
Bell: Bit-Encoding Online Memory Leak Detection ∗

Michael D. Bond Kathryn S. McKinley
Dept. of Computer Sciences
University of Texas at Austin

{mikebond,mckinley}@cs.utexas.edu

Abstract
Memory leaks compromise availability and security by crippling
performance and crashing programs. Leaks are difficult to diagnose
because they have no immediate symptoms. Online leak detection
tools benefit from storing and reporting per-objectsites(e.g., allo-
cation sites) for potentially leaking objects. In programswith many
small objects, per-object sites add high space overhead, limiting
their use in production environments.

This paper introducesBit-Encoding Leak Location(Bell), a
statistical approach thatencodesper-object sites to a single bit per
object. A bit loses information about a site, but given sufficient
objects that use the site and a known, finite set of possible sites, Bell
uses brute-forcedecodingto recover the site with high accuracy.

We use this approach to encode object allocation and last-use
sites inSleigh, a new leak detection tool. Sleigh detectsstaleob-
jects (objects unused for a long time) and uses Bell decodingto
report their allocation and last-use sites. Our implementation steals
four unused bits in the object header and thus incurs no per-object
space overhead. Sleigh’s instrumentation adds 29% execution time
overhead, which adaptive profiling reduces to 11%. Sleigh’sout-
put is directly useful for finding and fixing leaks in SPEC JBB2000
and Eclipse, although sufficiently many objects must leak before
Bell decoding can report sites with confidence. Bell is suitable for
other leak detection approaches that store per-object sites, and for
other problems amenable to statistical per-object metadata.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability, Statistical Meth-
ods

General Terms Reliability, Performance, Experimentation

Keywords Memory Leaks, Low-Overhead Monitoring, Proba-
bilistic Approaches, Managed Languages

∗ This work is supported by NSF CCR-0311829, NSF ITR CCR-0085792,
NSF CCF-0429859, NSF CISE infrastructure grant EIA-0303609, DARPA
F33615-03-C-4106, DARPA NBCH30390004, Intel, and IBM. Anyopin-
ions, findings, and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

1. Introduction
Memory bugs are a notorious source of errors that compromise
the availability and security of mission-critical systems. Memory
bugs dominate US-CERT and CERT/CC vulnerability reports [9,
32], and the business cost of downtime due to software crashes is
substantial [29]. Memory-related bugs include dangling pointers,
double frees, buffer overflows, and leaks.Memory leaksoccur
because of

1. Lost objects:a program neglects to free a heap-allocated object
that subsequently becomes unreachable, and

2. Useless objects:a program keeps a reference to an object but
never uses the object again.

Leaks degrade performance, and growing leaks crash programs.
Leaks may occur only in production environments and take hours,
days, or weeks to manifest. Malicious users can exploit memory
leaks to launch denial-of-service attacks. Memory leaks are harder
to detect than other memory errors because they have no immediate
symptoms [18].

Managed languages such as Java and C# are increasingly pop-
ular [16] in part because garbage collection and type safetysolve
many memory errors including lost objects, but they do not solve
leaks due to useless objects. Leaks occur in practice in Javaand C#,
and many tools exist for detecting leaks in these languages [3, 22,
24, 27, 28].

Existing approaches to finding leaks in managed and unman-
aged programs have serious limitations that include high space
and time overhead, limiting their usefulness in productionenviron-
ments, or they trade accuracy and utility for lower overhead[3,
10, 18, 22, 24, 25, 26, 27, 28]. Many leak detection approaches
track per-object source information such as allocation site [3, 10,
18, 25, 28]. These approaches impose space overhead of as much
as 75% [10], which is undesirable when the end goal is to conserve
memory.

In this paper, we introduceBit-Encoding Leak Location(Bell),
a novel approach for correlating object instances andsites(source
locations such as allocation sites) with extremely low space over-
head. Bell encodes the site for an object in a single bit usingan
encodingfunctionf(site, object) that takes the site and the object
address as input and returns zero or one. Bell thus loses informa-
tion, but with sufficiently many objects and a known, finite set of
sites, Bell candecodesites with high confidence. Decoding uses a
brute-force application of the encoding function for all sites and a
subset of objects. Bell can assist with a variety of tasks that require
per-object information, such as leak detection, both in managed and
unmanaged languages.

We use Bell to implement a new leak detector for Java called
Sleigh. Sleigh, like SWAT from previous work [10], adds instru-
mentation at allocations and reads to identifystalememory (mem-
ory the program has not used in a while), and reports the allocation

Figure 1. (a) An object’s encoded site is stored in its site bit. (b) A different site matches the object with1
2

probability.

and last-use site(s) of stale objects. Sleigh (1) inserts instrumen-
tation at each allocation and use site that performs Bell encoding;
(2) clocks object staleness using a two-bit saturatinglogarithmic
counterthat it zeroes at use sites and increments fromk to k + 1
everybk garbage collections for a user-defined baseb; and (3) pe-
riodically decodes stale objects’ sites. Sleigh uses four bits per ob-
ject: one for allocation site, one for last-use site, and twofor stal-
eness. Our implementation steals unused bits in the object header
and thus adds no per-object space overhead. Sleigh’s instrumenta-
tion increases execution time by 29% on average, which adaptive
profiling [10] reduces to 11%. Sleigh uses a mark-sweep garbage
collector because Bell does not support moving objects, although
we describe how to implement Sleigh with a generational mark-
sweep collector.

Sleigh finds and helps fix memory leaks in SPEC JBB2000 and
Eclipse [15, 31], which have known memory leaks. The fix for
SPEC JBB2000 was previously known while the Eclipse leak was
unfixed. Sleigh outputs the allocation and last-use sites responsible
for stale objects, and for the subset of objects on the boundary
between in-use and stale objects. This information is directly useful
for fixing the leaks, although the programs need to run long enough
to leak enough objects to be reported by Bell decoding.

The primary contribution of this paper is the novel Bell mech-
anism that efficiently encodes per-object information intoa single
bit, and decodes it with high confidence. The secondary contribu-
tion is Sleigh, a new memory leak detector that uses Bell to en-
code sites and a logarithmic counter to represent staleness, reduc-
ing space overhead to just four bits per object and incurringno
per-object space overhead and average time overhead of 11% (29%
without adaptive profiling).

2. Bit-Encoding Leak Location
This section presents Bit-Encoding Leak Location (Bell), anovel
approach for encoding per-object information into a singlebit.

2.1 Encoding

Bell encodesper-object information from a known, finite set in a
single bit. In this paper, we use Bell to encodesitessuch as source
locations that allocate and use objects. A site can be a program
counter (PC) value or a unique number that identifies a line ina
source file. Bell’sencoding functiontakes two parameters, the site
and object address, and returns zero or one:

f(site, object) = 0 or 1

Bell computesf(site, object) and stores the result in the object’s
site bit, and we say the site wasencoded together withthe object.
We say a sitematchesan object iff(site, object) equals the object’s
site bit. An object always matches the site it was encoded together
with, but it may or may not match other sites. We choosef so it is
unbiased: (1) with 1

2
probability, a site matches an object encoded

together with a different site, and (2) whether an object andsite
match is independent of whether another object matches the site.
Figure 1 shows an example of the first property of an unbiased
function. Section 2.3 presents several encoding functionsthat are
unbiased and inexpensive to compute.

