Copyright
by
Byeongcheol Lee
2011

The Dissertation Committee for Byeongcheol Lee
certifies that this is the approved version of the following dissertation:

Language and Tool Support for Multilingual Programs

Committee:

Kathryn S. McKinley, Supervisor

William R. Cook

Robert Grimm

Martin Hirzel

Miryung Kim

Calvin Lin

Language and Tool Support for Multilingual Programs

by

Byeongcheol Lee, B.E., B.E., M.A.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August 2011

Acknowledgments

I would like to express my sincere gratitude to Kathryn McKinley for
supporting and mentoring me. Kathryn has listened carefully to my research
ideas and positively guided my progress. She has given me valuable feedback
and encouragement so that I have made the right decisions at critical times.
As a result, I have grown as a scholar over the course of my doctoral program,

and I am confident to pursue an academic career.

Martin Hirzel and Robert Grimm have been enthusiastic supporters,
sharing their research skills. Calvin Lin, William Cook, and Miryung Kim read
long documents, attended my talks, and gave valuable feedback. I am thankful
for guidance and help from department administrators: Lindy Aleshire, Lydia
Griffith, and Gem Naivar. I thank Eileen McGinnis for proofreading this long

dissertation.

Living and studying in Austin has been a great pleasure due to many
kind people in the department: Michael Bond, Katherine Coons, Taewon Cho,
Taehwan Choi, Curtis Dunham, Boris Grot, Sung Ju Hwang, Jungwoo Ha,
Dong Li, Ivan Jibaja, Maria Jump, Chang Hwan Peter Kim, Doo Soon Kim,
Jaechul Kim, Jongwook Kim, Joohyun Kim, Sangman Kim, Milind Kulkarni,
Gene Moo Lee, Juhyun Lee, Sangmin Lee, Bert Maher, Na Meng, Donald
Nguyen, Dimitris Prountzos, Donghyuk Shin, Han Hee Song, Jennifer Sartor,
Sooel Son, Suriya Subramaniam, Xin Sui, and Ben Wiedermann. They have

given me both technical and personal support.

Samsung Foundation of Culture generously provided me with a four-

v

year fellowship for my Ph.D. I am also grateful to the individuals at IBM
Research who invited me for collaborative research and funded me with an

internship.

Lastly and most importantly I would like to thank my parents as well

as my brother and sister for their selfless love and support.

Language and Tool Support for Multilingual Programs

Publication No.

Byeongcheol Lee, Ph.D.
The University of Texas at Austin, 2011

Supervisor: Kathryn S. McKinley

Programmers compose programs in multiple languages to combine the
advantages of innovations in new high-level programming languages with decades
of engineering effort in legacy libraries and systems. For language inter-
operation, language designers provide two classes of multilingual programming
interfaces: (1) foreign function interfaces and (2) code generation interfaces.
These interfaces embody the semantic mismatch for developers and multilin-
gual systems builders. Their programming rules are difficult or impossible
to verify. As a direct consequence, multilingual programs are full of bugs at

interface boundaries, and debuggers cannot assist developers across these lines.

This dissertation shows how to use composition of single language sys-
tems and interposition to improve the safety of multilingual programs. Our
compositional approach is scalable by construction because it does not require
any changes to single-language systems, and it leverages their engineering ef-
forts. We show it is effective by composing a variety of multilingual tools that
help programmers eliminate bugs. We present the first concise taxonomy and
formal description of multilingual programming interfaces and their program-

ming rules. We next compose three classes of multilingual tools: (1) Dynamic

vi

bug checkers for foreign function interfaces. We demonstrate a new ap-
proach for automatically generating a dynamic bug checker by interposing on
foreign function interfaces, and we show that it finds bugs in real-world ap-
plications including Eclipse, Subversion, and Java Gnome. (2) Multilingual
debuggers for foreign function interfaces. We introduce an intermediate
agent that wraps all the methods and functions at language boundaries. This
intermediate agent is sufficient to build all the essential debugging features
used in single-language debuggers. (3) Safe macros for code generation
interfaces. We design a safe macro language, called Marco, that generates
programs in any language and demonstrate it by implementing checkers for
SQL and C++ generators. To check the correctness of the generated pro-
grams, Marco queries single-language compilers and interpreters through code
generation interfaces. Using their error messages, Marco points out the errors

in program generators.

In summary, this dissertation presents the first concise taxonomy and
formal specification of multilingual interfaces and, based on this taxonomy,
shows how to compose multilingual tools to improve safety in multilingual
programs. Our results show that our compositional approach is scalable and

effective for improving safety in real-world multilingual programs.

vil

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xiii

List of Figures Xiv

Chapter 1. Introduction 1

1.1 Multilingual Programs 1

1.2 Interposition in Composing Multilingual Systems 3

1.3 Contributions Lo 6

1.4 Impact L 8
Chapter 2. The Essence of Multilingual Programming Inter-

faces 9

2.1 Motivating Exampleo 9

2.2 Foreign Function Interfaces 11

2.2.1 Thread State Constraints 14

2.2.2 Type Constraints 16

2.2.3 Resource Constraints 18

2.2.4 Generality L 20

2.3 Code Generation Interfaces 20

2.3.1 Syntactic Constraints 21

2.3.2 Scope Constraints 22

2.3.3 Semantics Constraints 23

2.4 Taxonomy of Multilingual Systems 23

viii

Chapter 3. Automatically Finding Bugs at Foreign Language

3.1

3.2
3.3

3.4

3.5

3.6

Interfaces 27
An Example JNI Bug and Detector 28
3.1.1 Example FFIBug 28
3.1.2 Example FFI Bug Detector 31
Dynamic Analysis Synthesis 34
State Machines oL 37
3.3.1 Thread State Constraints 37
3.3.2 Type Constraints 42
3.3.3 Resource Constraints 47
Generalizationo 54
3.4.1 Python/C Constraint Classification. 25
3.4.2 Synthesizing Dynamic Checkers 56
Results 59
3.5.1 Methodology 59
3.5.2 Performance L. 60
3.5.3 Coverage of Jinn and JVM Runtime Checking 62
3.5.4 Usability with Open Source Programs 64

3.5.4.1 Subversion 65

3.5.4.2 Javargnome 67

3543 Eclipse3.4 L. 68
SUMMATY o o oo 68

Chapter 4. Interactively Examining Bugs across Language In-

4.1

4.2

terfaces 70
Debugger Composition 71
4.1.1 Debugger Features 71
4.1.2 Intermediate Agent 72
4.1.3 Language Transition Interposition 73
4.1.4 Debugger Context Switching 74
4.1.5 Soft-Mode Debugging 7
Blink Implementation 78
4.2.1 Blink Debugger Agent 78

1X

4.3

4.4

4.5

4.6

4.7

5.1
5.2
5.3

4.2.2 Context Management 82

4.2.3 Execution Control 84
4.2.4 Data Inspection 87
Jeannie Mixed-Environment Expressions 87
4.3.1 Convenience Variables 89
4.3.2 Mixed-Environment Data Transfer 90
4.3.3 Expression Evaluation (REPL) 91
Evaluation oo 93
4.4.1 Methodology 94
4.4.2 Building Blink 00000000 94

4.4.2.1 Construction Effort 94

4.4.2.2 Portability o 96

4.4.2.3 Portability Tests 97
4.4.3 Time and Space Overhead 99
4.4.4 Feature Evaluation 103
Generalizationo 107
4.5.1 More Languages, Same Environment 108
4.5.2 More Environments, Same Languages 109
Language Extension Case Study: Debugging Jeannie. 111
4.6.1 Context Management 113
4.6.2 Execution Control 114
4.6.3 Data Inspection L. 115
SUMMATY . . . o o v o 115

Chapter 5. Code Interfaces: Generating Programs in any Lan-

guage 116
The Marco Language 117
The Marco Analysis Framework 122
Checking Syntactic Well-Formedness 125
5.3.1 Syntax Oracle Algorithm 125
5.3.2 Syntax Oracle Example 128
5.3.3 Handling Masked Syntax Errors in C++4 129
Checking Naming Discipline 131

5.4

5.4.1 Free-Names Oracle 132

5.4.2 Captured-Name Oracle 134
5.4.3 Static Data-Flow Analysis 137
5.4.4 Dynamic Data-Flow Analysis 140

5.5 Implementation L. 141
5.5.1 Primitive Functions 141
5.5.2 Foreign Function Interface. 141
5.5.3 Factory Method Pattern 142

56 Results 143
5.6.1 Methodology 144
5.6.2 Expressiveness and Safety 145
5.6.2.1 Micro-Benchmarks 145

5.6.2.2 Aggregate Operator 147

5.6.3 Scalability 0oL 150

.7 Summary 152
Chapter 6. Related Work 153
6.1 Foreign Function Interfaces Safety 153
6.1.1 Safe Interface Languages 155
6.1.2 Static FFI Bug Checkers 156
6.1.3 Dynamic FFI Bug Checkers 157
6.1.4 State Machine Specifications 157

6.2 Code Generation Interface Safety 158
6.2.1 Language-Specific Safe Macro Systems 158
6.2.2 Language-Agnostic Unsafe Macro Systems 161
6.2.3 Language-Agnostic Syntax Embedding Systems 161
6.2.4 Using Messages from Black-Box Compilers. 162

6.3 Multilingual Debuggers L. 163
6.3.1 Mixed-Environment Debuggers 163
6.3.2 Single-Environment Multilingual Debuggers 164
6.3.3 Portable Debuggers 164
6.3.4 Mixed-Language Interpreters 165

X1

Chapter 7. Conclusion 166
Bibliography 168

Vita 180

xil

2.1
2.2

3.1

4.1
4.2

4.3
4.4

5.1
5.2
2.3

6.1

List of Tables

(Classification and number of JNI constraints. 14
Taxonomy of multilingual programming rules including how and
which tools check them. 24
Jinn performance on SPECjvm and DaCapo with HotSpot. . 61
Debugger SLOC (source lines of code). 95
Performance characteristics of the Blink debug agent with Hotspot
VM 1.6.0_.10. 100
Studied JNI bugs. 102
Impact of JNI bugs under different configurations. 102
Helper fragments used in the syntax oracles. 126

Oracle analysis results for the fragments in the micro-benchmarks. 146

Oracle analysis results for the fragments in the Aggregate op-
erator. L 148

JNI pitfallso 154

xiil

2.1

2.2
2.3

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18

3.19

4.1

List of Figures

A screenshot of the Eclipse 3.5.1 interactive development envi-

ronment running on Linux. o000 10
A Java native method in Eclipse SWT 3.5.1. 11
A C++ method in the Mozilla Application Framework 1.9.2 . 12
JNT invalid local reference error in a call-back routine. 29

A resource tracking state machine for local references and the
mapping from state transitions to Java/C language transitions. 30

Wrapper for function Java_Callback_bind 33
Wrapper for function CallStaticVoidMethodA 33
Structure of Jinn Synthesizer. 36
A state machine for JNIEnv* state constraints. 38
A state machine for exception state constraints. 39
A state machine for critical section state constraints. 41
A state machine for fixed typing constraints. 44
A state machine for entity-specific typing constraints. 45
A state machine for access control constraints. 46
A state machine for nullness constraints. 47
A state machine for pinned or copied string or array. 49
A state machine for monitor constraints. 51
A state machine for global reference or weak global reference. . 52
A state machine for local reference. 53
Python/C dangling reference error. The borrowed reference first
becomes a dangling reference when pythons dies. o7
Representative JVM and Jinn error messages using a microbench-
mark that violates the exception state constraint. 63
Time-series of acquired local references with leak and its fix. . 65
Agent-based debugger composition approach. 72

X1v

4.2
4.3
4.4
4.5

4.6

4.7
4.8

4.9

4.10

5.1
2.2
2.3
0.4
2.5

2.6
2.7

2.8

Debugger context switching example.
Transitions between Javaand C..
JNI mutual recursion example.

Reading the expression x = $y + ‘z when the current lan-
guage is Java.o Lo

Evaluating the expression x = $y + ‘z when the current lan-
guageis Java.

Blink portability and SLOC.

Time overhead of the Blink debug agent with Hotspot VM
1.6.0.10. .« . o oL

Environmental transitions and time overhead for the Blink de-
bug agent with Hotspot VM 1.6.0.10.

Jeannie line number example.00 0L

Marco code for synch example.
Marco grammar.
Marco code for generating code in different languages.
The Marco architecture.

Example of accidental name capture bug when using the C pre-
PrOCESSOT. . v v v o e i e e e

Transfer functions for the naming-discipline analysis.

Example for intentional name capture when using Marco to
generate C++code.

Java class hierarchy for oracle factories.

XV

75

91

91
97

101

103
112

117
119
120
122

131
136

138
143

Chapter 1

Introduction

The hypothesis of this dissertation is that multilingual programming
tools can be built with relatively low effort by combining single-language tools.
We first explains the need for and value of designing multilingual tools. We
next introduce our taxonomy and formal specification of multilingual inter-
faces, and our approach for composing their tools. We conclude with sugges-

tion for how this dissertation could affect language designers and practitioners.

1.1 Multilingual Programs

Programmers compose programs in multiple languages to combine the
advantages of innovations in new high-level programming languages with decades
of engineering effort in legacy libraries and systems. For instance, Java de-
signers delegate low-level operations, such as OS system calls and hardware
accesses, to low-level native C code. Programmers use multilingual bindings to
write their programs in high-level languages such as Java, C#, OCaml, PHP,
and JavaScript while consuming routines from libraries written in C/C++.
These libraries include legacy code and highly tuned architecture-specific al-
gorithms. Multilingual systems pervade our critical infrastructure. For ex-
ample, front-end web browsers, middle-tier application servers, and backend
web servers all coordinate multiple languages, such as HTML documents,

JavaScript programs, and SQL queries.

For language inter-operation, designers provide two classes of multi-
lingual interfaces: (1) foreign function interfaces and (2) code generation in-
terfaces. The difference between them is whether the programs in different
languages exchange data (foreign function interface) or code (code genera-
tion interface). Foreign function interfaces include the Java Native Interface
(JNI), Python/C API, and OCaml FFI. These interfaces are public functions
exposed to virtual machines and interpreters for purpose of exchanging data.
Code generation interfaces are stream channels from a program to the compiler
or interpreter of a target language. For instance, a Java web program sends
SQL queries to the back-end database management system. Using code gen-
eration interfaces, a program in one language generates and executes another

program in a different language.

These interfaces result in a semantic mismatch that compromises end-
to-end safety. For instance, Java native methods must make up for the differ-
ence between the automatic memory management policy in Java (e.g., garbage
collection) and manual memory management policy in C/C++ (e.g., malloc
and free). Multilingual programming interfaces are very hard to use correctly
because they have thousands of programming rules. Some of these rules can-
not be statically verified. As a direct consequence, multilingual programs are
full of interface bugs [25,26, 43,45, 48, 75-77]. Worse, multilingual program-
ming interfaces prevent debuggers from examining code language barriers. For
instance, Java debuggers cannot debug C code because it is outside of the Java
Native Interface while C debuggers cannot debug Java code because it is inside

the Java Native Interface.

In previous approaches for checking and debugging multilingual pro-

grams, programmers must learn new language constructs or annotations [8,

35,74], or tool writers expend significant effort to retarget to additional pro-
gramming languages [26,32, 40,43, 48,62, 66,76, 77,83]. Consequently, these
solutions do not scale to multiple languages. In other words, they are either
nonexistent, or a single monolithic tool must reason about all languages at

once.

1.2 Interposition in Composing Multilingual Systems

The goal of this dissertation is to significantly decrease the complexity
of building multilingual tools to improve the safety of multilingual programs.
For this purpose, we avoid re-implementing all runtime systems, compilers,
interpreters, and debuggers for single programming languages. Instead, we
interpose on multilingual programming interfaces in order to compose multi-
lingual tools. For instance, our multilingual tools wrap Java native methods
and JNI functions. This compositional approach scales well to many languages
and their interfaces for two reasons. First, it does not require any change to
single-language tools. Second, it leverages all the engineering effort that has

been applied to develop single-language tools.

Given this interposition principle, we show that it can be effective to
compose multilingual tools. This dissertation provides the first principled ap-
proach for describing and reasoning about key programming language semantic
elements, between which multilingual tools must communicate and translate.
We first formalize multilingual programming interfaces (Chapter 2). With this
specification, we show how to design and compose three classes of multilin-
gual tools: dynamic bug checkers for foreign function interfaces (Chapter 3),
multilingual debuggers for foreign function interfaces (Chapter 4), and macro

systems for code generation interfaces (Chapter 5).

Multilingual Programming Interfaces. Chapter 2 describes two
dominant multilingual interfaces: foreign functions and code generation. Using
foreign function interfaces, programs in different languages exchange code and
data at the granularity of the functions and methods. Participating programs
must respect different programming language semantics and translate between
thread states, types, and resources. Using code generation interfaces, a pro-
gram in one language manufactures a program in another language. Then, it
delegates the execution of the program to compilers and interpreters. The gen-
erating program must respect syntax, scope, and types in the target language.
We introduce the first formal specification and taxonomy of multilingual in-
terfaces. The specification eases the multilingual tool developer’s work and

helps users by simplifying 1,500+ rules to a dozen small state machines.

These multilingual programming interfaces provide a foundation for
the principle of interposition. These interfaces define clearly boundaries among
different languages. To interpose foreign function interfaces, we wrap functions
and methods. To interpose code generation interfaces, we execute the functions

and methods of the compilers and interpreters that receive programs.

Dynamic Bug Detection for Foreign Function Interfaces. Chap-
ter 3 shows how to design and build a dynamic bug checking tool. Our dynamic
bug checkers wrap all the methods and functions at language boundaries. They
keep track the data values exchanged in language transitions. This transition
history is summarized as a collection of our state machines that change their
states due to language transition events. The error states in the state machines

indicate that the program violates FFI constraints.

Our dynamic bug detectors for Java and Python interpose on language

transitions and do not require any changes in the multilingual programs and

single language systems. Dynamic bug checkers add only what is necessary at
the language boundary. Our Java tool detects bugs in real-world applications
including Eclipse, Subversion, and Java Gnome. A large fraction of the bugs

we reported were confirmed and fixed.

Multilingual Debuggers for Foreign Function Interfaces. Chap-
ter 4 explores the design and implementation of composable multilingual de-
buggers. Our intermediate agent wraps all the methods and functions at lan-
guage boundaries. Then, it solves all the implementation problems in com-
posing multilingual debuggers out of single language debuggers. For instance,
programmers cannot run any jdb queries when gdb suspends the debugee.
To activate jdb from a C/C++ breakpoint, we ask gdb to activate a Java
breakpoint in the agent. This gdb command wakes up jdb transparently
without relying on how gdb and jdb are implemented. We show that this
intermediate agent is sufficient to compose all the essential debugging features

from multiple debuggers.

Our composition method does not require any changes in single lan-
guage debuggers, but it implements only what is necessary between single
language debuggers. We demonstrate this approach by building debuggers for
Java and C, and Jeannie [35]. The result is a powerful debugger that controls

multiple programming languages.

Macro Systems for Code Generation Interfaces. Chapter 5 illus-
trates that our interposition principle extends to syntax checkers for code gen-
eration interfaces. To improve safety in these interfaces, we designed a macro
language, Marco, that generates programs in many languages and demonstrate
it by implementing checkers for SQL and C++ generators. To check the well-

formeness of the generated programs, we devise an oracle query system based

on code generation interfaces. Our Marco system sends query programs to
these interfaces. Based on the error messages, it statically and dynamically

points out the errors in the Marco programs.

Our Marco system practices the principle of interposition in code gen-
eration interfaces. It does not require any change in target language systems,
including C++ compilers and relational database management systems. In-
stead, it introduces an oracle query analysis framework that takes as plug-in
components the compilers and interpreters that recognize syntactic, seman-
tic, scope rules in the target languages. The analysis framework queries the
compilers and interpreters about the generated programs by sending program
fragments and receiving the error messages. The result is an error checking

system for macros that scales to many languages.

1.3 Contributions

This dissertation is the first to show how to compose multilingual tools.

The contributions include:

1. Taxonomy and Specification of FFI Constraints into State Machines. We
show FFI constraints are derived from language semantic mismatch in
thread states, types, and resources. We encode class of constraints as
a few state machines where language transitions change states and an
error state indicates violation of an FFI constraint. Based on our insight
on how to map from FFI constraints and language transitions to state
machines and state transitions, we synthesize dynamic FFI bug detectors

that only interpose on language transitions.

. We design and build Jinn, a dynamic bug detector for Java Native Inter-
face (JNI). We generate it using a new process for synthesizing dynamic
analysis for foreign interfaces at language boundaries. Jinn runs on stock
JVMs, checks all the JNI programming rules, and finds serious JNI bugs

in a real-world applications.

. Composition of Mixed-Environment Debuggers. We introduce a mech-
anism for constructing multilingual debuggers that scale to many exe-
cution environments. The construction mechanism requires very little
change to the runtime environments. It only adds an intermediate agent
to the debugee process. Then, it leverages the single-environment debug-
gers to control all the environments. We show that it scales to a variety

of runtime environments, compilers, and single-environment debuggers.

. The first mixed-environment debugger for Java and C called Blink. We
used the composition mechanism to build a mixed-environment debug-
ger. We show that Blink implements the de facto standard set of debug-
ging commands in a variety of runtime environments. Prior to Blink,
debuggers could not inspect state in multiple languages without a uni-

fied runtime at once nor transition across language boundaries.

. A code generation checker using oracle query analysis. We introduce
a mechanism for checking well-formedness of fragments in foreign lan-
guages that scales to any languages. It improves correctness of the macro

programming practice that generates foreign language programs.

. Marco, a macro programming language that expresses macros for mul-

tiple programming languages. We implement a code generator checker

that verifiers well-formedness of fragments in Marco programs that gen-

erate SQL and C++ using the oracle query analysis.

1.4 Impact

This dissertation seeks influence language designers, tool developers,
and programmers. For language designers, our classification work will lay
the foundation for documenting and enforcing FFI programming rules. For
tool developers, our work will lead them to build composable multilingual
tools that assist programmers in debugging their programs. For programmers,
multilingual tools will help them to write correct multilingual programs that
take advantage of innovations in new programming languages and decades of

engineering efforts in legacy libraries.

