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Abstract

Rapid growth in the power and ubiquity of computing devices has shifted the focus of
programmers towards problems that involve uncertainty. Whether this uncertainty is
required to wrangle the sheer scale of big data, or inherent in a digital sensor, or part
of a probabilistic model, or a side effect of approximating calculations to save energy
and increase performance, programmers reason about and address this uncertainty
using programming languages.

Unfortunately, existing programming languages use simple discrete types (floats,
integers, and booleans) to represent this uncertainty, and encourage programmers to
pretend that their data is not probabilistic. The illusion of certainty causes applications
to experience three types of uncertainty bugs: (1) random errors by treating estimates
as facts; (2) compounded error through computation; and (3) false positives and
negatives by asking the wrong questions.

Existing approaches to uncertain data centre on probabilistic programming, pro-
viding specialised languages for expert programmers to build and reason about
probabilistic models. These tools are inappropriate for non-expert programmers, on
the front lines of the increasing variety of problems involving uncertainty, because
these languages require a strong understanding of probability theory.

My thesis is that by making uncertain data a primitive first-order type, non-expert
programmers will write programs that are more concise, expressive, and correct.

This thesis introduces the uncertain type, or Uncertain〈T〉, a programming language
abstraction for uncertain data. The uncertain type encapsulates probability distribu-
tions, similar to other probabilistic programming abstractions. But unlike prior work,
the uncertain type provides an accessible interface for non-expert programmers to
reason correctly about uncertainty. Probabilistic programming is too blunt a tool for
the concrete problems that non-expert programmers face in applications, and pays a
performance and accessibility cost for its generality.

I describe the interface that the uncertain type provides through a four step pro-
cess for programming with uncertainty: (1) domain experts identify distributions;
(2) programmers compute with uncertain data; (3) programmers ask questions with
conditionals; and (4) domain experts and programmers improve estimates with do-
main knowledge. The uncertain type’s semantics incorporate sampling and hypothe-
sis testing to make the abstraction tractable and practical in performance. Three case
studies show how programmers use the uncertain type to produce programs that are
more correct, without significant programmer effort or performance overhead.

This thesis argues that principled mechanisms for reasoning under uncertainty
are increasingly necessary in the modern computing landscape, and demonstrates
how to make these mechanisms accessible, flexible, and efficient.
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Chapter 1

Introduction

This thesis explores uncertainty, why programmers must consider it, and program-
ming models for doing so that are accessible, efficient, and expressive. Programs are
increasingly working with uncertain data, and my thesis is that good programming
model abstractions for uncertain data will make programs more concise, expressive,
and correct.

1.1 Problem Statement

Modern applications increasingly face the challenge of computing under uncertainty.
This uncertainty manifests itself in the data that programs manipulate. In some cases,
the uncertainty is due to the limited resolution or accuracy of a sensor. Hardware
or software might deliberately introduce uncertainty by choosing to approximate
computations, to save energy or to improve performance. The sheer scale of big data
might require a program to reason about a smaller subset, creating uncertainty about
the true result. Machine learning may produce predictions, learned from a set of
training data, that are uncertain. Or the uncertainty might be an inherent part of
a probabilistic model, created to reason about problems that are random and yet
structured.

What these processes have in common is that they produce estimates of under-
lying values. For instance, a machine learning algorithm estimates the value of an
unknown function, and a sensor estimates the true value of a physical quantity. The
difference between an estimate and a true value is uncertainty.

When we write programs that consume estimates, we should recognise their uncer-
tainty, and how it affects the program’s behaviour. But most programming languages
do not distinguish between estimates and true values, simplistically representing
both with discrete types such as floats, integers, and booleans. These simple types
belie the complexity of uncertainty, and encourage programmers to treat estimates as
certainties, which is problematic.

This problem is not abstract. I demonstrate three types of uncertainty bugs that
applications experience as a result of the illusion of certainty. Programs experience
random errors by treating estimates as facts, leading to absurd outputs. Computation
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2 Introduction

on estimated data compounds the error, creating greater inaccuracy. And misusing
simple types in conditionals creates false positives and negatives by asking simple
questions of probabilistic data.

Faced with the challenge of uncertainty, most programmers choose to ignore
it. I survey 100 popular smartphone applications and find only one application
reasons about the error in GPS estimates. But this choice to ignore uncertainty is
not a conscious one. I argue that this apathy towards correctness stems from the
absence of the right abstraction for uncertain data in everyday programs. The right
abstraction needs to be accessible to non-expert programmers, efficient enough for
use in applications, and expressive enough to reason about uncertainty. Current
abstractions fall short in one or more of these areas:

Accessibility. Probabilistic programming languages are a booming field of re-
search. These languages use stochastic primitives to encode generative models,
and apply inference algorithms to reason about specific problems using these
models. The encoding is based on the monadic structure of probability distri-
butions [Ramsey and Pfeffer, 2002]. Notable examples include BUGS [Gilks
et al., 1994], Church [Goodman et al., 2008], and Fun/Infer.NET [Borgström
et al., 2011; Minka et al., 2012].

To use these languages effectively requires expertise in statistics and proba-
bilistic modelling. While experts can potentially use these languages to reason
about uncertain data, a non-expert does not have the knowledge to phrase
their problems in this way. These languages are not sufficiently accessible for
everyday programming.

Efficiency. Probabilistic programming languages use inference algorithms to
reason about problems. The output of an inference algorithm is a posterior
distribution, but to compute the entire posterior distribution requires exploring
all paths through the probabilistic program. In all but the simplest cases this
cannot be done analytically and so must be done by sampling, repeatedly
executing the program, but some paths through the program are very unlikely
to be sampled, causing significant performance degradation.

Although many algorithms improve the efficiency of sampling (e.g. Metropolis-
Hastings [Hastings, 1970], Quick Inference [Chaganty et al., 2013]), inference
is still too slow for commodity use in everyday applications.

Expressivity. Current abstractions for uncertainty are often simplistic, to over-
come the poor efficiency or accessibility of richer techniques. For example,
smartphones use a simple abstraction for geolocation data, representing un-
certainty as a simple radius around a point. This abstraction is accessible and
efficient. But uncertainty engenders new questions about data that such sim-
ple abstractions cannot hope to express. Reasoning under uncertainty requires
programmers to consider confidence in the available evidence. For example,
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rather than asking “is my speed greater than 10 km/h?”, they should ask “how
confident am I that my speed is greater than 10 km/h?”.

This reasoning can be done manually, but requires significant domain expertise
to implement. Current simple abstractions are not sufficiently expressive to
ask the questions that uncertainty requires programmers to consider.

The challenge is: can an abstraction for uncertainty be suitably accessible, efficient,
and expressive as to be practical for everyday programmers?

1.2 Contributions

I contend that the reason for the shortcomings of current abstractions is a failure
to recognise the way modern software is developed. Modern applications consume
uncertain data not directly from the source, but through a stack of abstractions
programmers engage with through an application programming interface (API). It
is not reasonable to expect everyday programmers to engage with uncertain data
by constructing an entire probabilistic model from first principles; to expect so is to
ignore the value of abstraction.

Current APIs for uncertain data hide its probabilistic nature, in the mistaken belief
that it is an implementation detail to abstract away. My central argument is that the
probabilistic nature of uncertain data cannot stop at the API boundary. Such an
artificial restriction makes correct reasoning under uncertainty much more difficult
and, in practice, causes programmers to ignore uncertainty completely, resulting in
poorer quality software.

This thesis introduces the uncertain type, or Uncertain〈T〉, a programming lan-
guage abstraction for uncertain data. The uncertain type encapsulates probability
distributions, similar to other probabilistic programming abstractions. But unlike
prior work on probabilistic programming, the uncertain type focuses on providing an
accessible interface for non-expert programmers to reason correctly about uncertainty.
For everyday programmers, the uncertain type is accessible, efficient, and expressive.

Probabilistic programming languages are useful for abstract problems involving
uncertainty, but the uncertain type is concerned with specific instances of a problem.
Whereas probabilistic programming can consider the distribution of variables in
isolation by marginalising, the uncertain type considers only conditional distributions.
Because in a concrete instance of a problem, all variables have a value, the conditional
distribution is appropriate. Probabilistic programming is too blunt a tool for concrete
problems, and pays a performance and complexity price for its generality.

The key insight of the uncertain type is that considering accessibility as a first
order requirement leads to a restricted subset of probabilistic operators, that are suit-
ably expressive to solve real-world problems, but lend themselves to a very efficient
implementation through sampling and hypothesis testing. Rather than eagerly pro-
ducing unnecessary precision through existing inference algorithms, the uncertain
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type samples distributions only to the level of precision necessary to evaluate indi-
vidual queries. The accessibility and efficiency requirements work in concert to strike
a natural balance that remains suitably expressive.

I describe the interface the uncertain type provides by presenting a four step
process for programming with uncertainty:

Identifying the distribution of uncertain data requires domain expertise since
the distribution depends on the particular data source. Domain experts often
already know the distribution of their data, and only lack an abstraction to
expose this information to programmers.

Computing with distributions includes using arithmetic operations, convert-
ing units, and combining with other distributions. The uncertain type uses
operator overloading to make this step mostly transparent to programmers,
and lazy evaluation to make it efficient and tractable.

Asking the right questions of distributions requires new semantics for condi-
tional expressions on probabilities rather than binary decisions on determin-
istic types. The uncertain type defines two types of conditional operations,
and implements both using hypothesis testing to balance performance and
accuracy.

Improving estimates with domain knowledge combines pieces of probabilis-
tic evidence. Programmers specify application-specific information through
a simple interface, and libraries incorporate this domain knowledge using
Bayesian inference to improve the quality of the estimates they produce.

I show how the uncertain type implements this interface efficiently, by approximating
distributions with Monte Carlo sampling, lazy evaluation for computations, and
hypothesis testing for dynamically determining the ideal sample size for conditionals.

Finally, I reinforce these contributions with case studies. I show how the uncertain
type improves the accuracy and expressiveness of programs that use GPS, one of
the most widely used hardware sensors. I present an example of how the uncertain
type can incorporate domain knowledge to virtually eliminate noise in a simple
digital sensor. And I show how the uncertain type is a promising programming
model for approximate computing, a growing research field that trades accuracy for
performance and energy efficiency. Together, these case studies demonstrate that
the uncertain type allows non-expert programmers to write programs that are more
concise, expressive, and correct.

1.3 Thesis Outline

Chapter 2 provides an overview of probability theory and probabilistic programming,
and a survey of relevant literature around programming with uncertainty. Chapter 3
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motivates the problem this thesis addresses by exploring uncertainty bugs in a simple
GPS application.

Chapter 4 presents Uncertain〈T〉, describes the interface it provides programmers,
and develops a four step process for programming with uncertain data. Chapter 5
shows the implementation insights of Uncertain〈T〉 that allow it to be efficient and
tractable. Chapter 6 presents three case studies that demonstrate the effectiveness of
Uncertain〈T〉 against its goals of accessibility, efficiency, and expressiveness.

Finally, Chapter 7 concludes the thesis, identifiying future work, and describing
how my contributions show that a primitive first-order type for uncertain data enables
programs that are more concise, expressive, and correct.
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Chapter 2

Background and Related Work

Uncertainty is a well known problem in many domains. The mathematics of prob-
abilities gives scientists the tools to reason about uncertainty and make decisions
in the face of imperfect information. Extensive existing work discusses approaches
to uncertainty and probability in programming languages, and in domain-specific
problems. This chapter provides an overview of probability theory and probabilistic
programming, and surveys relevant literature on programming with uncertainty.

Section 2.1 briefly introduces relevant probability theory. Section 2.2 discusses
probabilistic programming, a field of research into using programming languages to
address uncertainty. Section 2.3 demonstrates some domain-specific solutions to the
problem of uncertainty, and Section 2.4 examines other techniques for addressing un-
certainty. Section 2.5 discusses emerging trends that further motivate tools designed
to address uncertainty. Finally, Section 2.6 summarises the chapter, emphasising the
need to improve upon existing programming models for uncertainty.

2.1 Probability theory

This section introduces the necessary mathematical background to support the rest
of the thesis.

2.1.1 Random variables and probability distributions

Probability theory rests on the concept of a random variable. In deterministic math-
ematics, a variable takes on a single value; for instance, the equation x = 5 means
“the value of x is 5”. Probability introduces the idea of a random variable, whose
value varies due to uncertainty. For example, the outcome of a coin flip is a random
variable. A fair coin has a 50% probability of being heads and a 50% probability of
being tails. Of course, a particular flip has one definite value, either heads or tails.
The random variable is a conceptual model for the outcome of a flip, and allows us
to reason probabilistically about coin flips in general. For example, we can reason
about the probability of seeing three heads in a row using the random variable.

A random variable is defined over a probability space Ω, which is the domain of the

7



8 Background and Related Work

variable. For a coin, this domain is discrete: Ω = {Heads, Tails}. Probability spaces
can also be countably or uncountably infinite, representing random variables over
domains such as the set of real numbers. We call such infinite domains continuous
(versus discrete). We say a random variable with probability space Ω is a random
variable over Ω.

The probability that a random variable over Ω takes a value x ∈ Ω is represented
by a probability distribution, a function p : Ω → [0, ∞). For discrete Ω, the value p(x)
is exactly the probability that the random variable takes the value x (and so in fact
p(x) ∈ [0, 1], and ∑x∈Ω p(x) = 1). But for continuous Ω, the probability that any one
value x is observed is zero,1 since the sum rule of probability says that the sum of
the probabilities of every x ∈ Ω is 1, and Ω is infinite. In the continuous case we
refer to p as a probability density function; the value p(x) represents the probability
that the random variable takes a value somewhere in the interval [x, x + dx] for an
infinitesimal dx. In the continuous case, the sum rule of probability dictates that∫

Ω p(x)dx = 1.
We say two random variables are independent if the value of one has no bearing

on the value of the other. For example, two coin flips are independent of each other:
the value of the first coin flip has no effect on the value of the second. Formally, we
say two random variables A and B are independent if, for every possible a ∈ ΩA and
b ∈ ΩB,

Pr[A = a and B = b] = Pr[A = a]Pr[B = b].

Independence greatly simplifies a number of probability operations.
The expected value EA[ f ] of a function f under a random variable A (with proba-

bility density function p(x)) is a weighted average, defined as

EA[ f ] =
∫

Ω
f (x)p(x)dx.

Most often we take f to be the identity function, in which case we write EA[ f ] as
simply E[A], and say that this is the expected value of A. We also call E[A] the mean
or average of A.

2.1.2 Families of probability distributions

Two families of probability distributions are particularly relevant to this work.
The normal (or Gaussian) distribution is perhaps the most common probability

distribution. The normal distribution is a continuous distribution defined over the
real numbers by the probability density function

f (x; µ, σ2) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
.

1We could have a random variable with continuous domain but whose set of actual outcomes is finite
(for example, Ω = R but the variable is always either 1.3 or 4.2). For clarity when we say a random
variable is continous, we mean it has infinite support, i.e., an infinite set of actual outcomes.
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Figure 2.1: A Gaussian distribution with mean µ = 25 and variance σ2 = 25

The distribution has two parameters: µ, the mean of the distribution, and σ2, the
variance of the distribution. We call µ the mean because it is also the expected value
of the distribution. Figure 2.1 shows a Gaussian distribution.

Normal distributions occur frequently when modelling real-world problems. For
example, the Central Limit Theorem tells us that the mean of a large number of
independent random variables is approximately normally distributed. This theorem
holds regardless of the distribution of the individual random variables being averaged,
which allows us to reason about the distribution of the mean of a set of variables even
if we know nothing about the distribution of the variables themselves.

The Bernoulli distribution is the most common example of a discrete probability
distribution. A Bernoulli distribution has a probability space of two elements, usually
denoted either as {False, True} or as {0, 1}. The distribution has a single parameter
µ which describes the probability that the variable takes value 1. The Bernoulli
distribution therefore has probability density function

f (x; µ) =

{
1− µ , x = 0

µ , x = 1

or equivalently

f (x; µ) = µx(1− µ)1−x.

A Bernoulli is simply a formalisation of a biased coin; the parameter µ describes
the probability the coin comes up heads. An unbiased coin is therefore a Bernoulli
random variable with µ = 0.5.

2.2 Probabilistic programming

Problems involving uncertainty are becoming more prominent of late in many fields
of computer science. To solve these problems, we turn to the mathematics of proba-
bilities. Probabilistic programming reasons about probabilities by introducing random
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variables into the syntax and semantics of programming languages, allowing pro-
grammers to model and solve problems involving uncertainty.

Formally, the goal of probabilistic programming is to represent generative models
of problems. A generative model is a full probabilistic model of all the variables
in a problem, both inputs and outputs. That is, a generative model describes the
joint distribution f (x1, . . . , xn), which is the complete relationship between all vari-
ables. In contrast, a discriminative model only captures distributions for the target
variables, conditioned on the observed variables; that is, the conditional distribution
f (x1, . . . , xi | xi+1, . . . , xn). A discriminative model does not model the distribution of
the input variables. The generative model therefore provides a more complete picture
of the problem, at the expense of a larger model. Generative models are so named
because they allow sampling (i.e., generation) of new synthetic data from the model.

2.2.1 The probability monad

The founding idea of probabilistic programming is that probability distributions form
a monad [Giry, 1982]. Much of the work on probabilistic programming exploits
this structure to build functional probabilistic programming languages that allow
programmers to represent distributions [Erwig and Kollmansberger, 2006; Park et al.,
2005; Ramsey and Pfeffer, 2002].

A generative model is a joint distribution f (x1, . . . , xn). To construct a representa-
tion of this distribution, we start with distributions f (x1), . . . , f (xn) for each variable,
and some information about how they relate. This section builds on a Haskell exam-
ple [Erwig and Kollmansberger, 2006].

We will represent all probabilities as floats:

newtype Probability = Prob Float

The simple formulation of the probability monad handles only discrete distributions,
representing them as a map from the probability space Ω of possible outcomes to the
probability of each outcome. So a distribution of type a is simply a list unD of pairs
(x, p) where x is in a and p is a probability:

newtype Dist a = Dist {unD :: [(a, Probability)]}

We can trivially define basic distributions from this definition; for example, the
uniform distribution is:

uniform :: [A] -> Dist A
uniform xs = Dist [(x, 1/total) | x <- xs]

where total = fromIntegral (length xs)

That is, each value x in the input domain xs has probability 1/n, where n is the num-
ber of elements in xs. Also note that we can create a simple function for distributions
with guaranteed outcomes:

certainly :: A -> Dist A
certainly x = Dist [(x, 1)]
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We can build simple distributions for the f (xi)s using these definitions. There
are two ways to combine these distributions to form a joint distribution over all the
variables. If the variables A and B are independent, the combination is trivial: we
simply form each possible pair (x, y) of values from A and B, respectively, and assign
to each pair the probability pq, where p is the probability that A = x and q the
probability that B = y. In code:

prod :: Dist A -> Dist B -> Dist (A,B)
prod (Dist a) (Dist b) = Dist [((x,y), p*q) | (x,p) <- a, (y,q) <- b]

A more interesting case is when the variables are not independent. If B depends on
A, then for each value of B there is a different distribution of A, the function f (a | B =

b). Visually, the graph f (a, b) is three-dimensional, and the function f (a | B = b)
is a slice of that graph along the plane where B = b. In code, this means we need
a function of type B -> Dist A, that tells us for each possible value b of B the
distribution f (a | B = b) of the corresponding A:

prod’ :: Dist B -> (B -> Dist A) -> Dist A
prod’ (Dist b) f = Dist [(y, q*p) | (x,p) <- b, (y,q) <- unD (f x)]

Notice that prod’ b f is actually the marginal distribution over A, rather than the joint
distribution of A and B. To get the joint distribution we simply change f to return a
distribution over (A, B) instead of just over A (i.e., f now has type B -> Dist (A,B)),
so that f (x) is a distribution over (A, B) but the second element of each pair is always
the input x.

