 422–433, San Diego, June

2003.

[76] Andre Seznec. The O-GEHL branch predictor. In Journal of Instruction-

Level Parallelism (JILP) Special Issue: The first JILP Championship

Branch Prediction Competition (CBP-1), 2004.

[77] Andre Seznec. A 256 kbits L-TAGE branch predictor. In Journal of

Instruction-Level Parallelism (JILP) Special Issue: The Second Champi-

onship Branch Prediction Competition (CBP-2), 2007.

[78] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,

D. Burger, and K. S. McKinley. Compiling for EDGE architectures. In

International Symposium on Code Generation and Optimization, pages

185–195, Newyork, March 2006.

[79] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. SIGARCH

Comput. Archit. News, 25(2):194–205, 1997.

178

[80] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar

processors. In International Symposium on Computer Architecture, pages

521–532, Santa Margherita Ligure, Italy, June 1995.

[81] S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs.

criticality. In International Symposium on Computer Architecture, pages

132–144, June 2001.

[82] Srikanth T. Srinivasan and Alvin R. Lebeck. Load latency tolerance

in dynamically scheduled processors. In International Symposium on

Microarchitecture, pages 148–159, November 1998.

[83] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks

through augmenting topologies. Evol. Comput., 10(2):99–127, 2002.

[84] Suriya Subramanian and Kathryn S. McKinley. HeDGE: hybrid dataflow

graph execution in the issue logic. In The 4th International Confer-

ence on High Performance and Embedded Architectures and Compilers

(HiPEAC), pages 308–323, Cyprus, January 2009.

[85] S. Swanson, K. Michaelson, A. Schwerin, and M. Oskin. WaveScalar.

In 36th Symposium on Microarchitecture, pages 291–302, San Diego, CA,

December 2003.

[86] D. Tarjan, M. Boyer, and K. Skadron. Federation: Out-of-order execution

using simple in-order cores. Technical Report CS-2007-11, University of

Virginia, Department of Computer Science, August 2007.

179

[87] D. Tarjan, S. Thoziyoor, and N. Jouppi. HPL-2006-86, HP Laboratories,

Technical Report. 2006.

[88] Matthew E. Taylor, Katherine E. Coons, Behnam Robatmili, Doug Burger,

and Kathryn S. McKinley. Policy search optimization for spatial path

planning. In Workshop on Machine Learning for Systems Problems

(NIPS), Vancouver, Canada, December 2007.

[89] Matthew E. Taylor, Katherine E. Coons, Behnam Robatmili, Bertrand A.

Maher, Doug Burger, , and Kathryn S. McKinley. Evolving compiler

heuristics to manage communication and contention. In Twenty-Fourth

Conference on Artificial Intelligence (Nectar Track), pages 1690–1693,

Atlanta, GA, July 2010.

[90] E. Tune, Dongning Liang, D. M. Tullsen, and B. Calder. Dynamic pre-

diction of critical path instructions. In International Symposium on High

Performance Computer Architecture, pages 181–195, Monterrey, Mexico,

January 2001.

[91] E. Tune, D. M. Tullsen, and B. Calder. Quantifying instruction criticality.

In International Conference on Parallel Architectures and Compilation

Techniques, pages 104–113, Charlottesville, Virginia, September 2002.

[92] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,

Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev

Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Bring

it all to software: Raw machines. IEEE Computer, 30(9), 1997.

180

[93] Yasuko Watanabe, John D. Davis, and David A. Wood. WiDGET: Wis-

consin decoupled grid execution tiles. In the 37th annual international

symposium on Computer architecture, pages 2–13, Saint-Malo, France,

June 2010.

[94] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke. Extending

multicore architectures to exploit hybrid parallelism in single-thread ap-

plications. In IEEE 13th International Conference on High Performance

Computer Architecture, pages 25–36, Phoenix, Arizona, February 2007.

[95] V. Zyuban and P. Kogge. Optimization of high-performance superscalar

architectures for energy efficiency. In 2000 International Symposium on

Low Power Electronics and Design, pages 84–89, Rapallo, Italy, July 2000.

181

Vita

Behnam Robatmili was born in Arak, Iran on 28 July 1978. He received

the Bachelor and Master of Science degrees in Computer Engineering from the

University of Tehran in 2001 and 2004, respectively. He entered the Ph.D.

program at the University of Texas at Austin in the August 2005.

Permanent address: 3477 Lake Austin Blvd, Apt A
Austin, Texas 78758

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

182