Chapter 2

The Essence of Multilingual Programming
Interfaces

This chapter characterizes multilingual programming interfaces, presents
a new taxonomy and specification for reasoning about multilingual interfaces,
and explains how to use this taxonomy to generate and build composable tools
for multilingual systems. Section 2.1 starts with an example that shows how
Eclipse uses the two types of multilingual programming interfaces: (1) foreign
function interfaces, and (2) code generation interfaces. Section 5.5.2 describes
foreign function interfaces and Section 2.3 presents code generation interfaces.
Section 2.4 present a taxonomy of what kinds of rules govern multilingual

interfaces and how to map these rules to state machines.

2.1 Motivating Example

Eclipse is an interactive development environment that helps program-
mers write, edit, and execute their programs. Figure 2.1 presents a snapshot
of Eclipse showing a Java method comment in a tool tip. For this single task,
Eclipse invokes legacy libraries, including the Mozilla application framework
and an SQLite database management system. Eclipse sends the comment as
an HTML document to the Mozilla application framework, which renders the
HTML document. The Mozilla application framework sends SQL queries to
read and write the history of visited HTML documents in an SQLite database.

Tava - marco/src/marco/Main)java - Eclipse SDK EEE
File Edit Source Refactor MNavigate Search Project Run Window Help
£ B0 |[B¥e @ | P ISED B Boee
H FHle 2 o
=8
= B %
vampul U stail W& LU Uit]
2 . .
public class Main {
% = public static void main(final String[] args) throws Exception {
o- cmdoptions.processoptions(args);
== String[] rawArgs = CmdOptions.getArgs();
25 if (rawArgs.length <= @) {
i cmdoptions.usage("Please, specify a Marco program.");
*49
- String mprog = rawArgs[e];
A try {
ProgramAst p = compile(mprog);
lfri:ﬂu'll:EFtlﬂnS. &’ ProgramAst marco.Main.compile(String sourceFile) throws Exception [
McList margs = Parse a source program, generate an abstract tree, and perform type checking.
for (int 1 =1; Paramﬁrs:
margs. add (new rceFile The input source file name
Returns:
new Runner().ry The abstract syntax tree of the input source file
} catch (ParsingF Throws:
System.exit(1); Exception
} catch (MarcoExg [~
StrongAst a = &7] D)
hkd writablg @ o= B i}
= &

Figure 2.1: A screenshot of the Eclipse 3.5.1 interactive development environ-
ment running on Linux. Eclipse benefits from the clean thread model, type
safety, and garbage collection in Java. On the other hand, it leverages decades
of engineering effort in legacy libraries from the Mozilla application framework
and SQLite database management system.

For this single task, the software written in different languages communicate
with each other using foreign function interfaces and code generation inter-

faces.

Figure 2.2 illustrates the Java Native Interface (JNI), a foreign function
interface, in Standard Widget Toolkit (SWT). The native modifier claims that
the vtblCall method has its definition in native code. The body of that method
is empty. The VtlbCall function in C defines the implementation of the native

method. The C code dynamically invokes a C function using the pointer value

10

33. public class XPCOM extends C {
546. static final native int _VtblCall(int fnNumber, int /*long*/ ppVtbl);
2267. }
9766. jint Java_org_eclipse_swt_internal_mozilla_ XPCOM__1VtbICall__II
(JNIEnv *env, jclass that, jint arg0, jint argl)
9771, {

9778. rc = (jint)((jint (*)(jint))(*(jint **)argl)[arg0])(argl);
9784. return rc;
9785. }

Figure 2.2: A Java native method in Eclipse SWT 3.5.1 that executes a routine
in the Mozilla application framework using a foreign function interface. The first
three lines are from XPCOM.java. The last six source lines are from xpcom.cpp.
after C++ preprocessing.

from Java code. The code illustrates a foreign function interface between Java

and C++.

Figure 2.3 shows a C++ method in the Mozilla framework that gen-
erates an SQL query and sends it to an SQLite database. The C++ method
prepares for an SQL program and keeps it in the local variable, query. Then,
it sends the query to the database management system. This C++ method

illustrates code generation interface between C++ and SQL.

These multilingual programming interfaces are used pervasively in a
single program. They have many interface constraints that programmers must
manually ensure. Sections 5.5.2 and 2.3 respectively discuss these constraints

for foreign function interfaces and code generation interfaces.
2.2 Foreign Function Interfaces

Foreign function interfaces (FFIs) consist of declarations and func-

tions [49,81]. For instance, JNI programmers add a native modifier to the

11

412. nsresult

413. Connection::databaseElementExists(enum DatabaseElementType aElementType,

414. const nsACString &aElementName,

415. PRBool *_exists)

416. {

419. nsCAutoString query(SELECT name FROM sglite_master WHERE type = ');
420. switch (aElementType) {

421. case INDEX:

422, query.Append(index);
423, break;

424. case TABLE:

425, query.Append(table);
426. break:

4217,)

428. query.Append(’ AND name =’);

429. query.Append(aElementName);

430. query.Append(”);

431.

432. sqlite3_stmt *stmt;

433. int srv = ::sqlite3_prepare_v2(mDBConn, query.get(), -1,&stmt, NULL);

451. }

Figure 2.3: A C4++ method in the Mozilla Application Framework 1.9.2 that
sends an SQL query to the SQLite database management using a code generation
interface from mozStorageConnection.cpp.

12

declaration of a Java native method. In Java, the Java native method is
empty, and its implementation is written in C or C++. The C or C++ body
calls several JNI functions. This type of foreign function interface is used
by high-level programming languages including JNI [49], Python/C [81] and
Ocaml/C [47].

Each FFI has many programming rules that programmers must respect
at the foreign function interface level. For instance, programmers must ensure
1,500+ rules before calling 229 JNI functions. These rules are loosely specified
in the Java Native Interface book [49].

This section describes how three classes of constraints summarize all
JNI rules and how to encode these constraints in eleven state machines. We
argue for the generality of this approach based on our analysis of Python/C.
As far as we are aware, no previous work specifies the JNI and other FFIs
formally nor observe or exploits the required mapping of language syntax and

semantic elements between languages.

We observe that the JNI constraints fall into three classes: (1) Thread
state constraints ensure that the JVM thread is in an expected state before
calls from C. (2) Type constraints ensure that C passes valid arguments to
Java. (3) Resource constraints ensure that C code manages JNI resources
correctly. Table 2.1 summarizes these constraints and indicates the number of
times a JNI routine requires each constraint type. For example, the “JNIEnv*
state” constraint appears 229 times, because all 229 JNI functions requires

them as preconditions for their execution.

We now fully specify the JNI rules. Chapter 3 shows example state
machines for all these rules. However, this taxonomy is general and captures

the essence of how languages differ. (1) How they handle exceptions and their

13

Constraint Count Description

Thread state constraints

JNIEnv* state 229 Current thread matches
JNIEnv* thread
Exception state 209 No exception pending for

sensitive call
Critical-section state 225 No critical section

Type constraints

Fixed typing 157 Parameter matches API
function signature

Entity-specific typing 131 Parameter matches Java
entity signature

Access control 18 Written field is non-final

Nullness 416 Parameter is not null

Resource constraints

Pinned or copied 12 No leak or double-free

string or array

Monitor 1 No leak

Global or weak global 247 No leak or dangling refer-

reference ence

Local reference 284 No overflow or dangling
reference

Table 2.1: Classification and number of JNI constraints.

threading model. For example, returning to the calling thread and locking
disciplines (2) Differences between their type systems, calling conventions, and

rules about values. (3) Difference between explicitly managed and garbage

collected memory, addresses, and local versus global references.

2.2.1 Thread State Constraints

To enter the JVM through any JNI function, C code must satisfy three

conditions: (1) The JNI environment pointer JNIEnv* and the caller belong to

14

the same thread. (2) Either no exception is pending, or the callee is exception-
oblivious. (3) Either no critical region is active, or the callee is critical-region

oblivious.

JNIEnv* state constraint. All calls from Java to C implicitly pass a
pointer to the JNIEnv structure, which specifies the JVM-internal and thread-
local state. All calls from C to Java must explicitly pass the current pointer

when invoking a JNI function.

Exception state constraints. When Java code throws an exception and
returns to C, the C code does not automatically transfer control to the nearest
exception handler. The program must explicitly consume or propagate the
pending exception. This constraint results from the semantic mismatch in
how C and Java handle exceptions. Any JNI call may lead to Java code that
throws an exception, which causes a transition to the “exception pending”

state when the JNI call returns.

Critical-section state constraints. JNI defines the phrase “JNI criti-
cal section” to describe a piece of C code that has direct access to a Java
string or array, during which the JVM may take drastic measures such as dis-
abling the garbage collector. To provide safe access, a critical section starts
with GetStringCritical or GetPrimitiveArrayCritical and ends with the matching
ReleaseStringCritical or ReleasePrimitiveArrayCritical. C code should hold these
resources only for a short time. To prevent deadlock, C code must not inter-
act with the JVM other than to acquire or release critical resources. In other

words, during a critical section, C code must only call one of the four functions

15

that get/release arrays/strings. We call these four functions critical-section in-

sensitive and all the remaining JNI functions critical-section sensitive.

2.2.2 Type Constraints

When Java code calls a Java method, the compiler and JVM check type
constraints on the parameters. However, when C code calls a Java method, the
compiler and JVM do not check type constraints, and type violations cause

unspecified JVM behavior. For example, given the Java code
Collections.sort(Is, cmp);

the Java compiler checks that class Collections has a static method sort and
that the actual parameters Is and cmp conform to the formal parameters of
sort. Consider the equivalent code expressed with Java reflection:

Class clazz = Collections.class;
Method method =
clazz.getMethod(“sort”, List.class, Comparator.class);
method.invoke(Collections.class, Is, cmp);
The Java compiler cannot statically verify its safety, but if the program
is unsafe at runtime, then the JVM throws an exception. In JNI, this code is

expressed as follows.

jclass clazz = (*env)->FindClass(env, “java/util/Collections”);

jmethodID method = (*env)->GetStaticMethodID(env, clazz,
“sort”, “(Ljava/lang/List;Ljava/util/Comparator;)V");

(*env)—>CallStaticVoidMethod(env, clazz, method, Is, cmp);

Since the C code expresses Java type information in strings, standard static
type checking cannot resolve the types, and even sophisticated interprocedu-
ral analysis cannot always resolve them [25,77]. Consequently, the C compiler

does not statically enforce typing constraints on the “Collections” and “sort”

16

names or the Is and cmp parameters. Furthermore, and unlike Java reflec-
tion, JNI does not even dynamically enforce typing constraints on the clazz
and method descriptors. This interface is a potential source of inadvertent er-
rors. Furthermore, malicious C code can abuse it, breaking the Java safety

guarantees.

Fixed typing constraints. Type constraints require the runtime type of
the actuals to conform to the formals. For many JNI functions, the parameter
type is, in fact, fizred by the function itself. For example, in CallStaticVoid-
Method(env, clazz, method, Is, cmp), the clazz actual must always conform to

type java.lang.Class.

Entity-specific typing constraints. A plethora of JNI functions call Java
methods or access Java fields. JNI references Java methods and fields via
entity IDs. For example, in CallStaticVoidMethod(env, clazz, method, Is, cmp),
parameter method is a method ID. In this case, the method must be static,
and the method parameter constrains the other parameters. In particular, the
clazz must declare the method, and Is and cmp must conform to the formal

parameters of the method.

Access control constraints. Even when type constraints are satisfied, Java
semantics may prohibit accesses based on visibility and final modifiers. For ex-
ample, in SetStaticIntField(env, clazz, fid, 42), the field identified by fid may be
private or final, in which case the assignment follows questionable coding prac-
tices. The JNI specification is vague on legal accesses with respect to their

visibility and final constraints. After some investigation, we found that in

17

practice, JNI usually ignores visibility, but honors the final modifier. Ignoring
visibility rules seems surprising, but as it turns out, this permissiveness is con-
sistent with the behavior of reflection, which may suppress Java access control
when setAccessible(true) was successful. Honoring final is common sense. De-
spite the fact that reflection may mutate final fields, mutating them interferes

with JIT optimizations, concurrency, and the Java memory model.

Nullness constraints. Some JNI function parameters must not be null.
For example, in CallStaticVoidMethod(env, clazz, method, Is, cmp), the parame-
ters env, clazz, and method must not be null. At the same time, some JNI
functions do accept null parameters. For example, the initial array elements
in NewObjectArray. Since the JNI specification is not always clear on which
parameters may be null, we determined these constraints experimentally. We
uncovered 416 non-null constraints among the 210 JNI functions that define

parameters.

2.2.3 Resource Constraints

A JNI resource is a piece of Java-related data that C code can acquire
or release through JNI calls. For example, C code can acquire a Java string
or array. Depending on the JVM implementation, the JVM either pins the
string or array to prevent the garbage collector from moving it, or copies the
array, and then passes C code a pointer to the contents. Other JNI resources
include various kinds of opaque references to Java objects, which C code can
pass to JNI functions and which give C code some control over Java memory
management. Finally, JNI can acquire or release Java monitors, which are a

mutual-exclusion primitive for multi-threaded code.

18

APIs with manual or semi-automatic memory management suffer from
well-known problems: (1) Section 3.1.2 illustrates one such problem: a use
after a release corrupts JVM state through a dangling reference. There are
three other common resource errors. (2) An acquire at insufficient capacity
causes an overflow. (3) A missing release at the end of reference lifetime causes

a leak. (4) A second release is a double-free.

Pinned or copied string or array constraints. C code can temporarily
obtain direct access to the contents of a Java string or array. JVMs may pin or
copy the object to facilitate garbage collection. To make sure the JVM unpins
the object or frees the copy, the C code must properly pair acquire/release

calls to avoid dangling references and leaks.

Monitor constraints. A monitor is a Java mutual exclusion primitive. A
monitor of a Java must be acquired before calling the wait method on the ob-
ject. JVMs checks this rule by throwing an lllegalMonitorStateException excep-
tion. After being acquired, it must be released eventually to avoid a deadlock.

The C code must properly call the MonitorExit function to release the monitor.

Global reference or weak global reference constraints. A global or
weak global reference is an opaque pointer from C to a Java object that is
valid across JNI calls and threads. These references are explicitly managed
because the garbage collector needs to update them when moving objects and
also treat global (but not weak) references as root. The C code must properly

pair acquire/release calls to avoid dangling references and leaks.

19

Local reference constraints. JNI manages local references semi-automatically:
acquire and release are more often implicit than explicit. Native code implic-
itly acquires a local reference when a Java native call passes it to C or when
a JNI function returns it. The JVM releases local references automatically
when native code returns to Java, but the user can also manually release one

(DeleteLocalRef) or several (PopLocalFrame) local references.

2.2.4 Generality

We examined a number of language interfaces and Python/C in depth
(cf. Section 3.4). We found this taxonomy captures the interfaces between

languages.

2.3 Code Generation Interfaces

The other most widely used multilingual interface is code generation,
in which a program generates another program as a string. The runtime then
must translate to the target language. The target-language system parses,
analyze, and executes the program. For instance, a middle-end web program
generates SQL queries as Java strings. These queries are sent through Java
Database Connectivity (JDBC) to a database management system. In the
SPL system, primitive operators generate C++ compilation units. This code
generation practice works when the host programming language has a string
type and the target programming language may be parsed as a sequence of
characters. Since these characteristics are ubiquitous, many multilingual pro-

grams use code generation interfaces.

Code generation interfaces are bidirectional. A host-language program

sends a program to a target-language processing system. The target-language

20

processing system accepts or rejects the program. In the case of rejection,
it might explain the reasons. For instance, a Java program sends an SQL
query to a database management system through JDBC connectivity. If the
query is acceptable, the database management system returns the Java objects
representing a relational table. If the query is unacceptable, the JDBC driver

throws a Java exception containing error messages.

While code generation interfaces are flexible, programmers must man-
ually check the correctness of generated code. The correctness criteria are
divided into constraints in three areas: syntax, scope, and semantics. These
constraints are what the target language processors check internally. For in-
stance, a SQL processor will parse a sequence of characters for syntactic con-
straints. Once successful, it will apply scope rules to map uses of identifiers

to their definitions. Then, it will type check expressions and statements.

The key difficulty lies in that programming language designers make
quite diverse decisions in syntax, scope, and semantics. This section examines

two example constraints: C++ for depth and SQL for breath.

2.3.1 Syntactic Constraints

Syntactic constraints are specified as context free grammars. For in-
stance, programing language books devote chapters and sections to describing
grammars [27, 39, 44, 69]. We characterize these grammars in syntactic richness
and ambiguity. For instance, consider LISP and C+4. A LISP grammar has
a few nonterminals, and its parsers do not backtrack. On the other hand, the
C++ grammar contains hundreds of nonterminals, and its parsers frequently

backtracks.

21

2.3.2 Scope Constraints

Scope constraints are enforced during the code generation process.
Even if generated code is syntactically correct, the resulting code could be
quite counter intuitive. For instance, consider the following C macro that

swaps values in two integer variables:

#define SWAP (x,y) { int tmp = x; x = vy; y = tmp;}
int main () {

int tmp=1,b=2;

SWAP (tmp, b)

printf ("tmp =%d and b = %d\n", tmp);

A C preprocess generates the following program:

int main () {
int tmp=1,b=2;
{ int tmp = tmp; tmp = b; b = tmp;}
printf ("tmp =%d and b = %d\n", tmp);

C compilers accept the expanded program without any syntax error,
but the compiled program produces the undefined value for the tmp variable.
The SWAP macro failed to ensure the hygienic code generation constraint where
a local variable in a macro body must not capture a free variable in macro

parameters.

22

2.3.3 Semantics Constraints

The generated code must respect type constraints in statically typed
target languages. Statically typed programming language specifications define
their own typing rules [27,39,44,69]. We leave classification and analysis of

semantic constraints as future work, and address syntactic constraints here.

2.4 Taxonomy of Multilingual Systems

Table 2.2 presents how and which programming systems help program-
mers to specify, enforce, and check multilingual programming rules. The en-
vironment column shows the interface type. Multilingual programming in-
terfaces must adhere to all six classes of interface constraints in the second
column. Some program specific constraints have nothing to do with these
interfaces but require programmers to reason about control and data flow in
multiple environments at once. In this case, multilingual programs complicate
the programmer’s task by requiring them to be fluent in multiple languages to
correctly implement their code. Programming systems in Columns 3-5 check
constraints at various stages. Language design approaches are the most pow-
erful, but they do not support legacy multilingual programs. Static analyses
verify many legacy programs, but they are not complete and sound in general
for undecidable constraints. Dynamic approaches complement static analysis

since they can be designed not to report false alarms.

Each entry in Table 2.2 cites prior work or refers to work in this thesis.
All our solutions focus on composable solutions that reuse existing runtime
systems, languages, compilers, and interpreters as much as possible. For for-

eign function interfaces, Chapter 3 presents dynamic bug finders that scale

23

WA} YOO S[00] YPIYM PUR MOT SUIPN[OUT SOl Surrurersold [enguriynu jo AWOUOXR], :g'g 9[RL

p 103deyp 9] [82] [engury ssoiy)

[22] [88] SOTJURUIOG
¢ 1eydeyn ¢ 1e1der) [88]‘c 101dey) 0doog 9oRIDIUI UOIIRISUSS 9PO))

¢ 1099deyn) [88]‘c 101dey) XeJUAQ

[99] ‘¢ 1o3dey) [e7] (&g 9DIMOSANY
¢ 101der)) [og] w2 [ce] odAT, ooevjIojUI UOTOUN] USIOIO

¢ wydeyp [ev][87] [vL)'[s€] oe)s pral],

stsATeue drweuA ([

sisA[eue J1jels

ugisep adenduery

SSeJ jurealjsuo))

JUstIuOITAUY

24

to J9, HotSpot, Java, C/C++, and Python. For code generation interfaces,
Chapter 5 introduces a programming language, Marco, that is specialized to
the task of generating programs in SQL and C++. The Marco language in-
cludes both static analysis and dynamic analysis. For the classes of bugs that
involve inter-language flow of data and control, we propose an approach for
composing mixed-environment debuggers that scales to J9, HotSpot, gce, and

Microsoft C++ compiler in Chapter 4.

Chapter 6 discusses related work in detail, but the remainder of this
Chapter gives a flavor of some alternatives to FFIs, FFI specification, and

dynamic verification.

Language Approaches to FFI Safety. Two language designs pro-
pose to replace the JNI. SafeJNI [74] combines Java with CCured [57], and
Jeannie safely and directly nests Java and C code into each other using quasi-
quoting [35]. Both SafeJNI and Jeannie define their language semantics such
that static checks catch many errors and both add dynamic checks in trans-
lated code for other errors. From a purist’s perspective, preventing FFI bugs
while writing code is more economical than spending time to fix them after
the fact. Another approach generates language bindings for annotated C and
C++ header files [8,38]. Ravitch et al. reduce the annotations required for
generating idiomatic bindings [62]. our FFT tools are more practical than these
approaches because they do not require developers to rewrite or annotate their

code in a different language.

Static FFI Bug Checkers. A variety of static analyses verify ex-
isting foreign function interfaces [25, 26, 43,48, 75,76]. All static FFI analysis
approaches suffer from false positives because the specification includes dy-

namic properties, such as non-null reference parameters, valid Java class and

25

method names in string parameters, and less than 16 local references. Static
analysis cannot typically guarantee these properties. For instance, J-Saffire
reports false positives and warnings [26]; Tan et al. report a false positive rate
of 15.4% [48]; and BEAM reports a false positive while missing the actual bug

in a program reported in Section 3.1.1.

Dynamic FFI Bug Checkers. Some JVMs provide built-in dynamic
JNI bug checkers, enabled by the -xcheck: jni command-line flag. While con-
venient, these error checkers only cover limited classes of bugs, and JVMs im-
plement them inconsistently. NaturalBridge’s BulletTrain ahead-of-time Java
compiler performed several ad-hoc JNI integrity checks on language transi-
tions [56]. Our Blink debugger provides JNI bug checkers that work consis-
tently for different JVMs, but its coverage is limited to two bugs: validating
exception state and nullness constraints [45]. These kinds of checks are easy

to implement because they require no bookkeeping.