But now we have defined everything we need for a monad. A monad is simply a
type with a unit operation and a bind operation:

return :: A -> Monad A
(>>=) :: Monad A -> (A -> Monad B) -> Monad B

These operations must satisfy some simple laws which are not relevant to this discus-
sion. In our case, the return operation is certainly and the bind operation prod’:

instance Monad Dist where
return x = Dist [(x,1)]
(Dist d) >>= f = Dist [(y, q*p) | (x,p) <- a, (y,q) <- unD (f x)]

This elegant monadic structure allows the simple definition of a number of prob-
abilistic models; common examples include the Monty Hall problem [Erwig and
Kollmansberger, 2006] and applications of Bayes’ rule [Kidd, 2007]. But as always,
low-level details like the probability monad’s representation of distributions can ben-
efit from the abstractions afforded by higher level languages.

2.2.2 Probabilistic programming languages

A probabilistic programming language abstracts the low-level details of represent-
ing probabilities and provides a higher-level interface for programmers to define
probabilistic models.
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1 earthquake = Bernoulli(0.0001)
2 burglary = Bernoulli(0.001)
3 alarm = earthquake or burglary
4

5 if (earthquake)
6 phoneWorking = Bernoulli(0.7)
7 else
8 phoneWorking = Bernoulli(0.99)
9

10 # Inference
11 observe(alarm)
12 query(phoneWorking)

(a) A probabilistic program in psuedocode

1 (mh-query
2 500 100 ; number of samples and latency between them
3

4 (define earthquake (flip 0.0001))
5 (define burglary (flip 0.001))
6 (define alarm (or earthquake burglary))
7 (define phoneWorking (if earthquake (flip 0.7) (flip 0.99)))
8

9 phoneWorking ; target variable
10 alarm ; observed variables
11 )

(b) The same probabilistic program in Church [Goodman et al., 2008]

1 Variable<bool> earthquake = Variable.Bernoulli(0.0001);
2 Variable<bool> burglary = Variable.Bernoulli(0.001);
3 Variable<bool> alarm = (earthquake | burglary);
4

5 Variable<bool> phoneWorking = Variable.New<bool>();
6 using (Variable.If(earthquake)) {
7 phoneWorking.SetTo(Variable.Bernoulli(0.7));
8 }
9 using (Variable.IfNot(earthquake)) {

10 phoneWorking.SetTo(Variable.Bernoulli(0.99));
11 }
12

13 // Inference
14 InferenceEngine ie = new InferenceEngine();
15 alarm.ObservedValue = true;
16 ie.Infer(phoneWorking);

(c) The same probabilistic program in C# using Infer.NET [Minka et al., 2012]

Figure 2.2: A probabilistic model captured as a probabilistic program in three different
languages. This example problem is used by Chaganty et al. to demonstrate Quick Infer-
ence [Chaganty et al., 2013].
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Figure 2.2 shows a probabilistic model defined in three different probabilistic
programming languages. Figure 2.2(a) defines the model using an imperative psue-
docode language. The simple program is based on an example used by Chaganty et al.
to demonstrate their work on inference [Chaganty et al., 2013]. The program models a
world with four variables: earthquake, burglary, alarm, and phoneWorking. There is
a 0.01% probability of an earthquake occurring, and a 0.1% probability of a burglary.
The alarm goes off if either an earthquake or a burglary occurs (or both). But only
earthquakes affect the phone – if an earthquake occurs, the phone will work with 70%
probability, otherwise it will work with 99% probability. The next section discusses
the significance of the inference statements on lines 10 to 12.

There are two schools of thought as to the design of probabilistic programming
languages. The first suggests they should be novel languages, free of the restraints of
existing syntax and semantics. This freedom allows these languages to define new
primitives and syntax for probabilistic models. Most of these novel languages build on
the idea of a stochastic lambda calculus, which adds a notion of probabilistic execution
to the lambda calculus. The exact formulation varies; some include probabilistic
sampling [Park et al., 2005], others use a primitive for probabilistic choice [Saheb-
Djahromi, 1978], and still others directly use the distributions of inputs.

Figure 2.2(b) shows the example probabilistic model implemented in Church [Good-
man et al., 2008]. Church is a novel language defined as a subset of Scheme plus
evaluation and query primitives used to define generative models. The example code
uses the Metropolis-Hastings inference algorithm discussed below to reason about
the problem. This program demonstrates the benefits of defining a new language:
the code succinctly expresses the model using primitives that are easy to understand.
BUGS is another commonly used novel language for probabilistic programming, par-
ticularly for inference on graphical models [Gilks et al., 1994]. These languages are
popular among experts, but have little likelihood of adoption by non-expert program-
mers because they are complex and difficult to interface with existing programs.

The second school of thought suggests instead that stochastic functions be embed-
ded inside an existing programming language. This leads to a more complex interface
since it is difficult to define new syntax in an existing language. But embedding in
popular existing languages democratises access to probabilistic reasoning, since it is
easy for programmers to adopt in the programs they are already writing.

Figure 2.2(c) shows the example probabilistic model implemented in C# using the
Infer.NET library [Minka et al., 2012]. Infer.NET is a library for Bayesian inference
that can be embedded into a general purpose programming language like C#. Pro-
grammers use Infer.NET to build up an object graph representation of their problem
domain, and then use inference algorithms on that model. Rather than adding new
stochastic primitives to the language syntax, Infer.NET provides library functions to
define random variables in terms of distributions and conditional probabilities. This
results in more verbose code, but allows programmers to access probabilistic reason-
ing from the languages they are already using for their applications. Other embedded
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probabilistic languages include a domain-specific language embedded in Objective
CAML [Kiselyov and Shan, 2009], and various libraries that provide functions for
manipulating probability distributions explicitly [Glen et al., 2001; Jaroszewicz and
Korzeń, 2012]. These packages vary in the depth of their embedding; some (like
Infer.NET) use operator overloading to allow programmers to manipulate random
variables like discrete variables, while others ask programmers to explicitly operate
on the underlying distributions.

2.2.3 Inference on generative models

While there are interesting questions about the expressiveness of probabilistic pro-
gramming languages, the primary motivation for modelling problems in this way is
to use the models to perform inference. Inference algorithms calculate the posterior
distribution of variables under some conditional restriction. In the examples in Fig-
ure 2.2, the query posed to the inference algorithm is to calculate the distribution of
phoneWorking, given the observation that alarm is true. Informally, this query asks
what the probability is that the phone is working if the alarm has gone off.

Notice that nowhere in the model is this distribution explicitly defined: it must be
inferred from the relationship between the variables as defined by the model. In par-
ticular, the code does define the relationship between phoneWorking and earthquake,
and between earthquake and alarm. To answer the query, the inference algorithm
will infer the probability that an earthquake occurred given that the alarm went off,
and then infer from that the probability that the phone is working.

The output of an inference query is a distribution, not a single value, known as the
posterior distribution because it is the distribution of a variable after an observation.
In the example in Figure 2.2(a), the output of query(phoneWorking) is a Bernoulli
distribution – a probability that the phone is working. Although in this example the
distribution is simple, in real-world models the distribution will likely have a much
larger probability space, and therefore be much more complex to infer.

The logical approach is to infer the answer analytically. For a simple problem
like this one, direct analysis is tractable and efficient, and it turns out that the correct
answer is approximately a 96.36% probability that the phone works after an alarm.
But direct analysis breaks down for even slightly more complex models; in particular,
a direct analysis is exponential in the number of random choices being made.

We therefore turn to some form of sampling for efficient inference. A key insight
of probabilistic programming is that the program actually defines a joint prior distri-
bution over all the variables, and the program can be executed to generate samples
from this distribution. The execution proceeds by drawing a sample from each termi-
nal variable (in this case, the Bernoulli instances), and propagating those samples
through the program. In the example in Figure 2.2(a), since each Bernoulli variable
returns a boolean, the conditional on line 5 executes in the usual way. At the end of
the execution, the assignments to each variable together form a sample of the joint
distribution defined by the program.
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(a) Result of the inference algorithm. The dashed line is the true probability of phoneWorking
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(b) Performance of the inference algorithm for different probabilities of the variables.

Figure 2.3: Performance of the Church inference algorithm on the simple probabilistic pro-
gram in Figure 2.2. Error bars are 95% confidence intervals of 50 executions.
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Sampling leads us to the key shortcoming of probabilistic programming: its ineffi-
ciency. The sampling routine must explore all possible paths through the program to
understand its behaviour, and after computing a particular sample, must then apply
the conditional observations of the inference query. The issue is that some paths
through the program are very unlikely; in Figure 2.2(a), the branch on line 5 is taken
with probability 0.01%. To be sure of executing this branch, the inference algorithm
must draw many samples. Moreover, since the query is conditioned on alarm being
true, which occurs with probability approximately 0.01%, many of these samples
will have alarm set to false and therefore must be rejected. Only very few samples
are able to be accepted, and we need many of these accepted samples to adequately
explore the unlikely paths of execution.

Current research focuses on how to make these queries more efficient by reasoning
symbolically about the model [Chaganty et al., 2013]. But even efficient algorithms
cannot overcome the inherent expense of this approach. Figure 2.3 shows the results
of using Church’s Metropolis-Hastings inference algorithm on the program in Fig-
ure 2.2(b). In both graphs, the x-axis shows the number of samples drawn using the
inference algorithm. Figure 2.3(a) shows the output of the inference algorithm (the
probability of phoneWorking given the alarm went off) at each sample size. As ex-
pected, larger sample sizes give smaller variation in the result, and are more accurate.
But the tradeoff for this improved accuracy is performance: Figure 2.3(b) shows that
drawing 100 samples from the original model (in Figure 2.2(b)) takes 18 seconds.

The poor performance of inference algorithms on even simple examples has two
causes. First, even though smart algorithms like Metropolis-Hastings try to improve
the performance of inference, the fundamental problems of exploring unlikely ex-
ecution paths and achieving practical rejection rates remain. To demonstrate these
effects, Figure 2.3(b) also shows results for two modified versions of the program
in Figure 2.2(b). The first modification swaps the probabilities of burglary and
earthquake. This holds the probability of alarm constant while increasing the proba-
bility of earthquake. This modification does not significantly affect the performance
of the inference algorithm. The second modification increases the probability of
burglary by a factor of 100. Increasing this probability increases the probability of
alarm being true and therefore decreases the rejection rate of the sampler, resulting
in significantly improved performance. Since the probability of earthquake is un-
changed in this second modification, these results together show that the primary
cause of poor performance on this model is the rejection rate of the sampler.

Second, the probability monad’s primitive nature of distribution encoding means
even simple distributions have complex representations. For example, any distribu-
tion over a finite discrete domain can be encoded using only flips of a fair coin, but
the encoding is necessarily complex and therefore slow. Some work on static analysis
tries to improve on this complexity by reasoning symbolically about the structure of
the representation [Chaganty et al., 2013; Sankaranarayanan et al., 2013], but to make
substantial improvement requires a different representation for distributions.
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2.2.4 Representing distributions

One alternative is to represent distributions as sampling functions. A sampling func-
tion returns a new random sample from a distribution each time it is invoked. This
representation necessarily sacrifices accuracy compared to precise representations –
to calculate an exact distribution from the sampling function requires infinite sam-
ples. But sampling functions have substantial performance benefits compared to other
representations. The sampling function naturally focuses its attention on the most sig-
nificant regions of the distribution, and so does not expend resources exploring areas
that contribute little weight to the total probability. Sampling functions also simplify
the representation of continuous distributions compared to the usual implementation
of the probability monad.

λ© is a probabilistic programming language built on sampling functions [Park
et al., 2005]. Park et al. show how λ© can represent many families of distributions.
Some, like the exponential distribution, give rise directly to a sampling function.
Others, like the Gaussian distribution, must use a sampling function that implements
rejection sampling. Unlike other probabilistic programming languages, λ© does not
provide inference, only queries for expected values and for computing Bayes’ theorem.
λ© does not reason about sampling error, and suffers the same accessibility problems
as other probabilistic programming languages. Uncertain〈T〉 uses sampling functions
to represent distributions, in the same way as λ©, as I will discuss in Chapter 5.

Another alternative is to approximate the probability density function directly.
The APPL programming language is a library that allows programmers to compute
explicitly with distributions [Glen et al., 2001]. APPL represents distributions with
piecewise functional representations of their probability density function. While this
approach simplifies implementing some operations and preserves accuracy, it rapidly
becomes unwieldy. For example, the authors show that the density function for
the sum of 12 uniform random variables is a piecewise function in 12 parts with a
total of 133 terms. This rapid growth in the size of the representation makes APPL
impractical for all but the simplest problems.

In the same vein, PaCAL is a Python library for computing with independent
random variables [Jaroszewicz and Korzeń, 2012]. PaCAL approximates probability
density functions with Chebyshev polynomials, a particular sequence of orthogonal
polynomials that, in a linear combination, can approximate any function defined on
[−1, 1]. This representation makes many operations simple to define, but cannot
account for dependencies between variables and requires programmers to be explicit
about the distributions they are manipulating.

2.3 Domain-specific solutions for uncertainty

In the absence of a general approach for programming with uncertainty, many do-
mains have their own idiosyncratic techniques. These techniques can provide some
insight into potential attributes of a more general solution.
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Robotics

Robotics is a common application of probabilistic programming – a robot needs to
sense information about its surroundings and combine evidence from these sensors
in a principled way. CES is a C++ library, motivated by robotics, for programming
with random variables using templates [Thrun, 2000]. For example, CES represents
a distribution over floating point numbers as an instance of type prob<double>. The
type prob<T> stores a list of pairs (x, p(x)) that map values to probabilities, like the
probability monad. This restricts CES to simple discrete distributions. But the ideas
of encapsulating distributions as a first-order type and using operator overloading
to apply operations to distributions mean CES presents an accessible interface to
programmers. For this reason Uncertain〈T〉 uses a similar interface.

Databases

Reflecting uncertainty in databases is a long-studied problem, made more impor-
tant by the growth of big data. Hazy is a framework for programming with uncer-
tain databases [Kumar et al., 2013]. Hazy asks programmers to write Markov logic
networks to interact with databases while managing uncertainty. A Markov logic
network is a set of rules and associated confidences for each rule, that together de-
scribe the relationship between elements in the database. For example, say we have a
database of students and the papers they have written. We could define a rule that
says with 30% confidence that if student s is an author of paper t, and s is a student
of professor p, then p is also an author of paper t. Markov logic networks encour-
age programmers to think at a high level about their probabilistic models. But this
approach is limited to databases and has accessibility problems, requiring program-
mers to write Markov logic networks rather than write in their usual programming
language.

Other approaches to probabilistic databases include Dalvi and Suciu, who describe
a “possible worlds” semantics for evaluating queries on probabilistic databases [Dalvi
and Suciu, 2007], and Benjelloun et al., who unify probabilistic databases with data
lineage to soundly evaluate probabilistic queries [Benjelloun et al., 2006]. Like Hazy,
these approaches are specific to databases.

Geolocation

Geolocation uses inputs such as Global Positioning System (GPS) sensors and WiFi
fingerprinting to estimate a user’s location. The locations produced are estimates
and have uncertainty [Thompson, 1998]. Geolocation libraries are extremely popu-
lar in smartphone applications; a cursory study indicates that 40% of top Android
applications use geolocation.

Programmers using geolocation must account for uncertainty to produce the
most accurate results. For example, one approach for matching GPS samples to
road maps uses a Hidden Markov Model to evaluate the best matches [Newson and
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Krumm, 2009]. A Hidden Markov Model is a type of generative model suitable for
inference. The authors define their own error models for their GPS readings, because
the platform did not provide a standardised approach to measuring GPS error. The
model achieves good results, but to create it, the authors needed extensive background
knowledge of statistics and probability. We cannot expect all consumers of geolocation
data to have such faculty. Implementing such an approach in a geolocation library
would improve its results somewhat, but would still not consider the effect of the
programmer’s computations on the data.

Gesture interaction

The rise of touch screens as input devices makes input processing more complex. For
simple input devices like the mouse, inputs are focussed at a single point. But for
touch screens, the input covers an area of the screen, making the user’s intended
target ambiguous. One technique to resolve this ambiguity is to treat the input
gesture as a probability distribution over the screen [Schwarz et al., 2010, 2011]. This
approach allows the system to easily incorporate other data. For example, in the
event of a complex gesture like dragging, the system can defer resolving the target of
the gesture until more information is gathered (like the direction of the drag). This
reduces the incidence of incorrectly recognised inputs.

Software benchmarking

Software benchmarking is fundamental to experimental computer science. Researchers
often wish to compare configurations for performance or efficiency; for example,
comparing two garbage collectors. For a fair test, researchers run these experiments
over suites of benchmarks, thought to be a representative sample of computer pro-
grams [Blackburn et al., 2006].

Because modern computer systems are heavily non-deterministic, these experi-
ments produce noisy results. The variance in the results may outweigh the actual
difference between the configurations. But too often, researchers neglect this possi-
bility [Georges et al., 2007]. Existing analysis techniques allow researchers to ignore
uncertainty in the results, making it too easy to reach the wrong conclusion. While
some proposed solutions exist, this problem is caused fundamentally by the lack of
easily accessible programming languages that address uncertainty as a first-order
concern. Such a language would make it much more difficult for programmers to
mistakenly ignore uncertainty.

2.4 Other techniques for uncertainty

Probabilistic programming is not the only way to reason about uncertainty. Rather
than generative models and probability distributions, other techniques model uncer-
tain problems differently.
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2.4.1 Interval analysis

Interval analysis represents the uncertainty in a value as a simple interval in the
domain [Moore, 1966]. In the real numbers, an interval is a subset of R consisting of
all numbers between an upper bound and a lower bound. Interval analysis captures
uncertainty by representing the range of possible values a variable can take, and
propagating this range through computations. For example, if X = [π/6, π/2], then
sin X = [0.5, 1], since for each x ∈ X, 0.5 ≤ sin x ≤ 1, and sin π/6 = 0.5 and
sin π/2 = 1, so the bound is tight. Interval analysis is particularly suited to scientific
computation, for bounding the effect of floating point error.