Since many sites (about half of all sites) may match an object,
Bell loses information by encoding to a single bit. However,with
enough objects, Bell can decode sites with high confidence.

2.2 Decoding

Bell decodesthe sites for a subset of all objects. In this section, all
mentions of objects refer to objects in this subset. In a leakdetec-
tion tool, for example, Bell would decode the subset of objects the
tool identified as potential leaks. Decoding reports sites encoded
together with a significant number of objects, as well as the num-
ber of objects each site encodes (within a confidence interval). The
key to decoding is as follows (recall that a sitematchesan object if
f(site, object) equals the object’s site bit).

A site thatwas notencoded together with a significant num-
ber of objects will match about half the objects, whereas a
site thatwasencoded together with a significant number of
objects will match significantly more than half the objects.

In general, we expect a site encoded together withnsite objects
(out of n objects in the subset) to match aboutmsite = nsite +
1

2
(n − nsite) objects, since the site matches (1) all of thensite

objects thatwereencoded together with it and (2) about half of the
n−nsiteobjects that werenotencoded together with it. Solving for
nsite, we find that aboutnsite = 2msite−n objects were encoded
together with the site given that it matchesmsiteobjects.

Bell decodes per-object sites using a brute-force approachthat
evaluatesf for every object and every site:

foreach possiblesite
msite← 0
foreach objectin the subset

if f(site, object) = object’s site bit
msite← msite+ 1

print sitehas about2msite− n objects

Because of statistical variability,2msite−n only approximates the
number of objects encoded together with the site. Bell differentiates
between sites that were actually encoded together with objects, and
those that were not, by weeding out the latter with afalse positive
thresholdmFP:

if m ≥ mFP
print sitehas about2msite− n objects

The appendix describes how we computemFP so that decoding
avoids false positives with high probability (99%). By weeding out

Figure 2. Sleigh’s components.(a) Sleigh uses four bits per object. (b) Sleigh has several components that live in different parts of the VM.

sites, Bell misses sites that were encoded together with fewbut not
many objects. We can compute the minimum number of objects
nmin that need to be encoded together with a site, in order for Bell
to report the site with very high probability (99.9%). The appendix
describes how we computenmin. The following table reportsnmin
for various numbers of sites and objects:

n = 102 n = 103 n = 104 n = 105

103 sites 68 232 736 2,326
104 sites 72 248 784 2,480
105 sites 74 260 828 2,622
106 sites 78 272 868 2,752
107 sites 80 286 910 2,874

The table shows thatnmin scales sublinearly withn (at a rate
roughly proportional to

√
n). Thus, an increase inn requires more

objects—but asmaller fractionof all objects—be encoded together
with a site for Bell to report it. The table shows thatnmin is not
affected much by the number of sites, so Bell’s precision scales
well with program size.

2.3 Choosing the Encoding Function

This section presents the encoding functions we use. A practical
encoding function should be both unbiased and inexpensive to
compute, since applications of Bell will compute it at runtime. We
find that taking a bit from the product of the site and the object
address, meets both these criteria fairly well:

fsingleMult(site, object) := bit31(site× object)

fsingleMult returns the middle bit of the product of the site iden-
tifier and object address, assuming both are 32-bit integers. We
find via simulation that for object addresses chosen randomly
with few constraints, this function is unbiased (i.e., decoding does
not report false positives or negatives more than expected). How-
ever, our Sleigh implementation uses a segregated free listallo-
cator (Section 3.6), yielding non-arbitrary object addresses. Using
fsingleMult causes decoding to report a few more false positives
than expected.

We find that the following encoding function eliminates unex-
pected false positives because the extra multiply permutesthe bits
enough to randomize away the regularity of object addressesallo-
cated using a segregated free list:

fdoubleMult(site, object) := bit31(site× object× object)

We also experimented with

fparity(site, object) := parity(site∧ object)

which returns the parity of the bitwiseAND of the site and object
address. Whilefparity is unbiased if we choose object addresses
randomly, site decoding returns many false positives if a segregated
free list allocates objects sincefparity does not permute the bits of
its inputs.

3. Sleigh
This section describesSleigh, a new memory leak detector that
tracks staleness (time since last use) to find leaks, and usesBell
to identify sites associated with stale objects. We implement Sleigh
on top of Jikes RVM 2.4.2, a high-performance Java-in-Java virtual
machine. We have made Sleigh publicly available on the Jikes
RVM Research Archive [20].

3.1 Overview

Sleigh finds memory leaks in Java programs and reports the alloca-
tion and last-use sites of leaked objects, using just four bits per ob-
ject. It inserts Bell instrumentation to encode object allocation and
last-use sites in a single bit each, tracks objectstaleness(time since
last use) in two bits using a logarithmic counter, and occasionally
decodes the sites for stale objects. Sleigh borrows four unused bits
in the object header in our implementation, so it adds no per-object
space overhead. Other VMs such as IBM’s J9 [17] have free header
bits. Without free header bits, Sleigh could store its bits outside the
heap, efficiently mapping every two words (assuming objectsare at
least two words long) to four bits of metadata, resulting in 6.25%
space overhead.

Figure 2(a) shows the four bits that Sleigh uses in each object’s
header. Figure 2(b) shows the components that Sleigh adds tothe
VM. Sleigh uses the compiler to insert instrumentation in the ap-
plication at object allocations (calls tonew) and object uses (field
and array element reads). It uses the garbage collector to incre-
ment each object’s stale counter at a logarithmic rate. The garbage
collector invokes decoding periodically or on demand. Decoding
identifies allocation and last-use sites of potentially leaked objects.

3.2 Encoding Allocation and Last-Use Sites

Sleigh uses Bell to encode the allocation and last-use sitesfor
each object using a single bit each. Sleigh adds instrumentation at

object allocation that computesf(site, object) and stores the result
in both the allocation bit and the last-use bit. If an object is never
used, its last use is just its allocation site. Similarly, Sleigh adds
instrumentation at object uses (field and array element reads) that
computesf(site, object) and stores the result in the last-use bit.
Figure 2(b) shows how the compiler inserts this instrumentation
into application code.

Sleigh defines a site to be a calling context consisting of meth-
ods and line numbers (from source files), much like an exception
stack trace in Java. For efficiency, Sleigh uses only theinlined por-
tion of the calling context, which is known at compile time, whereas
the rest of the calling context is not known until runtime. The fol-
lowing is an example site (the leaf callee comes first):

spec.jbb.infra.Factory.Container.deallocObject():352
spec.jbb.infra.Factory.Factory.deleteEntity():659

spec.jbb.District.removeOldestOrder():285

Sleigh assigns a unique random identifier to each unique siteand
maintains a mapping from sites to identifiers.

3.3 Tracking Staleness Using Two Bits

In addition to inserting instrumentation to maintain per-object allo-
cation and last-use sites, Sleigh inserts instrumentationat each site
that tracks object staleness using a two-bit saturatingstale counter.
The stale counter islogarithmic: its value is approximately the log-
arithm of the time since the application last used the object. A log-
arithmic counter saves space without losing much accuracy by rep-
resenting low stale values with high precision and high stale values
with low precision.