State Machine Specifications. Several programmable bug checkers
take state machine specifications and report errors when state machines reach
error states. For instance, Metal [21] and SLIC [7] are languages for speci-
fying state machines that are then used to find bugs through static analysis.
Dwyer et al. survey state-machine driven static analyses [20]. On the dynamic
side, Allan et al. turn FSMs into dynamic analyses by using aspect-oriented
programming [1]; Chen and Rosu synthesize dynamic analyses from a variety
of specification formalisms, including FSMs [14]; and Arnold et al. implement
FSMs for bug detection in a JVM, controlling the runtime overhead by sam-
pling [2]. While in principle these specification languages are expressive enough
to describe many FFI constraints, in practice none of them address the unique

challenges of multilingual software.

26

Chapter 3

Automatically Finding Bugs at Foreign
Language Interfaces

Many multilingual programs are composed of libraries or frameworks
written in a variety of programming languages, communicating through for-
eign function interfaces. Foreign function interfaces typically consist of several
hundred of functions and thousands of programming rules. It is tedious and
error prone to ensure that these multilingual programs respect all the pro-
gramming rules. This chapter shows how to synthesize dynamic bug detectors
that detect, report, and stop the erroneous multilingual programs that break
these programming rules. Our dynamic bug detectors find a class of bugs that
other bug finders ignore. Furthermore, they detect dozens of bugs in several
real-world applications. Most of these bugs are confirmed and fixed. The
time overhead of our dynamic analysis is 14%. These results suggest that our

dynamic bug finders are applicable to realistic development environments.

We start by presenting a motivating example that shows how our dy-
namic analysis detects a bug that breaks an FFI constraint in Section 3.1.
Section 3.2 illustrates how to synthesize dynamic bug finders that completely
check all the interface constraints from state machine specifications for the
JNI. Section 3.4 demonstrates that our approach generalizes to the FFI for
Python/C. We evaluate our bug detectors in Section 3.5.

27

3.1 An Example JNI Bug and Detector

This section illustrates and motivates our approach using an example.
It provides some additional JNI background, an example JNI bug, and a state
machine that captures this bug. It then describes how to use this state machine
to dynamically detect the example bug on language transition boundaries at

JNI calls and returns.

The JNT is designed to hide JVM implementation details from native
code while also supporting high-performance native code. Hiding JVM de-
tails from C code makes multilingual Java and C programs portable across
JVMs and gives JVM vendors flexibility in memory layout and optimizations.
However, achieving portability together with high performance leads to 229
API functions and 1,500+ usage rules. For instance, JNI has functions for
calling Java methods, accessing fields of Java objects, and obtaining a pointer
into a Java array as described in the Java Native Interface book [49]. To hide
JVM implementation details, these functions go through an indirection, such
as method and field IDs, or require the garbage collector to pin arrays. De-
velopers using JNI avoid indirection overhead on the C side by, for example,
caching method and field IDs, and pinning resources. At the same time, JVM
developers avoid implementation complexity by requiring explicit calls to mark

references as global and to release pinned objects.

3.1.1 Example FFI Bug

Figure 3.1 shows a simplified version of an FFI bug from the GNOME
project’s Bugzilla database (Bug 576111) [78]. GNOME is a graphical user
interface that makes heavy use of several C libraries. In the example, Line 1

defines a C function Java_Callback_bind that implements a Java native method

28

. JNIEXPORT void JNICALL Java_Callback_bind(JNIEnv *env,
jclass clazz, jclass receiver, jstring name, jstring desc)

{ /* Register an event call-back to a Java listener. */
EventCallBack* cb = create_event_callback();
cb—>handler = callback;
cb—>receiver = receiver; [* receiver is a local reference.*/
cb—>mid = find_java_method(env, receiver, name, desc);
if (cb—>mid != NULL) register_callback(cb);
else destroy_callback(cb);

10. } /* receiver is a dead reference. */

© ®©® N o O~ 6N =

11. static void callback(EventCallBack* cb, Event* event) {
12. JNIEnv* env = find_env_pointer_from_current_thread();
13. jvalue* jargs = marshal_event(cb, env, event);

14. /* BUG: dereference of now invalid cb—>receiver. */
15. (*env)—>CallStaticVoidMethodA(

16. env, chb—>receiver, cb—>mid, jargs);

17. }

Figure 3.1: JNI invalid local reference error in a call-back routine from
GNOME (Bug 576111) [78].

using the JNI. An example call from Java to C takes the following form:

Callback.bind(receiverClass, “methodName”, “description”);

This call invokes the C function Java_Callback_bind, which registers a new C heap
object cb, storing the receiver class and method name passed as parameters
from Java. The C function callback referenced on Line 5 is defined starting at
Line 11. It uses the cb parameter object to call from C code to the specified
Java method. Line 15 shows this call from C to Java. It uses a JNI API
function CallStaticVoidMethodA, which resides in a struct referenced by the JNI

environment pointer env.

This code is buggy. The parameter receiver in Line 2 is a local reference.

29

acquire release use
(line 1) (line 10) (line 16)

Before . Error:
Acquire }—> Acquired }—> Released }—> Dangling

State Language Triggering
transition transition functions
Acquire Call:Java—C Native method taking reference

e.g., Java_Callback_bind
Return:Java—C JNI function returning reference
e.g., GetObjectField
Release Return:Java—C DeletelLocalRef
Return:C—Java Any native method
e.g., Java_Callback_bind
Use Call:C—Java JNT function taking reference
e.g., CallStaticVoidMethodA
Return:C—Java Native method returning reference
e.g., Class.getClassContext

Figure 3.2: A resource tracking state machine for local references and the
mapping from state transitions to Java and C language transitions (calls and
returns) to dynamically detect the bug in Figure 3.1.

30

A local reference in JNI is only valid until the enclosing function returns, be-
cause, otherwise, Java virtual machine’s (JVM’s) garbage collector would need
to communicate with the C runtime about live references. Thus, cb—>receiver
becomes invalid when the function returns at Line 10. However, Line 6 stores
receiver in a heap object, letting it escape. When Line 16 retrieves receiver from
the heap and uses it as a parameter to CallStaticVoidMethodA, it is an invalid
dangling reference, and the JVM’s garbage collector may have either moved

the object or reclaimed it and reused the corresponding memory.

The JNI specification merely says that this reference is invalid and
leaves the consequences up to the vendor’s Java implementation [49]. This
kind of bug is difficult to find with static analysis because it involves complex
data flow through the heap as well as complex control flow through disjoint
indirect calls and returns across languages. For instance, the syntax analysis

in J-BEAM [43] misses this bug.

3.1.2 Example FFI Bug Detector

This section shows how to identify this bug dynamically using a state
machine. Figure 3.2 shows a simplified state machine that enforces local usage
rules, applied to the receiver parameter at runtime. On entry to the method
(Figure 3.1: Line 1), the state of receiver transitions from Before Acquire to
Acquired. When the method returns back to Java (Line 10), the state transi-
tions from Acquired to Released. Finally, the call from C to Java at Line 16 uses
the reference cb—>receiver, triggering a transition to the Error: Dangling state

and thus detecting the bug.

While prior work used state machines to find bugs [1,2,7, 14, 20, 21], it

was not clear if FFI specifications could be characterized with state machines

31

nor how to map and generate dynamic analysis automatically.

The table in Figure 3.2 shows more generally where state transitions
occur. For example, dynamic analysis must execute the Acquire transition
for all reference parameters on all calls from Java to C. On return from C
to Java, dynamic analysis must execute the Release transition for all local
references. To instrument both calls and returns, we wrap these calls. For
example, our dynamic checker replaces Java_Callback_bind with the wrapper
function wrapped_Java_Callback_bind shown in Figure 3.3. The instrumentation
attaches state machines to entities (threads, parameters, and return values)

by using thread-local storage (refs).

We also instrument the JNI functions that implement the C API for
interacting with the Java virtual machine. For example, the Use transition
in the table happens on calls from C to Java if the callee is a JNI function
taking a reference, such as CallStaticVoidMethodA. Such a use is an error if
the reference is in the Released state. Figure 3.4 shows the wrapper with the

mstrumentation.

For illustration purposes, these example wrappers omit other checks
our system performs. For example, JNI limits the number of available local
references, so there is another possible error state for overflow. Developers
may manually manage the number of available local references with the JNI
functions PushLocalFrame and PoplocalFrame and the corresponding dynamic
analysis requires instrumentation to count references. The figures also omit
checks for thread state, exception state, and parameter nullness. Section 3.3

explains all the constraints we check and their encoding in state machines.

32

1. void wrapped_Java_Callback_bind(JNIEnv *env,

2. jclass clazz, jclass receiver, jstring name, jstring desc)

3. {

4. /* Instrument Call:Java—C for Acquire state transition. */
5. jobject_set refs = jinn_acquire_thread_local_jobject_set();
6. if (clazz != NULL) { jinn_refs_acquire(refs, clazz); }

7. if (receiver = NULL) { jinn_refs_acquire(refs, receiver); }
8. if (name != NULL) { jinn_refs_acquire(refs, name); }

9. if (desc I= NULL) { jinn_refs_acquire(refs, desc); }

10. /* Call the wrapped native method. */

11. Java_Callback_bind(env, clazz, receiver, name, desc);

12. /* Instr. Return:C—Java for Release state transition. */

13. jinn_release_thread_local_jobject_set(refs);
14. }

Figure 3.3: Wrapper for function Java_Callback_bind from Figure 3.1 with in-
strumentation for Acquire and Release state transitions.

1. void wrapped_CallStaticVoidMethodA(JNIEnv *env,

2. jclass clazz, jmethodID mid, jvalue *args)

3. {1

4. /* Instrument Call:C—Java for Use state transition. */
5. jobject_set refs = jinn_get_thread_local_jobject_set();

6. if ((clazz '= NULL) && ljinn_refs_contains(refs, clazz)) {
7 /* Raise a JNI exception. */

8 return jinn_throw_JNIException(env, Error: dangling);
9.}

10. /* Call the wrapped JNI function. */

1. CallStaticVoidMethodA(env, clazz, mid, args);

12. }

Figure 3.4: Wrapper for function CallStaticVoidMethodA from Figure 3.1 Line
15 with instrumentation for Use state transition.

33

3.2 Dynamic Analysis Synthesis

We use state machine specifications like the one in Figure 3.2 to syn-
thesize a dynamic analysis. Each state machine specification describes state
transitions, which are triggered by language transitions. Their cross-product
yields thousands of checks in the dynamic analysis. For example, before exe-
cuting the JNI call in Line 15 of Figure 3.1, the analysis enforces at least eight

constraints:

e The Java interface pointer, env, matches the current C thread.
e The current JVM thread does not have pending exceptions.

e The current JVM thread did not disable GC to directly access Java

objects including arrays.
e cb—>mid is not NULL.
e cb—>receiver is not NULL.
e cb—>receiver is not a dangling JNI reference.
e cb—>receiver is a reference to a Java Class object.

e The formal arguments of cb—>mid are compatible with the actual argu-

ments in cb—>receiver and jargs.

Hand-coding all these constraints would be tedious and error-prone. Instead,

we specify state machines as follows.

Defining state machine states and transitions: Each FFI constraint is
defined by a state machine. The individual states are encoded as C data
structures and the transitions as C code, which also checks whether a

transition has, in fact, been triggered. For example, the if-statement in

34

Line 6 of Figure 3.4 is a transition check for determining whether the
entity is currently in the Released state and should therefore transition
to the Error: Dangling state. Each state machine specification M; has a

set of state transitions M,.stateTransitions.

Mapping state transitions to language transitions: Each specification has
a function M;.languageTransitionsFor that maps state transitions to lan-
guage transitions. The synthesizer consults this mapping to inject context-
specific instrumentation into wrapper functions. For example, Figure 3.2
illustrates a mapping. Figures 3.3 and 3.4 show generated wrappers.

Each state transition s, — s, may occur at a set
L = M;.languageTransitionsFor(s, — sp)

of language transitions. FEach language transition ¢ in this set is a
record containing the fields function, direction (Call or Return), and entities

(threads, parameters, and return values).

Applying state machines to entities: At runtime, the wrappers attach state
machines to entities and then transition the entity-specific state ma-
chine(s) based on context, encoding the state machine states in thread-
local storage. For example, the wrapper in Figure 3.3 associates a state
machine with the receiver reference, transitions its state to Acquired, and
encodes this information by adding the reference to the thread-local list
refs. As already mentioned above, the analysis developer specifies state
machine encodings as a set of mutable data structures and functions that

manipulate those structures.

35

Algorithm 1 Input: state machine specifications My, ..., M,. Output: FFI
wrapper functions instrumented with dynamic checker.

1: for each state machine specification M; € {My,...,M,} do

2: for each state transition s, — s, € M,.stateTransitions do

3 let L. = M, .languageTransitionsFor(s, — sp)
4: for each language transition ¢ € L do
5
6

let w be the wrapper for ¢.function
add the following synthesized code to the start or end of w, depend-
ing on whether /.direction is Call or Return:
for each entity e € (.entities do
if e satisfies the transition check for s, — s, then
9: modify the state machine encoding to record the transition of
e from s, to s;.

N state machine custom
analysis driver e .
specifications exception

Jinn Synthesizer

Figure 3.5: Structure of Jinn Synthesizer.

The state machine specifications consisting of these three components (state
transitions, mappings from state transitions to language transitions, and state
machine encodings) serve as input to Algorithm 1. The algorithm computes
the cross product of state transitions and FFI functions, and then generates a
wrapper for each FFI function that performs the appropriate state transforma-
tions and error checking. This functionality is the core of the Jinn Synthesizer

component in Figure 3.5.

The synthesizer takes two additional inputs: an analysis driver and a

custom exception. The output of the synthesizer is Jinn—a shared object file

36

that the JVM dynamically loads using the JVM tools interface (JVMTI). The
analysis driver initializes the state machine encodings and dynamically injects
the generated, wrapped FFI functions into a running program. The custom
exception defines how the dynamic analysis reports errors. Jinn monitors
runtime events and program state. When Jinn detects a bug, it throws the
custom exception. If the exception is not handled, the JVM prints a message
with the JNI constraint violation and the faulting JNI function call. If Jinn is
invoked within a debugger, the programmer can inspect the call chain, program

state, and other potential causes of the failure.

3.3 State Machines

This section describes how three classes of JNI constraints map to state
machines. Language transitions are mapped to state transitions. Error states
indicate that a current sequence of language transitions violates a JNI con-

straint.

3.3.1 Thread State Constraints

To enter the JVM through any JNI function, C code must satisfy three
conditions: (1) The JNI environment pointer JNIEnv* and the caller belong to
the same thread. (2) Either no exception is pending, or the callee is exception-
oblivious. (3) Either no critical region is active, or the callee is critical-region

oblivious.

JNIEnv* state constraint. Figure 3.6 shows a state machine for JNITEnv*
state constraint. All calls from Java to C implicitly pass a pointer to the JNIEnv

structure, which specifies the JVM-internal and thread-local state. All calls

37

JNIEnv* state

Observed entity: A thread.
Error(s) discovered: JNIEnv* mismatch.

State machine encoding: Map from thread IDs to their expected JNIEnv*
pointers.

State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions

JNI call Call:C—Java Any JNI function
e.g., CallVoidMethod

Figure 3.6: A state machine for JNIEnv* state constraints.

from C to Java must explicitly pass the correct pointer when invoking a JNI
function. When the program creates a native thread, Jinn learns about the
JNIEnv* pointer from the JVM and retrieves the thread ID from the operating
system. It enters both into the state machine encoding, which is a map from
thread ID to JNIEnv* pointer. Later, when a native thread calls any of the
229 JNI functions, Jinn looks up the expected JNIEnv* from the state machine
encoding and compares it to the actual parameter of the call, reporting an

error if the pointers differ.

Exception state constraints. Figure 3.7 shows a state machine for excep-
tion state constraints. When Java code throws an exception and returns to
C, the C code does not automatically transfer control to the nearest excep-
tion handler. The program must explicitly consume or propagate the pending

exception. This constraint results from the semantic mismatch in how C and

38

Exception state

Observed entity: A thread.
Error(s) discovered: Unhandled Java exception.
State machine encoding: Internal JVM structures.

State machine diagram:

if exception pending
JNI return

Exception
pending

Exception
free

exception-
call

clear
JNI ret o ;
return return to Java €xception-
oblivious
call
State Language Triggering
transition transition functions
JNT return Return:Java—C Any JNI function
e.g., CallVoidMethod
Clear or Return:Java—C ExceptionClear
return to Java Return:C—Java Return from any native method
Exception- Call:C—Java Small set of clean-up functions
oblivious call e.g., ReleaseStringChars
Exception- Call:C—Java All other JNI functions
sensitive call e.g., GetStringChars

Figure 3.7: A state machine for exception state constraints.

39

Java handle exceptions. Any JNI call may lead to Java code that throws an
exception, which causes a transition to the “exception pending” state when
the JNI call returns. The JVM internally records this state transition for each
Java thread, so Jinn does not need to interpose on JNI returns to track ex-
ception states. It can instead simply rely on the JVM-internal data structure
for its state machine encoding. If the program returns from a JNI call and an
exception is pending, the program must consume or propagate the exception.
To do so, the programmer may first select from one of 20 exception-oblivious
JNI functions that query the exception state and release JVM resources before
calling JNI’s ExceptionClear function. If the programmer calls any of the re-
maining exception-sensitive JNI functions while an exception is pending, Jinn

intercedes and wraps the pending exception in an error report to the user.

Critical-section state constraints. Figure 3.8 shows a state machine for
critical section state constraints. JNI defines the phrase “JNI critical section”
to describe a piece of C code that has direct access to a Java string or array,
during which the JVM may take drastic measures such as disabling the garbage
collector. A critical section starts with GetStringCritical or GetPrimitiveArrayCritical
and ends with the matching ReleaseStringCritical or ReleasePrimitiveArrayCritical.
C code should hold these resources only for a short time. To prevent dead-
lock, C code must not interact with the JVM other than to acquire or release
critical resources. In other words, during a critical section, C code must only
call one of the four functions that get/release arrays/strings. We call these
four functions critical-section insensitive and all the remaining JNI functions
critical-section sensitive. Jinn encodes the state machines by keeping, for each
thread, a tally of the number of times that thread has acquired a specific crit-

ical resource. Jinn instruments the four “get” and “release” calls to manage

40

Critical-section state

Observed entity: A thread.
Error(s) discovered: Critical section violation.

State machine encoding: Map from a critical resource R; to the number of
times a given thread has acquired that resource.

State machine diagram:

if ZJ(IRJI) >1
release(R;)
. critical-section-
acquire(R;) O sensitive
Not in In call

critical critical
section section
reIease(Rl-)
i Zj(lel) =1 acquire(Rl.)
State Language Triggering
transition transition Functions
Acquire Return:Java—C GetStringCeritical or
GetPrimitiveArrayCritical
Release Return:Java—C ReleaseStringCritical or
ReleasePrimitiveArrayCritical
Critical-section Call:C—Java All other JNI functions
sensitive call e.g., CallVoidMethod

Figure 3.8: A state machine for critical section state constraints.

41

these counts. Each acquisition of a resource R; must be matched by a cor-
responding release. When the list of critical resources for a thread toggles
between empty and non-empty, the critical-section state machine transitions
correspondingly. Jinn interposes on all the 225 critical-section sensitive func-
tions to verify that the thread currently maintains no critical resources and

that releases are well-matched.

Critical sections are tricky because they prohibit calls to most JNI func-
tions, including those that Jinn uses for its own error checking. For example,
Jinn does not check whether or not the argument to ReleaseStringCritical is in
fact a Java string since that would require calling IsAssignableFrom from within
a critical region. At the same time, C code cannot exercise much JNI func-
tionality while in a critical section and can legally call only four functions—to

acquire more critical sections and to release them again.

3.3.2 Type Constraints

When Java code calls a Java method, the compiler and JVM check type
constraints on the parameters. However, when C code calls a Java method, the
compiler and JVM do not check type constraints, and type violations cause

unspecified JVM behavior. For example, given the Java code
Collections.sort(Is, cmp);

the Java compiler checks that class Collections has a static method sort and

that the actual parameters Is and cmp conform to the formal parameters of

42

sort. Consider the equivalent code expressed with Java reflection:

Class clazz = Collections.class;
Method method =

clazz.getMethod(“sort”, List.class, Comparator.class);
method.invoke(Collections.class, Is, cmp);

The Java compiler cannot statically verify its safety, but if the program is
unsafe at runtime, then the JVM throws an exception. In JNI, this code is
expressed as follows:

jclass clazz = (*env)->FindClass(env, “java/util/Collections”);

jmethodID method = (*env)->GetStaticMethodID(env, clazz,
“sort”, “(Ljava/lang/List;Ljava/util/Comparator;)V");

(*env)->CallStaticVoidMethod(env, clazz, method, Is, cmp);

Since the C code expresses Java type information in strings, standard static
type checking cannot resolve the types and even sophisticated interprocedural
analysis cannot always resolve them [25,77]. Consequently, the C compiler
does not statically enforce typing constraints on the “Collections” and “sort”
names or the Is and cmp parameters. Furthermore, and unlike Java reflection,
JNI does not even dynamically enforce typing constraints on the clazz and
method descriptors. In contrast, Jinn does enforce these and other JNI type

constraints dynamically.

Fixed typing constraints. Figure 3.9 presents a state machine for fixed
type constraints. Type constraints require the runtime type of actuals to
conform to the formals. For many JNI functions, the parameter type is, in
fact, fized by the function itself. For example, in CallStaticVoidMethod(env, clazz,
method, Is, cmp), the clazz actual must always conform to type java.lang.Class.
We extracted this and comparable constraints by scanning the JNI header

file for C parameters (e.g., jstring) with well-defined corresponding Java types

43

Fixed typing

Observed entity: A reference parameter.

Error(s) discovered: Type mismatch between actual and formal
parameter to JNI function.

State machine encoding: Map from entity IDs to their signatures.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions

JNI call Call:C—Java JNI function defining a parameter
with a fixed type, e.g., clazz
parameter to CallStaticVoidMethod

Figure 3.9: A state machine for fixed typing constraints.