The advantage of interval analysis is its simplicity and efficiency. Many operations
over real numbers are trivial to define over intervals; among other results, if f is
monotonic on [a, b], then f ([a, b]) = [ f (a), f (b)]. In cases like this one, computing the
resulting interval is only marginally more expensive than computing with a single
point – we need only compute the values of the function at the two endpoints. The
primary downside of interval analysis is that it effectively treats all random variables
as having uniform distributions. Such a treatment loses track of the fact that some
values are more likely than others; the result is an analysis that is far too conservative
for most practical purposes outside the world of scientific computation.

2.4.2 Fuzzy logic

Fuzzy logic is a generalisation of the usual binary propositional logic where variables
now have a degree of truth between 0 and 1 [Zadeh, 1965]. Fuzzy logic builds on the
idea of fuzzy sets, which generalise the usual ideas of set theory to ascribe to each
element of the set a degree of membership between 0 and 1. Many of the usual
set-theoretic and logical operations have fuzzy equivalents. Like probability, fuzzy
logic offers a way to reason about variables and problems that are uncertain.

Fuzzy logic is similar to a type of probabilistic programming where all the vari-
ables are Bernoulli distributions. Because of this restriction, we can more easily define
many operations, and build an intuitive view of models using set theory. But this
view is restrictive, because not all distributions are Bernoullis. While many distribu-
tions can be approximated in this way (for example, we can approximate a Gaussian
by the mean of many independent Bernoullis), the encoding is inefficient and unintu-
itive. Fuzzy logic is not generally extensible to the types of problems programmers
face when dealing with uncertain data.

2.5 Emerging trends

Uncertainty is not a new problem in many domains. But a number of emerging
trends make it more important than ever to reason about and control uncertainty at
the programming language level.
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2.5.1 Approximate computing

Energy efficiency is replacing performance as the driving force in technological
change, from the lowest architectural level to the highest software abstraction. Many
programs do not require the computational correctness guaranteed by the underlying
hardware, and can cope with some level of error in some calculations. Approximate
computing exploits this property to improve performance and energy efficiency, since
often less reliable operations are cheaper to evaluate.

Many programming models for these unreliable architectures exist. Baek and
Chilimbi present Green, a framework for providing approximate versions of an op-
eration and ensuring the overall execution meets quality of service (QoS) guaran-
tees [Baek and Chilimbi, 2010]. Green calibrates the selection of approximations
at compile time based on training data, producing a QoS model that is used to se-
lect the appropriate locations for approximate operations to be inserted. EnerJ is a
framework for programmers to annotate which parts of their code the runtime can
approximate, and track how approximate and exact data interact to control error
propagation [Sampson et al., 2011]. EnerJ’s type system encourages programmers to
think about which operations induce error.

Esmaeilzadeh et al. propose a hardware architecture for executing neural net-
works to approximate software operations [Esmaeilzadeh et al., 2012b]. The compiler
identifies functions in the program that a neural network could approximate, trains
the neural network, and instead of inserting calls to the function, inserts calls to the
neural network hardware to set up and evaluate the network. The result is an approx-
imation of the true value, and should be faster to compute than executing the original
function. Other hardware approximation techniques include reducing the power to
memory, which results in a higher rate of read and write errors, and reducing the
width of floating point registers, which reduces the precision of computation but
saves silicon real estate and thus energy.

Rely is a programming language that statically reasons about the quantitative
reliability of a program [Carbin et al., 2013]. The programmer specifies an execution
model of the unreliable hardware their program will run on (for example, that mem-
ory reads flip a bit in the word with probability 10−7), and annotates their code with
assertions about the accuracy of the output of an operation in terms of the accuracy
of its input. The Rely analyser takes the execution model and the code specifications
and verifies that the program executing on that hardware will satisfy the assertions.
Approximate computing is not a panacea – there is some limit to the quantum of
approximation beyond which the program will not execute acceptably – and Rely
reasons about the probability that a program is reliable.

2.5.2 Stochastic hardware

A growing hardware trend is the advent of stochastic hardware, which produces out-
puts that are probabilistically correct. A stochastic processor executes error-tolerant
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applications while balancing performance demands and power constraints [Narayanan
et al., 2010]. Error-tolerant applications allow the processor to choose between differ-
ent functional units and different voltage levels to achieve the reliability requirements
of the application while conserving energy. But in the worst case, the output of the
stochastic processor is only correct with some probability, reflecting the fact that there
is a limit to the level of error most programs can tolerate. Similarly, Truffle is a pro-
posed instruction set and microarchitecture that supports approximate programming
via dual-voltage hardware operation [Esmaeilzadeh et al., 2012a].

At an even lower level, probabilistic CMOS devices have a fixed probability of
correct computation [Chakrapani et al., 2006]. By not requiring guaranteed correct-
ness, these probabilistic CMOS (or PCMOS) devices can achieve significant energy
efficiency and performance improvements for many applications.

2.5.3 Sensor ubiquity

Consumers have rapidly adopted smartphones over feature phones. More than half of
all mobile phones sold today are smartphones, with sales on track to reach 1.8 billion
units in 2013 [Gartner, 2013]. The key difference between smartphones and feature
phones is the advanced connectivity of the smartphone. Most smartphones have a
wide array of sensors: cameras, Global Positioning System (GPS) sensors, accelerome-
ters, gyroscopes, barometers, thermometers, and countless more. These sensors allow
application programmers to deliver compelling experiences by reasoning about the
user’s personal context.

Programmers are embracing this new-found plethora of sensors. For example,
over 40% of Android applications use the GPS sensor (Section 3.2). The applications
that use these sensors are diverse, from social networking to photography, retail, and
fitness. The ubiquity of these sensors and the explosion of the mobile marketplace
has meant that more non-expert programmers are consuming more estimated sensor
data in their applications. These programmers cannot be expected to understand the
intricacies of uncertainty when writing everyday applications, but almost inevitably
these applications will consume uncertain data. We must deliver new programming
models for these programmers to consume this data in an accessible but correct way.

2.6 Summary

These disparate emerging trends and existing problem domains share a common
issue: they lack compelling programming models for working with uncertain data.
Approximate computing produces uncertain results, stochastic hardware results in
uncertain execution, and hardware sensors produce estimates of real-world quantities.
Many other domains also face uncertainty as a critical issue. But too often, current
programming models treat these uncertain results as if they are certain.

Current programming models are built around APIs that abstract the details
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of the underlying hardware. These models incorrectly assume that uncertainty is
an implementation detail to be abstracted away. Current APIs assume that there
is no reason for most programmers to care about error, and that those who do
will reason about it manually. Most programmers live up to this assumption by
completely ignoring uncertainty, but it rests on a faulty premise. As Chapter 3 will
show, uncertainty is not simply an academic concern, but a real-world phenomenon
that affects the correctness of applications.

The central premise of this thesis is that uncertainty is inherent in these applica-
tions, and so cannot stop at the API boundary. Programming models must capture
the uncertain nature of data, rather than ignoring it. These programming models
will need to be accessible, efficient, and expressive, in order to be useful and see
wide adoption. Existing work in this field fails in one or more of these areas, and
in any event, most existing work is not sufficiently general for widespread use. The
challenge is to find an abstraction that satisfies all three elements.

This thesis answers the challenge.



24 Background and Related Work



Chapter 3

Motivating Example: GPS
Applications

Uncertainty is not just an abstract problem. This chapter demonstrates that real appli-
cations suffer for not considering uncertainty, experiencing three kinds of uncertainty
bugs. They experience random errors by treating estimates as facts. They unknow-
ingly compound error by computing with estimates. And they create false positives
and negatives by asking simplistic questions of estimates.

To demonstrate these uncertainty bugs I focus on the example of Global Posi-
tioning System (GPS) applications. Most modern smartphones have GPS sensors to
estimate the user’s location, and many smartphone applications consume this location
data through APIs. I focus on this example because GPS applications are simple to
understand, pervasive in the mobile computing landscape, and commonly experience
the problems that this chapter describes.

3.1 GPS applications

The Global Positioning System is a collection of satellites that together provide loca-
tion information to Earth-based receivers. Originally for military use, GPS sensors
have benefited monumentally from miniaturisation and are now ubiquitous. Almost
all modern smartphones feature GPS sensors to provide location information to ap-
plications. The operating system provides this location information to applications
through a simple API, which abstracts the details of GPS navigation.

3.1.1 How GPS works

GPS calculates the sensor’s location by measuring the time taken for a signal from
each visible satellite to reach the receiver [Thompson, 1998]. Each satellite broadcasts
its orbit location and the exact time of its transmission. The receiver uses time signals
to keep its clock in synchronisation with the satellites. The receiver can thus calculate
the time taken for the signal to travel from the satellite to Earth, and from there use
the speed of a signal through air to calculate the receiver’s distance from the satellite.
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This distance defines a spherical shell (in 3D), centred on the satellite, of possible
locations of the receiver. The signal from a second satellite defines another shell, and
the intersection of these shells forms a circle of possible locations. A third satellite’s
signal reduces that circle to a single point, which is an estimate of the user’s location.

The trouble with this system is that it is susceptible to random error at a number
of steps. (1) The satellites’ understanding of their own positions in space can be in
error, which shifts the location of the spheres. (2) The calculation of the distance
from the satellite depends on knowing the speed of the signal, which in a vacuum
is the speed of light, but the Earth’s atmosphere distorts and slows the signal in
an essentially random way depending on many factors, including the angle of the
signal, weather, interference, and so on. (3) There is a limit to how well the clocks of
each satellite and the receiver can be synchronised, which affects the accuracy of the
calculated time and thus distance.

These random errors mean that the location calculated by the GPS is only an
estimate of location. While the accuracy can be quite good in some cases, it can be
very poor in others. Because the distances involved are so large, and the time scales
so small, even minute variances can result in large errors in the final location.

3.1.2 GPS on smartphones

Most modern smartphones have GPS sensors built in. All modern smartphone oper-
ating systems provide broadly similar APIs for accessing GPS data.

On Windows Phone, the API provides geolocation data through the GetGeoposi-
tionAsync method of the Geolocator class. Geolocation is an abstraction that com-
bines different sources of location data – GPS, WiFi fingerprinting, cell fingerprinting,
etc. – into a single API. The GetGeopositionAsync method returns a Geoposition
object with two fields: CivicAddress and Coordinate. The civic address attempts to
map the user’s location to an address at the suburb level. More importantly, the Co-
ordinate field is an object of type Geocoordinate. The vast majority of applications
that use GPS use this Coordinate field to determine the user’s location.

Figure 3.1 shows the Geocoordinate class. The class specifies the user’s location
through the latitude and longitude fields, which together uniquely identify a point on
the Earth’s surface. The class also specifies the accuracy of the fix in metres. Figure 3.2
shows how this accuracy is displayed in mobile applications. The accuracy defines
the radius of a circle around the location specified by the latitude and longitude.

3.2 Treating estimates as facts

The first type of uncertainty bug is random errors caused by treating estimates as
facts. In the GPS case, applications ignore the accuracy of the location and treat the
latitude and longitude as the user’s true position.

My cursory survey of the top 100 applications on each of Windows Phone and
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1 public class Geocoordinate {
2 public double Latitude; // in degrees, -90 < x <= 90
3 public double Longitude; // in degrees, -180 < x <= 180
4

5 public double Accuracy; // in metres
6 }

Figure 3.1: The Geocoordinate object on Windows Phone

(a) Windows Phone: 95% CI, σ = 22 m (b) Android: 68% CI, σ = 29 m

Figure 3.2: GPS fixes on two different smartphones
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Android shows that 22% of Windows Phone and 40% of Android applications use
the GPS APIs to determine the user’s location. Static analysis of the Windows
Phone applications shows that only 5% of the top 100 read the accuracy field of
the Geocoordinate object. Manual analysis of these applications finds that only one
application – Pizza Hut – actually uses this accuracy number in calculations. The
other applications use it only for debugging.

Therefore, practically all applications that use the GPS treat its estimate of location
as if it were a fact. This usage leads to random errors, because these applications fail
to consider the plethora of other possible locations implied by the accuracy radius.

But even reading the accuracy radius is not sufficient. For instance, here are
three probability distributions that would each report the same position and accuracy
(defined precisely below) using the same abstraction as the Geocoordinate API:

Clearly each of these distributions implies a very different set of probabilities for the
user’s location, but the Geocoordinate abstraction cannot distinguish them.

3.2.1 The trouble with accuracy

The root of this problem is that the abstraction that Geocoordinate provides is in-
sufficient. The random error that GPS experiences (Section 3.1.1) when determining
location results in the GPS effectively returning a distribution over possible locations.
Each location has a probability of being the user’s true location x. By Bayes’ theorem,
that probability is a function of how likely it is that the GPS generated the result that
it did, under the assumption that the user’s true location is x. Intuitively, if the GPS
generates a location p, the user’s true location is unlikely to be a long way from p,
because it would take a catastrophic error for the GPS to return such a measurement.
For locations close to p, the likelihood that the user’s true location is a particular
point x depends on the accuracy of the GPS.

The Geocoordinate abstraction tries to capture this distribution by returning an
accuracy estimate. The accuracy is a number in metres, and is the radius of a circle
around the returned location. This circle is a confidence interval for the user’s location.
But the confidence interval does not describe the relative probabilities of each location
in the interval. For GPS, it is actually quite unlikely that the user’s true location is
exactly in the centre of the distribution, but more likely the location lies on a circle
near that centre (this is a consequence of the Rayleigh distribution discussed in
Section 4.2.1). The Geocoordinate abstraction cannot hope to capture this nuance.
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The abstraction is also difficult to understand correctly. Each smartphone operat-
ing system defines the accuracy estimate differently (emphases added):

Android “Get the estimated accuracy of this location, in meters. We define
accuracy as the radius of 68% confidence. [. . . ] In statistical
terms, it is assumed that location errors are random with a normal
distribution.”

iOS “The radius of uncertainty for the location, measured in meters.
The [location] identifies the center of the circle, and this value indi-
cates the radius of that circle.”

Windows Phone “Gets the accuracy of the latitude or longitude, in meters. The accu-
racy can be considered the radius of certainty of the [location]. A
circular area [. . . ] with the accuracy as the radius and the [location]
as the center contains the actual location.”

In fact I found, through reverse engineering, that on Windows Phone the radius
actually defines a 95% confidence interval.

The distinction is not merely academic. Figure 3.2 shows GPS fixes taken at
the same time and place on two different smartphones. The circle for Windows
Phone (Figure 3.2(a)) is larger than the circle for Android (Figure 3.2(b)), which
seems to indicate that the fix on Windows Phone was less accurate. But because
the two platforms define the circle differently, they are not directly comparable. In
fact, normalising for this difference, Windows Phone was actually more accurate.
This detail is obscured due to inconsistent treatment of error, and encouraged by the
poorly defined abstraction.

3.3 Compounding error

The second type of uncertainty bug is compounding error caused by using estimated
data in calculations. Abstractions such as the Geocoordinate object encourage pro-
grammers to ignore uncertainty when they compute with the API output. In the GPS
case, a programmer can take two Geocoordinate objects, and calculate the distance
between them. Because each location is an estimate, the distance between them must
also be an estimate. The Geocoordinate abstraction is not powerful enough to track
this relationship automatically.

It therefore falls to programmers to try to reason about propagated error. But the
relationship between the error of each location and the error of the distance is not
obvious. For example, suppose a programmer uses the GPS to calculate the user’s
speed through the formula Speed = Distance/Time, taking samples every one second.
Then even if the accuracy of each location is very good, with a 95% confidence interval
of 4 m (the most accurate that smartphone GPS generally delivers), the accuracy of
the calculated speed is poor, with a 95% confidence interval of 21 km/h. So even



30 Motivating Example: GPS Applications

11 km/h

95 km/h

Usain Bolt

0

25

50

75

100

Time

Sp
ee

d 
(k

m
/h

)

Figure 3.3: Compounding error in GPS walking speeds causes absurd results

very accurate GPS fixes result in significant uncertainty in subsequent calculations,
because the distance operation (essentially a subtraction operation on the two points)
compounds the error of the two GPS fixes.

To demonstrate this result in practice, I built a simple Windows Phone application
that recorded GPS locations every second, and used them to calculate speed between
each sample. I used this application while walking. Figure 3.3 shows the speeds
the application calculated through the experiment. The average human walks at
5 km/h, and Usain Bolt runs the 100 m sprint at 39 km/h. The experimental data
shows an average walking speed of 6 km/h, 35 seconds spent walking faster than
11 km/h (an average running speed), and at one point, a patently absurd walking
speed of 95 km/h. These errors are significant in both magnitude and frequency, and
are caused by the compounding effect of the speed calculation on the uncertainty in
the GPS locations.

3.4 False positives in conditionals

The third type of uncertainty bug is false positives and negatives in conditionals. Most
programs eventually act on estimated data by using it in conditional expressions. But
estimated data is probabilistic, and naively applying the usual conditional operators
to estimated data creates false positives and negatives by failing to consider the effect
of uncertainty.

Consider using GPS speed data (as described above) to issue speeding tickets.
The application computes speed from the GPS, and compares it to a speed limit
of 60 km/h. If the calculated speed is greater than 60 km/h, the application issues
a speeding ticket. A programmer implements this specification by calculating the
variable Speed, and then writing a conditional like:

if (Speed > 60)
IssueSpeedingTicket()
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Figure 3.4: Naive conditionals cause false positives when issuing speeding tickets

This conditional does not consider that Speed is an estimate. As discussed above, the
Geocoordinate abstraction is not powerful enough to track the relationship between
the locations and the speed automatically, so it falls to programmers to handle this
manually. The semantics of conditionals like this one are not clear if we are to consider
uncertainty.

This style of naive conditional results in false positives and negatives. Figure 3.4
shows the probability of this program issuing a speeding ticket at various actual
speeds and GPS accuracies. For example, at an actual speed of 57 km/h (i.e., 3 km/h
below the speed limit), if the GPS accuracy is 4 m (very good by smartphone standards),
there is still a 32% probability of receiving a speeding ticket due to random error
alone.

The issue is that these naive conditionals ask simple questions about probabilistic
data. The estimate from the GPS should be viewed as evidence towards a conclusion.
Rather than asking whether Speed > 60, which requires a precise value for Speed to
answer, programmers should ask how likely it is that Speed > 60. In the speeding ticket
example, we would only want to issue a speeding ticket if this likelihood is high –
so the evidence is very strong that the speed is above the limit. The distribution
for Speed defines this likelihood. Mathematically, the question we want to ask is
whether Pr[Speed > 60] > 0.95 (if we say we will only issue speeding tickets when
the likelihood is greater than 95%). The Geocoordinate abstraction cannot hope to
express this type of conditional, and it is unreasonable to expect every programmer
to implement it manually.