Sleigh resets an object’s stale counter to zero at allocation and
at each object use. Periodically, during garbage collection (GC),
Sleigh updates all stale counters (Figure 2(b)). Sleigh updates stale
counters by incrementing a counter fromk to k + 1 only if the cur-
rent GC number dividesbk evenly, whereb is the base of the log-
arithmic counter (we useb = 4). k saturates at 3 because the stale
counter is two bits. Stale counters implicitly divide objects into four
groups: not stale, slightly stale, moderately stale, and highly stale.
In our experiments, we consider the highly stale objects to be po-
tential leaks. We find Sleigh is not very sensitive to the definition
of highly stale objects since most objects are stale briefly or for a
long time. Our Sleigh implementation fixes the logarithm base b at
4, but a more flexible solution could increaseb over time to adjust
to a widening range of object staleness values.

Sleigh updates objects’ stale counters at GC time for efficiency
and convenience. It measures staleness in terms of number ofGCs
but could measure staleness in terms of execution time instead
by using elapsed time to determine whether and how much to
increment stale counters.

3.4 Decoding

Sleigh occasionally performs Bell decoding to identify thesite(s)
that allocated and last used (highly) stale objects. The user can con-
figure Sleigh to trigger decoding periodically (e.g., everyhour or
every thousand GCs), or the user could trigger it on demand via a
remote signal (not currently implemented). Decoding occurs during
the next GC after being triggered. Figure 2(b) shows how GC occa-
sionally invokes decoding, and it shows pseudocode for decoding
based on the decoding algorithm from Section 2.2. Decoding com-
putes the number of objects that match each possible site, for both
the object’s allocation and last-use bits. It reports allocation and
last-use sites that match more thanmFP objects (Section 2.2), and
it reports the number of objects for each site, within a confidence
interval.

Decoding is potentially expensive because its execution time is
proportional to both the number of possible sites and numberof

highly stale objects. However, several factors mitigate this potential
cost. First, we expect decoding to be an infrequent process,occur-
ring only occasionally as needed on runs that last hours, days, or
weeks and take as long to manifest significant memory leaks. Sec-
ond, the vast majority of decoding’s work can occur separately from
the VM executing the application, on a different CPU or machine
(currently unimplemented). The VM would need to send the highly
stale object addresses and the possible sites (or a delta since the
last decoding), and the separate execution context would perform
the brute-force application of the encoding function. Third, it is not
necessary to perform decoding on all stale objects: a randomsam-
ple of them suffices, although using fewer objects increasesnmin
and widens confidence intervals. Fourth, decoding could usetype
constraints (e.g., an object can only encode allocation sites that al-
locate the object’s type) to significantly decrease the number of
times Sleigh computesf(site, object) (currently unimplemented).
Decoding runs in reasonable time in our experiments, and occa-
sionally paying for decoding offers memory efficiency as compared
with the all-the-time space overhead from storing un-encoded per-
object sites.

Sleigh decodes allocation and last-use sites separately, but it
could find and report allocation and last-use sites correlated with
each other, as suggested by an anonymous reviewer.

3.5 Decreasing Instrumentation Costs

The instrumentation Sleigh adds at object uses (field and array
element reads) can be costly because it executes frequently. Sleigh
removes redundant instrumentation and uses adaptive profiling [10]
to reduce instrumentation overhead.

Removing Redundant Instrumentation Instrumentation at ob-
ject uses is required only at thelast use of any object because the
instrumentation at each use clears the stale counter and computes
a new last-use bit. Sleigh can thus eliminate instrumentation at a
use if it can determine that the use is followed by another useof
the same object. A use isfully redundantif the same object is used
later on every path. A use ispartially redundantif the program
uses the same object on some path. We use a backward, non-SSA,
intraprocedural data-flow analysis to find partially redundant and
fully redundant uses. Our analysis is similar to partial redundancy
elimination (PRE) analysis [8], but is simpler because it computes
redundant uses rather than redundant expressions.

We donot add instrumentation at fully redundant uses because
they do not need it. Wedo add instrumentation at partially redun-
dant uses, although we could remove it and add instrumentation
along each path that does not use the object again. We have not
implemented this optimization, but Section 5.4 evaluates an upper
bound on its benefit.

Removing redundant instrumentation may cause Sleigh to re-
port some in-use objects as stale if a long time passes between an
uninstrumented use and an instrumented use. However, this effect
can only happen to an object pointed at by a local (stack) variable
continuously from the uninstrumented use to the instrumented use.
We do not see inaccuracy in practice.

Adaptive Profiling Sleigh as described so far adds no per-object
space overhead, but it does add 29% time overhead on average
(Section 5.4). This time overhead is low compared to other mem-
ory leak detection tools (Section 6), but may be too expensive for
online production use. To reduce this overhead, we borrowadap-
tive profiling from Chilimbi and Hauswirth [10], which samples
instrumented code at a rate inversely proportional to its execution
frequency. This approach maintains bug coverage while reducing
overhead by relying on the hypothesis that cold code contributes
disproportionately to bugs.

Sleigh uses adaptive profiling to sample instrumentation atob-
ject uses. Since Bell decoding needs a significant number of objects
to report a site, Sleigh uses all-the-time instrumentationat a site un-
til it takes 10,000 samples. It progressively lowers the sampling rate
by 10x every 10,000 samples until reaching the minimum sampling
rate of 0.1%.

3.6 Memory Management

Since Bell’s encoding function takes the object address as input,
objects cannot move, or decoding will not work correctly. Weuse
Jikes RVM’s mark-sweep collector [5], which allocates using a
segregated free list and does not move heap objects.

Mark-sweep is not considered to be among the best-performing
collectors. Sleigh could be modified to use a high-performancegen-
erational mark-sweep (GenMS) collector, which allocates objects
in a smallnurseryand moves them to a mark-sweepolder space
if they survive a nursery collection. A GenMS-compatible Sleigh
would (1) storeun-encodedallocation and last-use sites (as extra
header words) for nursery objects, (2) storeencodedsites for older
objects, and (3) when promoting objects from the nursery to the
older space, encode each object’s allocation and last-use sites us-
ing the object’s new address in the older space and the object’s un-
encoded sites from the nursery. If the nursery were bounded,the
space overhead added by un-encoded sites would be bounded.

Bell is incompatible with compacting collectors, which arepop-
ular in commercial VMs (e.g., JRockit [2]) because they increase
locality and decrease fragmentation. However, in some produc-
tion environments it might be worthwhile to switch to generational
mark-sweep in order to take advantage of Bell’s space-saving ben-
efits. Bell works with C and C++ memory managers, since they do
not move objects.

3.7 Miscellaneous Implementation Issues

Sleigh adds instrumentation to both application methods and li-
brary methods (the Java API) to reset objects’ stale counters. Sleigh
encodes allocation and last-use sites in application methods, but not
in library methods since these sites are probably not helpful to the
user and may obscure Sleigh’s report. Sleighdoesencode sites for
library methods when they are inlined into application methods.

Because Jikes RVM is written in Java, the VM allocates its
own objects in the heap together with the application’s objects.
These VM objects are not of interest to application developers, and
thus Sleigh differentiates VM and application objects at allocation
time using a fifth bit in the object header (a more elegant solution
would put application and VM objects in separate heap spaces).
Bell decoding then ignores these VM objects.