(e.g., java.lang.String). We extracted additional fixed typing constraints from
the informal JNI explanation in [49]. For example, FromReflectedMethod has
a jobject parameter, whose expected type is either java.lang.reflect.Method or
java.lang.reflect.Constructor. Overall, Jinn interposes on 151 JNI functions to
verify 157 fixed typing constraints. For each check, Jinn obtains the class of
the actual using GetObjectType and then checks compatibility with the expected
type through IsAssignableFrom.

Entity-specific typing constraints. Figure 3.10 presents the state ma-
chine for entity-specific typing constraints. A plethora of JNI functions call
Java methods or access Java fields. JNI references Java methods and fields
via entity IDs. For example, in CallStaticVoidMethod(env, clazz, method, Is, cmp),
the parameter method is a method ID. In this case, the method must be static,

and the method parameter constrains the other parameters. In particular, the

44

Entity-specific typing

Observed entity: A pair of ID parameters.

Error(s) discovered: Type mismatch for Java field assignment or between ac-
tual and formal of a Java method.

State machine encoding: Map from entity IDs to their signatures.

State machine diagram: Trivial, omitted for brevity.

State Language Triggering

transition transition functions
JNI call Call: JNI function defining parameters
C—Java with interrelated types, e.g., clazz

and method in CallStaticVoidMethod

Figure 3.10: A state machine for entity-specific typing constraints.

clazz must declare the method, and Is and cmp must conform to the formal
parameters of the method. Jinn records method and field signatures upon
return from JNI functions that produce method and field IDs. The entity 1D
constrains the types of method parameters or field values as well as the re-
ceiver class (for static entities) or object (for instance entities) for each of 131
JNI functions that access a Java entity. When a program calls one of these
functions that take an entity ID, Jinn interposes on the call to verify that the

function conforms to the entity’s typing constraints.

Access control constraints. Figure 3.11 presents the state machine for ac-
cess control constraints. Even when type constraints are satisfied, Java seman-
tics may prohibit accesses based on visibility and final modifiers. For example,
in SetStaticIntField(env, clazz, fid, 42), the field identified by fid may be private

or final, in which case the assignment follows questionable coding practices.

45

Access control

Observed entity: A field ID.
Error(s) discovered: Assignment to final field.
State machine encoding: Map from field IDs to their modifiers.

State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call:C—Java Set<Type>Field or
SetStatic< Type>Field

Figure 3.11: A state machine for access control constraints.

The JNI specification is vague on legal accesses with respect to their visibil-
ity and final constraints. After some investigation, we found that in practice,
JNT usually ignores visibility, but honors the final modifier. Ignoring visibility
rules seems surprising, but as it turns out, this permissiveness is consistent
with the behavior of reflection, which may suppress Java access control when
setAccessible(true) was successful. Honoring final is common sense. Despite the
fact that reflection may mutate final fields, mutating them interferes with JI'T
optimizations and concurrency and complicates the Java memory model. As
with entity-specific typing, Jinn keeps track of field IDs, as well as which fields
are final. Jinn raises an error if native code calls any of the 18 JNI functions

that might assign to a final field.
Nullness constraints. Figure 3.12 presents the state machine for nullness

constraints. Some JNI function parameters must not be null. For example, in

CallStaticVoidMethod(env, clazz, method, Is, cmp), the parameters env, clazz, and

46

Nullness

Observed entity: A reference parameter.

Error(s) discovered: Unexpected null value passed to JNI function.
State machine encoding: None.

State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions

JNI call Call:C—Java JNI function defining a parameter
that must not be null, e.g., method
parameter to CallStaticVoidMethod

Figure 3.12: A state machine for nullness constraints.

method must not be null. At the same time, some JNI functions do accept null
parameters — for example, the initial array elements in NewObjectArray. Since
the JNI specification is not always clear on which parameters may be null,
we determined these constraints experimentally. We uncovered 416 non-null
constraints among the 210 JNI functions that define parameters. Jinn reports

to the user when the program violates any of these constraints.

3.3.3 Resource Constraints

A JNI resource is a piece of Java-related data that C code can acquire
or release through JNI calls. For example, C code can acquire a Java string
or array. Depending on the JVM implementation, the JVM either pins the
string or array to prevent the garbage collector from moving it or copies the
array and then passes C code a pointer to the contents. Other JNI resources

include various kinds of opaque references to Java objects, which C code can

47

pass to JNI functions and which give C code some control over Java memory
management. Finally, JNI can acquire or release Java monitors, which are a

mutual-exclusion primitive for multi-threaded code.

APIs with manual or semi-automatic memory management suffer from
well-known problems: (1) Section 3.1.2 illustrated one such problem: a use
after a release corrupts JVM state through a dangling reference. There are
three other common resource errors. (2) An acquire at insufficient capacity
causes an overflow. (3) A missing release at the end of reference lifetime causes
a leak. (4) A second release is a double-free. The Jinn analysis depends on
the resource (e.g., array, string reference, object). In a few cases, Jinn cannot
detect certain error conditions because they are underspecified or hidden in
C code. For instance, Jinn currently cannot detect when C code uses an
invalid C pointer without calling a JNI function. In a few cases, Jinn need
not check resource-related errors since the JVM or other Jinn state machines
already trap them. For example, when the JVM throws an OutOfMemoryError

exception, Jinn already checks for correct exception handling.

While the state machines and error cases for all kinds of JNI resources
are similar, they differ in the details due to the above reasons. Figures 3.13,
3.14, 3.15, and 3.16 show these four different resource cases separately, and

we now discuss each in more detail.

Pinned or copied string or array constraints. Figure 3.13 shows a state
machine for pinned or copied string or array constraints. C code can temporar-
ily obtain direct access to the contents of a Java string or array. JVMs may
pin or copy the object to facilitate garbage collection. To make sure the JVM

unpins the object or frees the copy, the C code must properly pair acquire/re-

48

Pinned or copied string or array

Observed entity: A Java string or array that is pinned or copied.
Error(s) discovered: Leak and double-free.
State machine encoding: A list of acquired JVM resources.

State machine diagram:

Acquire

program

release
termmatlon
Error Error
Leak Double-free
State Language Triggering
transition transition functions

Acquire Return:Java—C Get< Type>ArrayElements
and similar getter functions

Release Return:Java—C Release< Type>ArrayElements
and similar release functions

Program termination JVMTT callback

Figure 3.13: A state machine for pinned or copied string or array.

49

lease calls. Jinn reports a leak for any resource that has not been released at
program termination. Jinn reports a double-free for a resource it has already
evicted from its state machine representation due to an earlier free. Jinn does
not check for dangling references because their uses happen in C code. Jinn
does not check for overflow (i.e., an out-of-memory condition) in this state

machine because its exception checking subsumes this check.

Monitor constraints. Figure 3.14 shows a state machine for monitor con-
straints. A monitor is a Java mutual exclusion primitive. Jinn need not check
overflow or double-free for monitors since the JVM already throws exceptions.
Jinn cannot check dangling monitors, since that requires divining when the
programmer intended to release it. Jinn does report if a monitor is not released

at program termination, which indicates a risk of deadlock.

Global reference or weak global reference constraints. Figure 3.15
shows the state machine for a global reference and a weak global reference. A
global or weak global reference is an opaque pointer from C to a Java object that
is valid across JNI calls and threads. These references are explicitly managed
because the garbage collector needs to update them when moving objects and
also treat global (but not weak) references as root. Jinn reports a leak for
any unreleased global or weak global reference at program termination. Jinn
reports a dangling reference error if the program uses a reference after a free.
Double-free is a special case of the dangling reference error, and overflow is a

special case of Jinn’s exception state constraints.

Local reference constraints. Figure 3.16 shows a state machine for lo-

cal reference constraints. JNI manages local references semi-automatically:

50

Monitor

Observed entity: A monitor.

Error(s) discovered: Leak.
State machine encoding: A set of monitors currently held by JNI and, for each
monitor, the current entry count.

State machine diagram:

Acquire

program
termination

State Language Triggering
transitton transition functions
Acquire Call:C—Java MonitorEnter
Release Call:C—Java MonitorExit
Program termination JVMTTI callback

Figure 3.14: A state machine for monitor constraints.

51

Global reference or weak global reference

Observed entity: A global or weak global JNI reference
Error(s) discovered: Leak and dangling reference.

State machine encoding: A list of acquired global references.

State machine diagram:

use
Befo.re acquire release Released
Acquire

program
termination

/
Error: Error:
Leak Dangling

State Language Triggering
transition transition functions

Acquire Return:Java—C NewGlobalRef and
NewWeakGlobalRef

Release Return:Java—C DeleteGlobalRef and
DeleteWeakGlobalRef

Use Call:C—Java JNI function taking reference
e.g., CallVoidMethod
Return:C—Java Native method returning reference,
e.g., Class.getClassContext

Program termination JVMTI callback

I~
-~ W0
QI

Figure 3.15: A state machine for global reference or weak global reference.

52

Local reference

Observed entity: A local JNI reference
Error(s) discovered: Overflow, leak, dangling, and double-free.

State machine encoding: For each thread, a stack of frames. Each frame has
a capacity and a list of local references.
use

if frame stack not empty ~ if frame stack

State machine diagram:

Before
Acquire

if capacity > 0
acquire

if capacity = 0 function empty use
acquire retum PopLocalFrame()
Error: Error Error Error:
Overflow Leak Double-free Dangling
State Language Triggering
transition transition functions

Acquire Call:Java—C Native method taking reference
Return:Java—C JNI function returning reference
e.g., GetObjectField
Release Return:Java—C DeleteLocalRef or PopLocalFrame

Return:C—Java Return from any native method

Use Call:C—Java JNI function taking reference
e.g., CallVoidMethod
Return:C—Java Native method returning reference,
e.g., Class.getClassContext

Figure 3.16: A state machine for local reference.

53

acquire and release are more often implicit than explicit. Native code im-
plicitly acquires a local reference when a Java native call passes it to C or
when a JNI function returns it. The JVM releases local references automati-
cally when native code returns to Java, but the user can also manually release
one (DeleteLocalRef) or several (PopLocalFrame) local references. Jinn enters
the reference into its state machine encoding upon acquire and removes it
upon release. Jinn performs bookkeeping to support overflow checks since
the JNI specification only guarantees space for up to 16 local references. If
more are needed, the user must explicitly request additional capacity with
PushLocalFrame and later release that space with PoplLocalFrame. Jinn keeps
track of local frames and checks four error cases as follows: (1) Jinn detects
overflow if the current local frame exceeds capacity. (2) JNI releases indi-
vidual local references automatically; Jinn checks for leaked local reference
frames when native code returns to Java. (3) Jinn checks that local references
passed as parameters to JNI functions are not dangling and, furthermore, be-
long to the current thread. (4) Jinn detects a double-free when DeleteLocalRef
is called twice for the same reference or if nothing is left to pop on a call to

PopLocalFrame.

3.4 Generalization

This section demonstrates that our technique generalizes to other lan-
guages by applying it to Python/C 2.6 [81]. We first discuss the similarities
and differences between JNI and Python/C. We then present a synthesized
dynamic checker for Python/C’s manual memory management. We leave to
future work the full specification of Python/C FFI constraints and the com-

plete implementation of a dynamic analysis for these constraints.

54

3.4.1 Python/C Constraint Classification

Like JNI, the Python/C specification describes numerous rules that
constrain how programmers can combine Python and C. These constraints
fall into the same classes from Section 5.5.2: (1) interpreter state constraints,

(2) type constraints, and (3) resource constraints.

State constraints. Python/C constrains the behavior of exceptions and
threads. Python/C’s exception constraints mirror those of JNI: C code should
immediately handle the exception or propagate it back to Python. While not
explicitly stated in the manual, these constraints also imply that native code
should not invoke other Python/C functions while an exception is pending.
For thread constraints, Python/C differs slightly from JNI because Python’s
threading model is simpler than Java’s. For each instantiation of the Python
interpreter, a thread must possess the Global Interpreter Lock (GIL) to exe-
cute. The Python interpreter contains a scheduler that periodically acquires

and releases the GIL on behalf of a program’s threads.

Python/C permits C code to release and re-acquire the GIL around
blocking 1/O operations. It also permits C code to create its own threads and
bootstrap them into Python. Because C code may manipulate thread state
directly, the programmer may write code that deadlocks. For example, the
programmer may accidentally acquire the GIL twice. As a result, Python/C
requires bookkeeping for the GIL similar to that for JNI critical sections dis-

cussed in Section 3.3.1.

Type constraints. Because Python is dynamically typed, types in Python/C

are less constrained than in JNI. The Python interpreter performs dynamic

55

type checking for many operations on built-in types. However, sometimes
the interpreter forgoes these type checks—as well as some null checks—for
performance reasons. Consequently, if a program passes a mistyped value to
a Python/C call, the program may crash or exhibit undefined behavior. A
dynamic analysis based on the type constraints of Section 3.3.2 would enable
reliable detection of these errors, at the cost of reintroducing dynamic checking

for some Python/C functions.

Resource constraints. Python employs reference counting for memory man-
agement. To Python code, reference counting is transparent and fully au-
tomatic. However, native-code programmers must manually increment and
decrement a Python object’s reference count, according to the Python/C man-
ual’s instructions. To this end, the Python/C manual defines a notion of ref-
erence co-ownership. Each reference that co-owns an object is responsible for
decrementing the object’s reference count when it no longer needs that object.
Neglecting to decrement leads to memory leaks. C code may also borrow a
reference. Borrowing a reference does not increase its reference count, but
using a borrowed reference to a freed object is a dangling reference error. The
Python/C manual specifies which kinds of references are returned by the vari-
ous FFI functions. A dynamic checker must track the state of these references

in order to report usage violations to the user.

3.4.2 Synthesizing Dynamic Checkers

To ensure that FFI programs correctly use co-owned and borrowed ref-
erences, we implemented a use-after-release checker for Python/C’s reference

counting memory management.

56

1. static PyObject* dangle bug(PyObject* self, PyObject* args) {
2. PyObject *pythons, *first;

3 /* Create and delete a list with a string element.*/
4. pythons = Py_BuildValue([ssssss],

5. Eric, Graham, John, Michael, Terry, Terry);

6. first = PyList_Getltem(pythons, 0);

7. printf(1. first = %s.\n, PyString_AsString(first));

8. Py_DECREF(pythons);

9. /* Use dangling reference. */
10. printf(2. first = %s.\n, PyString_AsString(first));

11. /* Return ownership of the Python None object. */
12. Py_INCREF(Py_None);

13. return Py_None;

14. }

Figure 3.17: Python/C dangling reference error. The borrowed reference first
becomes a dangling reference when pythons dies.

Example memory management error. Figure 3.17 contains an example
Python/C function that mismanages its references. The reference first in Line 6
is borrowed from the reference pythons. When Line 8 decrements the reference
count for pythons, the reference dies. The Python/C manual states that the
program should no longer use first, but the program uses this reference at
Line 10. This use is a dangling reference error, and Python’s semantics are
undefined for such a case. In practice, Figure 3.17’s behavior depends on
whether the interpreter reuses the memory for first between the implicit release

in Line 8 and the explicit use in Line 10.

Synthesizer and generated checker. Our synthesizer takes a specifica-
tion file that lists which functions return new or borrowed references. The
generated checker detects memory management errors by tracking co-owned

references and their borrowers. For example, the checker determines that

57

pythons is a co-owned reference and that first borrows from pythons. When a
co-owner relinquishes a reference by decrementing its count, all its borrowed
references become invalid. If the program uses an invalid borrowed reference,

as Figure 3.17 does on Line 10, then the checker signals an error.

Interposing on language transitions. Integrating the dynamic analysis
with Python/C is more challenging than for JNI. Python lacks an interface
comparable to the JVM tools interface and thus requires that the dynamic
analysis be statically linked with the interpreter. Furthermore, Python/C
bakes in some of the Python interpreter’s implementation details, which makes
the API less portable than JNI and complicates interposing on language tran-
sitions. In particular, (1) Python/C makes prevalent use of C macros, (2) the
Python interpreter internally uses Python/C functions, and (3) some variadic

functions lack non-variadic counterparts.

Python/C makes extensive use of C macros. Some macros directly mod-
ify the interpreter state without executing a function call. Because Python/C
does not execute a function, our dynamic analysis has nothing to interpose
on and cannot track the behavior. We overcame this limitation by replacing
the macros with equivalent functions. This change requires programmers to
re-compile their native code extensions against our customized interpreter, but

it does not require them to change their code.

Because the Python interpreter internally calls Python/C functions, the
dynamic analysis cannot easily detect application-level language transitions.
Even if it could detect such transitions, function interposition and transition
detection would significantly slow down the interpreter. We overcame this

limitation by creating an interpreter-only copy of every Python/C function.

58

We then used automatic code-rewriting to make the interpreter call the un-
modified copies. Our dynamic analysis interposes on the originals, which are

used by native code extensions.

A wariadic C function such as printf takes a variable number of argu-
ments. Our synthesizer interposes on each variadic function by wrapping it
with code that calls an equivalent, non-variadic version of the function such
as vprintf. Python does not provide non-variadic equivalents for all its variadic

functions; where necessary, we added the non-variadic equivalents.

Despite these implementation challenges, our Python/C dynamic anal-
ysis substantially follows from our JNI dynamic analysis, thus providing ev-
idence of the generality of our approach. Both FFIs have large numbers of
constraints that fall into three classes. Both FFIs also support specifying the
constraints as state machines, mapping state machine transitions to language

transitions, and then applying the state machines to program entities.

3.5 Results

This section evaluates the performance, coverage, and usability of Jinn

to support our claim that it is the most practical FFI bug finder to date.

3.5.1 Methodology

Experimental environments. We used two production JVMs, Sun HotSpot
Client 1.6.0_.10 and IBM J9 1.6.0 SR5. We conducted all experiments on a Pen-
tium D T3200 with 2GHz clock, 1IMB L2 cache, and 2GB main memory. The
machine runs Ubuntu 9.10 on the Linux 2.6.31-19 kernel.

59

JNI programs. We used several JNI programs: microbenchmarks, SPEC-
jvm98 [68], DaCapo [9], Subversion 39004 (2009-08-31), Java-gnome-4.0.10,
and Eclipse 3.4. The microbenchmarks are a collection of 16 small JNI pro-
grams, which are designed to trigger one each of the error states in the eleven
state machines shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13,
3.14, 3.15, and 3.16. The microbenchmarks also cover all pitfalls in Table 6.1
with exception of Pitfall 8, which cannot be detected at the language bound-
ary. SPECjvm98 and DaCapo are written in Java, but exercise native code in
the system library. Subversion, Java-gnome, and Eclipse mix Java and C in

user-level libraries. Except for Eclipse 3.4, we use fixed inputs.

Dynamic JNI checkers. We compare three dynamic JNI checkers. Two of
them — IBM and SUN JVMs — use runtime checking and are turned on by
the -Xcheck:jni option. The third — Jinn— is turned on by the -agentlib:jinn
option in any JVM.

Experimental data. We collected timing and statistics results by taking
the median of 30-100 trials to statistically tolerate experimental noise. The
runtime systems show non-deterministic behavior from a variety of sources:

micro architectural events, OS scheduling, and adaptive JIT optimizations.

3.5.2 Performance

This section evaluates the performance of Jinn. Table 3.1 shows the
results. Jinn adds instructions to every language transition between the JVM
and native libraries, interposing and checking transitions. The second column

counts the total number of transitions between Java and C in the system li-

60

Language Normalized execution times

transition Runtime Jinn
Benchmark counts checking Interposing Checking
antlr 441,789 1.04 0.98 1.05
bloat 839,930 1.02 1.19 1.20
chart 1,006,933 1.02 1.08 1.12
eclipse 8,456,840 1.01 1.17 1.20
fop 1,976,384 1.07 1.14 1.37
hsqldb 206,829 0.88 1.04 1.05
jython 56,318,101 1.03 1.10 1.16
luindex 1,339,059 1.03 1.08 1.13
lusearch 4,080,540 1.04 1.09 1.21
pmd 967,430 1.04 1.10 1.13
xalan 1,114,000 1.01 1.17 1.19
compress 14,878 0.98 1.09 1.08
jess 153,118 0.99 1.22 1.17
raytrace 29,977 1.04 1.16 1.14
db 133,112 0.99 1.01 1.02
javac 258,553 1.06 1.16 1.14
mpegaudio 46,208 1.00 1.01 1.04
mtrt 32,231 1.01 1.11 1.14
jack 1,332,678 1.04 1.10 1.21
GeoMean 1.01 1.10 1.14

Table 3.1: Jinn performance on SPECjvm and DaCapo with HotSpot.

61

braries using HotSpot. The third column shows the execution times of runtime
checking for HotSpot. Execution times are normalized to production runs of
HotSpot without any dynamic checking. The fourth column reports Jinn’s
framework overhead due to interposition on language transitions. The fifth
column reports the total time, which includes state machine encoding, tran-
sitions, and error checking. On average, Jinn has a modest 14% execution
time overhead and most of the overhead (all but 4%) comes from runtime

interposition, rather than executing the analysis code.

3.5.3 Coverage of Jinn and JVM Runtime Checking

This section shows that Jinn covers qualitatively and quantitatively

more JNI bugs than the state-of-art dynamic checking in production JVMs.

Quality. We run the 16 microbenchmarks with HotSpot, J9, and Jinn.
Figure 3.18 compares their error messages on the representative Ezception-
State microbenchmark, which violates the exception state constraints of Sec-
tion 3.3.1. The C code in the benchmark ignores an exception raised by Java
code and calls two JNI functions: GetMethodID and CallVoidMethod. HotSpot
reports that there were two illegal JNI calls but does not identify the offending
JNI function calls. J9 reports the first JNI function (GetMethodID) but does
not show the calling context for the first bad JNI call because J9 aborts the
JVM.