3.5 Summary

Applications suffer real uncertainty bugs by not considering uncertainty appropriately.
These applications experience random error by treating estimates as facts, compound
error by calculating with estimates, and create false positives and negatives by asking
simplistic questions.
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Current abstractions for GPS data are responsible for these bugs, because they
sacrifice correctness for concision and simplicity. This chapter shows that the bugs
that these abstractions cause are non-trivial, and difficult to correct without expert
and domain-specific knowledge.

Most importantly, this chapter demonstrates that when faced with the challenge
of uncertainty, most programmers simply ignore it. After seeing the limitations of
current abstractions, this apathy is understandable. These abstractions offer no insight
into how to address the transient, non-trivial bugs that they cause. The challenge
these examples poses is simple: is there a simple and intuitive programming language
abstraction that correctly represents uncertainty, and empowers programmers to
reason about uncertain data? I argue that the uncertain type, Uncertain〈T〉, provides
exactly such an abstraction.



Chapter 4

The Uncertain Type Abstraction

The uncertain type abstraction, Uncertain〈T〉, is a programming language abstraction
for uncertain data. Uncertain〈T〉 is a generic data type that encapsulates and manipu-
lates probability distributions. It propagates error through computations, and helps
programmers to reason about uncertainty by providing new semantics for conditional
expressions. The primary difference between Uncertain〈T〉 and other existing work
is a focus on defining an accessible interface for non-expert programmers to reason
correctly about uncertainty.

The key insight of the uncertain type is that considering accessibility as a first-
order requirement leads naturally to a restricted subset of probabilistic operators.
These operators are expressive enough to solve real-world problems, but are accessible
to non-expert programmers and lend themselves to a very efficient implementation.

This chapter discusses the interface the uncertain type provides, and Chapter 5
discusses how Uncertain〈T〉 implements this interface efficiently and tractably. This
distinction is analogous to floating point arithmetic – there is a theoretical interface
(arithmetic over the real numbers), and a practical implementation (the floating point
specification) that changes the semantics to make the theoretical problem tractable.

Section 4.1 provides an overview of the uncertain type. Sections 4.2 to 4.5 present
a four step process to using the uncertain type in programs: selecting the right
distribution, computing with distributions, asking questions with conditionals, and
improving estimates with domain knowledge. Section 4.6 contrasts the uncertain
type with probabilistic programming languages. Finally, Section 4.7 summarises
the chapter, highlighting the advantages of the uncertain type in terms of concision,
expressiveness, and correctness.

4.1 Overview of the uncertain type

The uncertain type, Uncertain〈T〉, is a generic data type that encapsulates a proba-
bility distribution with domain T. An instance of Uncertain〈T〉 therefore represents
a random variable. The uncertain type overloads a variety of operators so that for
many common operations, programmers can write the same expressions they are
accustomed to (e.g., A + B) and have their program work as they expect.

33
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Table 4.1: Uncertain〈T〉 operators and methods.

Operators Arithmetic (+ − ∗ /) op :: Unc〈T〉 → Unc〈T〉 → Unc〈T〉
Equality (<>≤≥= 6=) op :: Unc〈T〉 → Unc〈T〉 → Unc〈Bool〉
Logical (∧ ∨) op :: Unc〈Bool〉 → Unc〈Bool〉 → Unc〈Bool〉
Unary (¬) op :: Unc〈Bool〉 → Unc〈Bool〉
These operators lift operators from type T to work over distributions. For ex-
ample, the original + operator for numbers has type Double → Double →
Double. Uncertain〈Double〉 lifts this operator to +′ with type Uncertain〈Double〉 →
Uncertain〈Double〉 → Uncertain〈Double〉.

Queries Expected value E :: Unc〈T〉 → SD〈T÷〉
Calculates the expected value of a distribution. The return type is a sampling
distribution, reflecting the fact that the expected value is only approximate.
Only the Project operator can directly extract the expected value from the result
of this operator. The type T÷is the type T equipped with a division operation.

Project Project :: SD〈T〉 → T
Extracts the approximate expected value from a SamplingDist〈T〉 object. This
operator is an explicit cast from an uncertain value to a certain value, and for
this reason is highly discouraged. However, some applications require this
operator for correctness (see Section 5.3.1).

Evaluation Implicit HypTest :: SD〈T〉 → SD〈T〉 → Bool
Performs a hypothesis test, at the 95% confidence level, asking if the population
means approximated by the two SamplingDist〈T〉 arguments are distinct. This
method is called implicitly by the Uncertain〈T〉 runtime (see Figure 5.1).

Explicit HypTest :: SD〈T〉 → SD〈T〉 → [0, 1]→ Bool
Equivalent to the implicit HypTest, but allows the programmer to specify the
confidence level for the hypothesis test.

Unc〈T〉 is shorthand for Uncertain〈T〉, SD〈T〉 for SamplingDist〈T〉.
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The uncertain type represents arbitrary distributions with a sampling function,
which returns a new random sample of the distribution on each invocation [Park
et al., 2005]. Choosing to represent distributions with sampling makes Uncertain〈T〉
more expressive, by being able to represent a wide range of distributions that may
not have closed forms. Section 4.2 discusses this benefit of sampling in more detail.

Uncertain〈T〉 addresses two sources of error: domain error and sampling error. Do-
main error is inherent in the problem domain; it is uncertainty, or the difference
between an estimate and its true value. For example, a GPS sensor creates domain
error when it takes a measurement to estimate location. While domain error is the
fundamental target of Uncertain〈T〉, it must also address sampling error, which it in-
duces by approximating distributions with random sampling. Uncertain〈T〉 accounts
for sampling error by evaluating conditionals using expected values, and using hy-
pothesis testing to reason about the query being evaluated. Figure 5.1 discusses
sampling error in more detail.

Table 4.1 shows the operators and methods the uncertain type provides. Most
operators that work over type T also work over Uncertain〈T〉. This operator lifting
is possible because of the sampling representation the uncertain type uses for dis-
tributions. For example, since + is defined over type Double, it is also defined over
type Uncertain〈Double〉. The lifted operator simply applies the original operator to
samples of each operand. This idea extends to other operators, so that an operator
of type op :: T → S → V is lifted to have type op′ :: Uncertain〈T〉 → Uncertain〈S〉 →
Uncertain〈V〉. Section 4.3 discusses the computation operations the uncertain type
provides in more detail.

The uncertain type provides two methods for reasoning about domain error in
conditional expressions. Firstly, programmers can directly query the mean (expected
value) of a distribution, asking for example whether E[X] > 10. This query is
simple, and is distinct from considering only a single sample from the distribution
X, as some current abstractions do, because the expected value takes the entire
distribution into account. Secondly, programmers can use probabilities, asking for
example if Pr[X > 10] > 0.95 (in words, if the probability that X > 10 is at least 95%).
This probabilistic query asks how likely it is that the assertion is true, and therefore
empowers programmers to control false positives. The probability Pr[X > 10] is the
evidence for the assertion that the underlying value that X estimates is larger than
10. Importantly for an efficient implementation, both these queries evaluate expected
values. Section 4.4 discusses the details of these queries.

Representing estimates as distributions gives expert programmers the opportunity
to improve the quality of the estimates. Distributions enable Bayesian inference, a
principled approach for incorporating domain knowledge into the estimation pro-
cess. For example, a programmer can specify for areas of a map a different “prior”
likelihood that the user’s location is in that area. This knowledge might reflect, for
example, the user’s calendar indicating that they have a meeting at a particular place.
Using the uncertain type, which encapsulates the distribution of estimated data, pro-
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grammers can apply Bayesian inference using this prior knowledge to improve the
quality of the estimate. Section 4.5 discusses this key advantage of Uncertain〈T〉, and
how to make it accessible to non-experts.

The next four sections describe in detail how the uncertain type abstraction pro-
vides an accessible and expressive interface for programming with uncertain data.
These four sections comprise a four step process for using the uncertain type:

Identifying the distribution of uncertain data requires domain expertise, since
it depends on the particular data source. Domain experts often already know
the distribution of their data, but lack an abstraction to expose this information
to programmers.

Computing with distributions includes using arithmetic operators, convert-
ing units, and combining with other distributions. The uncertain type uses
operator overloading to make this step mostly transparent to programmers.

Asking the right questions of distributions requires a new semantics for con-
ditional expressions on probabilities rather than binary decisions on determin-
istic types. The uncertain type defines two types of conditional.

Improving estimates with domain knowledge combines pieces of probabilis-
tic evidence. Programmers specify application-specific information through
a simple interface, and libraries incorporate this domain knowledge using
Bayesian inference, to improve the quality of the estimates they produce.

4.2 Identifying the distribution

The first step in programming with uncertain data using the uncertain type is to
identify the underlying probability distribution of the data. Estimation processes
experience random error, so the values that they return have associated probability
distributions reflecting the magnitude and location of this error. The distribution is
domain-specific, since the magnitude and location of the error depends on the specific
estimation process and underlying value being estimated.

In many cases, the expert programmers who provide APIs to access estimated data
already know its error distribution. For example, to provide the accuracy estimate for
the geolocation API shown in Section 3.1.2, the library programmer must know how
to convert data from the GPS sensor into an error radius. This conversion depends on
the error distribution, and so the programmer must derive a distribution to implement
the conversion. In machine learning, training algorithms can often provide a Bayesian
distribution of the error in a prediction, rather than just the prediction itself.

These expert programmers lack an abstraction to expose this distribution infor-
mation through the APIs they build. Existing abstractions sacrifice either correctness
by making an inappropriate projection from a distribution to a simpler value (such
as the error radius in GPS), or simplicity by exposing too much detail to non-expert
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programmers who do not want it. Sacrificing correctness leads to uncertainty bugs,
and sacrificing simplicity makes other programmers less willing to adopt the APIs.

The uncertain type provides an abstraction that does not force programmers to
choose between correctness and simplicity. Expert programmers can implement their
APIs using the uncertain type to encapsulate their knowledge about the distribution
of the data. The uncertain type provides a simple API surface to non-expert pro-
grammers, who can treat the output of these APIs as they currently do, but avoid
uncertainty bugs in the process. Using the uncertain type also supports these non-
expert programmers in reasoning correctly about the quality of the estimated data,
as this chapter describes.

4.2.1 Knowing the right distribution

The expert programmer can determine the right distribution to use for their particular
problem in one of two broad ways.

Selecting a theoretical model. Many sources of estimated data are amenable to
theoretical models. The literature abounds with examples of estimated data sources
and their associated theoretical error models, which expert library programmers
can adopt. For example, the uncertainty in the mean of a dataset is approximately
Gaussian by the Central Limit Theorem. In the GPS case, the expert programmer can
derive a theoretical model from some simple assumptions, as demonstrated below.

Deriving an empirical model. Some problems are not common enough to have ex-
isting theoretical models, or are otherwise impervious to theoretical analysis. Expert
programmers can determine an error distribution for these problems empirically, us-
ing either a statistical bootstrapping approach (taking many samples from the noisy
data source while maintaining the same underlying value), or applying machine
learning on a set of training data.

Example: GPS data

This section shows how to derive an error distribution for GPS data, to replace the
GPS library method

Geocoordinate GetGPSLocation();

with the new method

Uncertain<Geocoordinate> GetGPSLocation();

which expresses a distribution over possible locations.
This section adopts the convention that discrete values like Actualt are set in italics

and random variables like GPSt are set in bold.
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Theoretical setup. Formally, we can express the GPS process as follows. Define

World := [−90, 90]× (−180, 180]

and say that at time t, our true location is the point

Actualt := (TrueLatt, TrueLongt) ∈World.

Then the GPS sensor’s estimate of our location at time t is a random variable

GPSt = (TrueLatt + LatErrt, TrueLongt + LongErrt). (4.1)

Here the random variables LatErrt and LongErrt represent the error in each direction,
due to inherent flaws or biases in the sensor and due to environmental conditions at
time t (e.g., atmospheric conditions, obstructions).

The act of taking a GPS sample at time t draws a sample of the random variable
GPSt, which yields a discrete point

Samplet = (SampleLatt, SampleLongt).

It is this discrete point that most geolocation libraries return. But this clearly ignores
the distribution of GPSt, and in particular the effect of LatErrt and LongErrt.

The distribution of GPSt depends on the distributions of LatErrt and LongErrt.
Knowing these distributions precisely is difficult, but the literature suggests a model
which we will adopt [van Diggelen, 2007]. This model says that LatErrt and LongErrt
are independent and identically distributed (i.i.d.), and follow a Gaussian distribution,
with mean zero and a common unknown variance, such that

LatErrt ∼ Normal(0, σ2
t )

LongErrt ∼ Normal(0, σ2
t )

where the fact that the mean is zero reflects an unbiased sensor, and the fact that σ

depends on t reflects the environmental conditions at time t.

Belief in location. The first issue with the theoretical derivation is that of course the
GPS sensor does not know the value of Actualt. What we are trying to do is estimate
the value of Actualt, based on observations from the GPS sensor. Bayesian statistics
provides a framework to formalise this. We introduce a random variable Locationt,
which represents our device’s belief about our location. Initially, we know nothing
about our location, so for every point p in the world,

Pr[Locationt = p] = Uniform.

An oracle could tell us the “perfect” distribution of Locationt, such that

Pr[Locationt = Actualt] = 1, and

Pr[Locationt = p] = 0 for all p 6= Actualt.

We use Bayes’ theorem to incorporate the GPS sensor as evidence into our belief
about Locationt. Intuitively, Bayes’ theorem tells us that, if we observe a GPS sample
Samplet, the most likely values of Locationt are exactly those locations most likely to
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cause the GPS to generate that sample. So, for example, it is unlikely that Locationt

is a long distance from Samplet, because this implies very large values for LatErrt and
LongErrt, which are very unlikely. Formally, Bayes’ theorem says that

Pr[Locationt = p|GPSt = Samplet]

∝ Pr[GPSt = Samplet|Locationt = p] · Pr[Locationt = p].

Notice that the left hand side is a function of p. For each point p in the world, this
function gives the probability that the true location is p, given that we observed a
GPS sample Samplet. This function is called the posterior distribution for Locationt,
because it represents our belief about the true location after observing a sample from
the GPS. Because we have no prior knowledge about Locationt, we assume that
Pr[Locationt = p] = 1, which simplifies this posterior function to

Pr[Locationt = p|GPSt = Samplet] ∝ Pr[GPSt = Samplet|Locationt = p]. (4.2)

It is this posterior distribution that we want to return from the GPS sensor. Rather
than a discrete point, this distribution captures for each point p in the world how
likely the user is to be standing at that point, given the evidence from the GPS.

Deriving a likelihood model. In Equation (4.2) for the posterior, the term

Pr[GPSt = Samplet|Locationt = p]

is a likelihood model for the GPS sensor. It captures the likelihood of the GPS gener-
ating the particular sample Samplet under the assumption that the true location is p.
Substituting p for Actualt in the expression for GPSt (Equation (4.1)) gives

GPSt = (pLat + LatErrt, pLong + LongErrt).

So the likelihood that GPSt = Samplet is exactly the likelihood that

(LatErrt, LongErrt) = Samplet − p. (4.3)

But in our model, we do not know the variance of the distributions for LatErrt and
LongErrt, so we cannot evaluate this likelihood directly.

One solution is simply to assume the variance as part of our model. But this
assumption does not take into account the fact that the variance depends on the
instantaneous environment of the sensor. Most GPS sensors also give an estimated
confidence interval for the GPS error. This confidence interval εt is the value in metres
such that there is a 95% probability that Actualt is within εt metres of the GPS sample.
GPS sensors estimate this confidence interval by comparing the data from multiple
satellites and calculating the distortion the signals experienced in the atmosphere.
Formally, we have that

Pr [‖GPSt −Actualt‖ < εt] = 0.95. (4.4)
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But observe that

‖GPSt −Actualt‖
= ‖(TrueLatt + LatErrt, TrueLongt + LongErrt)− (TrueLatt, TrueLongt)‖
= ‖(LatErrt, LongErrt)‖ .

Furthermore, since our model assumes that LatErrt and LongErrt are i.i.d. Gaussians
with mean zero, it is a well-known identity that

‖(LatErrt, LongErrt)‖ =
√

LatErr2
t + LongErr2

t

∼ Rayleigh(ρt).

for some unknown parameter ρt. The Rayleigh distribution is a continuous single-
parameter non-negative probability distribution with density function

Rayleigh(x; ρ) =
x
ρ2 exp

{
− x2

2ρ2

}
, x ≥ 0.

Since ‖GPSt −Actualt‖ = ‖(LatErrt, LongErrt)‖ and we now know the distribution
of the right-hand side, we can calculate ρt by applying Equation (4.4):

0.95 = Pr[Rayleigh(ρt) < εt]

=
∫ εt

0

x
ρ2

t
exp

{
− x2

2ρ2
t

}
dx

= 1− exp
{
− ε2

t

2ρ2
t

}
∴ ρt = εt

/√
ln [(1− 0.95)−2]

= εt

/√
ln 400 .

So now we know that

‖(LatErrt, LongErrt)‖ ∼ Rayleigh(εt/
√

ln 400) (4.5)

where εt is known from the GPS sensor. This gives us a trivial way to estimate the
likelihood in Equation (4.3): we can say that the likelihood that

(LatErrt, LongErrt) = Samplet − p

is approximated by the likelihood that

‖(LatErrt, LongErrt)‖ = ‖Samplet − p‖ .

Since we know how to evaluate this likelihood, we have found a way to evaluate

Pr[GPSt = Samplet|Locationt = p]

which is the likelihood model needed to evaluate the posterior function in Equa-
tion (4.2). This is exactly the distribution function we want to return from the GPS
API.
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Figure 4.1: The GPS returns a distribution based on the Rayleigh distribution



42 The Uncertain Type Abstraction

Summary. We derived a posterior distribution for the user’s location based on GPS
evidence. The GPS sensor returns to us a location Samplet and a confidence interval
εt. Then for any point p in the world, the likelihood of the user being at location p
given this GPS sample is

Pr[Locationt = p|GPSt = Samplet] = Pr[GPSt = Samplet|Locationt = p]

= Rayleigh(‖Samplet − p‖ ; εt/
√

ln 400) (4.6)

up to a normalizing constant.
Figure 4.1 shows the Rayleigh distribution and the resulting posterior distribution.

Notice the posterior distribution in Figure 4.1(b) carries little mass in the centre,
implying that a user is actually quite unlikely to be at the centre (which is the location
Samplet returned by the GPS sensor). This counter-intuitive result becomes obvious
only by properly considering the effect of GPS error.

4.2.2 Representing arbitrary distributions

A random variable is completely defined by its probability distribution. The uncertain
type therefore encapsulates probability distributions in order to work with random
variables. There are many techniques for representing a probability distribution in a
programming language.

The most accurate approach is to store the probability distribution exactly. For
discrete distributions (i.e., with finite probability space, like the Bernoulli distribution
defined over {True, False}), this involves storing a map from each possible value
to its probability. The probability monad takes this approach (Section 2.2.1). For
continuous probability distributions (i.e., with infinite probability space), we could
store the probability density function algebraically. For example, a Gaussian random
variable with mean µ and variance σ2 has density function

f (x; µ, σ2) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
.