4. Finding and Fixing Leaks
This section evaluates Sleigh’s ability to find leaks and help devel-
opers fix leaks.

4.1 Methodology

Execution We execute Sleigh by running a production build of
Jikes RVM (FastAdaptive) for two hours. We use a variable-sized
heap (Jikes RVM automatically and dynamically adjusts the heap
size) since leaks cause live memory to grow over time. In Sec-
tions 4.2 and 4.3, Sleigh inserts all-the-time instrumentation at ob-
ject uses and removes instrumentation from fully but not partially
redundant uses (this configuration is calledSleigh defaultin Sec-
tion 5). In Section 4.4, Sleigh samples object uses using adaptive
profiling (Sleigh APin Section 5). We show just one trial per exper-
iment since averaging Sleigh’s statistical output over multiple runs
makes its accuracy seem unfairly high, but we have verified that the
presented results are typical from run to run.

Figure 3. Sleigh implicitly divides the heap into in-use and stale
objects.

Decoding Decoding can process every (highly) stale object in
the heap. However, we have found that many stale objects are
pointed at by only other stale objects, i.e., they are just interior
members of stale data structures. Sleigh’s staleness-based approach
implicitly divides the heap into two parts: in-use and staleobjects.
Figure 3 shows in-use and stale objects in a cross-section ofthe
heap. Conceptually, anin-use/stale borderdivides the in-use and
stale objects; this border consists of references from in-use to stale
objects. We define a stale object pointed at by an in-use object as a
stale border object, and an in-use object that points to a stale object
as anin-use border object. Stale border objects are effectively the
“roots” of stale data structures, and decoding these objects gives the
allocation and last-use sites for these data structures. In-use border
objects point to stale data structures, so decoding their sites may
help answer the question, “Why is the stale data structure not being
used anymore?” We note we had the idea to investigate stale and
in-use border objectsafter examining the output from decoding
all stale objects and fixing the Eclipse leak. Limiting decoding to
border objects may be more important in Java since data structures
typically consist of many objects, whereas Chilimbi and Hauswirth
report success using sites for all stale objects in C [10].

We configure Sleigh to execute decoding every 20 minutes.
Decoding processes and reports sites for three different subsets of
objects: (1) all stale objects, (2) stale border objects, and (3) in-
use border objects. Whenever one of these subsets has more than
100,000 objects, decoding processes a sample of 100,000 of them.

We plot reported object counts for reported sites with respect to
time, which shows the sites that are growing. (Identifying growing
sites is currently a manual process, but Sleigh could automatically
find growing sites by analyzing the plotted data.) In this section,
we are primarily interested in growing sites, since they will even-
tually crash programs. However, program developers might also be
interested in non-growing sites, since unused memory may indicate
poor memory usage.

Platform We perform our experiments on a 3.6 GHz Pentium
4 with a 64-byte L1 and L2 cache line size, a 16KB 8-way set
associative L1 data cache, a 12Kµops L1 instruction trace cache,

Decoding Growing (all) reported sites
Objects Possible sites time (s) Allocation Last use

All-the-time All stale objects 60,610–73,175 4,412–4,476 2.0–2.5 3 (8) 3 (10)
instrumentation Stale border objects 24,454–28,639 4,412–4,476 0.8–1.0 1 (2) 2 (4)

In-use border objects 239,603—420,128∗ 4,412–4,476 3.4–3.4 3 (6) 3 (14)
Adaptive All stale objects 103,228–127,917∗ 4,302–4,384 3.2–3.2 1 (7) 3 (14)
profiling Stale border objects 50,905–60,008 4,302–4,384 1.6–2.0 0 (4) 3 (10)

In-use border objects 225,876–459,393∗ 4,302–4,384 3.2–3.2 3 (6) 2 (11)

Table 1. Decoding statistics for Sleigh running SPEC JBB2000. *Decoding processes at most 100,000 objects.

0 2000 4000 6000
Time (s)

0

1000

2000

3000

4000

5000

O
bj

ec
ts

spec.jbb.infra.Factory.Factory.tempArrayOfNear():486
Allocation via java.lang.Class.newInstance()

Figure 4. Reported allocation sitesfor SPEC JBB2000 when
decoding processesstale border objectsonly.

0 2000 4000 6000
Time (s)

0

1000

2000

3000

O
bj

ec
ts

spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.District.removeOldestOrder():285
spec.jbb.infra.Collections.longBTreeNode.Split():654
spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.infra.Collections.longBTree.removeEntry():1640

Figure 5. Reported last-use sitesfor SPEC JBB2000 when de-
coding processesstale border objectsonly.

a 2MB unified 8-way set associative L2 on-chip cache, and 2GB
main memory, running Linux 2.6.12.

Benchmarks We evaluate Sleigh on two leaks in SPEC JBB2000
and Eclipse 3.1.2 [15, 31].

4.2 SPEC JBB2000

SPEC JBB2000 simulates an order processing system and is in-
tended for evaluating server-side Java performance [31]. SPEC
JBB2000 contains a known, growing memory leak that manifests
when it runs for a long time without changing warehouses. Theleak
occurs because SPEC JBB2000 adds but does not correctly remove
orders from an order list that is supposed to have zero net growth.

We use Sleigh to find and help fix the leak. Table 1 presents
statistics from running Sleigh on SPEC JBB2000 for three subsets
of stale and in-use objects. The first three labeled columns give
the size of the object subset, the number of program sites, and
decoding’s execution time; the data are ranges over the six times
decoding executes during a two-hour run. As expected, the number
of stale objects grows over time as the leak grows (the numberof
stale objects starts high due to unusedString andchar[] objects
that appear to be SPEC JBB2000’s “data”). The number of sites
increases as dynamic compilation adds more sites. The last two
columns show how many allocation and last-use sites decoding
reports, and how many of these sites’ object counts grow overtime
(based on manual inspection of plots with respect to time).

Figures 4 and 5 plot the sites for stale border objects (the dashed
line is the minimum object countnmin). In general, we expect the
plots for stale border objects to be most useful because theyshow
site(s) where the roots of stale data structures were allocated and
last used. Figure 4 reports one growing and one non-growing allo-
cation site; the growing site is the genericClass.newInstance(),
which is not very useful information. Last-use sites are more use-
ful in this case, and we expect them to be more useful in general
for pinpointing an unintentional leak’s cause. Figure 5 shows two
growing and two non-growing last-use sites with enough stale ob-
jects to be reported by decoding. One of the two growing sites
Sleigh reports is the following:

spec.jbb.infra.Factory.Container.deallocObject():352
spec.jbb.infra.Factory.Factory.deleteEntity():659
spec.jbb.District.removeOldestOrder():285

This site is the key to fixing SPEC JBB2000’s leak: the fix replaces
SPEC JBB2000’s only call toremoveOldestOrder() with two
different lines that properly remove orders from SPEC JBB2000’s
order list. Thus the three lines of inlined calling context that Sleigh
provides are enough to pinpoint the exact line responsible for the
leak. We believe a SPEC JBB2000 developer could quickly fix the
leak based on Figure 5. The key site takes some time (about an
hour) to manifest since decoding requires aboutnmin = 1200
objects (dashed line) to report the site. The last-use plot for all
stale objects (not shown) also includes the key site, as wellas
several other sites, including two growing sites fornon-border
stale objects. The key site takes longer to manifest in this case
sincenmin increases withn (Section 2.2). The last-use plot for in-
use border objects (not shown) does not show the key site above,
which is not surprising since decoding operates on an entirely
different subset of objects. At this time we do not understand SPEC

Decoding Growing (all) reported sites
Objects Possible sites time (s) Allocation Last use

All-the-time All stale objects 1,616,736–8,936,357∗ 31,733–32,574 24.2–24.9 7 (14) 10 (17)
instrumentation Stale border objects 40,492–43,360 31,733–32,574 10.0–10.9 1 (3) 2 (3)

In-use border objects 40,572–454,975∗ 31,733–32,574 10.3–24.7 1 (7) 0 (10)
Adaptive All stale objects 1,683,898–9,022,732∗ 31,151–32,000 23.1–23.8 7 (7) 7 (12)
profiling Stale border objects 34,093–36,241 31,151–32,000 8.0–8.6 1 (3) 1 (2)

In-use border objects 37,440–361,703∗ 31,151–32,000 9.0–23.5 0 (7) 0 (5)

Table 2. Decoding statistics for Sleigh running Eclipse.*Decoding processes at most 100,000 objects.