Jinn reports both illegal JNI calls, their calling contexts, and the source
location of the original Java exception. In addition to precise reports, Jinn’s
error reporting integrates with debuggers. Java debuggers like jdb and Eclipse

JDT can catch the custom exception, and programmers can then inspect the

62

WARNING in native method:
JNI call made with exception pending at
ExceptionState.call(Native Method) at
ExceptionState.main(ExceptionState.java:5)
WARNING in native method:
JNI call made with exception pending at
ExceptionState.call(Native Method) at
ExceptionState.main(ExceptionState.java:5)

(a) HotSpot

JVMJINCKO28E JNI error in GetMethodID: This function
cannot be called when an exception is pending

JVMJINCKO77E Error detected in ExceptionState.call()V

JVMJINCKO24E JNI error detected. Aborting.

JVMJINCKO025I Use -Xcheck:jni:nonfatal to continue running
when errors are detected.

Fatal error: JNI error

(b) J9

Exception in thread main JNIAssertionFailure:
An exception is pending in CallVoidMethod.
at jinn.JNIAssertionFailure.assertFail
at ExceptionState.call(Native Method)
at ExceptionState.main(ExceptionState.java:5)

Caused by: jinn.JNIAssertionFailure:

An exception is pending in GetMethodID.
... 3 more

Caused by: java.lang.RuntimeException:
checked by native code
at ExceptionState.foo(ExceptionState.java:9)
... 2 more

(c) Jinn

Figure 3.18: Representative JVM and Jinn error messages using a microbench-
mark that violates the exception state constraint.

63

Java state to find the failure’s cause. Even better, the Blink Java/C debugger
(Chapter 4) can present the entire program state, including the full calling

context consisting of both Java and C frames.

Quantity. The behavior of the production runs without dynamic checkers
ranges from ignoring the bug to simply crashing to raising a null pointer
exception—mnone of which are correct. The dynamic checkers built into the
HotSpot and J9 JVMs also behave inconsistently in more than half of our mi-
crobenchmarks (9 of 16). Jinn is the only dynamic bug-finder that consistently
detects and reports the JNI bugs in our 16 microbenchmarks by throwing an
exception. Quantitative coverage of Jinn, HotSpot, and J9 is 100%, 56%,
and 50%, respectively, with exceptions, warnings (print to console and keep
running), and errors (print to console and terminate) counting as valid bug
reports. Jinn’s 100% coverage on our own, specifically designed test suite is
hardly surprising and does not imply that Jinn catches all JNI bugs. But
the low JVM coverage demonstrates that error checking in previous practice
was at best incomplete. Furthermore, JNI constraint violations are common
and well-documented [25, 26,43, 45,48, 75, 76], underlining the need for better

constraint enforcement.

3.5.4 Usability with Open Source Programs

This section evaluates the usability of Jinn based on our experience of
running Jinn over Subversion, Java-gnome, and Eclipse. All these open-source
programs are in wide industrial and academic use with a long revision history.
These case studies show that Jinn finds errors in widely-used programs. In

fact, Jinn found bugs in every substantial Java program we tested.

64

--- Capacity
— Original Program
------ Fixed Program

-y
(63}

local references
o >

Number of acquired

Time

Figure 3.19: Time-series of acquired local references with leak
and its fix in the fourth execution of a Java native method:
Java_org_tigris_subversion_javahl_SVNClient_info2.

3.5.4.1 Subversion

Running Subversion’s regression test suite under Jinn, we found two

overflows of local references and one dangling local reference.

Overflow of local references. Jinn found that Subversion allocated more
than 16 local references in two call sites to JNI functions: line 99 in Outputer.cpp
and line 144 in InfoCallback.cpp. Figure 3.19 compares the time-series of ac-
quired local references for the original and the fixed program. The original
program overflows the pool of 16 local references without requesting more
capacity—as detected by Jinn when acquiring yet another local reference.
One reported source line is:

jstring jreportUUID =
JNIUtil::makeJString(info—>repos_UUID);

After looking at the calling context, we found that the program misses a call

65

to DeleteLocalRef. We inserted the following lines:

env—>DeleteLocalRef(jreportUUID);
if (JNIUtil::isJavaExceptionThrown()) return NULL;

After re-compiling, the program passes the regression test even under Jinn,
since the number of active local references never exceeds 8. This overflow did
not crash HotSpot and J9 but represents a time bomb. A highly optimized
JVM may crash if it assumes that JNI code is well-behaved and eliminates

bound checking of the bump pointer for local references.

Use of dangling local reference. The use of a dangling local reference
happens at the execution of a C++ destructor when the C++ variable path

goes out of scope in file CopySources.cpp.

{

JNIStringHolder path(jpath);
env—>DeleteLocalRef(jpath);
} /* The destructor of JNIStringHolder is executed here. */

At the declaration of path, the constructor of JNIStringHolder stores the JNI
local reference jpath in the member variable path::m_jtext. Later, the call
DeletelLocalRef releases the jpath local reference, and thus path::m_jtext dies.
When the program exits from the C++ block, it calls the destructor of JNIString-
Holder. Unfortunately, this destructor uses the dead JNI local reference:

JNIStringHolder::~ JNIStringHolder() {
if (m_jtext && m_str)
m_env—>ReleaseStringUTFChars(m_jtext, m_str);
}

The JNI function ReleaseStringUTFChars uses the dangling JNI reference (m_jtext).
This bug is not syntactically visible to the programmer because the C++ de-
structor feature obscures control flow when releasing resources. In our ex-

perience, this bug did not crash production JVMs. To understand it better,

66

we looked at the internal implementation of ReleaseStringUTFChars in an open-
source Java virtual machine (Jikes RVM). In Jikes RVM, ReleaseStringUTFChars
ignores its first parameter, rendering the fact that the actual is a dangling refer-
ence irrelevant. If other JVMs are implemented similarly, this bug will remain
hidden. Nonetheless, the code again represents a time bomb, because the bug
will be exposed as soon as the program runs on a JVM where the implemen-
tation of ReleaseStringUTFChars uses its first parameter. For example, a JVM
may internally represent strings in UTFS8 format as proposed by Zilles [90] and
then share them directly with JNI.

3.5.4.2 Java-gnome

Running Java-gnome’s regression test suite under Jinn, we found one

nullness bug and one dangling local reference.

Nullness. Jinn reports a bug identified previously in the Blink debugger pa-
per (Chapter 4). Note, however, that Blink requires running the Java program

in a full-fledged debugger while Jinn is a light-weight dynamic checker.

Use of dangling local reference. Jinn reports and diagnoses bug 576111
for the Java-gnome project, which violates a constraint on semi-automatic
resources. Jinn reports that Line 348 of binding_java_signal.c violates a local
reference constraint.

(*env)—>CallStaticVoidMethodA(env, bjc—>receiver,
bjc—>method, jargs);

The bjc—>receiver is a dead local reference. A Java-gnome developer confirmed

the diagnosis. This bug did not crash HotSpot and J9, but, as noted before,

67

bugs that are only benign due to implementation characteristics of a specific

JVM vendor are time bombs and should be fixed.

3.5.4.3 Eclipse 3.4

We opened a Java project in Eclipse-3.4, and Jinn reported one vio-
lation of the entity-specific subtyping constraint in line 698 of callback.c in its

SWT 3.4 component.

result =
(*env)->CallStaticSWT_PTRMethodV(env, object, mid, vl);

The object must point to a Java class that has a static Java method identified
by mid. The actual class did not have the static method, but its superclass
declares the method. It is challenging for the programmer to ensure this
constraint, because the source of the error involves dynamic callback control
and a Java inner class. Because the production JVM may not use the object

value, this bug has survived multiple revisions.

3.6 Summary

This thesis seeks to improve the correctness of multilingual programs.
This chapter shows how to use a through FFT specification to generate dynamic
analyses that check FFI code. We show how to encode constraints in about
a dozen state machines. The three classes — thread state, type, and resource
— capture the key semantic mismatches that multilingual interfaces must
negotiate. The state machines, in turn, capture the complete constraints for
correctly using such interfaces. This chapter show how to use synthesis for
mapping the state machine specifications into context-sensitive dynamic bug

checkers inserted at language transitions. Notably, we generate dynamic bug

68

checkers for JNI and Python/C. We show that Jinn, the synthesized bug
checker for JNI, uncovers previously unknown bugs in widely-used Java native
libraries. Our approach to multilingual constraint representation, constraint
generation, and FFI usage verification is the most general, concise, practical,

and effective one to date.

69

Chapter 4

Interactively Examining Bugs across Language
Interfaces

Some multilingual programming bugs are a source of fatal failures that
cannot be analyzed automatically. Programmers must next resort to the time
consuming task of examining the program states in a sequence of computa-
tional events to find the source of their errors. Debuggers aid programmers by
letting them stop the program at a particular event and query the program
state. Single-language debuggers limit the scope of events and states to a
particular language while multilingual debuggers do not have such limitation.
Multilingual debuggers are strictly desirable, but their construction costs are

quite prohibitive.

To substantially reduce this cost, this chapter introduces a novel com-
position approach to building mixed-environment multilingual debuggers. Our
approach uses an intermediate agent that interposes on language transitions,
controlling and reusing single-environment debuggers. We implement debug-
ger composition in Blink, a debugger for Java, C, and the Jeannie program-
ming language. We show that Blink is (1) relatively simple: it requires modest
amounts of new code; (2) portable: it supports multiple Java Virtual Machines,
C compilers, operating systems, and component debuggers; and (3) powerful:
composition eases debugging, and supports new mixed-language expression

evaluation and Java Native Interface (JNI) bug diagnostics.

70

Section 4.1 starts by describing the compositional approach for reduc-
ing the engineering cost of building portable mixed-environment debuggers.
We support the feasibility of this approach in Section 4.2 by building Blink.
In Section 4.3, we extend the state of the art by evaluating mixed language
expressions written in Jeannie [35]. Section 4.4 validates that Blink is simple,
portable, and powerful. Section 4.5 discusses how the compositional approach
generalizes to more languages and environments. Section 4.6 presents our

extension to Jeannie.

4.1 Debugger Composition

This section describes our approach to composing mixed-environment
debuggers out of single-environment debuggers. We use our implementation
of Blink for Java and C as our running example. Section 4.5 presents require-
ments and mechanisms for generalizing composition to other mixed-language

environments.

4.1.1 Debugger Features

Our goal is to provide all the standard debugging features in a mixed
environment. When a user debugs a program, she wants to find and correct a
defect that results in erroneous data or control flow, which leads to erroneous
output or a crash [89]. Rosenberg identifies three essential features in support

of this quest [63]:

Execution control: The debugger controls the execution of the debuggee
process by starting it, halting it at breakpoints, single-stepping through

it, and eventually tearing it down. Typical interactive commands are

71

Controller

N

jdb Driver ggb."’db
river

Figure 4.1: Agent-based debugger composition approach.

run, break, step, continue, and exit.

Context management: The debugger keeps track of where in the code the
debuggee process is and, on demand, reports source code listings and call

stack traces. Typical interactive commands are 1ist and backtrace.

Data inspection: Users query the debugger to inspect data with source lan-

guage expressions, such as print or eval.

4.1.2 Intermediate Agent

Our approach to implementing these standard debugger features for a
mixed environment is to compose single-environment debuggers through an
intermediate agent. The mixed-environment debugger consists of a controller

and one driver for each single-environment component debugger. Figure 4.1 il-

72

lustrates this structure for the case of Java and C using jdb for Java, and gdb
or cdb for C (depending on whether we run on Linux or Windows). The de-
buggee process runs both Java and C, and the intermediate agent coordinates
the debuggers. The intermediate agent has two complementary responsibili-

ties:

Language transition interposition: When the debuggee switches environ-
ments on its own, the agent alerts the corresponding single-environment

debugger, so this debugger can track context or take over if necessary.

Debugger context switching: When an interactive user command requires
the debugger to switch environments, the agent transitions the debuggee
into the appropriate state and issues the command to the appropriate

single-environment debugger.

The following subsections detail the agent responsibilities and how to satisfy

them.

4.1.3 Language Transition Interposition

Language transition interposition is required for execution control be-
cause otherwise single-stepping is incomplete. Consider a Java and C debuggee
suspended at a Java breakpoint: the Java debugger is in charge, and the C de-
bugger is dormant. A single-step on a return statement to C causes a language
transition to C. The agent must detect this transition because otherwise the
Java debugger waits for control to return to Java code while the C debugger

remains dormant.

73

Language transition interposition is also required for context manage-
ment because otherwise stack traces are incomplete. Language transitions re-
sult in different portions of the stack belonging to different environments, but
each single-environment debugger understands only the portions correspond-
ing to its own language. To prepare for reporting the entire mixed-language

stack, the agent must track all the seams.

The agent must capture all environment transitions, whether they are
debuggee- or user-initiated. With two languages, there are four kinds of local
transitions: mixed-language calls and returns (e.g., Java call to C, C call to
Java, Java return to C, and C return to Java). The agent must also capture

non-local control flow such as exceptions.

Our approach instruments all environment transitions to call agent
code. For instance, in Figure 4.1, we interpose on transitions between Java
and C code, instrumenting them to call the agent. One option for realizing this
instrumentation is to modify the compiler or interpreter. However, to achieve
portability across different JVMs and C compilers, we do not want to modify
them. Instead, we leverage the fact that Java’s foreign function interface (FFI)

is wrapper-based and instrument the wrappers.

4.1.4 Debugger Context Switching

When one single-environment debugger is active and the user issues a com-
mand that only the other debugger can perform, the agent must assist in
debugger context switching. For example, when the program is at a break-
point in Java and the user wants to set a breakpoint in C, the agent must
suspend the Java debugger and issue the command to the C debugger. Simi-

larly, commands such as backtrace and print require one or more context

74

jdb Java Code C Code gdb/cdb | Control

State
T T T
| | | .
| jbreak | | Application
_______ T 1
| | |
| | | JDB
eval {7 i | I |
T : . e ot
I E j2ccall : I
| :] E |
A | Ecbreak' ____________
| : | | :
: i Blink Debugger Agent GDB/CDB in JDB
: | | H
1- - - - | rT 1 |
I : I ;cont
| : . T 5 |
I : jecreturn ¢ G
:] | : |
-------- il R | JDB
cont ! ! !
....... .|...._.._|......_-.....
| | |
| | | ..
| | | Application
| | |
| | |

Figure 4.2: Debugger context switching example, using j2c helper function
to switch from jdb to gdb/cdb. Blink also has a c2j helper function for
switching in the other direction.

75

switches to tap into functionality from both single-environment debuggers. We

switch debugger contexts with the following steps:

1. Set a breakpoint in a helper function in the other environment.
2. Call the helper function using expression evaluation.
3. At the breakpoint, activate the other debugger.

4. When the other debugger completes, return from the helper function,

which returns control back to the original debugger.

Figure 4.2 illustrates context switching through the example of switching from
jdb to gdb. Each vertical line represents an execution context, with the cur-
rently active context marked by a box overlaying the line. Horizontal arrows
show control transfers between execution contexts. From top to bottom, the
application starts out executing Java code. It hits a Java breakpoint, sus-
pends itself, and activates jdb. Now, suppose the user requests a gdb debug
action. At the moment, gdb is inactive and cannot accept user commands.
Blink therefore initiates a debugger context switch by using the jdb function
evaluation feature to call the debugger agent method j2c. The method j2c
is a Java method that uses JNI to call C and has a breakpoint in the C part
of the code. When execution hits the C breakpoint, gdb is activated and
can perform the debug action requested by the user. When complete, gdb’s
continue returns from the C code and Java method, at which point jdb
wakes up again and is ready to accept commands. The user can either re-
quest additional debugging actions in Java or C or resume normal application

execution with continue.

76

4.1.5 Soft-Mode Debugging

Debugger composition dictates soft-mode debugging, in which the de-
buggee process executes basic commands, such as break, step, and backtr-
ace, on behalf of the debugger. In contrast, hard-mode debugging does not
require the debuggee to run code on the debugger’s behalf, except when users
explicitly request it — for example, with a command to evaluate a function
call. Debuggers for C, including gdb and cdb, are typically hard-mode. Java
debuggers are typically soft-mode because Java’s JDWP (Java Debugger Wire

Protocol) expects an agent in the JVM that issues commands to the debuggee.

Soft-mode debugging is less desirable than hard-mode because running
code in the debuggee changes its state and behavior and may thus lead to
Heisenberg effects. The very act of debugging may change the behavior of
the bug. Notably, the user may set a breakpoint in a C library shared by
the application and JVM. The user expects to reach the breakpoint through
a JNI call, but JVM code may instead reach the breakpoint through internal
service code. Since the JVM is typically not reentrant (i.e., it assumes that
no user code runs in the middle of a JVM service), debugger actions may now
crash the JVM. For example, the JVM’s allocator may temporarily leave a
data structure in an inconsistent state, thus making it unsafe for the agent to
allocate objects. Furthermore, even if the native breakpoint is not reachable
from the JVM, JNI disallows JNI operations when exceptions are pending
or garbage collection is disabled. Reentering the JVM without first clearing
the exception or re-enabling garbage collection may crash or deadlock the

system [43, 49].

Blink mitigates its use of soft-mode debugging by warning users of

actions that might trigger a soft-mode inconsistency. Debugging actions in C

7

are safe as long as the program entered native code through JNI, exceptions are
cleared, and garbage collection is enabled. Since we already rely on language
interposition, we detect whether the JVM is in a safe state. If the debugger
is about to perform an action in C, but the JVM is in an unsafe state, the
debugger warns the user. Instead of just warning the user, we could refuse
to perform debug actions altogether. We chose a warning over refusal since

unreliable information is better than no information.

4.2 Blink Implementation

This section explains Blink’s implementation in detail.

4.2.1 Blink Debugger Agent

The Blink debugger agent is a dynamically linked library that includes
both Java and native code and that executes within the JVM hosting the appli-
cation. The host JVM loads and initializes the Blink agent using the Java Vir-
tual Machine Tool Interface (JVMTI) [72]. Blink triggers single-environment
debugger actions using their expression evaluation features. As far as the com-
ponent debuggers are concerned, these actions are initiated by the application

process.

Debugger context switching. Blink supports switching contexts between
its component debuggers as illustrated in Figure 4.2. The helper functions
j2c and c2 7 are part of the Blink debugger agent, and they contain hard-
coded internal breakpoints. These internal breakpoints force the application

to surrender control to the respective debugger.

78

Java Native Interface
in JVM

j2c-call
j2c-return
<>l
|
— czj-call

| _——}////ﬁ
|

|

. c2j-return

|

Figure 4.3: Transitions between Java and C.

Runtime transition interposition. The Blink agent interposes on all en-
vironment transitions to report full mixed run-time stack traces and to control
single-stepping between environments. Figure 4.3 shows the four possible tran-
sitions between Java and C. Java exceptions are automatically propagated by

JNI, and thus they do not result in additional environment transitions.

j2c call: Line 8 in Figure 4.4 is an example of a call from Java to C. It
looks just like an ordinary method call, and in fact, with virtual methods,
the same call in the source code may invoke native methods or Java methods.
To interpose on j2c calls, the Blink agent wraps all JNI native methods. For
example, the wrapper function for the native method PingPong_cPong on
Line 14 in Figure 4.4 conceptually reads:
jint wrapped_PingPong_cPong(...) {
j2c_call(); /+* interposed j2c call =/
jint result = PingPong_cPong(...);

j2c_return(); /* interposed j2c return =/
return result;

79

PingPong.java

1. class PingPong {

2. static { System.loadLibrary("PingPong"); }
3. public static void main(String[] args) {
4. JPing (3) ;

5. }

6. static int jPing(int i) {

7. if (1 > 0)

8. cPong (i - 1);

9. return 1i;
10. }
11. static native int cPong(int i);
12. }

PingPong.c

13. #include <jni.h>
14. jint PingPong cPong (

15. JNIEnv* env, jclass cls, jint 1

16.) {

17. if (1 > 0) {

18. jmethodID mid = (*env)->GetStaticMethodID (
env, cls, "JjPing", "(I)I");

109. (*env)->CallStaticIntMethod(env,cls,mid,i-1);

20. }

21. return 1i;

22. '}

Figure 4.4: JNI mutual recursion example.

80

Wrappers are largely generic — i.e., they pass arguments to and results from
the original native method implementation while also invoking the debugger
agent. For this reason, Blink uses assembly code templates to instantiate
each native method’s wrapper. This approach is simple and general — i.e.,
does not require the full power of dynamic code generation. However, it does
require some porting effort across architectures and operating systems. In our
experiences with TA32 and PowerPC for Unix and Windows, the non-portable

code amounts to only 10-20 lines of assembly.

j2c return: The Blink agent interposes on returns from a C function to a
Java method through the JNI native method wrapper function shown above.
The return looks just like an ordinary function return, and, in fact, the same

C function can return sometimes to Java and sometimes to C.

c2j call: All calls from C to Java go through a JNI interface function, such
as CallStaticIntMethod on Line 19 of Figure 4.4. Blink instruments
every c2j interface function. All interface functions reside in a struct of func-
tion pointers pointed to by variable INIEnvx env on Line 15 of Figure 4.4.
During JVMTT initialization, Blink replaces the original function pointers by
pointers to wrappers. Conceptually, the wrapper for CallStaticIntMethod

reads:

int wrapped_CallStaticIntMethod(...) {
c2j_call(); /= interposed c2j call =/
int result jvm_CallStaticIntMethod(...);
c2j_return (/* interposed c2j return =/

)
return result;

81

c2j return: The same wrappers that interpose on c2j calls also interpose on

c2j returns, as shown above.

4.2.2 Context Management

One basic debugger principle from Rosenberg’s book [63] is: “Context
is the torch in the dark cave.” Users, unable to follow all the billions of
instructions executed by the program, feel like they are being taken blind-
folded into a dark cave when searching for the source of a bug. When the

program hits a breakpoint, the debugger must provide context.

Source line number information. The most important question in de-
bugging is: “Where am [7” Debuggers answer it with a line number. Java
compilers provide line number information to jdb, and C compilers provide

line number information to gdb or cdb, which Blink borrows.