Encapsulating a specific Gaussian random variable requires storing only this formula
and the values of µ and σ2, and so a Gaussian random variable can be stored in
constant space (up to floating point error).

This style of exact representation has two major downsides. Firstly, an algebraic
representation quickly becomes impractical due to symbolic explosion. For example,
while a Gaussian random variable has a simple density function, the sum of two
Gaussian random variables is the convolution of their density functions – an integral
that is not easily evaluated. Thus an algebraic representation is impractical for even
basic calculations. Secondly, many important distributions do not have closed form
density functions. Distributions for sensors, approximate hardware, road maps, and
machine learning often cannot be represented exactly, but these domains are exactly
the types of problem the uncertain type should be able to handle, since these are the
fields where non-expert programmers consume uncertain data.
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Figure 4.2: Random samples approximate the exact probability density function

For this reason, the uncertain type represents distributions by random sampling.
Given a probability density function f (x), the idea of random sampling is that a
sample is more likely to take the value x when f (x) is large than when f (x) is small.
Drawing a set of many samples in this manner therefore approximates the probability
density function. In particular, the histogram of the samples approximates f (x), since
if f (x) is large in a particular region of values of x, then those values are more likely
to be sampled, and so will be larger in the histogram. Figure 4.2 demonstrates this
idea, showing an exact probability density function and a histogram of 10,000 random
samples drawn from it.

Specifically, the uncertain type represents distributions by storing a sampling func-
tion, which returns a new random sample from the distribution each time it is in-
voked. This same idea pis roposed by Park et al. for a probabilistic programming
language [Park et al., 2005], discussed in Section 2.2.4. Given infinite time and
space, this approach approximates distributions arbitrarily well, as a corollary of the
Glivenko-Cantelli theorem [Topsøe, 1970]. In practice, the sample size embodies the
classic speed-accuracy trade-off. Selecting the correct sample size ahead of time is a
difficult problem, but one of the key insights of the uncertain type is to use query-
specific information to determine the sample size at run time. I discuss this idea in
Section 5.3.

Sampling makes for an expressive abstraction because it allows the uncertain type
to represent a large range of distributions that do not have convenient closed forms.
This is a key shortcoming of much of the existing work in probabilistic programming
(Section 2.2), and is fundamental for bringing the ideas of probabilistic programming
into the world of everyday programmers. These programmers will not tolerate the
complexity of the probability monad and the stochastic lambda calculus, no matter
how clever and elegant these representations may be.
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1 public class GPSLib {
2 // We need to convert between metres and degrees when using the error estimate
3 private double EARTH_RADIUS = 6371*1000;
4 private double DEGREES_PER_METRE = Math.Degrees(1/EARTH_RADIUS);
5

6 public Uncertain<Geocoordinate> GetGPSLocation() {
7 // Firstly, get the estimate from the hardware
8 Geocoordinate Point = GetSampleFromGPSHardware();
9 double ErrorRadius = GetErrorEstimateFromGPSHardware();

10

11 // Compute the parameter rho of the Rayleigh distribution (Equation 4.4)
12 double rho = ErrorRadius / Math.Sqrt(Math.Log(400));
13

14 // Define a sampling function for this distribution. The sampling
15 // function takes no arguments, and returns a Geocoordinate -- a sample
16 // from the distribution defined by Point and ErrorRadius.
17 Func<Geocoordinate> sampler = () => {
18 // Sample the surface (Figure 4.1(b)) in polar coordinates -- the
19 // radius is a Rayleigh sample and the angle uniform in [0,2pi)
20 double radius = Math.RandomRayleigh(rho, SAMPLE_SIZE);
21 double theta = Math.RandomUniform(0, 2*Math.PI);
22

23 // Convert the polar coordinates to x,y coordinates in degrees
24 double x = Point.Longitude + radii*Math.Cos(theta)*DEGREES_PER_METRE;
25 double y = Point.Latitide + radii*Math.Sin(theta)*DEGREES_PER_METRE;
26

27 return new Geocoordinate(x, y);
28 };
29

30 // Create an Uncertain<Geocoordinate> that uses the sampling function
31 return new Uncertain<Geocoordinate>(sampler);
32 }
33

34 // These methods expose the raw estimate from the hardware
35

36 // Return the sampled point
37 private Geocoordinate GetSampleFromGPSHardware();
38 // Return the estimated 95% confidence interval
39 private double GetErrorEstimateFromGPSHardware();
40 }
41

42 public class Math {
43 // Generate a Rayleigh random sample
44 private double RandomRayleigh(double rho) {
45 // If X and Y are N(0, s^2) then R = sqrt(X^2 + Y^2) is Rayleigh(s)
46 double x = RandomNormal(0, rho, size);
47 double y = RandomNormal(0, rho, size);
48 return Math.Sqrt(x*x + y*y);
49 }
50 // Most math libraries provide these functions
51 private double RandomNormal(double mean, double stdev);
52 private double RandomUniform(double low, double high);
53 }

Figure 4.3: An implementation of a GPS library using the uncertain type
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Example: GPS data

In Section 4.2.1 I showed how to derive the distribution for GPS sensor data. Figure 4.3
shows how to represent this distribution as a sampling function. This code defines
the GPS library function

Uncertain<Geocoordinate> GetGPSLocation();

which takes a GPS sample and returns its associated distribution. Lines 17 to 28
define the sampling function for a particular GPS sample captured on line 8. This
sampling function is a closure that captures the values of the Point and rho variables.
Note that each invocation of this sampling function returns a new sample from the
GPS distribution, but there is still only a single sample from the GPS sensor itself. The
GPS hardware functions are not called when invoking the sampling function that this
method returns.

4.3 Computing with distributions

The second step in programming with uncertain data using the uncertain type is
computing with it. Computing combines data through various operators – arithmetic,
logical, and comparisons. The key challenge in computing with estimated data is
addressing the question of independence between the operands.

4.3.1 Independent random variables

Two random variables are independent if the value of one has no bearing on the value
of the other (Section 2.1). For independent random variables of type Uncertain〈T〉,
we implement computations by lifting operators from type T to work over distri-
butions. For example, the addition operator over floating point numbers has type
+ :: Double → Double → Double. The uncertain type lifts this operator to have type
+′ :: Uncertain〈Double〉 → Uncertain〈Double〉 → Uncertain〈Double〉.

This lifting operation is made simple by the uncertain type’s representation of
random variables as sampling functions. For independent random variables, if a is a
sample from X, and b is a sample from Y, then the sum a + b is a sample from X +Y.
The lifted operator therefore simply draws a sample from each operand and applies
the original operator to them. This is another benefit of using sampling functions
rather than an exact representation – the uncertain type easily represents compound
distributions (built by combining other distributions through operators) without the
symbolic explosion caused by manipulating the probability density functions directly.

4.3.2 Dependent random variables

The situation is not as simple for random variables that are not independent. The
issue is that the value of a sample from Y may depend on the chosen value of a
sample from X. The probability monad (Section 2.2.1) addresses this problem by
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defining a function of type X -> Dist Y, that defines for each possible value of X
the distribution of Y given a particular value a of X. This works for discrete distribu-
tions, but for the more interesting case of continuous distributions, this representation
would require a very complex mapping function. Other possibilities include explicitly
providing a sampling function for the joint distribution (X, Y), so that each invoca-
tion returns a sample (a, b) that reflects the dependency between X and Y. These
approaches are all complex, and the problem of working with dependent variables is
an open one in probabilistic programming.

However, we can introduce a useful distinction between two types of dependen-
cies. Some problems have inherent dependencies between variables. For example,
there is a dependency between a person’s age and their strength. A person’s age does
not completely determine their strength, but there is a relationship between them that
is ignored if we treat two random variables Age and Strength as independent. These
inherent dependencies are difficult to reason about because they require domain
knowledge, and are a shortcoming of most probabilistic programming approaches.

But in probabilistic programming, we also have programmer-induced dependencies,
which are created when a programmer manipulates and computes with random vari-
ables. For example, suppose a programmer takes two independent random variables
X and Y, and writes a simple computation with them:

A = Y + X
B = X + A
Display(B.E())

The computation for B has a programmer-induced dependency, since A depends
on X, but the other operand in B also involves X. The naive interpretation of this
program produces this expression tree:

Y

+

A

B

X+

X

This expression tree does not reflect the dependency correctly: both A and B must
depend on the same instance of X. When the program comes to evaluate B.E(), the
obvious way to evaluate an expression tree is to work from the bottom up. But to
do so here means that when evaluating B, there is no longer any sign of the effect of
X on A, because the entire subtree for A has been replaced by single value of A. In
essence, evaluating an expression tree is a local operation, but dependence is a global
property. The correct interpretation of this program produces instead a graph:
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Y

+

A

B

+

X

When evaluating B.E(), this interpretation correctly represents the dependencies in
the program, because the shared effect of X on A and on B is reflected by ensuring
all references to X are to the same instance of X.

Many probabilistic programming languages do not handle this type of programmer-
induced data dependency, but the uncertain type can, as Section 5.2 describes.

4.3.3 The effect of sample size

Now that we know how to define arithmetic on distributions, we can demonstrate
the effect of sample sizes alluded to in Section 4.2.2. In this experiment, we take
two Gaussian random variables of known means µ1 and µ2 and shared variance. We
then compute the sum of these two variables, by taking N samples from each and
summing them pairwise. The mean of the resulting samples approximates the mean
of the sum of the variables, which we know to actually be µ1 + µ2 since the variables
are independent.

Figure 4.4 shows the results of this experiment at different sample sizes N. The
left-hand graph shows the time taken to compute the result (i.e., to sum the N
samples), and the right-hand graph shows the relative magnitude of the error in
the computed result compared to the true value µ1 + µ2. As we said earlier, the
sample size embodies the classic speed-accuracy trade-off. At small sample sizes, the
calculation is very quick, but very inaccurate. At large sample sizes, the reverse is
true: the calculation is very slow but very accurate. Choosing the correct sample size
is therefore critically important: too high and the uncertain type will be too slow for
practical use; too low and it will be too inaccurate to solve real problems. I discuss
how the uncertain type exploits query-specific information to determine the right
sample size at run time in Section 5.3.

4.4 Asking the right questions

The third step in programming with uncertain data using the uncertain type is asking
questions with conditional operators. In Section 3.4, we saw that using the usual con-
ditional operators on estimated data leads to false positives and negatives. For exam-
ple, a coffee shop application might send a notification when CoffeeShopDistance < 200.
But of course, if CoffeeShopDistance is calculated using the GPS, it is only an estimate,
and so this conditional asks a deterministic question of probabilistic data. This error
leads to false positives – in this case, saying the distance is less than 200 m when it is
actually not.
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Figure 4.4: Sample size trades speed for accuracy when approximating distributions

The uncertain type evaluates conditionals by considering the evidence for a conclu-
sion. Instead of asking “am I within 200 m of the coffee shop?”, with the uncertain
type programmers ask “how much evidence is there that I am within 200 m of the
coffee shop?”. This type of question accounts for uncertainty correctly in an intuitive
style, and aids programmer accessibility since conditionals still return booleans.

4.4.1 Two styles of conditionals

Figure 4.5 shows the situation for the coffee shop conditional. Figure 4.5(a) shows
how the conditional would be evaluated without the uncertain type – a single sam-
ple s from the distribution (which the program knows nothing about in this case) is
compared to 200. Clearly this does not adequately reflect the distribution, and it is
entirely possible for this sample s to end up on the wrong side of 200, and therefore
trigger a false negative.

The uncertain type has two types of conditional that address this problem. The
uncertain type evaluates these conditionals using expected values, which are well-
defined for almost all distributions in practice. That all conditionals involve expected
values is critical to efficiently evaluating conditionals, as discussed in Section 5.3.

Comparing means. Figure 4.5(b) shows how the uncertain type compares the mean
of the distribution to 200. The programmer writes:

if (Distance.E() < 200)
NotifyUserNearCoffee()

Uncertain〈T〉 evaluates the mean of the distribution Distance and compares it to 200.
Using the mean is not the same as using a single sample from the distribution, because
the mean is a weighted average of the entire distribution. This style of conditional is
more intuitive for programmers, because it requires only a minor modification from
the original approach, and is suitable for cases where the programmer does not need
to explicitly consider the quality of the evidence.
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Figure 4.5: Different interpretations of the conditional Distance < 200
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Comparing evidence. Figure 4.5(c) shows how the uncertain type evaluates evidence
for an assertion. Here the assertion is that Distance < 200. The area under the
distribution to the left of 200 m is the probability p ∈ [0, 1] that Distance < 200.
Programmers use evidence to write:

if ((Distance < 200).E() > 0.85)
NotifyUserNearCoffee()

which asks if there is more than an 85% chance that Distance < 200. As described in
Section 4.3, the uncertain type lifts operators like < to work over distributions. So the
inner expression Distance < 200 evaluates to a distribution of type Uncertain〈Boolean〉.
The code then takes the expected value of this Bernoulli distribution, which is exactly
the probability that Distance < 200 is true.

The power of evaluating evidence explicitly is that programmers can reason about
false positives and negatives. If Distance is a very wide distribution (i.e., the value
is very uncertain) with a mean less than 200, there is still high likelihood that the
underlying true value is larger than 200. Evaluating the evidence for the assertion,
and comparing it to a programmer-selected threshold, allows the programmer to
decide the trade-off between false positives and false negatives that is suitable for
the particular query. A higher threshold requires stronger evidence to satisfy, which
reduces false positives but increases false negatives.

4.5 Adding domain knowledge

The final step in programming with uncertain data using the uncertain type is to
exploit domain knowledge to improve the quality of estimates. The previous sec-
tions treated the estimation process as immutable, but in many cases, adding domain
knowledge to estimation will improve accuracy. The uncertain type unlocks this capa-
bility because it encapsulates entire distributions, and therefore can exploit Bayesian
statistics.

4.5.1 Bayesian inference

Bayesian statistics represents the state of the world with probability distributions
that reflect degrees of belief about the true value of a variable. Rather than selecting
a single most likely value for the variable, Bayesian statistics instead recognises the
uncertainty in the variable’s value by recording the likelihood of each possible value.
For example, a Bayesian view of the output from a GPS sensor provides a degree
of belief for each possible location on a map. For each point on the map, there is
a probability that the user’s true location is that point. Of course, the user’s actual
true location is fixed and certain; these probabilities represent the degrees of belief as
dictated by the available evidence.

Figure 4.6 demonstrates why Bayesian statistics is desirable in situations involv-
ing uncertainty. Rather than recording the single most-likely value of the variable
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Figure 4.6: Bayesian statistics considers more than a single most-likely value

(the dashed line), a Bayesian viewpoint records the entire probability distribution,
assigning a likelihood to each possible value. This viewpoint reflects the situation
more robustly: in Figure 4.6, while the dashed line is the most-likely value, there is a
74% probability that the value is larger than this. This nuance is lost by ignoring the
distribution.

For estimation processes, there are two random variables, one representing the
target variable B we are trying to estimate, and another representing an estimation
process E. Bayes’ theorem says that

Pr[B = b|E = e] =
Pr[E = e|B = b] · Pr[B = b]

Pr[E = e]
.

The fixed value e is evidence from the estimation process. The left-hand side, a
function of the possible true value b, is called the posterior distribution. Bayes’ theorem
allows us to combine the evidence from the estimation process with a hypothesis
about the true value.

We call Pr[B = b] (again a function of b) the prior distribution, because it is our
belief about the value of B before observing any evidence. The prior distribution is
a hypothesis about the value we are trying to model, and specifies domain-specific
information. For example, a prior distribution for the speed of a car would specify
very low probabilities above 150 km/h, because even before observing any evidence
it is very unlikely that a car travels this fast.

The term Pr[E = e|B = b] is a likelihood model for the estimation process. This
function of b specifies the probability that the estimation process would output the
value e if the true value of B was b. The likelihood model expresses the error distribu-
tion for an estimation process. For a well-behaved estimation process, the likelihood
Pr[E = e|B = b] will be highest for those values of b closest to e – because a good
estimator is very unlikely to experience large errors.

The power of Bayes’ theorem is that it provides a rigorous model for combining
observed evidence with hypotheses. If the hypotheses are accurate, applying Bayes’
theorem results in a Bayesian posterior distribution that is more accurate than the
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prior or the evidence alone. This improves the quality of the estimate, by returning
a distribution that more precisely reflects the actual value of the estimated variable.
This process is known as Bayesian inference. The uncertain type can exploit Bayesian
inference because it encapsulates entire distributions. A single point estimate (like
the dashed line in Figure 4.6) is not sufficient to apply Bayes’ theorem, and so pro-
grammers without the uncertain type must resort to ad-hoc heuristics to improve the
quality of estimates.

4.5.2 Incorporating knowledge through priors

In our Bayesian inference framework, programmers specify their domain knowledge
as a prior distribution (that is, as a hypothesis). The uncertain type then incorporates
this domain knowledge into the estimation process in a rigorous way.

Consider the example of GPS data. In Section 4.2.1 we saw how to derive a
posterior distribution for estimating a user’s location using the GPS sensor. The
resulting posterior distribution (Equation (4.6)) said that

Pr[Locationt = p|GPSt = Samplet] = Rayleigh(‖Samplet − p‖ ; εt/
√

ln 400).

In the language of Bayes’ theorem, the target variable B is Locationt and the estima-
tion process E is GPSt. Along the way, this derivation specified a prior distribution
for the target variable

Pr[Locationt = p] = Uniform.

In the Bayesian framework, this prior distribution is a hypothesis about the user’s
location. We specified the uniform distribution because in this case we assume no
specific knowledge about the user’s location.

The idea of incorporating knowledge through priors is that in some situations we
do have extra domain knowledge. In the GPS case, we may have some information
about where the user is more likely to be. For example, suppose we can infer that
it is quite likely the user is driving (perhaps because the application is for driving
navigation). We can specify this information as a prior distribution over locations,
that assigns higher probabilities to roads and lower probabilities to the rest of the
map.

Figure 4.7 shows how this idea might work (in a simplified world where locations
are one-dimensional). The prior distribution specifies a higher probability for a
section of the map corresponding to a road, and a lower probability elsewhere. The
likelihood distribution reflects the output of the GPS sensor – the point p is the
point estimate, and the distribution reflects the error model from Equation (4.6). The
posterior distribution applies Bayes’ theorem to the prior and likelihood. Notice how
more of the mass of the posterior distribution is centred on the road. The mean of
the posterior distribution is the point s. This new estimate of the user’s location is
not perfectly on the road, because the GPS actually provides quite strong evidence
that the user is not on the road.
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Figure 4.7: Domain knowledge from a prior distribution shifts the estimate

This example reflects an important benefit of Bayesian inference over ad-hoc
approaches. Bayes’ theorem balances the prior and the evidence in a principled way.
If the prior is wrong (in the GPS example, if the user is not actually on a road), strong
evidence from the GPS can override it. How strong that evidence must be to do
so depends on how certain the prior distribution is. This balance lets programmers
reason more intuitively about how to improve the quality of estimates, by explicitly
specifying the strength of their hypotheses.