0 2000 4000 6000
Time (s)

0

500

1000

1500

2000

O
bj

ec
ts

org.eclipse.core.internal.watson.ElementTree.getDataTree():354
org.eclipse.compare.CompareEditorInput.removePropertyChangeListener():771
org.eclipse.core.internal.registry.ReferenceMap$SoftRef.getKey():146

Figure 6. Reported last-use sitesfor Eclipse when decoding
processesstale border objectsonly.

0 2000 4000 6000
Time (s)

0

20000

40000

60000

O
bj

ec
ts

org.eclipse.core.internal.resources.Resource.getFullPath():855
 org.eclipse.core.internal.resources.Resource.getResourceInfo():973
 org.eclipse.core.internal.localstore.FileSystemResourceManager.read():521
org.eclipse.core.runtime.Path.segment():831
 org.eclipse.core.internal.dtree.DeltaDataTree.lookup():666
 [VM_Array.arraycopy -- touch]
org.eclipse.compare.ResourceNode.createStream():178
org.eclipse.core.runtime.Path.lastSegment():701
 org.eclipse.core.internal.resources.Resource.getName():903
 org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.internal.resources.Resource.getName():903
 org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.runtime.Path.lastSegment():701
 org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.ui.internal.NavigationHistory.createEntry():527
org.eclipse.ui.internal.NavigationHistory$1.updateNavigationHistory():97

Figure 7. Reported last-use sitesfor Eclipse when decoding
processesin-use border objectsonly.

JBB2000 well enough to know if the plot for in-use objects is useful
for fixing the leak.

SPEC JBB2000’s heap growth is due to both stale and in-use ob-
jects:Orders grow in number but are used, whereasContainers
become stale. The fix described above eliminates only heap growth
due to in-use objects, which contribute the vast majority (or per-
haps all) of the heap growth in terms of bytes. Sleigh reportsthe
offending last-use site because the in-use and stale objects are re-
lated (orders point to containers). At this time we do not understand
SPEC JBB2000 well enough to determine if the stale containerob-
jects are a leak or how to fix this potential leak, although thefix
described above appears to eliminate all sustained heap growth.

4.3 Eclipse

Eclipse 3.1.2 is a popular integrated development environment
(IDE) written in Java [15]. Eclipse is a good target because it is
a large, complex program (over 2 million lines of source code).
The Eclipse bug repository reports several unfixed memory leaks.
We pick unfixed bug #115789, which reports that repeatedly per-
forming a structural (recursive)diff leaks memory that eventually
exhausts available memory. We automate the GUI behavior that
performs a repeated structural diff on MMTk source code [5] be-
fore and after implementing Sleigh (17 of 250 files differ; textual
diff is 350 lines).

The leak occurs in Eclipse’sNavigationHistory component,
which allows a user to step backward and forward through browsed
editor windows. This component keeps a list ofNavigation-
HistoryEntry (Entry) objects, each of which points to aNav-
igationHistoryEditorInfo (EditorInfo) object. In our test
case, eachEditorInfo points to aCompareEditorInput object,
which is the root of a data structure that holds the results ofthe
structural diff. TheNavigationHistory component maintains the
number ofEntry objects that point to eachEditorInfo object.
If an EditorInfo’s count drops to zero,NavigationHistory
removes the object. However,NavigationHistory erroneously
omits the decrement in some cases, maintaining unnecessarypoint-
ers toEditorInfo objects. BecauseNavigationHistory regu-
larly iterates through allEditorInfo objects but not pointed-to
CompareEditorInput objects, the former are in-use border ob-
jects, and the latter are stale border objects.

Table 2 shows information about running Eclipse using Sleigh,
in the same format as Table 1. Decoding all objects returns seven
growing allocation and 10 growing last-use sites (plot not shown),
most of which are for stale descendants ofCompareEditorInput
objects (i.e., the data for the structural diff).

Decodingstale borderobjects gives one growing allocation and
two growing last-use sites. Figure 6 shows the last-use sites. The
first growing last-use site, fromElementTree, is a red herring:
this site’s count grows and shrinks over time. It does not cause
the sustained growing leak, but it may be of interest to developers.
The second growing last-use site, fromCompareEditorInput, is
in fact the last-use site for leakingCompareEditorInput objects.

Unfortunately, the last-use site for these objects is not inor related
to theNavigationHistory component.

We next try decoding sites forin-useborder objects. Figure 7
plots the last-use sites for in-use border objects. It is notclear to
us why the object counts of most reported sites decrease overtime;
perhaps Eclipse performs clean-up of pointers to unused objects
as time passes. Almost two hours pass before Sleigh reports two
sites fromNavigationHistory, both of which are involved with
NavigationHistory’s iteration through the list ofEditorInfo
objects. These sites do not have time to grow since the experiment
ends after two hours, but a longer run shows that these sites do
in fact grow. The plot ofallocation sitesfor in-use border objects
(not shown) also reports a site withinNavigationHistory (the
allocation site ofEditorInfo objects) shortly before two hours
pass.

Fixing the leak requires modifying a single line of code inside
NavigationHistory.java to correctly decrement the reference
count of eachEditorInfo object. After determining that theNav-
igationHistory component was causing the leak by holding on
to EditorInfo objects, we fixed the leak within an hour. Thus we
believe Sleigh’s output would help an Eclipse developer fix the leak
quickly, although enough in-use border objects must leak first. We
posted the leak’s fix as an update to the bug report.

4.4 Adaptive Profiling

The results so far use all-the-time instrumentation at object uses.
This section evaluates Sleigh’s accuracy using adaptive profiling
at object uses (Section 3.5). Adaptive profiling affects Sleigh’s
accuracy by (1) identifying some in-use objects as stale if it samples
all the use sites of an in-use object at a too-low sampling rate and
(2) reporting false positive or negative last-use sites if it samples a
leaking last-use site at a too-low sampling rate. Tables 1 and 2 show
results for adaptive profiling (lower three rows). Adaptiveprofiling
causes Sleigh to identify more stale objects and to report more sites
than all-the-time instrumentation. Figure 8 shows last-use sites for
stale border objects from SPEC JBB2000. This plot is noisierthan
Figure 5, which shows the same data collected using all-the-time
instrumentation. However, the adaptive profiling graph shows the
key leaking site,removeOldestOrder(), which appears in both
graphs after about an hour and grows after that.

Sleigh with adaptive profilingdoesreport the key leaking sites
for SPEC JBB2000 and Eclipse since these sites’ execution rates
are comparable with the rates they leak objects. We believe devel-
opers could fix the leaks using Sleigh’s output from adaptivepro-
filing.