Calling context backtrace. While “Where am 17”7 is the most important
question, “How did I get here?” is a close second. Debuggers answer this
question with a calling context backtrace, which shows the stack of function
calls leading up to the current location. The JNI code in Figure 4.4 is an
example of mixed-runtime calls that produce a mixed stack. In the beginning,
the main method on Line 4 calls the jPing method with argument 3, yielding

the following stack:

main:4 — jPing (3) : 7

Since 1 > 0, control reaches Line 8, where the Java method jPing calls native

method cPong defined in C code as function PingPong_cPong:

82

main:4 — jPing (3) : 8 = cPong(2) :17

The C function cPong calls back into Java method jPing by first obtain-
ing its method ID on Line 18, then using the method ID in the call to
CallStaticIntMethod on Line 19:

main:4 — jPing(3) : 8 = cPong(2) :19 = jPing (1) : 7

Finally, after one more call from jPing to cPong, the mixed-environment

mutual recursion comes to an end as it reaches the base case i = 0:

main:4 — jPing(3) : 8 = cPong(2) :19 — jPing(1l) :8
— cPong (0) :17

At this point, the stack contains multiple and alternating frames from each
environment. Unfortunately, each single-environment debugger only knows
about a part of the stack since each environment uses its own calling conven-
tion. For example, a standard Java debugger shows all Java fragments, with

gaps for the C parts of the stack:

main:4 — jPing(3) :8 — ?(C) — jPing(l) :8 — ?(C)
A standard C debugger has even less information. It only shows the bottom-
most C fragment:

?(Java/C) — cPong (0) : 17

Neither gdb nor cdb understands the JVM implementation details for Java

frames.

Blink weaves the complete stack from JVM call frames and native

method frames by exploiting the Java native method wrappers discussed in

83

Section 4.2.1. The j2c wrapper saves its frame pointer and program counter
in a thread local variable, and the c27j wrapper retrieves the saved frame
pointer and program counter while also overwriting its old frame pointer and
return address. Modifying the processor state accordingly guides the C de-
buggers to skip JVM-specific native frames between j2c and c2j wrappers and
yields the following C frames:

cPong(2) :19 = wrapped_CallStaticIntMethod
— wrapped_PingPong_cPong — cPong (0) :17

Blink recognizes its agent wrapper functions and presents the interleaved Java
and C stack:

main:4 — jPing(3) : 8 = cPong(2) :19 = jPing(1l) :8
— cPong (0) :17

Blink thus recovers and reports the full stack to the user as needed. These
implementation details will vary for other languages, their environments, and
their debuggers. As described below, the user can also inspect data from both

languages at a breakpoint.

4.2.3 Execution Control

If context is the torch in the dark cave, then execution control is the
means by which the user can get from point A to B in the cave when tracking
down a bug. The debugger controls execution by starting up, tearing down,
setting breakpoints, and stepping through program statements based on user

commands.

84

Start-up and tear-down. The Blink controller starts the program in the
JVM, attaches jdb and either gdb or cdb, and loads the Blink debugger
agent. To load the agent, Blink uses JVMTI and the —agentlib JVM com-
mand line argument. To initialize the agent, Blink issues internal commands,
such as setting two internal breakpoints: one for Java and the other for C.!
After it initializes and connects all the processes but before the user program
commences, Blink gives the user a command prompt. When the program

terminates, Blink tears down jdb and gdb/cdb and exits.

Breakpoints. Breakpoints answer the question: “How do I get to a point
in program execution?” Users set breakpoints to inspect program state at
points they suspect may be erroneous. The debugger’s job is to detect when
the breakpoint is reached and then transfer control to the user. One of the
key challenges for a mixed-environment debugger is setting a breakpoint for a
location in an inactive environment. This functionality requires the debugger
to transfer control to the other environment’s debugger, set the breakpoint,
and return control to the current environment’s debugger. Blink takes the
breakpoint request from the user and checks if the request is for Java or C.
If the current environment does not match the breakpoint environment, Blink
switches the debugging context to the target environment and directs the

breakpoint request to the corresponding debugger.

Single stepping. Once the application reaches a breakpoint, the question

is: “What happens next?” Users want to single step though the program,

IThe internal breakpoints are multiplexed for several conditions. See Section 4.4.3 for
the performance impact of evaluating these conditions.

85

examining control flow and data values to find errors. The step into, or simply
step, command executes the next dynamic source line, which may be the first
line of a method call, whereas the step over, or next, command treats method
calls as a single step. The challenge for mixed-environment single-stepping is
that while jdb can step through Java and gdb or cdb can step through C,
they lose control when stepping into a call to the other environment or when

returning to a caller from the other environment.

Blink maintains control during a step command as follows. It sets inter-
nal breakpoints at all possible language transitions, so if the current component
debugger loses control in a single-step, then the other component debugger im-
mediately gains control. Blink only enables transition breakpoints from the
current environment to the other environment when the user requests a single-
step. Furthermore, when the user requests step-over as opposed to step-into,
Blink enables return breakpoints, as opposed to both call and return break-
points. Note that Blink does not make any attempts to decode the current
instruction but rather aggressively sets needed internal breakpoints just in
case the single-step causes an environment transition and then operates on
the user command. This approach greatly decreases debugger development
effort since accurate Java single-stepping requires interpreting the semantics
of all byte codes, and accurate C single-stepping requires platform-dependent

disassembly.

Once Blink sets the internal breakpoints, it implements single-stepping
by issuing the corresponding command to jdb or gdb/cdb. There are three

possible outcomes:

e The component debugger’s single-step remains in the same environment.

Blink performs no further action.

86

e There is an environment transition and consequently an internal break-
point intercepts it. Blink steps from the internal breakpoint to the next

line.

e An exceptional condition, such as a segmentation fault, occurs. Blink

abandons single stepping.

In all cases, Blink then disables its internal breakpoints, as is usual for break-

point algorithms [63].

4.2.4 Data Inspection

Once the user arrives at an interesting point, the main question be-
comes: “Is the current state correct or infected?” This question is hard to
answer automatically, so data inspection answers the simpler question, “What
is the current state?” Blink delegates the inspection of application variables,
including locals, parameters, statics, and fields, to the component debugger for
the current environment, which provides the most local origin for a variable.
If, however, the current component debugger does not recognize the variable,

Blink tries the other component debugger.

4.3 Jeannie Mixed-Environment Expressions

The more powerful a debugger’s data inspection features, the easier it
is for the user to determine whether or not she is on the right track to finding
a bug. For example, gdb provides expression evaluation with a read-eval-print
loop (REPL). An interactive interpreter evaluates arbitrary source language

expressions based on the current application state. While implementing a

87

language interpreter requires a significant engineering effort, expression evalu-
ation makes it easier to determine whether or not the current state is infected,
especially if the evaluator supports function calls and side effects. Besides
debugging, expression evaluation is useful for rapid prototyping, program un-

derstanding, and testing, as users of languages with REPLs readily attest.

Blink advances the state of the art of expression evaluation by accept-
ing mixed-language expressions, which nest subexpressions from multiple lan-
guages with a language specification operator. The user writes mixed-language
expressions, and we implement mixed-environment interpretation. It is based
on the insight that, given single-environment interpreters, mixed-environment
expression evaluation reduces to handing off subexpressions to the component

debuggers and passing intermediate results between them.

Blink implements mixed-language expressions written in the Jeannie
programming language syntax [35], which mixes Java and C code using the
incantation “backtick period language,” i.e., *.C and ‘.Java. A single back-
tick “ toggles when there are only two languages, as in Blink. For example,
consider this native Java method declaration from the BuDDy binary decision

diagram library [50]:

public static native int makeSet (int[] var);

The C function implementing this Java method looks as follows:

jint BuDDyFactory_makeSet (
JNIEnv xenv, jclass cls, jintArray arr

) A
/+* C code using parameters through JNI */

88

In the C function, the variable arr is an opaque reference to a Java inte-
ger array. Single-language expression evaluation could only print its address,
which is not helpful for debugging. However, the mixed-environment expres-
sion *.C((‘.Java arr).length) (or ‘((‘arr).length) for short)
changes to the Java language and accesses the Java field 1ength of the C vari-
able arr, returning the length of the Java array, which is much more mean-
ingful to the user. Clearly, mixed-environment expression evaluation makes

data inspection more convenient.

We add two features to Blink’s debugger agent to support expression

evaluation:

Convenience variables store the results of a (sub)expression evaluation in

temporary variables.

Mixed-environment data transfer translates and transfers data between

environments.

4.3.1 Convenience Variables

Application variables are named locations in which application code
stores data during execution. Convenience variables are additional named lo-
cations provided by the debugger, in which the user interactively stores data
for later use in a debugger session. Convenience variables behave like vari-
ables in many scripting languages: they are implicitly created upon first use,
have global scope, and are dynamically typed. In addition to user-defined
convenience variables, some debuggers support internal convenience variables
— for example, to hold intermediate results during expression evaluation. In

the mixed-environment case, the debugger must remember not only the values

89

of convenience variables, but also their languages. Since gdb provides conve-
nience variables (written “$var”), Blink reuses them to store C values. Since
jdb and cdb lack this feature, Blink implements convenience variables in the
debugger agent, using a table to map names to values and languages. The

table is polymorphic to support dynamic typing.

4.3.2 Mixed-Environment Data Transfer

Mixed-environment data transfer is the only case where Blink must
discover enough type information to treat the value appropriately, since the
single-language debuggers usually perform this function. The Blink agent
transfers data from a source to a target environment by first storing data
in an array in the source environment. It then uses a helper Java method
or JNI function to read from the array and returns the value to the target
environment. One complication is that the array and the retrieval function
must have the correct type since the semantics of a value depend on its type
and language. For example, Blink must convert an opaque JNI reference in C
to a pointer in Java. A struct or union in C, on the other hand, does not have
a direct correspondence in Java. In the case of C values, gdb provides exactly
what Blink needs: the whatis command finds the type of an expression
without executing it and, in particular, without causing any side effects or
exceptions. Since jdb lacks the necessary functionality, Blink distinguishes
between different Java types for primitive values, such as numbers, characters,
or booleans, and for references (i.e., objects or arrays) using a simple work-
around. Blink instructs jdb to pass the value to a helper method that is
overloaded for the different primitive and reference types. Jdb’s expression

evaluation automatically selects the appropriate method, thus ensuring that

90

Figure 4.5: Reading the expression x = $y + ‘z when the current language
is Java.

= "99 bottles"

delayed| X | | + |"99 bottles"
99 | 3y | > | " bottles”
localRef$3
Figure 4.6: Evaluating the expression x = $y + ‘z when the current lan-

guage is Java.

values can be correctly transferred to C.

4.3.3 Expression Evaluation (REPL)

This section explains each step of Blink’s read-eval-print (REPL) loop.

Read. As suggested by Rosenberg [63], the “read” stage of Blink’s REPL
reuses syntax and grammar analysis code. We reuse the Jeannie grammar,
which composes Java and C grammars [31,35]. It is written in Rats/, a parser
generator that uses packrat parsing for expressiveness and performance. The
Jeannie grammar and Rats! are designed for composition. Section 4.6 dis-

cusses Jeannie in more detail.

91

Whereas a traditional compiler annotates the AST with types, Blink
annotates the AST with: (1) which language (Java or C) is being used and (2)
whether each AST node is an r-value (read-only) or an l-value (written-to on
the left-hand side of an assignment). Figure 4.5 shows how Blink annotates the
AST for the expression “x = Sy + ‘z,” assuming that the current language
is Java. Node x is an l-value, and node z is a C r-value because z’s parent is

the language toggle backtick .

Blink uses the component debuggers for symbol resolution. As is usual
in debuggers, application symbols such as variable and function names are
resolved relative to the current execution context. User convenience variables,
on the other hand, have global scope and do not require context-sensitive

lookup.

Eval. The interpreter visits the AST in depth-first left-to-right post-order.
Each node is executed exactly once and in the right order to preserve language
semantics in the presence of side effects and to avoid surprising users if an
exceptional condition, such as a segmentation fault, cuts expression evaluation

short.

To evaluate an expression one AST node at a time, Blink uses tempo-
rary storage for subexpression results. For r-values, Blink evaluates the node
and then stores the result in an internal convenience variable. For l-values,
Blink evaluates their children but delays their own evaluation. These l-values

are evaluated later as part of their parent, which is by definition an assign-

¢ \ b

ment. Figure 4.6 shows the example expression “x = $y + ‘z,” assuming
that the convenience variable $y is currently the number 99, and the C ap-

plication variable z is currently an opaque JNI local reference 1ocalRef$3.

92

All leaves are variables, which Blink evaluates through the component debug-
gers” REPL. Blink directly uses any leaf literals without lookup. At inner
nodes, Blink needs to perform evaluation actions. For the language toggle
operator ‘, Blink performs a mixed-environment data transfer as described in
Section 4.3.2. As shown in Figure 4.6, Blink discovers that the JNI reference
localRef$3 on the C side refers to the Java string bottles on the Java
side. For other operators, such as + and =, Blink falls back on the REPL in
the component debuggers. Note that in general, an inner node may call a user

function and may thus execute arbitrary user code.

Print. When expression evaluation reaches the root of the tree, Blink prints
the result. As recommended by Rosenberg, Blink disables user breakpoints for
the duration of expression evaluation because the user would probably be sur-
prised when expression evaluation hits a breakpoint in a callee [63]. However,
there may be other exceptional conditions during expression evaluation, such
as Java exceptions or C segmentation faults. In this case, Blink aborts the
evaluation of the current expression, and the debug session continues at the
fault point instead. Whether expression evaluation terminates normally or ab-
normally, Blink always nulls out internal convenience variables for sub-results

and re-enables all user breakpoints.

4.4 Evaluation

This section evaluates our claim that debugger composition is an eco-
nomical way to build mixed-environment debuggers and that the resulting
debuggers are powerful. We show that Blink is relatively concise, new devel-

opment cost is low, the space and time overheads are low, and the resulting

93

tool is portable. Through the use of case studies, Section 4.4.4 demonstrates

that Blink helps programmers to quickly find mixed-language interface bugs.

4.4.1 Methodology

We rely on single-environment debuggers, JVMs, C compilers, and
operating systems. We use JDK 1.6 as implemented by Sun and IBM. For
the debuggee running on Linux/IA32 machines, we use Sun’s Hotspot Client
1.6.0-10 [71] and IBM’s J9 1.6.0 (build pxi3260-20071123_01) [6]. We also
use Sun’s javac 1.6.0.10 and gcc 4.3.2 with the —g option. For Windows,
we use Sun’s Hotspot Client 1.6.0_10, Sun’s javac 1.6.0_10, and Microsoft’s
C/C++ compiler (c1.exe) 15.00.21022.08. We use Sun’s JDK 1.6.0 jdb and
Microsoft’s cdb 6.9.0003.113 debuggers, and GNU gdb 6.8 debugger running
on Cygwin 1.5.25, a Unix compatibility layer for Windows.

4.4.2 Building Blink

Blink’s modest construction effort leverages the large engineering effort
and supported platforms of existing single-environment debuggers. To quantify
this claim, we count non-blank non-commenting source lines of code (SLOC),
which is an easily available but imperfect measure of the effort to develop
and maintain a software package. Given the orders of magnitude differences
in SLOC, we are confident that this metric reflects substantial differences in

engineering effort.

4.4.2.1 Construction Effort

Table 4.1 shows the code sizes of Blink, jdb, gdb, and their compo-

nents. The jdb line counts are for the jdb 1.6 sources in demo/ jpda/examples. jar

94

Debugger SLOC #Files

Blink 9,481 41
Controller (front-end) 4,575 18
jdb driver (back-end) 391 1
gdb driver (back-end) 511 1
cdb driver (back-end) 546 1
Agent - Java (back-end) 1,515 9
Agent - C (back-end) 1,943 11

Java debugger - jdb 86,579 769
jdb (user-interface) 18,360 122
JDI (front-end) 16,983 256
JDWP Agent (back-end) 40,171 356
JVMTT (back-end) 11,065 35

C debugger - gdb 6.7.1 1,017,069 2,331
db 419,921 1,524
include 32,039 215
bfd 286,981 398
opcodes 278,128 194

Table 4.1: Debugger SLOC (source lines of code).

95

of Sun’s JDK 1.6.0-b105. The JDI line counts are for the JDI implementation
in the Eclipse JDT. The JDWP and JVMTTI line counts are for the correspond-
ing subdirectories of the Apache DRLVM. Blink adds a modest 9,481 SLOC to
integrate 1,103,648 SLOC from the Java and C debuggers. The SLOC of the
existing debugger packages are 9 to 107 times larger than Blink’s. Although
other researchers show how to build single-environment debuggers more eco-
nomically than gdb [61,64], Blink adds modestly to this effort. Blink only
adds new code for interposing on environment transitions and for control-
ling the individual debuggers. Blink otherwise reuses existing debuggers for
intricate platform-dependent features, such as instruction decoding for single-

stepping or code patching for breakpoints.

4.4.2.2 Portability

To evaluate the effort required for porting Blink to multiple platforms,

we measure the amount of platform-independent and -dependent code.

The basic composition framework requires 4,575 SLOC. Blink needs an
additional 4,265 SLOC to support our initial configuration, which uses Sun’s
Hotspot JVM, jdb, and gdb running on Linux/IA32. Out of Blink’s total
9,481 SLOC, approximately 1,500 SLOC implement platform-specific code in
the agent and debugger drivers, representing about 16% of Blink’s code base.
Our native agent contains a small amount of non-portable platform- and ABI-
specific code to access the native call stack. Furthermore, a small amount of
debugger-specific code is required because cdb exposes a different user inter-
face than the more expressive gdb. Consequently, Blink employs an internal
adaptation layer to provide uniform access to either gdb on GNU platforms

or cdb on Windows.

96

A
o 9,481
8 8,840 :
> - . cdb driver :
o : .
[%2]
(]
£
S Agent
§ 4575 feeeeneinaninnsy idb driver
o : gdb driver :
(@) : :
- .
» o L/ Controller: : _ _
Platforms: 1A32 / Linux / Hotspot : J9 : Cygwin : Windows

Figure 4.7: Blink portability and SLOC.

Figure 4.7 plots the cumulative SLOC for the Blink controller; then
the code for supporting Hotspot, jdb, and gdb on Linux; then the code for
supporting J9 on Linux; then gcc and gdb under Cygwin on Windows; and
finally Microsoft’s C and cdb on Windows. As shown in the figure, Blink
requires no additional code to support IBM’s J9 and Cygwin. Furthermore, it
requires only 640 SLOC to support cdb on Windows. These results show that
Blink’s debugger composition is effective and requires only small amounts of
code when adding more operating systems, JVMs, C compilers, and component

debuggers.

4.4.2.3 Portability Tests

We now briefly describe some of our functionality tests. They give us
confidence that our implementation is correct and complete on all supported

platforms.

Context management. This test sets two breakpoints, at jPing(PingPo—

ng.java:7) and cPong (PingPong.c:17) in Figure 4.4. During execu-

97

tion, the application stops at each of these breakpoints twice, and, each time,

the test issues the backtrace command.

Execution control. This test first sets a breakpoint at the main method
of the mutual recursion example in Figure 4.4. From there, the test repeatedly
uses the step command until the end of the program. This test exercises all

cases of mixed-language stepping through calls and returns.

Data inspection. This test first sets a breakpoint in a nested context of two
example programs in the Blink regression test suite. (The interested reader
can find these programs in the open-source distribution of Blink [30].) When
the application hits the breakpoint, the test evaluates a variety of expressions,
covering primitive and compound data, pure expressions and assignments,

language transitions, and user function calls.

Results. Currently, all these and other functionality tests succeed for the

following configurations on TA32:
Sun JVM Linux
{ IBM JVM }*{ Cygwin }+ gdb

The “Cygwin” case uses Windows with the GNU C compiler instead of Mi-
crosoft’s C compiler. We also tried the tests on PowerPC but found that gdb
did not interact well with the JVM on that platform. Using a Linux/Power
Mac G4 machine running IBM JDK 1.6.0 (SR1) and gdb 6.8, gdb reports an
illegal instruction signal (SIGILL) when the debuggee resumes execution after

a breakpoint in a shared library. We leave further investigation of different

architectures to future work. We also test Blink with Microsoft’s C compiler

98

and Microsoft’s C debugger:

Sun JVM + Windows + cdb

In this configuration, context management and execution control are fully
supported, but data inspection is only partially supported because cdb’s ex-

pression evaluation features are incomplete when compared to gdb.

4.4.3 Time and Space Overhead

This section shows that the time and space overheads of Blink’s inter-

mediate agent are low.

Time Overhead. The time overhead of the intermediate agent is linearly
proportional to the number of dynamic transitions between Java and C since
it installs wrappers in both Java native methods and JNI functions. These
wrappers add a small number of instructions to the dynamic instruction stream

for each transition between Java and C.

To measure the performance impact of interposition in the intermediate
agent, we ran several large Java programs with the Blink agent. We measured
runtime and dynamic transition counts with Sun Hotspot 1.6.0_10 running on a
Linux/IA32 machine on the SPECjvm98 and DaCapo Java v.2006-10 Bench-
marks [9,68]. These Java benchmarks exercise C code inside the standard
Java library. The initial heap size was 512MB, and the maximum heap size
was 1GB. The experiments used a Pentium D 2 GHZ running Linux 2.6.27.

Each benchmark iterated once. The results are the median of 16 trials.