4.5.3 Making Bayesian inference accessible

The difficulty with using Bayesian inference to improve estimates is that specify-
ing prior distributions requires a knowledge of statistics more advanced than that
required to use the rest of the uncertain type. In general, programmers using the
uncertain type need only a simple understanding of probability to improve the cor-
rectness of their programs. On the other hand, specifying a prior distribution requires
the programmer to understand Bayesian statistics and be able to determine the ap-
propriate prior for their situation.

A middle ground comes in the form of a constraint abstraction. Such an abstraction
would allow non-expert programmers to specify domain knowledge through a set
of flags defined by expert programmers. These expert programmers specify a pre-
set collection of prior distributions for common scenarios related to their particular
library. For example, a GPS library would include prior distributions for driving
(e.g., roads, and driving speeds), walking (walking speeds), and being on land. The
library exposes these prior distributions through a set of flags that the non-expert
programmer can toggle when calling the library. The library applies the selected
priors to the estimation process, improving the quality of the estimates without
significant burden on everyday programmers.

Hiding the prior distributions behind this abstraction opens a variety of exciting
applications of Bayesian inference. A library could use machine learning to improve
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the quality of its estimates over time. For example, a GPS library could learn the
user’s location history, and improve the quality of future GPS estimates by incor-
porating this historical knowledge as a prior. This approach would often produce
better GPS estimates, since humans are creatures of habit, but still allows strong new
GPS evidence to override the history if the user travels somewhere new. The con-
straint abstraction makes this learning and correction transparent to the programmer
consuming the data, who sees only an improved GPS estimate.

4.6 Probabilistic programming and the uncertain type

Section 2.2 described in detail the idea of probabilistic programming, using program-
ming languages to reason about probabilistic models. This chapter described the
uncertain type, a programming language abstraction for reasoning about uncertainty
in data. At first glance, it may seem that the uncertain type is a form of probabilis-
tic programming – both involve combining random variables using operators, and
conclude with questions being asked about the data.

But unlike most applications of probabilistic programming, the uncertain type
does not reason about arbitrary posterior distributions through inference. Section 2.2.3
detailed the poor performance of inference algorithms even on simple problems. Be-
cause the uncertain type is embedded inside a deterministic host language, it does
not reason about entire models but rather only particular instances of a problem. This
distinction means the uncertain type does not have to explore very unlikely regions
of a model.

This difference in semantics is best illustrated by a simple hypothetical example.
Suppose we have a simple mobile device with two sensors, one for measuring the
device’s velocity, the other for its acceleration. Both of these sensors provide only
estimates of the underlying physical quantities, and suppose we have data sheets
specifying the error distribution for each sensor. In software, these sensors both
return distributions of type Uncertain〈Double〉.

Suppose we are implementing the library for the acceleration sensor, which has
a hardware bug. The sensor underestimates the device’s acceleration by a factor of 2
when the device is moving at more than 10 km/h. We would like to correct for this
effect in the software library. The problem defines two random variables Speed and
Accel. We could represent this problem as a model in a probabilistic programming
language as follows:

Speed = GetSpeedReading()
if Speed > 10:

Accel = GetAccelReading() * 2.0
else:

Accel = GetAccelReading()

This probabilistic program defines a generative model – a joint distribution over the
variables Speed and Accel. Inference allows us to ask questions about this model, for
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example, “how likely is it that Accel is greater than 1 m s−2?”. The inference algorithm
would take the joint distribution the model defines, and marginalise out the variable
Speed to leave a distribution over Accel (i.e., aggregate over all possible values of Speed
so the remaining distribution involves only Accel). This marginalisation explores both
branches of the program to understand how Accel depends on Speed.

We can also implement this same correction using the uncertain type:

Uncertain<double> Speed = GetSpeedReading();
Uncertain<double> Accel;
if (Speed.E() > 10)

Accel = GetAccelReading() * 2.0;
else

Accel = GetAccelReading();

Though this program appears similar to the first, it actually reasons about a condi-
tional distribution rather than a joint one. The uncertain type is embedded inside an
existing programming language, and so this program does not explore both branches –
to do so would conflict with the host language’s semantics. At the end of this segment
of code, the variable Accel holds the conditional random variable Pr(Accel | Speed).
The evaluation has implicitly conditioned Accel on Speed. The uncertain type never
infers the marginal distribution Pr[Accel] as the probabilistic program does.

This is a virtue of the uncertain type, not a vice. The conditional distribution is
appropriate because in this problem domain, Accel never occurs in isolation – it is
always conditioned on Speed. Probabilistic programming solves a different problem
– inferring distributions that are not explicitly defined – in a way that is more ab-
stract and general. For applications that consume estimated data (from e.g., sensors,
machine learning, approximate hardware, big data), the problem is not an abstrac-
tion but a concrete instance where the conditional distribution is appropriate. For
example, temperature depends on humidity, altitude, and other variables. When
programming with a temperature sensor, the question is not whether temperature
can ever be greater than 30◦, but rather whether a particular measurement, which is
always conditioned on particular values of humidity and altitude, is greater than 30◦.

The reduced set of functionality required to reason only about a specific instance
works in our favour, because it allows the uncertain type to be considerably more
efficient than existing, generic inference algorithms. We should not try to force a
generic set of semantics onto our problem if a more efficient, specific approach exists.

4.7 Summary

The uncertain type is an abstraction for handling uncertain data in programming
languages. It provides an interface that is accessible to non-expert programmers but
still remains expressive enough to solve real problems. This interface makes extensive
use of operator overloading, making programs more concise compared to those that
manually reason about uncertainty. Since programmers can reason about the quality
of evidence, rather than naively evaluate inappropriate conditionals, the uncertain
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type improves the correctness of programs. The uncertain type also exploits domain
knowledge in the form of prior distributions to improve the quality of estimated data.

This chapter describes an ideal abstraction for programming with uncertain data.
The challenge this thesis now turns to is implementing this abstraction in a way that
is tractable and efficient. As we will see, the restricted semantics that the ideal ab-
straction defines enable an efficient implementation, exploiting the choice of sampling
functions as a representation to improve significantly over more general probabilistic
programming approaches.



Chapter 5

Implementing the Abstraction

The previous chapter described the uncertain type, Uncertain〈T〉, a programming
language abstraction for uncertain data. That chapter showed how the uncertain type
provides a simple, accessible interface to non-expert programmers. It showed the
expressive range of operations the uncertain type provides in order for programmers
to reason correctly about uncertainty.

This chapter addresses the third promise of the uncertain type: that it delivers a
programming model that is efficient enough for practical use in real-world applica-
tions. In Chapter 2 we saw that many existing programming models for uncertain
data suffer poor performance because they are too general. The semantics of the
uncertain type are restricted to uncertain data, making the problem tractable and
the implementation efficient. This chapter describes the insights that enable this
efficiency.

Section 5.1 describes how the uncertain type exploits lazy evaluation to avoid
eagerly producing unnecessary precision. Section 5.2 shows how the uncertain type
eliminates programmer-induced dependencies through this lazy evaluation frame-
work. Section 5.3 explains how the uncertain type addresses sampling error (induced
by approximating distributions) by defining conditional operations in terms of hy-
pothesis tests. Importantly, these insights all work in concert; each depends on the
others to deliver on the uncertain type’s promise of efficiency and tractability.

5.1 Lazy evaluation

Section 4.2.2 discussed the benefits and drawbacks of different techniques for repre-
senting probability distributions in a programming language. Many potential rep-
resentations are inadequate for the uncertain type because they cannot encapsulate
a sufficiently large variety of distributions. For this reason, the uncertain type uses
random sampling to represent distributions, in the form of sampling functions. Ran-
dom sampling defines a distribution in terms of samples from it, which can encode
a much broader range of possible distributions than, for example, storing a closed
form density function.

Most distribution representations suffer significant performance issues when com-
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bining distributions. For example, a representation using approximating polynomials
requires 133 terms to hold the sum of 12 uniform random variables [Glen et al., 2001].
A naive approach to random sampling, representing a distribution as a vector of n
random samples, would suffer the same type of performance issue. Taking the sum
of two random variables would require adding the two vectors element-wise, result-
ing in n addition operations and a new vector of length n. If n is large enough to
ensure reasonable accuracy, this implementation would make arithmetic operations
prohibitively slow (see Figure 4.4).

Fixing a sample size n in advance also forces the program to compute a level of
precision that is potentially unnecessary. For example, suppose we have two Gaussian
random variables X and Y, each with mean 5 and small variance. We would like to
decide whether E[X + Y] > 1. Evaluating this expected value requires summing the
vectors for X and Y together pairwise and then computing the mean of these n new
samples. But the true value of the mean of X +Y is 10, much larger than the threshold
of 1 we are testing against, and the variance in the new samples is very small. After
computing only a few samples of X + Y, it is clear with very high confidence that
E[X + Y] > 1. Because each sample will be very close to 10, which is a long way
from 1, the central limit theorem implies that it is extremely unlikely that the true
expected value is very far from 10. The naive implementation cannot short-circuit this
logic to stop after only a few samples, because we cannot know in advance whether
future operations will require more samples when they use the result of the current
operation.

The uncertain type uses lazy evaluation to ensure that the runtime only ever
computes as much precision as necessary at each conditional query. The uncertain
type can make use of problem-specific information because the only points where
distributions are evaluated involve expected values (Section 4.4), and so we can
apply the central limit theorem. In particular, the uncertain type never reasons about
intermediate distributions, but rather only about distributions used in queries (which
involve expected values) or through explicitly evaluating the expected value of a
distribution.

Lazy evaluation of distributions with the uncertain type involves constructing
expression trees when executing the various operators. The leaves of the tree are
sampling functions defined elsewhere; the inner nodes are operators that combine or
modify their operand children. For example, the statement A = X + Y results in the
runtime building the following expression tree:

X

A +

Y

Neither leaf distribution is evaluated when the program executes this statement;
concrete values are only computed when a query is performed on A. The constructed
expression tree is itself a distribution of type Uncertain〈T〉.



§5.1 Lazy evaluation 59

Queries trigger evaluation of a distribution by drawing random samples from
it. Drawing a sample from an expression tree proceeds recursively in a bottom-up
fashion. We draw samples from the leaf nodes (which are sampling functions), and
then propagate these samples up through the tree. At each inner node with operator
op′, we apply the original unlifted operator op to the incoming samples (recall from
Section 4.3 that the uncertain type lifts an operator of type op :: T → S → V to have
type op′ :: Uncertain〈T〉 → Uncertain〈S〉 → Uncertain〈V〉). The result of this process
at the root of the tree is a sample from the root random variable.

5.1.1 Graphical models

To demonstrate why this sampling approach works, we observe that our expression
trees are actually a Bayesian network. A Bayesian network is a type of probabilistic
graphical model, widely used in machine learning to reason about the relationships
between variables [Bishop, 2006]. A Bayesian network is a directed acyclic graph,
in which each node is a random variable. The edges in the graph indicate the
dependencies between the variables; a directed edge from U to V indicates that V
depends on U.

Bayesian networks are a valuable representation because they encode the factori-
sation of the joint distribution of the random variables they contain. For example,
consider this simple expression tree for the program A = X + Y; B = A + Z:

X

+

A

B

Z+

Y

This model contains five random variables (X, Y, Z, A, B). The shaded variables X, Y
and Z are leaf nodes, representing sampling functions defined elsewhere. This graph
defines a joint distribution for the five variables:

Pr[X, Y, Z, A, B] = Pr[X]Pr[Y]Pr[Z]Pr[A|X, Y]Pr[B|A, Z]

Notice how each edge in the graph becomes a dependency in the factorisation, so
for instance, A depends on X since there is an edge from X to A. We call the set of
nodes a variable depends on the parents of the node, denoted paX, even though in a
normal expression tree they would actually be children, not parents. So for example,
paA = {X, Y} and paX = ∅. With this notation, we can write

Pr[Q] = ∏
V∈Q

Pr[V | paV ]

where Q is the set of all random variables in the model.
One approach to draw samples from the random variable B is to draw samples

from the joint distribution over all the variables in the expression tree. Each of these
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samples will be correctly distributed over all the variables, and so by simply discard-
ing all the elements of the sample apart from the value for B we achieve correctly-
weighted samples for B. A simple technique for sampling the joint distribution is
ancestral sampling. Because the graph is directed and acyclic, we can topologically
order the nodes of the graph, such that each node appears in the list after all of its
parents. To sample the joint distribution we simply visit the nodes of the graph in this
topological order, at each step drawing a sample from the conditional distribution
Pr[V | paV ]. The topological ordering ensures that all the variables in paV already
have samples to use in the conditional distribution.

Drawing samples from the leaf nodes, where paV = ∅, is trivial, since leaf nodes
are exactly those with sampling functions already defined for them. For inner nodes,
where paV 6= ∅, we must know how the distribution of V depends on each of its
parents. In expression trees, each inner node is associated with an operator, so the
distribution Pr[V | paV ] of an inner node V with operator op is simply a pointmass
distribution centred at the point op(paV) (i.e., the result of applying op to the samples
from the parent nodes). Applying this process recursively up the expression tree
results in a sample from B that is correctly distributed.

5.2 Eliminating programmer-induced dependencies

Section 4.3.2 highlighted the issue of dependent random variables. The above pro-
cess for combining random variables works if the leaf distributions are independent.
But if they are not, a more sophisticated approach is needed. However, there is a
useful distinction between inherent dependencies, where the variables are inextrica-
bly related, and programmer-induced dependencies. When a programmer writes code
involving random variables, she can create dependencies between variables. For ex-
ample, suppose a programmer takes two independent random variables X and Y and
writes

A = Y + X
B = A + X

The computation for B has a programmer-induced dependency, because B depends
on X and on A, which also depends on X.

Dependencies become an issue when we apply the expression tree approach from
the previous section. If a query evaluates B, the samples it draws from B will not be
correctly distributed, and therefore the results will be incorrect. A naive parsing of
this code into an expression tree yields:

Y

+

A

B

X+

X



§5.2 Eliminating programmer-induced dependencies 61

But this expression tree does not reflect the dependency correctly because each leaf
occurrence of X is different. To see why, recall that the expression tree is a graphical
model where each node represents a different random variable. This expression tree
therefore describes a scenario with two random variables X1 and X2 that happen
to share the same distribution. The graphical model actually describes the joint
distribution

Pr[X1, X2, Y, A, B] = Pr[X1]Pr[X2]Pr[Y]Pr[A|X1, Y]Pr[B|A, X2].

When we apply the ancestral sampling technique to draw samples from B, we will in
fact draw two samples from X – one for X1 and one for X2.

The solution is to ensure there is only one instance of X that both A and B depend
on. To correctly capture the dependency, we actually want the joint distribution

Pr[X, Y, A, B] = Pr[X]Pr[Y]Pr[A|X, Y]Pr[B|A, X].

This factorisation translates into the graphical model:

Y

+

A

B

+

X

This model makes clear that the operands for B are not independent – both operands
depend on X. When we apply ancestral sampling to this model, we will only draw
one sample from X, and reuse it for both Pr[A|X, Y] and Pr[B|A, X]. Notice that this
model is no longer an expression tree (though we will continue calling it such), but
rather a directed acyclic graph.

While this correction seems simple, it demonstrates the power of the uncertain
type’s approach to lazy evaluation, and in turn its choice of sampling functions to
represent distributions. Other representations, which eagerly combine distributions
when evaluating operators, would lose this dependency information and therefore
incorrectly compute the final distribution. For example, if we stored distributions as
probability density functions, and eagerly executed the addition operator when called,
the first addition A = Y + X would immediately compute a new distribution for A.
Then, when computing B = A + X, there would be no record of A’s dependency on
X, and so the addition would treat A and X as independent when they are actually
not. The uncertain type’s design decisions thus work in concert to deliver correctness
when manipulating random variables, all without requiring non-expert programmers
to recognise that they have (perhaps indirectly) introduced complex dependencies
between variables.
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5.3 Evaluating queries with hypothesis tests

Section 4.1 identified the two sources of error that the uncertain type addresses. Do-
main error is inherent in the problem domain, the difference between an estimate
and a true value. The uncertain type addresses domain error by providing a new
semantics for conditional operators described in Section 4.4. The uncertain type in-
duces sampling error by approximating distributions with random sampling. Because
computations that use the uncertain type are only ever evaluated through expected
values, we can exploit hypothesis testing to address sampling error in a principled
and efficient way.

The questions the uncertain type asks compare the means of two distributions.
For example, a programmer might write a conditional

if (Speed.E() > 10)
IssueWarning();

This question asks whether the expected value of the Speed distribution is greater
than the expected value of the pointmass distribution with value 10. If we could
precisely evaluate distributions, we could compute an exact value for E[Speed] and
compare it directly to 10. But the uncertain type does not precisely evaluate distri-
butions. Instead, we can only approximate E[Speed], by drawing samples from Speed
and computing sample means. The sample mean approximates the actual expected
value, according to the law of large numbers, but the quality of the approximation
depends on the sample size, according to the central limit theorem. The uncertain
type’s expected value operator E (see Table 4.1) reflects this distinction between exact
and approximate expected values by returning an object of type SamplingDist〈T〉.
Except in very specific cases described below in Section 5.3.1, programmers cannot
directly access the expected value of type T that this object encapsulates. Instead, they
indirectly and transparently compute with the expected value through hypothesis
tests.

A hypothesis test is a mechanism for making decisions based on sampled data,
and is the commonly accepted method to compare sample means. When the uncer-
tain type executes the conditional above, it establishes a hypothesis test with null
hypothesis H0 ≡ E[Speed] ≤ 10 and alternate hypothesis H1 ≡ E[Speed] > 10. Be-
cause we are using sample means, the hypothesis test uses Student’s t-distribution to
either reject or fail to reject the null hypothesis. If we can reject the null hypothesis
at the chosen confidence level, we can accept the alternate hypothesis and therefore
return true for the conditional. By default, the uncertain type uses a 95% confidence
level, since this is the accepted practice for statistical significance. Programmers can
override this choice of confidence level with an additional argument (see Table 4.1).

The challenge is to determine what the right sample size is for the hypothesis test.
On one hand, we could draw a very large number of samples, which would almost
certainly approximate the true expected value well, but would be slow. On the other
hand, we could draw only a few samples, ensuring good performance, but providing
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Figure 5.1: Larger sample sizes result in smaller confidence intervals

a poor approximation of the population mean, so the resulting decisions will be very
inaccurate. Section 4.3.3 illustrated the nature of this speed-accuracy trade-off. The
variety of possible queries means it is very difficult to choose a sample size ahead of
time that strikes an ideal balance between speed and accuracy.

The uncertain type’s solution to this problem builds on its choice of representation
for distributions. Using sampling functions, either defined explicitly by experts for
leaf distributions, or implicitly by non-experts in the form of expression trees, allows
us to draw an infinite number of samples from a distribution. This profusion of
samples overcomes the finite, fixed sample size that a naive implementation would
require. We are thus free to dynamically choose a sample size at run time.