4.5 Discussion

This section discusses Sleigh’s benefits and drawbacks as a leak de-
tection tool. Allocation and last-use sites help us find leaks, which
agrees with Chilimbi and Hauswirth’s experience that thesesites
are useful [10]. Last-use sites are particularly useful forpinpoint-
ing leaks, although allocation sites may be useful to developers,
who understand their own code well. Limiting decoding to objects
on the in-use/stale border is particularly useful for reporting sites
directly involved in leaks.

At the same time, border objects may be few in number com-
pared with all stale objects. For example, each structural diff per-
formed in Eclipse yields one in-use border object and one stale
border object—as well as a stale data structure whose size isde-
pendent on the size of the diff. Bell needs hundreds or thousands
of these objects to definitely report the leaking site (Section 2.2).
By decoding all stale objects, Sleigh can generally report leaking
sites for any nontrivial leak, but it is unclear if sites for non-border
stale objects are useful in general. Thus, Sleigh may not be able
to find some leaks in other programs, but we have not encountered

0 2000 4000 6000
Time (s)

0

5000

10000

15000

O
bj

ec
ts

java.lang.String.getChars():631
 spec.jbb.infra.Util.DisplayScreen.privText():259
 spec.jbb.infra.Util.DisplayScreen.putText():290
spec.jbb.Item.getBrandInfo():116
 spec.jbb.Orderline.process():367
java.lang.String.<init>():210
 spec.jbb.Stock.getData():265
 spec.jbb.Orderline.process():372
spec.jbb.infra.Collections.longBTreeNode.Split():654
spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.District.removeOldestOrder():285
spec.jbb.Stock.getId():244
 spec.jbb.StockLevelTransaction.process():208
spec.jbb.Stock.getQuantity():211
 spec.jbb.StockLevelTransaction.process():240
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.DeliveryTransaction.process():206
spec.jbb.Stock.incrementRemoteCount():236
 spec.jbb.Orderline.process():382

Figure 8. Reported last-use sitesfor SPEC JBB2000 when de-
coding processesstale border objectsonly, usingadaptive profil-
ing.

such leaks (SPEC JBB2000 and Eclipse are the only programs for
which we have tried to find leaks due to time constraints and a lack
of available long-running Java programs). While Sleigh mayfail to
find some leaks, it is unlikely to report erroneous leaks (false pos-
itives) since (1) its staleness approach precisely identifies memory
not being used by the application, and (2) the false positivethresh-
old mFP (Section 2.2) avoids reporting incorrect sites for stale ob-
jects.

Another drawback of Sleigh’s sites, and per-object sites ingen-
eral, is that calling context is limited to the inlined portion, which
may not be enough to understand the behavior of the code caus-
ing the leak. Eclipse in particular is a complex, highly object-
oriented program with deep calling contexts. Unfortunately, effi-
ciently maintaining and representingdynamiccalling context is an
unsolved problem.

5. Sleigh’s Runtime Performance
This section evaluates Sleigh’s space and time overheads.

5.1 Methodology

Execution Jikes RVM runs by default usingadaptivemethod-
ology, which dynamically identifies frequently executed methods
and recompiles them at higher optimization levels. Becauseit uses
timer-based sampling to detect hot methods, the adaptive compiler
is non-deterministic. To measure performance, we usereplay com-
pilation methodology, which is deterministic. Replay compilation

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

 Base
 Sleigh w/o instr
 Sleigh alloc only
 Sleigh stale simple
 Sleigh one mult
 Sleigh default

Figure 9. Components of Sleigh runtime overhead.

forces Jikes RVM to compile the same methods in the same orderat
the same point in execution on different executions and thusavoids
high variability due to the compiler.

Replay compilation usesadvice filesproduced by a previous
well-performing adaptive run (best of 10). The advice files spec-
ify (1) the optimization level for compiling each method, (2) the
dynamic call graph profile, and (3) the edge profile. Fixing these
inputs, we execute two consecutive iterations of the application.
During the first iteration, Jikes RVM optimizes code using the ad-
vice files. The second iteration executes only the application with a
realistic mix of optimized code.

We execute each benchmark with a heap size fixed at two times
the minimum possible for that benchmark. Because decoding is in-
frequent and not part of steady-state performance, we do noteval-
uate decoding’s performance here (Section 4 evaluates decoding’s
performance).

Platform We use the platform described in Section 4.1.

Benchmarks We evaluate Sleigh’s performance using the SPEC
JVM98 benchmarks, the DaCapo benchmarks (beta050224) that
execute on Jikes RVM, and a fixed-workload version of SPEC
JBB2000 calledpseudojbb [6, 30, 31]. We omit the DaCapo
benchmarkshsqldb andps because we could not get them to run
correctly with Jikes RVM, with or without Sleigh; both have known
issues addressed in version 1.0 of the DaCapo benchmarks [6].

5.2 Space Overhead

Sleigh uses four bits per object to maintain staleness and encode
allocation and last-use sites (Section 3.1). It commandeers four
available bits in the object header, so it effectively adds no per-
object space overhead. Sleigh adds some space overhead to keep
track of the mapping from sites to unique identifiers. The mapping’s
size is equal to the number of unique sites, which is proportional to
program size. Sleigh could forego this mapping by using program
counters (PCs) for sites (Jikes RVM supports obtaining source
locations from the PC).

5.3 Compilation Overhead

Sleigh adds compilation overhead because it inserts instrumenta-
tion at object allocations and uses, increasing compilation load.
Adaptive profiling duplicates code, so it also adds significant com-
pilation overhead. We measure compilation overhead by extracting

compilation time from the first run of replay compilation. Sleigh
with all-the-time instrumentation and with adaptive profiling add
43% and 122% average compilation overhead, respectively, al-
though an adaptive VM might respond to these increases by op-
timizing less code and by scaling back bloating optimizations such
as inlining. Compilation overhead is not a primary concern because
Sleigh targets long-running programs, for which compilation time
represents a small fraction of execution time.

5.4 Time Overhead

Sleigh adds time overhead to maintain objects’ stale counters and to
encode objects’ allocation and last-use site bits. Figure 9presents
the execution time overhead added by Sleigh. We use the second
iteration of replay compilation, which measures only the applica-
tion (not the compiler). Each bar is the minimum of five trials. We
take the minimum because it represents the run least perturbed by
external effects. The striped bars represent the portion oftime spent
in garbage collection (GC).Baseis execution time without Sleigh;
the bars are normalized toBase. The following configurations add
Sleigh features monotonically:

• Sleigh w/o instris execution time including updating stale coun-
ters during GC and marking VM objects at allocation time (Sec-
tion 3.7) but without any instrumentation. This configuration
adds no detectable overhead.

• Sleigh alloc onlyadds instrumentation at each allocation to
initialize the stale counter and encode and set the allocation and
last-use bits, incurring only 1% overhead on average.

• Sleigh stale simpleadds simple instrumentation at object uses
that resets the stale counter but does not encode the last-use site.
This instrumentation occurs frequently and reads and writes the
object header, and it adds 22% overhead overSleigh alloc only.

• Sleigh one multadds instrumentation that computesfsingleMult
(Section 2.3) at object uses and encodes the result in the object’s
last-use bit. This configuration adds just 5% overSleigh stale
simple, demonstrating that computing the encoding function
itself is not a large source of overhead in Sleigh.

• Sleigh defaultuses the more robustfdoubleMult, which adds
1% over the single-multiply encoding function, for total average
overhead of 29%.