Table 4.2 shows the results. The column environmental transition

counts shows the number of dynamic transitions between Java and C. The

99

0T°0°9' T INA 20dsjoH yym juoGe Sngop UI[g oY} JO SOIISLIOORIRYD 9OURWLIONSJ g 9[R],

01’1 60°'T 10'T UBIIA[09)
oT'1 80T 6670 57 4a 18°¢ 06°¢ | L6S'TOET 912988 189°|1¥ el
o1l or1 96°0 0% 10°C LT 08'T 112°2¢ LTH'ET 78L'81T gRGle
66°0 66°0 00'T 6L LLG 18°C I8¢ | Tee'Ly 88G‘Tg £6L6T orpnesodu
eIt VTT 11T 0g°2 972 8%'L ¥G'9 | 8€5'95¢ TL6TL 99G‘F8T oeaef
01 0’1 00°'T vL'6 cL6 166 796 | 896°¢ET €608 GTG'ES qp
LT V1T 660 89T 79T St VT | SPSI0¢ GLETT 0LT'ST o0RIYARI
02’1 €C'T 160 9T'¢ €T'e 96°% €9°C | 681°GST L1629 TL3'C6 ssof
80T 201 10°T 00°¥ 96°¢ eLe 1.°¢ | SI6°GT 096°6 8G6°S ssoxdwod
LTT LTT 0T Yratde 7600 7S 61 0T'6T | 688°CET'T 898°¢9¢ 166692 uerex
80T 201 01 606 606 8G'8 G7'8 | €0L°L96 Ve1'9e¥ 6LG°T€S pud
121 61T 01T G0°0T 686 L1°6 76’8 | 686°82S‘E 80G‘€TS'T T8F'ST0C oIRIS
80T 201 10°T 10°0T 766 66 8C'6 | GG9°LLET G96°9¢6 060°TH¥ Xopuimy
G0'T 70T 66°0 2£21 2221 99'TT €811 | 061°7R8E‘0S TLI'6S8°CF 610°GTS'EI oAl
€0'T €0'T 10°T 8L'S 9L'G 69'g 196 | 60L70¢ 0GL‘€L 6G56°0€T qprbsy
qT'T V1T 70T 187 GT'¥ 88'¢ ¥LE | OFPE086°T IPF6E7' T 668°07S doy
91T 8T'T 00°'T 6985 9L'65 88°05 0L°0S | TTG'SER'S 0£6°90'9 T18Z‘TE9C osdioa
90°'T 201 660 186 066 LT°6 8C'6 | L8G'€T0'T 02 LL9 L1E°9%¢ JretD
111 0T'T 00T 176 %e6 87’8 09’8 | 6£7'8E8 G6L‘€ET 779764 yeo[q
01T 10'T 96°0 69§ 79'¥ 177 8G'F | 0GL'0LF 117'67¢ 608165 Ijue
suorjisueda) suorjisued} [TLINAL | suoljisuer} suoljisuer} [TINACL
paxoayD pesodisjuy 8A1OY paxoayD posodaajuy BAI10Y oseq | D < eAer () — eAR[) < eaef

9UII) UOIINIIXD POZI[RULIO N SPUO029S Ul 9WI) UOIINIIXY SIUNOD UOI}ISURI) [RIUSWIUOIIAUY | JIewyouag

100

Normalized execution time

| Active JVMTI
m Interposed transitions
@ Checked transitions

In

[N}

o
1

1.101

1.00

0.90-

S S+ X S o 3 3 2 O O O & &
. Qo <& < N NG D o & & S Q oS
N F & & X &Y & . N
& ‘\% & \Q\Q \QBQ’ < +

Figure 4.8: Time overhead of the Blink debug agent with Hotspot VM 1.6.0_10.
Note the vertical axis starting at 0.9.

following columns show execution times in the four configurations— Base, Ac-
tive JVMTI, Interposed transitions, and Checked transitions—and normalized
execution times for the debugger configurations. The Base configuration rep-
resents production runs without any debugging-related overhead. In contrast,
the fully functional agent needs to activate JVMTI, interpose transitions, and

check transitions.

Figure 4.8 illustrates Blink’s runtime normalized to the production
runs. JVMTI, interposition, and transition checking add 1%, 8%, and 1%
overhead, respectively. There are a few counter-intuitive speedups because
the JIT and GC add non-determinism to the runtime. On average, Blink’s
total overhead is 10%. Figure 4.9 shows that the overhead is sub-linear to
the total dynamic transition counts. Although the agent overhead is linearly
proportional to the dynamic transition counts in theory, it is less in practice
because environmental transitions contribute little to overall execution time.

For an interactive tool, a 10% overhead is modest.

101

dlqerodour sowodaq YOIYM ‘NA[OU) OPISUl IOIId UR 0} onp I983ngep Aq pepuodsns :9nng

I0IID YPM NAL VX 1LOLLH

drqerado surewar WA O[IYM ‘1083ngop Aq popuodsns :jutodyvo.g]
"ogessoul
“(3mrey uorjejULWSAs 8'9) IOLIO [RIR] ® UM NA[U} }I0qR :YsSni)) “9)e)s

pougopun Yim SUIjnodxo oNuIuod Huluuny *SuoreIN3guod JUsIoPIP Iopun ssnq [N Jo 1edw] [§ o[qe],

qurodyea.aq ne; [SeId IO1I0 sururem [seId Suruuna butyosypIoIIIPEG
jqurodyea.aq ey [SeId USBId Suruun. [seIo suruuna ddyJuopooTseg Juoob
jyurodxeaaq ey serd | Jururem sururem seIo suruunt s3se11TUn

qurg qp3 qpf | INA 6r INA 30dsjoH | INA 6 INA j0dsioH

JUSTIUOIIAUD PIXIIA

JUSWIUOJIIAUD I[SUIS

(Tul:3po012Y-)

NA 6 YHMm uolssas 3urdsnga(

1:0" U)I0LIpeyd
GZ -0 UL HJUO) JU003 U3~ 310
QF:0" TUSUOIIAU

Suryoayd swIjunyy

Uuni uoronpord

SSE[D eAe[UIEJA

‘[GL ‘€] op0od IN[[oAS]-9ISAS puR -I9sn 30 Ul uowuwod A[pajrodar
s8nq Surpuey uorjdeoxe spowt buTosypIoxadped Nullg Ypm sureidoid om) 9sor[} SUIUUNI UM
punoj are ddyjuopooTsed Juoob pue 3SSI3TUN U SN N[OM} oY, 'SSnq [N[PoIpniS :€'§ o[qel,

oye)s uorydeoxry
Iojoumered [my
Iojourered [N

6/G1

LGT°1/96.
Z80°L9/TLT'F9

CV1°T oHnsiso)-yulg
€91 ¢Juod3qy
01°0'F owous-eaef

puTtyosypIOIIFPRY

ddyJuopoHoTseg - Juodb

a1sa13Tun

(eurf:a[y @oanos) ajis Sng 7

adA£y Sng

| DOTS D/eaer |

wreadord

SSB[D eAR[UTEJA

102

£

= i [)

- 1.20 . ° .

% . °

o ° e L

% 1.10

e ° oo

X ° .
T ® o

£ 1.00 .

=) o o o o o
< 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

Total environmental transition counts

Figure 4.9: Environmental transitions and time overhead for the Blink debug
agent with Hotspot VM 1.6.0_10. Note the logarithmic horizontal axis.

Space Overhead. The space overhead of running Blink is mostly due to
additional code loaded into the debuggee. In particular, on Linux/IA32, the
intermediate agent itself requires 388 KB, and the 229 JNI function wrap-
pers introduce 174 KB of constant space overhead. Additionally, each native
method incurs 11 bytes space overhead for its wrapper, instantiated from an
assembly code template. Finally, each thread requires 156 bytes of thread-
local storage used by the intermediate agent and less than 160 bytes for each
wrapper activation on the stack for an environment transition. We do not

measure total space overhead in a live system since it is small by design.

4.4.4 Feature Evaluation

This section explores how Blink saves programmers time and effort
when diagnosing the source of mixed-environment bugs. We compare Blink to
other tools using three case studies. In these studies, the other tools are not

helpful, whereas Blink directly pinpoints the bugs.

We examine three common mixed-environment errors: one artificially

103

recreated and two found in JNI programs in the wild. Table 4.3 lists the pro-
grams, lines of code, bug types, and bug sites. Blink directly identifies the two
JNI bugs in UnitTest and gconf.BasicGConfApp. We also recreated an
exception-handling bug in BadErrorChecking, which is reported as com-
mon in both user- and system-level JNI code [43, 75]. For each of these bugs,
Table 4.4 compares Blink to production runs of Hotspot and J9, with runtime
checking in Hotspot and J9 (configured with the —Xcheck: jni command
line option), and with jdb and gdb.

In production runs with runtime checking, Hotspot and J9 behave dif-
ferently, but neither JVM helps the user find bugs. Hotspot tends to silently
ignore bugs without terminating, whereas J9 either crashes or reports errors.
While seemingly improving stability, ignoring bugs in production runs may
also corrupt state, which is clearly undesirable. The JVMs’ runtime checking
does not help much for two reasons. First, error messages are largely depen-
dent on JVM internals and are inconsistent across the two JVMs. Second, and
more importantly, the JVMs cannot interpret code and data in native code,

where the JNI bugs originate.

Single-environment debuggers are also of limited use. The JNI bugs
trigger segmentation faults, which are machine level events below the managed
environment. As a result, the managed environment debugger (jdb) cannot
catch the failure. The unmanaged environment debugger (gdb) catches this
low-level failure, but detection is too late. For instance, the fault-inducing
code never appears in the calling contexts of any thread when gdb detects the

segmentation fault for J9 running BadErrorChecking.

Blink stops the programs immediately after it detects the JNI error

conditions because it understands both environments. At the point of failure,

104

programmers can inspect all the mixed-environment runtime state. We next
discuss these errors in more detail, grouping them into two categories: (1) null

parameters and (2) exception state checking.

Null Parameters. Semantics for JNI functions are undefined when their ar-
guments are (jobject)O0xFFFFFFFF or NULL [49]. Hotspot ignores these
errors and J9 crashes in gconf.BasicGConfApp and UnitTests, which
pass NULL to the NewSt ringUTF JNI function (see Table 4.4). NewStringUTF
takes a C string and creates an equivalent Java string. Returning NULL
for a NULL input may improve reliability, but it violates the specification

of NewStringUTF:

“Returns NULL if and only if an invocation of this function has

thrown an exception.” [49]

When Hotspot returns NULL, it should also post an exception. In addition, re-
turning NULL may mislead JNI programmers into believing that NewSt ringUTF
returns a null Java string when the input parameter is NULL [70]. J9 crashes
and presents a low-level error message with register values and a stack trace.
The error message does not include any clue to the cause of the bug. JVM

runtime checking does improve the error message.

Blink detects the NULL parameter and presents the Java and C state on
entry to the JNI function. Given the JNI failure in gconf .BasicGConfApp,
a mixed-environment calling context tells the programmer that NewSt ringUTF
does not return a null Java string for a NULL input with the following useful

€rror message:

105

JNI warning:
NULL parameter to JNI Function: NewStringUTF
425 return (xenv)->NewStringUTF (env, val);

blink> where

[1] Java_org_..._lclient_lget_1lstring
(ConfClient.c:425)

[2] org.gnu.gconf.ConfClient.getString
(ConfClient.java:440)

[3] gconf.BasicGConfApp.createConfigurablelabel
(BasicGConfApp.java:128)

blink> _

Missing Exception State Checking. JNI does not define the JVM’s be-
havior when C code calls a JNI function with an exception pending in the JVM.

Consider this C source code from the BadErrorChecking micro-benchmark:

16. #include <jni.h>
17. JNIEXPORT void Java_BadErrorChecking call (

18. JNIEnv *env, Jjobject obj) {
19. jclass cls = (xenv)->GetObjectClass (
env, obj);
20. JmethodID mid = (xenv)->GetMethodID (
env, cls, foo, ()V);
21. (xenv) ->CallVoidMethod (env, obj, mid);
22. mid = (xenv)->GetMethodID (
env, cls, bar, ()V);
23. (#env) ->CallVoidMethod (env, obj, mid);
24. }

At the call to Java in Line 21, the target Java method foo may raise an
exception and then continue with the C code in Line 22, while the JVM has
a pending exception. JNI rules require that the C code either returns im-
mediately to the most recent Java caller or invokes the ExceptionClear
JNI function. Consequently, the call to the JNI function GetMethodID in

Line 22 leaves the JVM state undefined. In fact, Hotspot keeps running while

106

J9 crashes. This rule applies to 209 JNI functions out of 229 functions in JNI
6.0.

Writing the corresponding error checking code is tedious and error-
prone. Previous work [43,75] reports hundreds of bugs in JNI glue code.
We briefly inspected the Java-gnome 4.0.10 code base and found two cases of
missing error checking. One case never happens unless the JVM implements
one JNI function incorrectly. The other case happens only when the JVM is
running out of memory, throwing an OutOfMemoryError exception, which
is rare and thus hard to find and test. For these reasons, we created the

BadErrorChecking micro benchmark.

The intermediate agent in Blink detects calls to JNI functions while an
exception is pending and asks Blink to stop the debuggee. Blink then warns

the user of missing error checking and presents the calling context.

JNI warning: Missing Error Checking: GetMethodID
[1] Java_BadErrorChecking call
(BadErrorChecking.c:22)
[2] BadErrorChecking.main
(BadErrorChecking. java:5)

blink> _

4.5 Generalization

The previous sections focus on composing debuggers for Java and C.
Below, we discuss how to generalize our approach to additional environments.
Section 4.6 describes our experience with extending Blink to include the Jean-

nie programming language, which mixes Java and C in the same methods.

107

4.5.1 More Languages, Same Environment

This section describes how to add a language if given a debugger for
one of three environments: (1) native compiled, (2) interpreted, or (3) virtual

machine execution.

Native multilingual debugging. Native environments use ahead-of-time
compilers that generate assembly code for languages such as C/C-++, Fortran,
or Pascal. These languages interoperate by agreeing on a common object file
format, an application binary interface (ABI), and a common debugging table
format. To add a new native language to a native environment debugger,
the compiler generates conforming debug tables along with conforming object

code that obeys the ABI.

The debug table maps between language-level entities and environment-
level entities. In particular, it maps program line numbers to addresses for
execution control; addresses to program lines for context management; and
variables, functions, etc. to reflective code snippets for data inspection. Debug
table formats for native environments include dbx “stabs” [52], DWARF [24],
and even PostScript [61]. This approach is however not bullet proof. For
example, some of these formats do not support C++ identifiers and mangle the
variable names. In these cases, the debugger implementation may compensate
by adding functionality. This approach is not portable, but neither are the

binaries.

Interpreted languages. Most scripting languages have an interpreter that
directly executes source code, e.g., Perl, Python, or JavaScript. These inter-

preters typically support only one language and expose no debug table format

108

for other languages. Therefore, multilingual debugging in these environments

requires changing the interpreter itself [80].

Virtual machine environments. Virtual machines use ahead-of-time com-
pilers to generate bytecode from source, and typically use a just-in-time (JIT)
compiler to generate machine code. For example, compilers for Java, Scala,
and Jython generate Java bytecodes, and modern Java virtual machines (JVMs)
use a JIT to translate bytecode to machine code. Java bytecode contains de-
bug tables as described in Sections 4.7.7-4.7.9 of the JVM specification [51];
JSR-45 introduces more expressive debug tables to better support multilingual
debugging. Since there are multiple stages of compilation, each stage is re-
sponsible for keeping debug information intact. For instance, Java JITs either
keep internal mappings for machine code, or use dynamic de-optimization [36].
Another example for a virtual machine supporting the debugging of multiple

languages is Microsoft’s Common Language Runtime (CLR).

4.5.2 More Environments, Same Languages

This section discusses the requirements for generalizing debugger com-

position to other mixed-language environments.

Requirement 1: Single-environment debuggers. Asmight be expected,
debugger composition requires single-environment debuggers to compose. The
single-language debuggers must support the features discussed in Section 4.1.1.
The controller can extract these features through a command line interface

(which is what we use), an API, or a wire protocol.

109

Requirement 2: Language transition interposition. Our approach re-
quires instrumenting local and non-local control flow in all directions across
environment boundaries. For Blink, we leverage Java’s wrapper-based FFI
to meet this requirement and instrument the wrappers. However, there are
other viable implementation strategies for interposition. For example, given
an interpreted language, the interpreter can call the instrumentation when
encountering a transition. For a compiled language, the compiler can inject a
call to the instrumentation when compiling a transition. Finally, when only
compiled code is available, static or dynamic binary instrumentation can im-

plement interposition.

Requirement 3: Debugger context switching. Our approach requires
external interfaces to single-environment debugging functions, such as print
or eval. Most single-environment debuggers provide these commands, in-
cluding jdb and gdb. This ability is also a defining feature for languages
with interactive interpreters, such as Perl, Python, Scheme, and ML. If, on
the other hand, the single-environment debugger does not support direct func-
tion invocation, we must call the helper function through other means — for
example, using an agent helper thread or a lower-level API underlying the

single-environment debuggers.

Composing environments. Given two environments where one environ-
ment is the native C environment, it is easy to satisfy the above criteria. For
instance, Perl, Python, and Ruby have debuggers and foreign function inter-
faces to C. We can thus satisfy the three requirements as follows: (1) reuse

the perldebug, pdb, or ruby—-debug single-environment debuggers and

110

their interfaces; (2) extend the runtime systems to interpose calls to native
methods; and (3) use perldebug, pdb, or ruby-debug to evaluate calls to
native methods that trigger a C breakpoint.

N-(N—1) .
—5— possible

For more than two environments (N > 2), there are
language transitions to interpose on and debugger context switches to perform.
In theory, we could implement composition by adding agents for each pair of
environments. In practice, the native C environment often acts as a bridge en-
vironment since most environments implement foreign function interfaces to C.
Using C as a bridge environment, all the essential requirements are satisfiable:
(1) N single-environment debuggers handle their corresponding N environ-
ments; (2) interposition captures transitions between the N environments and

C because every transition goes through C; and (3) debugger context switching

to any environment also goes through the bridging C environment.

4.6 Language Extension Case Study: Debugging Jean-
nie

This section shows how composition generalizes Blink to the Jeannie
programming language [35]. Jeannie programs combine Java and C syntax
in the same source file. This design eliminates many language-interface er-
rors and simplifies resource management and multilingual programming. The
Jeannie compiler produces C and Java code that executes in a native and JVM
environment, respectively. Thus adding Jeannie to Blink serves as an example

of debugging more languages in Blink’s mixed environment.?

2Debugging Jeannie is distinct from borrowing Jeannie’s expression evaluation function-
ality, which Blink also does and Section 4.3 described.

111

1. public static native void f(int x)

o [~.cq Al

3. jint y = 0;

4. '\.Java{ B

5. int z; C
D

6. z=1+|(v=1+[(x=1)])];

7. System.out.println(x);

8. System.out.println(z);

o.| |2

10. printf("%d\n", y);

11. 1}

Figure 4.10: Jeannie line number example.

Jeannie nests Java and C code in each other in the same file. Compared
to JNI, Jeannie is more succinct and less brittle. For example, JNI obscures the
Java type system, whereas Jeannie programs directly refer to Java fields and
methods, which the Jeannie compiler type checks. In Jeannie, ‘.language
specifies the language. As a shortcut, backtick ‘ toggles. For example, in
Figure 4.10, the body of Java method f is the block A of C code. Block A
contains a nested block B of Java code, with a nested C expression C, which, in
turn, nests Java expression D. The Jeannie compiler emits separate Java and C
files that implement the expected nesting semantics using JNI. In the example,
the Jeannie compiler separates the code for the Java method declaration and
snippets B and D into a Java file and puts the code for C snippets A and C
into a C file. Jeannie’s design supports adding more languages, but that is

beyond the scope of this paper.

112

To add Jeannie to Blink, we changed the Jeannie compiler to gener-
ate and maintain debug tables for line numbers, method names, and variable
locations, and we changed Blink to use these tables for Jeannie source-level
debugging. The following sections illustrate how we extended Blink to support

context management, execution control, and data inspection for Jeannie.

4.6.1 Context Management

Line numbers answer the question: “Where am I?7” Call stacks answer

the question: “How did I get here?”

Source line number information. To report the current location to the
user, the debugger maps from low-level code offsets to source-level line num-
bers. The Jeannie compiler has access to source line numbers during trans-
lation, but relies on other compilers to generate low-level code. For debug-
ging, we need to preserve line numbers through the second step. For Jeannie-
generated Java code, we wrote a post-processor that rewrites Java bytecodes
to reestablish the original line numbers from Jeannie sources. For Jeannie-
generated C code, we rely on #1ine directives, which are supported by C

compilers precisely to preserve debugging information for intermediate C code.

Calling context backtrace. Since Jeannie is a single language, Blink should
show only the user-specified Jeannie methods and functions on the stack, in-
stead of showing the generated single-language functions, which are just an
implementation detail. For example, for the C source snippets A and C in
Figure 4.10, the Jeannie compiler generates C functions f_A and f_C. For

the Java snippets B and D, the Jeannie compiler generates Java methods £_B

113

and f_D. When the application is suspended in D, the low-level call stack is:

o.—>f—=f A>fB—>f C—£fD

but this trace is not reflected in the user’s code. We changed the Jeannie
compiler to generate a table mapping names of generated functions back to
the original functions. Blink uses this mapping to hide low-level call frames

and instead reports source-level names, e.g., just “... — £7.

4.6.2 Execution Control

Breakpoints answer the question “How do I get to a point in program

execution?” Single-stepping answers the question “What happens next?”

Breakpoints. To support breakpoints in another language, the debugger
needs to map from source-level lines to low-level code offsets. This requires
similar debugging tables as for context management (Section 4.6.1), except in
the opposite direction. In the case of Jeannie, there is one additional issue:
Blink must delegate the breakpoint to the correct component debugger by

using debugger context switching if necessary.

Single stepping. Stepping in Jeannie adds the challenge that a single source
line may involve multiple languages. Line 6 in Figure 4.10 is an example. As
discussed in Section 4.6.1, the Jeannie compiler tracks original line numbers
even when code ends up in different source files. Blink implements Jeannie
stepping by inspecting line numbers and iterating: it keeps stepping until the
source line differs from the starting source line. For step-over, Blink records
the current stack depth and then iterates, stepping until stack depth is less
than or equal to the initial depth.

114

4.6.3 Data Inspection

Data inspection helps users determine if the current state is correct or
infected. The compiler for each language must generate a table that maps
source-level variable names to underlying variable access expressions in the
generated code. The Jeannie compiler stores local variables in explicit en-
vironment records [35]. We extended the Jeannie compiler to provide the
necessary mapping information through a separate symbol file, which Blink

reads on demand.

4.7 Summary

Debugging is one of the most time-consuming tasks in software develop-
ment. It requires a knack for formulating the right hypotheses about bugs and
the discipline to systematically confirm or reject hypotheses until the cause of
the bug is found [89]. Single-environment developers have long had good tools
to help them navigate the debugging task systematically. However, mixed-
language developers have been left in the dark. We propose and evaluate a
new way to build cross-environment debuggers more easily using scalable com-
position. We use our compositional approach to develop Blink, a debugger for
Java, C, and Jeannie. The open-source release of Blink is available as part of
the xtc package [30]. Blink is the first full-featured debugger that is portable
across different JVMs, operating systems, and C debuggers. Furthermore,
Blink includes an interpreter (read-eval-print loop) for cross-environment ex-
pressions, thus providing users with a powerful tool not just for debugging but

also for testing, program understanding, and prototyping.