To choose the right sample size, we exploit query-specific information when
executing the hypothesis test. Once the particular hypothesis test has been established,
we progressively increase the sample size used to compute the sample means. We
continue increasing the sample size until either (i) the hypothesis test successfully
rejects the null hypothesis, or (ii) the sample size reaches a predefined limit, which
signifies the uncertainty is too great to evaluate the conditional.

This approach works because the power of a hypothesis tests increases with the
sample size. Figure 5.1 demonstrates this effect by comparing two Gaussian random
variables with means 10 and 5, respectively. As the sample size increases, the 95%
confidence intervals around the two sample means shrink, because the power of the
hypothesis tests increases with the sample size. Even after only very few samples,
the confidence intervals do not overlap, indicating that the test successfully rejects
the null hypothesis. Of course, how quickly this happens depends on how close the
true means are, and the variance in each distribution. For this reason we impose a
maximum on the sample size to ensure termination.

Note that correctly applying this technique requires careful consideration of how
samples are reused. For example, it is a well known problem in medicine that it is
unsound to append extra samples to an experiment in order to make it statistically
significant [Whitehead, 1999]. Reusing samples can overstate the statistical signif-
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icance of the result, creating false positives when null hypotheses are incorrectly
rejected. We will continue to explore the effect of this reuse for future work.

5.3.1 Ternary logic

The trouble with using hypothesis testing for conditionals is that it introduces a
ternary logic and therefore changes the semantics of the uncertain type. Programmers
rightfully expect that conditionals satisfy the law of excluded middle – either a
condition is true or it is not. They often write simple code like:

double Speed = GetSpeedReading();
if (Speed > 10)

DoSomething(); // assumes Speed > 10
else

DoSomethingElse(); // assumes Speed <= 10

If this program enters the else branch, the programmer assumes within that branch
that the conditional is false, that is, that Speed ≤ 10.

A straight translation of this program to use the uncertain type’s interface does
not appear to invalidate this assumption:

Uncertain<double> Speed = GetSpeedReading();
if (Speed.E() > 10)

DoSomething(); // assumes Speed > 10
else

DoSomethingElse(); // assumes Speed <= 10

But using hypothesis testing to execute the conditional changes the semantics of this
program. If the conditional fails and enters the else branch, it does not necessarily
mean that the converse is true, because failing to reject the null hypothesis is not
the same as accepting it. So the conditional can fail either because E[Speed] ≤ 10 or
because the null hypothesis could not be rejected at 95% confidence.

This semantics change actually introduces a ternary logic. Consider this program
without the uncertain type:

double Speed = GetSpeedReading();
if (Speed > 10)

DoSomething(); // assumes Speed > 10
else if (Speed <= 10)

DoSomethingElse(); // assumes Speed <= 10
else

assert(false); // unreachable

The third branch is unreachable, because the two conditions in the earlier branches
are exhaustive – at least one of them (in fact, exactly one) must be true. This is no
longer the case with the uncertain type and hypothesis testing:

double Speed = GetSpeedReading();
if (Speed.E() > 10)

DoSomething(); // Speed > 10 with 95% confidence
else if (Speed.E() <= 10)

DoSomethingElse(); // Speed <= 10 with 95% confidence
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else
DoNothing(); // neither true with 95% confidence

The third branch is now reachable when neither conditional’s null hypothesis can be
accepted with 95% confidence.

This distinction is an unavoidable consequence of the uncertain type’s choice for
representing distributions. We cannot expect to distinguish all possible distributions
with an approximation – if we could, it would not be an approximation. In many
practical cases, this problem does not arise with a reasonable choice of the maximum
sample size, since most practical distributions can be distinguished at some reason-
able sample size. Also note that the uncertain type is not unique in having to change
its ideal semantics in order to accommodate the realities of a practical implementa-
tion. Floating point arithmetic is in a similar situation; the ideal semantics of real
arithmetic are not practical on a computer, and so the semantics must change in the
implementation. Programmers have adapted to this change (by not directly compar-
ing floating point numbers), and we suggest the same can be true of the uncertain
type, potentially with the aid of compiler guidance and static analysis.

For applications that require the total ordering property this behaviour breaks, the
uncertain type provides the Project operator (see Table 4.1). This operator takes an
object of type SamplingDist〈T〉, returned from the expected value operator E, and
returns the raw expected value of type T it encapsulates. This operation is the only
point at which uncertain data can become certain data, and is highly discouraged
because it allows programmers to ignore uncertainty. Making this operation explicit
at least forces programmers to consider whether they truly need to ignore uncertainty
for their program to function, which in most cases is not actually necessary.

5.4 Summary

The uncertain type is a principled abstraction for computing with uncertain data.
While this principled approach is a virtue, and ensures the uncertain type is accessible
and expressive, it also has the potential to make a practical implementation impossi-
ble. But insights into lazy evaluation and hypothesis testing make the uncertain type
practical to implement in the real world. Lazy evaluation allows the uncertain type
to only produce information about a distribution when it is required, rather than
eagerly producing unnecessary precision. Hypothesis testing enables the uncertain
type to dynamically determine the precision necessary to answer a particular query,
exploiting lazy evaluation to avoid wasteful oversampling or failure through under-
sampling. Lazy evaluation also enables the uncertain type to automatically correct for
programmer-induced data dependencies; the seeming simplicity of this insight belies
its contribution to making the uncertain type accessible to non-expert programmers.

Using these insights, I implemented the uncertain type in both C# and Python.
I believe the uncertain type can be readily implemented in most object-oriented
languages, but the vision for an accessible interface requires certain features. The
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language must support operator overloading to make propagation of uncertainty
transparent to programmers. It must also provide an expressive type system which
recognises that the type T in Uncertain〈T〉 is numeric (i.e., supports arithmetic opera-
tions). These requirements made C# and Python (which is dynamically typed) good
choices for a prototype implementation, used for the case studies in the next chapter.

The uncertain type’s principled design, combined with its implementation in-
sights, ensure that it can achieve its goals of making programs that deal with uncer-
tain data more concise, expressive, and correct. The next chapter demonstrates how
these contributions are realised in three case studies.



Chapter 6

Case Studies

My thesis is that by making uncertain data a primitive first-order type, non-expert
programmers will write programs that are more concise, expressive, and correct.
Previous chapters show how the uncertain type’s design and implementation present
an abstraction that is accessible, efficient and expressive. This chapter demonstrates
through three case studies that programs written with the uncertain type achieve
concision, expressiveness, and correctness.

Section 6.1 demonstrates the uncertain type on smartphone GPS data, one of the
most widely used hardware sensors, showing how correct reasoning about uncer-
tainty is implemented concisely and leads to improved estimates. Section 6.2 shows
how to use the uncertain type to virtually eliminate the effect of noise on a digital
sensor, by specifying prior knowledge about the noise. Section 6.3 applies the uncer-
tain type to approximate computing, showing that it is a promising programming
model for an emerging trend towards trading accuracy for efficiency.

6.1 Smartphone GPS sensors

Almost every modern smartphone includes a GPS sensor that applications use to
reason about the user’s current location. My cursory survey in Section 3.2 found
that 40% of top Android applications use the GPS. Given the number of applica-
tions an average user installs, the vast majority of smartphone users likely use GPS
applications.

One particularly common application using a smartphone’s GPS sensor is fitness,
tracking the user’s movement while exercising. This case study builds a simple GPS
application called GPSWalking, which measures the user’s walking speed using the
GPS. GPSWalking invokes a modified GPS library that provides the function

Uncertain<Geocoordinate> NewGPSLib.GetGPSLocation();

as described in Section 4.2. To calculate the user’s speed, the application takes two
GPS samples, with a fixed time interval between them, and calculates the distance
travelled between the samples. Because Speed = ∆Distance/∆Time, this calculation
estimates the user’s speed over a fixed time interval.

Figure 6.1 shows the main loop of the GPSWalking application both with and

67
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1 int dt = 1;
2

3 Geocoordinate LastLocation = GPSLib.GetGPSLocation();
4 while (true) {
5 Sleep(dt); // wait for dt seconds
6

7 Geocoordinate Location = GPSLib.GetGPSLocation();
8 double Speed = GPSLib.Distance(Location, LastLocation) / dt;
9

10 Display(Speed);
11

12 if (Speed > 5)
13 GoodJobMessage();
14

15 LastLocation = Location;
16 }

(a) Without the uncertain type

1 int dt = 1;
2

3 Uncertain<Geocoordinate> LastLocation = NewGPSLib.GetGPSLocation();
4 while (true) {
5 Sleep(dt); // wait for dt seconds
6

7 Uncertain<Geocoordinate> Location = NewGPSLib.GetGPSLocation();
8 Uncertain<double> Speed = NewGPSLib.Distance(Location, LastLocation) / dt;
9

10 Display(Speed.E().Project());
11

12 if ((Speed > 5).E() > 0.75)
13 GoodJobMessage();
14

15 LastLocation = Location;
16 }

(b) With the uncertain type

Figure 6.1: The main loop of the GPSWalking application
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Figure 6.2: The uncertain type provides a 95% confidence interval for speed

without the uncertain type. Once the application has calculated the user’s speed, it
displays it on the screen. It also tests whether the speed is greater than 5 km/h, and
if so, congratulates the user on keeping up a good pace.

Identifying the distribution

Current GPS APIs, described in Section 3.1.2, provide a location and an error radius.
Chapter 3 demonstrated that programmers almost always ignore the error informa-
tion, and as a result, programs experience uncertainty bugs. To fix this, the updated
version of GPSWalking in Figure 6.1(b) uses a modified GPS library that exposes the er-
ror distribution described in Section 4.2.1. In practice, the conversion of this library to
use the uncertain type would be done by the expert programmers implementing the
platform libraries for the smartphone, and so from the point of view of the non-expert
programmer, very little extra work is required. The differences between the versions
of GPSWalking without the uncertain type (Figure 6.1(a)) and with the uncertain type
(Figure 6.1(b)) are minimal, showing that there is very little extra effort required by
non-expert programmers to use the uncertain type.

Computing with distributions

GPSWalking calculates the user’s speed based on their recent locations. Of course, since
the locations are estimates from the GPS sensor, distance and therefore speed are
estimates too. Since we are only interested in the magnitude of speed rather than the
direction, the resulting distribution of speed estimates is of type Uncertain〈Double〉.

Programmers must adapt their programs to account for this change. In particular,
the call to Display(Speed) on line 10 of Figure 6.1(a) must be updated to account
for speed being a distribution. Displaying the distribution of speeds is not particu-
larly helpful to most users, so this case warrants using the Project that operator the
uncertain type provides. The updated version of this call is therefore

Display(Speed.E().Project());

which displays the mean of the speed distribution.
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Distributions for the estimated speeds explain the incorrect speed results we saw
in Section 3.3 and Figure 3.3, where the GPS produced walking speed estimates that
were consistently too high, and at one point an absurdly high 95 km/h. Figure 6.2
shows the same data but with 95% confidence intervals calculated with the uncertain
type in GPSWalking. These confidence intervals are very wide, indicating that the
speed estimates are very uncertain. This result confirms the hypothesis of Section 3.3:
the absurd speeds are caused by compounding uncertainty making computations
unreliable.

Asking the right questions

GPSWalking encourages users to walk fast enough to get a good workout. The version
of the program without the uncertain type implements this specification with the
following conditional:

if (Speed > 5)
GoodJobMessage();

Of course, because speed is an estimate, this naive conditional is susceptible to false
positives and negatives. For example, despite the fact that all the data in Figure 6.2
were collected while the user was walking, 12% of the estimated speeds are greater
than 8 km/h, a jogging pace, and 4% are greater than 11 km/h, a running pace.

The uncertain type allows the programmer to balance false positives and negatives
by evaluating evidence for a conditional. Section 4.4.1 describes the two types of
conditionals that the uncertain type provides. The modified version of GPSWalking
evaluates the conditional using evidence explicitly:

if ((Speed > 5).E() > 0.75)
GoodJobMessage();

This conditional asks whether the probability that Speed > 5 is at least 75%. The
choice of 75% reflects the programmer’s chosen balance between false positives and
false negatives – higher thresholds give fewer false positives but more false negatives.
Using this conditional, less than 1% of estimated speeds are greater than 8 km/h.

Adding domain knowledge

Using the updated GPS library means the application is reasoning about distributions,
and therefore has the power of Bayesian statistics at its disposal. Programmers can use
prior knowledge to improve the quality of estimated data. In the case of GPSWalking,
the application is targeted at users walking for fitness. We can therefore assume that
the application is only used when the user is on foot, and encode this knowledge
as a prior distribution over speeds. It is extremely unlikely that a person walks at
20 km/h or above, and somewhat more likely that they walk at 4 km/h. The uncertain
type can combine the prior distribution specifying this domain knowledge with the
evidence from the GPS sensor. Importantly, strong evidence from the GPS sensor can
still override the prior distribution.
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Figure 6.3: Prior knowledge improves the quality of estimated speeds

Figure 6.3 shows the results of applying a prior distribution over speeds to the
GPSWalking application. The absurd spikes are removed from the data, and the 95%
confidence interval is much tighter, reflecting the extra information we have incor-
porated. In a real implementation, this prior distribution would be implemented
by an expert programmer and activated by the application programmer through the
constraint abstraction (Section 4.5.3), modifying the call to the GPS library:

Uncertain<Geocoordinate> GPSLib.GetGPSLocation(GPSLib.WALKING);

This abstraction absolves application programmers from having to explicitly identify
the right prior distribution for their use case, and instead asks them only to determine
which properties are applicable.

Summary

GPSWalking is an application that is trivial to translate from existing code to use the
uncertain type. This translation rewards the programmer with improved correctness,
by both reasoning correctly about absurd data, and eliminating it with added domain
knowledge. This type of complex logic would be difficult for even expert program-
mers to implement without the uncertain type, and certainly outside the realm of the
everyday programmer’s skill set. The uncertain type eases this burden by encapsulat-
ing the GPS error distribution, providing a transparent way to propagate this error
through computations, and an abstraction for incorporating extra domain knowledge
to improve the results. GPSWalking shows that the uncertain type can deliver on its
promise of helping non-expert programmers write applications that are more concise,
expressive, and correct.
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6.2 Digital sensor noise

This case study was performed by Todd Mytkowicz as part of our conference paper about
the uncertain type, which is currently under submission [Bornholt et al., 2013]. I include it
in this thesis because it demonstrates the success of the uncertain type in a situation where
ground truth data is available for evaluation.

The previous case study demonstrated the effectiveness of the uncertain type on
sensor data. It is difficult to evaluate improvement of GPS data since there is usually
no ground truth data available for comparison. This section presents a case study
that demonstrates how the uncertain type can improve the quality of sensor data in a
case where ground truth data is available, allowing us to quantitatively evaluate the
improvement.

Conway’s Game of Life is a cellular automaton that operates on a two-dimensional
grid of cells [Gardner, 1970]. The game is broken into generations (i.e., steps in time),
and in each generation, each cell is either alive or dead. To step from one generation
to the next, the game applies to each cell simultaneously the following rules that
simulate various phenomena in life:

1. A live cell with 2 or 3 live neighbours remains alive (survival)

2. A live cell with less than 2 live neighbours dies (underpopulation)

3. A live cell with more than 3 live neighbours dies (overcrowding)

4. A dead cell with exactly 3 live neighbours becomes alive (reproduction)

The game begins with an initial seed pattern, where each cell is either alive or dead.
Despite simple rules, the Game of Life has complex and interesting dynamics,

including patterns that remain constant, repeating patterns, and patterns that can
replicate themselves. Perhaps most surprisingly, the Game of Life is Turing com-
plete [Berlekamp et al., 2004].

I recast the Game of Life as SensorLife, a game featuring sensor data, by notic-
ing that we can view each cell as having eight digital sensors, one for each of its
neighbours. This sensor data will form the basis of this case study.

Identifying the distribution

The usual implementation of the Game of Life does not have sensors and therefore
has no sensor noise. In SensorLife, each cell has eight binary sensors, one for each
neighbour, that return either 1 (if the neighbour is alive) or 0 (if the neighbour is
dead). For this case study, we will artificially add noise to each of the sensors in
SensorLife. We take each binary sensor and add to it zero-mean Gaussian noise, with
a predefined standard deviation σ. We define three levels of noise, low, medium,
and high, with standard deviations σLow = 0.01, σMedium = 0.05, and σHigh = 0.1,
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respectively. Because each sensor has noise, and we know its distribution, we wrap
each sensor in the uncertain type, so that the sensor now has signature

Uncertain<double> SenseNeighbour(Cell me, Cell neighbour);

The resulting distribution is over real numbers since the reading is a binary 1 or 0
plus real-valued Gaussian noise.

Computing with distributions

To apply the rules to a cell, the Game of Life first counts the number of live neighbours
of the cell, using a function:

int CountLiveNeighbours(Cell me);

In SensorLife, we can view this step as taking the sum of the sensor values of each
neighbour, redefining CountLiveNeighbours:

Uncertain<double> CountLiveNeighbours(Cell me) {
Uncertain<double> sum = new Uncertain<double>(0.0);
foreach (Cell neighbour in me.GetNeighbours())

sum = sum + SenseNeighbour(me, neighbour);
return sum;

}

Because the errors in each sensor are independent of each other, this code suffices to
define the distribution of the final result.

Asking the right questions

After counting the neighbours, the Game of Life applies the four rules by a series of
four conditionals:

bool IsAlive = IsCellAlive(me);
int NumLive = CountLiveNeighbours(me);
if (IsAlive && NumLive < 2)

SetIsAlive(me, false);
else if (IsAlive && 2 <= NumLive && NumLive <= 3)

SetIsAlive(me, true);
else if (IsAlive && NumLive > 3)

SetIsAlive(me, false);
else if (!IsAlive && NumLive == 3)

SetIsAlive(me, true);

For SensorLife, CountLiveNeighbours now returns a distribution Uncertain〈Double〉,
and so each of the four conditionals involving NumLive is now a hypothesis test on
NumLive.E(), as described in Section 5.3. For example, the first rule is now:

if (IsAlive && NumLive.E() < 2.0)
SetIsAlive(me, false);

This conditional implicitly performs a hypothesis test at the 95% significance level.
For our evaluation below, we compute ground truth data by also calculating the

state of each cell without using the uncertain type; that is, we run SensorLife and
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the original Game of Life against the same state and compare their results. We also
vary the significance level of the hypothesis tests to demonstrate the trade-off that
hypothesis testing embodies.

Evaluation of SensorLife

We compare SensorLife to the original Game of Life across a number of configurations.
Each configuration consists of a confidence level for the hypothesis tests, and the
amount of noise added to the sensor (low, medium, or high, as described above).

For each configuration, we execute SensorLife 30 times. Each execution starts with
a newly randomised seed pattern on a 20× 20 board, continues for 25 generations,
and therefore evaluates 10 000 cells in total.