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

 Base
 Sleigh default
 Sleigh AP min
 Sleigh AP

Figure 10. Sleigh runtime overhead with adaptive profiling.

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

 Base
 Sleigh default
 Sleigh elim none
 Sleigh elim all

2.03 2.06

Figure 11. Sleigh runtime overhead with and without redundant instrumentation optimizations.

Adaptive Profiling Sleigh uses adaptive profiling to lower its
instrumentation overhead at object uses (Section 3.5). Figure 10
shows the overhead of Sleigh with adaptive profiling.Baseand
Sleigh defaultare the same as in Figure 9.Sleigh AP minis the ex-
ecution overhead of Sleigh using adaptive profiling, but configured
so control flow never enters the instrumented code. This configura-
tion measures just the switching code, which adds 10% overhead.
This overhead is higher than the 4% switching code overhead that
Chilimbi and Hauswirth report [10], which is apparently a platform
and implementation difference (e.g., C vs. Java).Sleigh APis the
overhead of Sleigh using fully functional adaptive profiling; it adds
just 1% on average overSleigh AP minsince adaptive profiling ex-
ecutes instrumented code infrequently, for a total of 11% overhead.

Redundant Instrumentation All Sleigh configurations presented
so far remove fully redundant but not partially redundant instru-
mentation (Section 3.5). Figure 11 shows the overhead of Sleigh
with various redundant instrumentation optimizations.Baseand
Sleigh defaultare the same as in Figure 9.Sleigh elim noneis exe-
cution time including both fully and partially redundant instrumen-
tation (i.e., no redundant instrumentation removal).Sleigh default
saves 7% of total execution time on average by removing fullyre-

dundant instrumentation.Sleigh elim allremoves both fully and
partially redundant instrumentation, providing an optimistic lower
bound of 22% average overhead for redundant instrumentation re-
moval.

6. Related Work
This section compares Bell and Sleigh to previous work in memory
leak detection.

Static Analysis Static analysis finds memory leaks in programs
without runtime overhead (e.g., [19]) but reports false positives
since it must make conservative assumptions about control flow.
Dynamic class loading in Java complicates static analysis since
some classes may not be available at testing time. Current static
analysis tools find lost objects but not useless objects. Finding
useless objects statically seems inherently very challenging.

Dynamic Monitoring and Per-Object Information Dynamic
monitoring tools find leaks at runtime, and many maintain and
report per-object source information such as allocation site [3, 10,
18, 25, 28]. This information helps fix leaks but adds significant
per-object overhead. These tools could benefit from Bell encoding,

as long as sufficiently many objects leak. If just a few objects leak,
Bell cannot decode per-object source information accurately, but
the most problematic leaks are usually large and/or growing.

An alternative to Bell’s statistical approach is to storeun-
encodedper-object information for a sample of objects (e.g., dy-
namic object sampling [21]). Sampling avoids Bell encodingand
decoding but still adds some space overhead and requires instru-
mentation that checks whether an object is in the sampled set.

Pre-Release Testing ToolsValgrind [25] and Purify [18] find
memory leaks, as well as many other memory errors. They add
heavyweight instrumentation at every memory access, allocation,
and free, and use conservative garbage collection to find lost ob-
jects. These tools have overheads from 2x to 20x, coupled with high
per-object space overhead. They are too expensive for production
runs; they target testing runs and provide high accuracy andversa-
tility. Sleigh finds only leaks while these tools find many memory
errors, but Sleigh has low enough space and time overhead to con-
sider using in production runs.

SWAT SWAT finds leaks in C and C++ programs by guessing that
stale objects are leaks [10]. Sleigh borrows SWAT’s staleness ap-
proach to find leaks. SWAT and Sleigh may report false positives
(stale memory that will be used eventually), although thesereports
probably indicate poor memory usage. Both tools track per-object
staleness and maintain per-object allocation and last-usesites, but
SWAT adds several words of space overhead per object, while
Sleigh saves space but cannot report sites that do not leak many
objects because of its statistical nature. For C programs that allo-
cate and custom-manage large chunks of memory [4], SWAT has
low space overhead. On the C benchmarktwolf, which allocates
many small objects, SWAT adds 75% space overhead. Many pro-
grams heap-allocate many small objects (24-32 bytes per object on
average) [14], where Bell’s space-efficient mechanism offers sub-
stantial space advantages.

Leak Detection for Managed LanguagesJRockit [3], .NET
Memory Profiler [28], JProbe [27], LeakBot [24], and Cork [22] are
among the many tools that find memory leaks in Java and C# pro-
grams. These tools use heap growth and heap differencing to find
objects that cause the heap to grow. JRockit provides low-overhead
trend analysis, which reports growing types to the user. At the cost
of more overhead, JRockit can track and report the instancesand
types that are pointing to growing types, as well as object alloca-
tion sites. LeakBot takes heap snapshots and uses an offline phase
to compare the snapshots. It uses heuristics based on commonleak
paradigms to insert instrumentation at runtime.

These tools use growth as a heuristic to find leaks, which may
result in false positives (growing data structures or typesthat are not
leaks) and false negatives (leaks that are not growing). In contrast,
Sleigh uses staleness (time since last use) to find memory leaks
and thus finds all memory the application is not using. Sleighmay
report false positives if non-leaking memory is not used fora while,
although these reports probably indicates poor memory usage.

SafeMem SafeMem employs a novel use of error-correcting code
(ECC) memory to monitor memory accesses in C programs, in or-
der to find leaks and catch some types of memory corruption [26].
For efficiency, ECC memory monitors only a subset of objects,
which SafeMem finds by grouping objects into types and us-
ing heuristics that identify potentially leaking types. SafeMem
requires some hardware and operating system support, whereas
Sleigh’s software approach offers comparable overheads and is im-
plemented in the compiler and virtual machine.

Instrumentation Optimization Sleigh uses data-flow analysis to
find partially and fully redundant instrumentation at object uses,
and it removes fully redundant instrumentation (Section 3.5). The

instrumentation at object uses (reads) is called aread barrier [7].
Prior work studies the overheads of a variety of read barriers and
finds lightweight barriers can be cheap (5 to 8% overhead on aver-
age), but more complex barriers are expensive (15 to 20% on av-
erage) [1, 7, 33]. Bacon et al. use common subexpression elimina-
tion to remove fully redundant read barriers, which reducesaverage
overhead from 6 to 4% on the PowerPC [1]. Since our barrier in-
cludes a load, store, and two multiplies, redundancy elimination
still does not reduce its overhead to the levels in previous work.

Information Theory and Communication Complexity Bell en-
coding and decoding are related to concepts in information the-
ory and communication complexity [13, 23]. For example, a well-
known idea in communication complexity is that two bitstrings can
share just one bit with each other to determine if they are thesame
string: they both hash against the same public key, and a non-match
indicates they are different, while a match is inconclusive[23]. Ex-
tracting random bits from two weakly random input sources (Bell’s
encoding function) is a well-studied area in communicationcom-
plexity [11]. We are not aware of any work that probabilistically
encodes and decodes program behavior as Bell does.

7. Conclusions
Bit-Encoding Leak Location (Bell) is a novel approach for encod-
ing per-object information from a known, finite set in a single bit
and decoding the information accurately given enough objects. We
use Bell in Sleigh to find the program sites that allocated andlast
used leaked memory. We show Sleigh’s output is directly useful
for fixing a leak in SPEC JBB2000 and a previously unfixed leak
in Eclipse, although enough objects must leak before Sleighre-
ports key sites. Sleigh incurs no per-object space overheadin our
implementation and has low time overhead, making it suitable for
production runs.

Bell solves a general problem and can be applied to other appli-
cations amenable to statistical per-object information. Bell could
encode per-object allocation sites in a growth-based leak detec-
tor for just 1% overhead (Figure 9). It could be applied to other
forms of profiling that use per-object information, such as profiling
lifetimes of allocation sites for pretenuring [21]. While Bell needs
many object instances to identify a site accurately, it can determine
that a single object hasnot been encoded together with a partic-
ular site: an object and site that do not match were definitelynot
encoded together, while a match is inconclusive. Bell offers a com-
promise between accuracy and overhead that may be appealingfor
some applications.

A. Avoiding False Positives and Negatives
Section 2.2 describes how Bell avoids false positives by notreport-
ing sites that match less thanmFP objects, and how weeding out
some sites requires that a site have been encoded together with at
leastnmin objects to be almost certainly reported. This section de-
scribes how we computemFP andnmin.

To computemFP, we use the fact thatmsite(the number of ob-
jects that match a site) for a site encoded together with no objects,
can be represented with a binomially-distributed random variable
X with n trials and1

2
probability of success. (X is binomially dis-

tributed since whether a particular object matches the siteis an in-
dependent event.) Solving formFP in the following equation gives
the threshold needed to avoid reporting a single site as a false posi-
tive with high probability (99%):

1− Pr(X ≥ mFP) ≥ 99%

We want to avoid reportingany false positive sites, so we solve for
mFP in the following equation:

[1− Pr(X ≥ mFP)]|sites| ≥ 99%

where|sites| is the number of possible sites.
UsingmFP, we computenmin as follows. Given a site encoded

together withnmin objects, we model the number of matches for
the site as a binomially-distributed random variableY with n trials
and probability of success1

2
(n + nmin)/n (because the expected

value ismsite = nmin + 1

2
(n − nmin) = 1

2
(n + nmin)). We

solve fornmin in the following equation (note thatmFP is fixed,
andnmin is implicitly in the equation as part ofY ’s probability of
success):

1− Pr(Y ≥ mFP) ≥ 99.9%

Before decoding, Sleigh solves formFP and mmin using the
Commons-Mathlibrary [12].

Acknowledgments
We thank Maria Jump, Xianglong Huang, Steve Blackburn, Robin
Garner, Alan Adamson, Elena Ilyina, and Ricardo Morin for help
with Jikes RVM and benchmarks. We thank Xianglong Huang,
Nicholas Nethercote, Daniel Jimẽnez, Samuel Guyer, and Mak-
sim Orlovich for helpful discussions. We thank Andrew Millsand
Jesse Kamp for help with related work in information theory and
communication complexity. We thank Emery Berger, Katherine
Coons, Chen Ding, Boris Grot, Jungwoo Ha, Byeongcheol Lee,
Naveen Neelakantam, Nicholas Nethercote, Ben Wiedermann,and
the anonymous reviewers for their helpful comments about the pa-
per.

References
[1] D. Bacon, P. Cheng, and V. Rajan. A Real-Time Garbage Collector

with Low Overhead and Consistent Utilization. InSymposium on
Principles of Programming Languages, pages 285–298, 2003.

[2] BEA. JRockit. http://dev2dev.bea.com/jrockit/.

[3] BEA. JRockit Mission Control. http://dev2dev.bea.com/jrockit/-
tools.html.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
Custom Memory Allocation. InConference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 1–12,
2002.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water?
High Performance Garbage Collection in Java with MMTk. In
International Conference on Software Engineering, pages 137–146,
2004.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. InConference on Object-Oriented
Programming, Systems, Languages, and Applications, 2006.

[7] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In
International Symposium on Memory Management, pages 143–151,
2004.

[8] P. Briggs and K. D. Cooper. Effective Partial RedundancyElim-
ination. In Conference on Programming Language Design and
Implementation, pages 159–170, 1994.

[9] CERT/CC. CERT/CC Advisories. http://www.cert.org/advisories/.

[10] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling. InInternational
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 156–164, 2004.

[11] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak
Randomness and Probabilistic Communication Complexity.SIAM J.
Comput., 17(2):230–261, 1988.

[12] Commons-Math: The Jakarta Mathematics Library. http://jakarta.-
apache.org/commons/math/.

[13] T. M. Cover and J. A. Thomas.Elements of Information Theory. John
Wiley & Sons, 1991.

[14] S. Dieckmann and U. Hölzle. A Study of the Allocation Behavior
of the SPECjvm98 Java Benchmarks. InEuropean Conference on
Object-Oriented Programming, pages 92–115, 1999.

[15] Eclipse.org Home. http://www.eclipse.org/.

[16] J. Fenn and A. Linden.Hype Cycle Special Report for 2005. Gartner
Group.

[17] N. Grcevski, A. Kielstra, K. Stoodley, M. G. Stoodley, and V. Sun-
daresan. Java Just-in-Time Compiler and Virtual Machine Improve-
ments for Server and Middleware Applications. InVirtual Machine
Research and Technology Symposium, pages 151–162, 2004.

[18] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks
and Access Errors. InWinter USENIX Conference, pages 125–136,
1992.

[19] D. L. Heine and M. S. Lam. A Practical Flow-Sensitive andContext-
Sensitive C and C++ Memory Leak Detector. InConference on
Programming Language Design and Implementation, pages 168–
181, 2003.

[20] Jikes RVM Research Archive. http://jikesrvm.sourceforge.net/info/-
research-archive.shtml.

[21] M. Jump, S. M. Blackburn, and K. S. McKinley. Dynamic Object
Sampling for Pretenuring. InInternational Symposium on Memory
Management, pages 152–162, 2004.

[22] M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak
Detection for Java. Technical Report TR-06-07, The University
of Texas at Austin, 2006. Under submission.

[23] E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge
University Press, 1996.

[24] N. Mitchell and G. Sevitsky. LeakBot: An Automated and
Lightweight Tool for Diagnosing Memory Leaks in Large Java Appli-
cations. InEuropean Conference on Object-Oriented Programming,
pages 351–377, 2003.

[25] N. Nethercote and J. Seward. Valgrind: A Program Supervision
Framework. Electronic Notes in Theoretical Computer Science,
89(2), 2003.

[26] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Production
Runs. InInternational Symposium on High-Performance Computer
Architecture, pages 291–302, 2005.

[27] Quest. JProbe Memory Debugger. http://www.quest.com/jprobe/-
debugger.asp.

[28] SciTech Software. .NET Memory Profiler. http://www.scitech.se/-
memprofiler/.

[29] D. Scott. Assessing the Costs of Application Downtime. Gartner
Group, 1998.

[30] Standard Performance Evaluation Corporation.SPECjvm98 Docu-
mentation, release 1.03 edition, 1999.

[31] Standard Performance Evaluation Corporation.SPECjbb2000
Documentation, release 1.01 edition, 2001.

[32] US-CERT. US-CERT Vulnerability Notes Database. http://www.kb.-
cert.org/vuls/.

[33] B. Zorn. Barrier Methods for Garbage Collection. Technical Report
CU-CS-494-90, University of Colorado at Boulder, 1990.