Figure 6.4 plots the number of incorrect decisions made by SensorLife as a func-
tion of the confidence level for hypothesis tests, at each of the noise configurations
(BayesLife will be introduced below). The naive error line indicates the number of
incorrect decisions made at the low noise level without the uncertain type, that is, if
the program just naively takes the noisy sensor values and uses them. The SensorLife
bars show the number of incorrect decisions made with the uncertain type at each
noise level.

As the confidence level increases, these results show that the accuracy of SensorLife
increases too. Even at very low confidence levels, SensorLife improves on a naive
approach. Insisting on high confidence reduces error rates by 25% to 99% depending
on the noise level.

Mitigating noise in this way has a cost, because the uncertain type must draw more
samples to satisfy higher confidence levels for each cell update. Figure 6.5 shows the
relationship between performance (on the x-axis) and accuracy (on the y-axis) at each
noise level. Each point on a noise level’s line is a different confidence level. These
results show that if the program insists on higher accuracy by choosing a higher
confidence level, the program must do more work to satisfy the conditionals. These
results also show that higher noise levels create more work for the uncertain type,
since as the noise level increases, the performance-accuracy frontier shifts outwards.

Adding domain knowledge

SensorLife eliminates a significant amount of sensor noise, especially at lower noise
levels. To improve these results even further, an expert programmer can further
model the noise distribution as domain knowledge. So far, the program has not
demonstrated any knowledge of the fact that the underlying true state of a cell is
binary, either 1 or 0, and that it is the sensor noise that creates real-valued readings.
This represents domain knowledge which can be encoded as a prior distribution.

Let v be the raw, noisy sensor reading, and let r be the underlying true state
of the cell being sensed, which of course we do not know. Then we know that
v = r + Normal(0, σ) for some standard deviation σ that we also know. Because we
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know that r is binary, we essentially have two hypotheses for r: H0 says that r = 0,
and H1 that r = 1. Bayes’ theorem allows us to calculate a posterior probability

Pr[H0|v] =
Pr[v|H0] · Pr[H0]

Pr[v]

and similarly for Pr[H1|v]. To improve an estimate, we will calculate these posteriors
and fix the result to either 0 or 1 depending on which probability is higher.

To use Bayes’ theorem for these posteriors requires us to define (i) the prior
likelihoods of H0 and H1, and (ii) a likelihood function to calculate Pr[v|H0] and
Pr[v|H1]. Note that because will only be comparing the posteriors, and they share a
common denominator, we need not calculate Pr[v].

We assume for this example that Pr[H0] = Pr[H1] = 0.5, that is, that we have no
prior knowledge about whether a cell is more likely to be alive or dead. Because we
know the error model is Gaussian, we also know the likelihood functions: Pr[v|H0]

is the probability that 0 + Normal(0, σ) = v, and similarly Pr[v|H1] is the probability
that 1 + Normal(0, σ) = v. Computing these values only requires us to evaluate the
Gaussian distribution’s density function.

We can therefore calculate the posterior probabilities Pr[H0|v] and Pr[H1|v]. The
output of the sensor will be 1 if H1 is more likely (i.e., Pr[H1|v] is larger), and 0
otherwise. We call this updated version of the program BayesLife.

Evaluating BayesLife

We evaluate BayesLife only on the high noise level (σHigh = 0.1) from SensorLife.
Figure 6.4 shows the performance of BayesLife. In fact, BayesLife makes no incorrect
choices even at the lowest confidence levels, and so there is no bar in the figure.

BayesLife achieves these results without the performance impact that SensorLife
suffered at high confidence levels. In Figure 6.5, the single point for BayesLife is circled
in the lower-left corner. BayesLife requires only a handful of samples to eliminate
virtually all error in the noisy Game of Life, because it exploits domain knowledge.

Summary

This case study added random noise to sensor readings from the Game of Life to
illustrate quantitatively that the uncertain type can help correct errors in noisy data.
SensorLife demonstrates how a non-expert programmer would use the uncertain type,
consuming a distribution from an API and making only minimal changes to their
program. In this case, the uncertain type significantly reduced the incidence of errors,
at a small performance cost. BayesLife demonstrates how an expert programmer
can bring domain knowledge to bear on a problem using the uncertain type. The
expert programmer used the fact that the underlying sensor value was binary to
eliminate the sensor noise, making no incorrect decisions in this case. Although
synthetic, SensorLife and BayesLife demonstrate concretely that with the uncertain
type, programmers can improve the correctness of programs that use uncertain data.
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6.3 Approximate computing

Section 2.5.1 describes approximate computing, an emerging field of research that ex-
plores trading accuracy for performance or efficiency. Many programs do not require
the computational correctness guaranteed by the underlying hardware, and can cope
with some amount of error in some calculations. Approximate computing exploits
this property to improve performance and energy efficiency.

Machine learning approximates functions by extrapolating from a set of training
inputs and outputs. Often a machine learning algorithm results in a prediction func-
tion that is much cheaper to evaluate than the original function, but this performance
comes at the cost of accuracy. This trade-off makes machine learning a good fit for
approximate computing, especially if the prediction function is generic enough to be
executed by specialised machine learning hardware. This case study builds on Parrot,
a compiler transformation that trains a neural network to approximate a segment
of code [Esmaeilzadeh et al., 2012b]. The neural network is specified by a vector
of weights and is executed on a specialised neural network hardware unit. If the
segment of code being approximated is sufficiently hot, and the program can tolerate
approximate results, this transformation delivers significant performance gains.

The downside of such a compiler transformation is that there is no way for pro-
grammers to reason about the error the transformation introduces into their com-
putations. Common machine learning practice trains a single maximum likelihood
model and uses it to predict a single output for each input, ignoring the uncertainty
in the prediction. This case study introduces a modified version of the Parrot trans-
formation, called Parakeet, that uses the uncertain type to reason about the error the
approximation induces. Parakeet expresses and reasons about uncertainty in approx-
imate computing. It therefore combines correctness and approximate computation,
to determine if the approximation is accurate enough for the programmer’s specific
needs.

Identifying the distribution

Parakeet uses a Bayesian formulation of a neural network to define the error distribu-
tion it returns. A neural network is a function y(x, w) that approximates the output
of a target function f (x) by evaluating a fixed network of functions, with coefficients
combining the functions given by the weight vector w. The common formulation
of a neural network learns a single weight vector w that is then used for prediction.
On the other hand, A Bayesian formulation learns a posterior predictive distribu-
tion p(y|x,D), a distribution over possible predictions of the value of f (x) given the
training data set D.

Learning the posterior predictive distribution is intractable in general, and so we
must turn to approximation. We adopt a hybrid Monte Carlo sampling approach, first
implemented for neural networks by Neal [Neal, 1994]. The hybrid Monte Carlo
sampler draws samples from the posterior distribution p(w|D) of weight vectors,
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1 float Sobel(float[3][3] p) {
2 float x, y, r;
3 x = p[0][0] + 2*p[1][0] + p[2][0];
4 x -= p[0][2] + 2*p[1][2] + p[2][2];
5 y = p[0][0] + 2*p[0][1] + p[0][2];
6 y -= p[2][0] + 2*p[2][1] + p[2][2];
7 r = sqrt(x*x + y*y);
8 r = min(0.7070, r);
9 return r;

10 }

Figure 6.6: The Sobel operator calculates the gradient of image intensity

which we then use to approximate the posterior distribution as

p(y|x,D) =
∫

p(y|x, w)p(w|D)dw

by Monte Carlo integration. The intuition of the hybrid Monte Carlo sampler is that
each sample from p(w|D) describes a configuration of the neural network. Those
configurations that perform well on the training data will have higher values of
p(w|D) and therefore are more likely to be sampled. Different configurations can
give vastly different predictions on unseen data. By considering more configurations
of the neural network, weighted by their performance on the training data, we get a
better picture of how the prediction generalises to unseen data.

The downside of the Bayesian approach is that it is more expensive than the com-
mon single-configuration approach. The hybrid Monte Carlo sampler must evaluate
multiple neural networks (one per sample), and requires hand tuning to achieve
practical rejection rates. There are other approximations to the posterior predictive
distribution which strike different trade-offs. A Gaussian approximation to the poste-
rior p(y|x,D) is trivial to sample, making its performance much closer to Parrot, but
is inaccurate when the Gaussian approximation is a poor one [Bishop, 2006].

Asking the right questions

We evaluate the Parakeet transformation using the Sobel benchmark from the original
evaluation of Parrot [Esmaeilzadeh et al., 2012b]. The Sobel operator s(p), shown in
Figure 6.6, computes the gradient of image intensity at a pixel p. It considers a 3× 3
window centred on the pixel p, and uses the (greyscale) intensity of each pixel in the
window to determine the gradient of intensity at p.

The Sobel operator is used for edge detection in images. If the gradient of intensity
at the pixel p is high, there is a sharp change in intensity at that point. This suggests
an edge exists in the image at that point. Formally, to decide whether an edge exists
at pixel p, the edge detection algorithm evaluates the conditional s(p) > α for some
detection threshold α ∈ [0,

√
2].

Esmaeilzadeh et al. showed in their evaluation that Parrot could approximate the
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value of s(p) with average error of 3.44% [Esmaeilzadeh et al., 2012b]. But they did
not consider how this error manifests in the programs where the Sobel operator is
used. The uncertain type explicitly exposes this error to the program, and this case
study evaluates its effects.

Evaluation

We use Parakeet to approximate the Sobel operator, using a training set of 5000 inputs
and outputs. We evaluate the approximation on a test set of 500 inputs. Both training
and test sets are randomly sampled from a single test image, as in the original Parrot
evaluation, to simulate a real-world distribution of inputs.

The training process learns an approximate Sobel operator ŝ(p). For each test
input p, we evaluate the ground truth boolean value s(p) > 0.1, and evaluate the
conditional ŝ(p) > 0.1 using the uncertain type. We test the two different styles
of conditional that the uncertain type provides: comparing means (E[ŝ(p)] > 0.1)
and evidence at the 90th percentile (Pr[ŝ(p) > 0.1] > 0.9). We evaluate both these
conditionals using different confidence levels for the implicit hypothesis test they
represent.

Figure 6.7 shows that in most configurations, Parakeet makes fewer mistakes than
Parrot. While Parrot can approximate the Sobel operator with a low average error
of 3.44%, when these approximations are used in conditionals the error becomes
much higher – for the test set, 33% of the Parrot estimates resulted in an incorrect
decision being made for the conditional ŝ(p) > 0.1. The uncertain type for the
expected value conditional achieves the same error rate at low confidence intervals,
but improves significantly as the confidence level increases. The 90th percentile
conditional, which requires even stronger evidence, achieves even better results. At
the highest confidence level, the 90th percentile conditional makes 45% fewer incorrect
decisions than Parrot.

Figure 6.8 shows that the improved correctness of the uncertain type comes at a
relatively low performance cost. For example, even the highest confidence levels for
the expected value conditional require fewer than 30 samples. The 90th percentile
conditional achieves error rates of 20% at most confidence levels (40% better than
Parrot), costing less than 15 samples. Of course, as demonstrated repeatedly in this
thesis, the confidence level allows the programmer to trade performance for accuracy,
according to the needs of their specific program.

Summary

Parakeet demonstrates that the uncertain type helps improve the correctness of ap-
proximate computing. Existing work in the field tends not to consider the effect of the
error on programs, beyond a general statement along the lines of “the computation is
robust to error”. The uncertain type allows programmers, not researchers, to be the
judge of this robustness. Programmers can explicitly reason about the error in their
approximations. While the results of this case study are early, they demonstrate that
the uncertain type is a promising programming model for approximate computing.
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Figure 6.7: The uncertain type reduces incorrect decisions in approximate programs
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6.4 Discussion

The uncertain type is an abstraction for addressing uncertainty in programs. Un-
certain data occurs in a number of domains, and we have only sampled three. The
case studies in this chapter choose three domains (smartphones, sensors, and approx-
imate computing) for which the uncertain type is particularly appropriate, because
these are domains where (a) expert and non-expert programmers work side by side,
and (b) uncertainty is currently underappreciated. The results of these case studies
demonstrate that the uncertain type is a good fit for the problems these domains face,
because it bridges the gap between experts and non-experts.

The experience of using the uncertain type in these case studies exposes the po-
tential that new abstractions may have to change how both expert and non-expert
programmers think about and solve problems involving uncertainty. Preparing these
case studies required explicitly considering the effects of random error throughout
the code, a compulsion that is sorely lacking in existing programming models. More-
over, using the uncertain type in these case studies was in most cases intuitive and
straightforward. The results demonstrate concretely that the uncertain type improved
the quality of these programs. Together, these case studies demonstrate my thesis
that the uncertain type helps programmers to write programs that are more concise,
expressive, and correct.
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Chapter 7

Conclusion

7.1 Future Work

The uncertain type brings uncertainty into the programming mainstream, suggesting
a number of future lines of exploration. If programs consider uncertainty, they will
be able to more robustly respond to error when it does arise. They can also reason
about error over time in a principled way. There is also considerable room for further
work on the semantics, implementation, and usage of the uncertain type itself. Below
are four areas of future research that could be particularly fruitful.

Sensor applications. Adopting the uncertain type means that programmers make
explicit the effect of uncertainty on their programs. Without the right abstraction,
the robustness of a program to random error is an implicit property without any
clear manifestation. For example, most work on approximate computing involves
programs that are amenable to approximation, without any description of how this
property is identified. Some recent work attempts to ascribe a formal definition of
robustness to programs [Chaudhuri et al., 2011], but this work does not make clear
how a program becomes robust to random error. The uncertain type makes this prop-
erty explicit, because programmers must declare how variance affects computations
(which is not to say that every program using the uncertain type is robust to error).

If programs reason correctly about error, we can exploit their robustness to trade
accuracy for efficiency, as approximate computing does for computations. In partic-
ular, we can use lower-power sensors for measurements like GPS. The majority of
applications do not require sub-metre accuracy from the GPS, and the uncertain type
provides a practical way to use less accurate GPS readings while still considering
the effect of the accuracy degradation. The uncertain type runtime could even be
connected further into the hardware, to vary power usage depending on the required
accuracy of the specific consuming computation.

A programming model for uncertainty. The case studies in Chapter 6 are small
examples of the promise of the uncertain type as a programming model. The use
of the uncertain type as an interface to approximate computing deserves further
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exploration, as it provides the missing link between the hardware and the end result
that programmers otherwise must try to reason about implicitly. Potentially even
more promising is applying the uncertain type to machine learning. Many popular
machine learning algorithms have Bayesian formulations that provide predictive
distributions rather than singular predictions. The uncertain type makes reasoning
about the error in machine learning an online rather than offline exercise. Rather
than testing a predictor on one test set and measuring its error offline, the uncertain
type binds predictions to their error at run time, forcing those who consume the
predictions to also consider that they are imperfect and may be wrong.

Improving estimates. By encapsulating distributions, the uncertain type unlocks
the power of Bayesian inference, allowing programmers to improve the quality of an
estimate using prior information. But rather than being static, this prior information
can be learned over time. For example, a GPS sensor can learn a user’s location history
over time, and use these past results as an indicator of future behaviour. There are
also more abstract sources of prior information to explore. For example, calendar
information on a smartphone can be used to improve GPS fixes, by noticing that if a
user has an appointment at a certain time, they are likely to be at the location of that
appointment at that time. The uncertain type provides a simple, principled way to
reason about prior knowledge, and the sampling function representation provides a
tractable way to specify even complex distributions that have no closed form.

Optimising the uncertain type. Chapter 5 focused on performance, in order to
make the uncertain type not only a theory but a practical reality. But more work is
necessary to bring it closer to the performance of current abstractions, especially in
the low-resource smartphone environment where efficiency is critical. One trivial
optimisation is to provide a family of closed-form distributions which short-circuit
the lazy evaluation and hypothesis testing semantics when they are not necessary.
For example, the mean of the sum of two Gaussian distributions can be computed
in constant time in closed form. There is also considerable scope to optimise the
lazy evaluation infrastructure, noticing its similarities to both probabilistic graphical
models (from machine learning) and lazy evaluation in other programming languages.
For example, it may be possible to apply a series of compiler transformations to lazy
evaluation trees, such as optimising loop-carried dependencies that otherwise would
produce a deep expression tree.

7.2 Conclusion

The problems programmers are solving are increasingly ambitious and ambigu-
ous, reasoning about data from the smallest smartphone sensor to overwhelming
databases. What these data sources and the programs that compute with them have
in common is that they introduce uncertainty. This problem is not just abstract; this
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thesis shows that programs experience three types of uncertainty bugs when they fail
to consider uncertainty.

Programming languages encourage programmers to abrogate their responsibili-
ties with respect to uncertainty by providing insufficient abstractions and tools. Most
programming languages represent uncertain data in the same fashion as other data,
using simple discrete types that ignore error. This incongruity drives most program-
mers to ignore uncertainty. Other abstractions for uncertain data also fall short in
one or more of accessibility, efficiency, or expressivity. For example, probabilistic
programming languages are inaccessible to the increasing audience of non-expert
programmers that deal with uncertainty. Current abstractions, such as for GPS data,
are not expressive enough to ask the questions that uncertainty demands, because
they mistakenly abstract uncertainty away as if it were only an implementation de-
tail. The challenge this thesis confronts is whether an abstraction for uncertainty
can be suitably accessible, efficient, and expressive as to be practical for everyday
programmers.

I contend that the uncertain type answers the challenge. The uncertain type, or
Uncertain〈T〉, is a programming language abstraction for uncertain data that focuses
on an accessible interface for non-expert programmers.

The semantics of the uncertain type provide an accessible and expressive abstrac-
tion for identifying probability distributions, computing with them, asking questions
using conditionals, and improving estimated data with domain knowledge. Through-
out these steps the uncertain type balances correctness with ease of use, a trade-off
existing work does not adequately consider. Insights into random sampling, lazy
evaluation, data dependencies, and hypothesis testing work in concert to make this
abstraction efficient and tractable for use in real-world programs.

Three case studies demonstrate that the uncertain type achieves its goals. The un-
certain type improves the accuracy and expressiveness of smartphone GPS libraries,
eliminates random noise in a simple digital sensor, and makes approximate comput-
ing more accurate and explicit in its trade-offs. The experience of these case studies
exposes the potential of the uncertain type as a programming model for thinking
about and solving problems involving uncertainty, especially because it compels pro-
grammers to consider the effect of error on their programs, while not requiring expert
knowledge of probability theory.

Uncertainty is not a malignance to be avoided. It is an important part of many
problems, and a mastery of uncertainty gives programmers the power to create pro-
grams that ask sophisticated questions about evidence and belief. Just as many other
scientific fields have principled mechanisms for making decisions under uncertainty,
so too should programming. The uncertain type embraces uncertainty, while recog-
nising that most programmers are not experts in probability theory. By making
uncertainty a primitive first-order type, non-expert programmers write programs that
are more concise, expressive, and correct.
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