115

Chapter 5

Code Interfaces: Generating Programs in any
Language

Any program in one language can communicate with any program in
another language if both languages have a string type and their programs
are represented as strings. Specifically, a program generates another program
as a string value, sends it to a compiler or an interpreter, and executes it.
While this programming practice requires no extension to languages, compil-
ers, and interpreters, there is no guarantee that the generated programs are
syntactically and semantically correct, and the generation process does not
abuse scoping constructs of the target languages. Although multistage pro-
gramming systems [17, 55,59, 85], meta-programming systems [15, 16, 65], and
syntax macros [5, 84] check these errors, they are deeply coupled to particular
programming languages and lose the scalability of code generation interfaces.
This chapter presents the Marco macro system, an expressive, safe, extensible,

and language scalable system that composes target language compilers.

We start by introducing the Marco language with its essential con-
structs and grammar in Section 5.1. Section 5.2 describes Marco analysis
framework that embraces language-specific analysis plug-ins. Section 5.3 and
Section 5.4 respectively analyze the open fragments in Marco programs and
detect synthetic errors and unhygienic expansions. Section 5.5 presents our

choices in implementing Marco. Section 5.6 evaluates Marco.

116

© 00 N O Otk W N =

5.1 The Marco Language

This section describes the Marco language, using examples, grammar
rules, and type rules. The Marco language is a statically typed, imperative
language. It supports macros using three constructs: code types, fragments,
and blanks. We define and illustrate these constructs using the motivating
example in Figure 5.1, which uses the Marco syntax.

Code<cpp, stmt> # code type

synch (Code<cpp, id> mux, Code<cpp, stmt> body) {
return

‘cpp (stmt) [{ # C++ fragment
acquireLock ($mux) ;
$body # blank

releaseLock ($mux) ;

11

Figure 5.1: Marco code for synch example.

The macro in Figure 5.1 ensures that lock acquires and releases are properly
paired, a paradigm made popular by Java’s synchronized blocks, but which
C does not provide. Programmers use macros such as this one to enforce
good practices. Lines 1-2 contain the signature of the Marco function synch,
which takes two parameters (a C++ identifier and a C++ statement) and
returns a C++ statement. The Code type constructor is parameterized by
the target language and the non-terminal in the target language. Line 4 uses
the back-tick operator () to begin a fragment, which is a quoted piece of
target-language code. Line 6 uses the dollar operator ($) blank, which is an
escaped piece of Marco code embedded in a fragment. The evaluation rule for
a fragment first evaluates embedded blanks, then splices their results into the

fragment’s target-language code:

117

Viel...n:Envke — 5;
Y= 040510{1 Ce ﬁnan
EnvE “ang (nonT) [ap$eiaq ... Se a1 — Mang (nonT) [v]
(E-FRAGMENT)

In rule E-FRAGMENT, each «; is a sequence of target-language tokens in
the fragment, each $e; is a blank, and each f; is the result of evaluating a blank

to a sequence of target-language tokens. The result 7 is the concatenation of

all the «; and f;.

Figure 5.2 presents the Marco grammar. A program is a set of functions
that take zero or more formal parameters and that return a value of some
type. Each function body is a sequence of statements. A statement (stmt)
is a local variable declaration, block , expression statement, conditional, loop,
or function return. An expression (expr) is a fragment, an attribute access,
a call expression, an infix expression (with operators such as addition (+) or
assignment (=)), a subscript access, or a base expression. A base expression
(baseExpr) is a parenthesized expression, a list literal, a record literal, an
identifier; or a literal for a primitive value. In the absence of parentheses,

Marco implements the usual precedence and associativity rules.

A fragment, such as ‘cpp (stmt) [...$x...8y...], consists of a head
and a sequence of fragment elements. The head specifies the target language,
a non-terminal, and optionally a list of captured identifiers. We use the op-
tional list of captured identifiers to check the naming discipline in the target
code (see Section 5.4). There are two kinds of fragment elements: target-
language tokens to be emitted, and blanks to be filled in during evaluation.
Since the fragment elements are enclosed in square brackets, the Marco parser

must count matching square brackets in the fragment itself to find the end,

118

program = functionDef "
functionDef = type ID ‘(" formal™)’ blockStmt
formal = type ID
stmt = localDecl | blockStmt | exprStmt
| ifStmt | forStmt | returnStmt
localDecl = type ID ‘=" expr °;’
blockStmt = {7 stmt* ‘}’
exprStmt = expr ;’
ifStmt =‘if ‘(" expr °)7 stmt (‘else’ stmt)’
forStmt = ‘for’ ‘(" ID ‘in’ expr ‘)’ stmt
returnStmt = ‘return’ expr °;’
expr = fragment | attrEzpr | callExpr
| infizExpr | subscriptEzpr | baseExpr
attrExpr = expr ‘." ID
callExpr =1ID ‘(expr®)’
infizBxpr = expr INFIX_OP expr
subscriptExpr = expr ‘[’ expr ‘1’
baseExpr = parenEzpr | listLiteral | recordLiteral | ID
| ‘true’ | ‘false’ | INT | STRING
parenExpr = expr)’
listLiteral =0 expr® ‘1’
recordLiteral == ‘(" (ID ‘=" expr)t ‘y’
fragment = fragmentHead ‘[’ fragmentElem* ‘1’
fragmentHead ::= **’ language ‘ (" nonTerminal (*,” capture)’)’
language =1ID
nonTerminal ::= ID
capture = ‘capture’ ‘=" ‘[’ IDT ‘1’
fragmentElem ::= TOKEN | blank
blank = ‘8’ baseFxpr
type = codeType | list Type
| ‘boolean’ | ‘int’ | ‘string’
code Type = ‘Code’ ‘<’ language ‘,” monTerminal ‘>’
list Type = ‘list’ ‘<’ type >’
record Type .= ‘record’ ‘<’ (type ID)*t >’

Figure 5.2: Marco grammar.

Marco grammar. The notation formal® indicates that formal can repeat zero
or more times, separated by commas.

119

© 00 N O Utk W N

= = = =
I I e

for example, in ‘cpp (expr) [arr[idx]]. However, the Marco parser should
not count square brackets in target-language strings or comments, for exam-
ple, in ‘cpp(expr) [printf("[")]. Since different languages have different
tokens for strings and comments, Marco needs target-language specific lexers.
However, these lexers are simple, since they only need to recognize a few key

target-language tokens.

The Marco type system includes code types parameterized by target
language and non-terminal, list types parameterized by element type, record
types parameterized by attribute names and types, and the primitive types

boolean, int, and string. Marco is statically typed.

Code<sql, query>
genTitleQueryInSQL (Code<sqgl, expr> pred) {
return ‘sqgl(query) [
select title from moz bookmarks where $pred
i
}
Code<cpp, stmt>
genSwapInCpp (Code<cpp, id> x, Code<cpp, id> y) |
return ‘cpp(stmt) [{
int temp = $x;
$x = $y;
$y = temp;
Y1

Figure 5.3: Marco code for generating code in different languages.

The three macro constructs and static typing are hardly new, but Marco
is general with respect to the target language. First, code types and fragments
are parameterized by target languages and their non-terminals. For instance,

Figure 5.3 presents a Marco program that generates SQL and C++ code:

120

genTitleQueryInSQL generates a SQL query, and genSwapInCpp generates
a C++ statement. Second, our Marco analysis framework analyzes code types
and fragments using target language interpreters and compilers. For example,
Marco reports error messages for the two fragments in Figure 5.3 if they result
in expressions or statements that do not conform to the grammar of SQL
expressions or C++ statements. Marco leverages the error messages from
the relational database management system and the C++ compiler. Third,
Marco uses free and captured identifiers from each fragment as inputs to a
simple data-flow analysis. This data-flow analysis ensures that identifiers from
multiple macros in the host program generate consistent identifier bindings in
the target language statements and expressions. These last two steps are also

novel and particular to Marco.

The type rule for a Marco fragment first checks the types for each of
the embedded blanks, which must result in code belonging to the same target
language (lang). It then uses the language lang, the non-terminal nonT of the
fragment, the non-terminals nonT; of each of the blanks, and the contents of
the fragment as inputs to a syntax oracle. As far as the Marco type system is
concerned, the syntax oracle is a black-box that can either succeed or fail. If
the oracle succeeds, the type of the fragment is Code<lang, nonT>.

Viel...n:I'te; : code<lang, nonT;>
syntaxOracle(lang)(nonT, [nonTy, ..., nonT,|, w$la; ... $nay,)

I'F Mang (nonT) [ap$eray ... $e,q,] : Code<lang, nonT>
(T-FRAGMENT)

121

(Marco Program) (External Inputs)
[

A 4 \A 4
Static Checker Dynamic Interpreter

AYinformation |4
Fragment ¢ Fragment ¢

| Oracles |||

A

M Information

Marco system

Compilation Error

unit| | messages
A\ 4

Unmodified Target
Language Processors

LA v
(Error Report) (Target Program)

Figure 5.4: The Marco architecture.

5.2 The Marco Analysis Framework

Marco consists of a language and a system. The previous section de-
scribes the language, and this section overviews the system. The Marco system
provides two tools: a static checker and a dynamic interpreter (see Figure 5.4).
The Marco static checker checks the correctness of macros at macro develop-
ment time. The Marco dynamic interpreter detects errors and generates target-
language code at runtime if there are no errors. The Marco static checker and
the dynamic interpreter share target-specific oracles, which check for syntactic

well-formedness and naming discipline in target-language fragments.

The central design goal of Marco is target-language independence. Marco
is extensible, since additional target-language specific oracles can be added as

plug-ins without changing the framework. Fach oracle communicates with a

122

black-box target-language processor (compiler or interpreter) to analyze frag-
ments. The oracle generates compilation units as inputs to a target-language
processor, and parses error messages in outputs from the target-language pro-
cessor. The only target-language specific parts of the Marco framework are the
target-language specific lexers (see Section 5.1) and the oracles. In particular,
a key advantage of Marco over other safe macro systems is that it does not

require new or even modified target-language processors.

To understand the Marco framework, consider an example of statically
checking syntactic well-formedness of target-language fragments. First, the
Marco framework parses the Marco program into an Abstract Syntax Tree
(AST). Marco’s type system expresses syntactic constraints on object-language
fragments. For example, the type checker walks the AST and encounters the
C++ fragment ‘cpp(expr) [x = 1;1. The static type checker applies rule

T-FRAGMENT from Section 5.1, which triggers a call to
syntazOracle(cpp)(expr, [], ‘x = 1;7).

The C++ oracle generates the following input compilation unit for the un-
modified C++ compiler (i.e., gcc):

int query expr() { return x = 1;; }

For this input, gcc reports error messages. [t complains about the spurious
semicolon after x = 1. Based on this error message, the oracle deduces that
the fragment was not a syntactically well-formed non-terminal expr. Since the
oracle failed, Marco type-checking fails, and the Marco static checker reports
an error. This example is simplified, ignoring idiosyncrasies of C++ and the

issue of blanks, which Section 5.3 covers in detail.

Each language-specific plug-in consists of three oracles: syntaz, free

123

names, and captured names. Section 5.5 presents the implementation details
of the Java factory method idiom that we use to create plug-in extensibility.
The communication interface for the oracles depends on the target language.
For instance, the interface for SQL is JDBC (Java Database Connectivity)
and the interface for C++ is the file system and gec (the GNU C and C++
compiler). Although these interfaces appear different at the concrete level,
they share two key characteristics. First, they receive a program as a sequence
of characters: input strings for JDBC and files for gcc. We simply lower the
Marco fragments to produce character stream input for the language-specific
oracles. Second, the output of these interfaces is a string that reports syntac-
tic and semantic errors of the input program. The concrete error reporting
mechanism depends on the target language. For instance, the error message
from JDBC is encapsulated in a Java exception, and the error messages from

gcc are printed to standard error.

As an example for checking naming discipline, consider a first fragment

f1 that fils in a blank in a second fragment f,. Fragment f; is:
‘sql (expr) [birthYear >= 19907,
and fragment fy is:
‘sql (query) [select name from Patrons where $pred].

Marco uses its free-names oracle to discover that f; contains the free identifier
birthYear; Marco uses a data-flow analysis to discover that f; flows into
the blank of fy; and Marco uses its captured-name oracle to check whether
identifier birthyear gets captured at blank $pred. whether a capture is in-
tentional; if it is not, Marco reports an accidental-capture error. The next sec-
tions describe how the oracles abstract error notifications from target-language

processors into information for the static checker and the dynamic interpreter.

124

5.3 Checking Syntactic Well-Formedness

This section describes how the Marco system checks whether target-
language code is syntactically well-formed. The syntax oracle is the interface
between the target-language agnostic Marco system and the black-box target-
language processors. The signature of the syntax oracle, as embodied in type

rule T-FRAGMENT from Section 5.1, is:

syntaxOracle : lang
— (nonT,list<nonT>, op$lay ... $nay,)
— list<error>

For example, consider the following invocation of the syntax oracle:

syntaxOracle (sql)
(query, [expr], ‘select a from B where $1’)
In this example, the target language is SQL, the non-terminal of the fragment is
query, and there is only one blank, whose non-terminal is expr. The fragment
contents have the form ap$1a;, where g is the sequence of tokens before the
blank, $1 marks the location of the blank, and «; is the sequence of tokens
after the blank. In other words, «g is ‘select a from B where’ and «; is
empty. The remainder of this section describes the syntax oracle algorithm
for producing compilation units, interpreting the results, and iterating when

necessary.

5.3.1 Syntax Oracle Algorithm

The algorithm of the syntax oracle has four steps. Recall that a blank
is a gap in a target-language fragment where another fragment will be spliced

in at runtime.

125

"JUOWISRIJ [RULSLIO 9} YIIM UL PI[[Y oIe HTIO0¢

ULIOJ 9() JO SYUR[(PUR ‘SIOYIIUSPI [[SOI] M UL PO[[J oI@ ySSIF¢§ ULIOJ oY} JO syur[{ ‘10ssa001d oFengue|

-1981e) o7} JI0J Jun UOIR[IdWOD POUIRIUOD-J[9S € OJUl JUOWSRI} B WINY O} POsn oIe sjuswselj uororduo))

"JULWISRIJ B UL SYUR[] UL [[J 0) PISN oI SIUSUISRIJ IOP[OY-90R[J "SO[ORIO XRIUAS oY) Ul Posn sjuotset) wdpy
"SO[ORIO XRIUAS o1} Ul pasn sjuowdey odey :1°G 9[qr],

[6Tx0¢] (3TUuno)ddo, [] (aTuno)ddo, <31Uuno ‘ddo>9pod
[6Tz0¢] (TUno)ddo, [‘ysexsd 3uT] (1o8p)ddo, <To8p ‘ddo>spo)d

[{{ brI0% }
ysexy¢ ssetro] (3runo)ddo, [{ysexgyg 3ut] (Tospuw)ddo, <Tospuw ‘ddo>9po)
[brr0o¢] (3Tuno)ddo, [{}()ysexyg pToa] (FopJy)ddo, <Fop7 ‘ddo>spoD

[{{0 uan3yax H67I0¢ (0)YDITMS }
()ysexyg 3ut] (3Tund)ddo, [4] (qwas)ddo, <3qu3s ‘ddo>9poDd
[{ !bT10¢$ uanzesx }

(Yysexy¢ 3ut] (3Tuno)ddo, [0] (zdxa)ddo, <Idxo ‘ddo>9p0oD
[{!(bTI0§) J09ZTS}

(Yysexyg proa] (3Tuno)ddo, [quT] (pT odA3)ddo, <pT odA3 ‘ddo>9po)d

[{ysexzd HTx0¢] (3TUND)ddo, [quT] (0ads adA3)ddo, <oads adA3‘ddo>spod
[{ !bT10¢ uanizex

(Jysexzy$ 3uT] (37Und)ddo, [ysezz§] (pT)ddo, <pT ‘ddo>®poD
[6TI0S ®I9YM JUYSSIJ$ WOII

[yssexyg 3ooTe®s] (3s171b) 1hs, [0] (zdx3) Ths, <Idxo 'Ths>9p0oD

[6Tx08] (3sTTh) 1bSs, [+ 3yooT9s] (Axonb) 1bs, <Az9nb ‘Ths>9p0O)

[(61104] (3STTD) ThS| [1(3sT1Db) ThS, <3sTTh ‘Tbs>spoD

Juowrgesj uorjeduro)) JUOWISRI} IoP[OY-99R][J od Ay oounpy

126

Step 1: Fill in blanks. The syntax oracle starts by filling in each blank
with a place-holder fragment. In other words, it turns the fragment with
blanks into a fragment without blanks. A place-holder fragment is a fragment
that is syntactically valid for a given non-terminal. In the example above,
the non-terminal for blank 1 is expr, so the syntax oracle fills in blank 1
with the place-holder fragment for SQL expressions, which is 0. The result is
the fragment select a from B where 0. The middle column of Table 5.1
shows the place-holder fragments for each of the code types in Marco’s SQL
and C++ plug-ins. The intuition why filling in blanks works is that target-
languages have (more or less) context-free grammars, and that the syntax
oracle can check syntactic validity even when there are semantic errors. For
instance, in the example, the place-holder fragment is of type integer and
the blank expects type boolean, but this semantic mismatch is irrelevant to

syntactic well-formedness.

Step 2: Complete the fragment. Next, the syntax oracle completes the
fragment to obtain a self-contained compilation unit for the target-language
processor. In this example, the fragment is already a full query, and needs no
additional completion. The right column of Table 5.1 shows the completion
fragments for each of the code types in Marco’s SQL and C++ plug-ins. In
these completion fragments, $orig refers to the original fragment. Besides
completing the fragment to a full compilation unit, Step 2 may also generate
additional boiler-plate syntax. For SQL, this step adds code to begin and
then abort a transaction, in order to prevent side-effects when sending the

SQL query to a live database during analysis.

127

Step 3: Run the target-language processor. At this point, the syntax
oracle sends the completed fragment to the target-language processor, and
collects error messages, if any. As discussed above, in the case of SQL, Marco
makes a JDBC call and catches any exceptions. For C++4-, Marco generates
a file with the fragment, compiles it with gcc, and reads any error messages

from stderr.

Step 4: Determine the oracle results. Finally, the syntax oracle trans-
lates errors from the target-language processor into oracle results. It must
distinguish syntax errors from any other errors. It only fails the syntactic
well-formedness test if there are syntax errors. In C++, syntax errors may be
masked by other, non-syntax, errors, so the oracle may iterate to determine
if the fragment also has a syntax error, as Section 5.3.3 explains. If the syn-
tax oracle fails, the oracle maps the line-numbers in the error message to the

Marco code, and reports the errors to the Marco user.

5.3.2 Syntax Oracle Example

To understand the syntax oracle in action, consider the example frag-
ment ‘sqgl (expr) [type =], which has an obvious syntax error: the right
operand is missing. Type rule T-FRAGMENT invokes the syntax oracle as
follows: syntazOracle(sql)(expr, ||, ‘type =). The oracle goes through its

four steps:

1. Fill in blanks. This step is a no-op, since there are no blanks.

2. Complete the fragment. The oracle consults Table 5.1 to generate the

completion fragment for Code<sqgl, expr>, resulting in the fragment

128

select x from T where type =.

. Run the target-language processor. The oracle uses JDBC to send the
completed fragment to SQLite, and then catches the resulting SQLEx-

(o »

ception, which contains the error message “Syntax error near

. Determine the oracle results. Since the error from the target-language
processor was a syntax error, the oracle reports this error back to the

user.

Now, assume that the programmer fixes the fragment by writing

‘sql (expr) [type = 1], and then runs Marco again.

1. Fill in blanks. This step is a no-op, since there are no blanks.

2. Complete the fragment. This step yields the completed SQL query

select x from T where type = 1.

. Run the target-language processor. If the backing database does not
have a table T with an attribute type, the error message is:

“No attribute ‘type’ in table ‘T".”.

. Determine the oracle results. Since the error from the target-language

processor is not a syntax error, the oracle succeeds and indicates that

the fragment is syntactically well-formed.

5.3.3 Handling Masked Syntax Errors in C++

The C programming language has a context-sensitive grammar. For

example, the C code A (xx) [4] = y; can be parsed either as a function call

129

or as a variable declaration. On the one hand, if A is a function, then the code
calls the function with parameter xx, accesses element [4] of the result, and
assigns y to it. On the other hand, if 4 is a type, then the example declares the
variable x to be a pointer to an array of 4 elements of type 4, and initializes
x to y. Since the C++ programming language is a super-set of C, it includes

this context-sensitive case. It also contains other, even more difficult cases.

As the example shows, parsing for C and C++ depends on how identi-
fiers are declared, and may thus cause semantic errors to mask syntax errors.
In other words, when gcc reports a semantic error but no syntax error, it is
possible that there is a masked syntax error, which only shows up after the
semantic error is resolved. Our C++ oracle automatically speculates reso-
lutions for semantic errors by declaring additional boiler-plate code when it
completes a fragment. We thus iterate. If Step 4 from Section 5.3.1 detects
errors, the algorithm iterates back to Step 2, which speculatively resolves them

by generating declarations for free identifiers.

The syntax oracle for C4++ uses the following classification of error

messages to drive its speculations and resulting actions:

A. Missing declaration. When the oracle encounters an error message of the

13

form “... was not declared in this scope”, it speculates that the identifier
is a type name, a variable name, a namespace name, or function name.
If a downstream iteration finds an entity-kind error or a syntax error,
the oracle may backtrack the speculative declaration. If it backtracks
all the speculations, the oracle flags an error in the input fragment. To

backtrack speculations, it saves the iteration state before speculations.

B. Entity-kind error. When the oracle encounters an error message of the

130

« 43

form “... is not a namespace-name” or “... cannot be used as a func-
tion”, it either infers the entity of an identifier, or aborts the most recent
speculation. The oracle extracts a problematic identifier from the error
message. If the identifier is new to the generated declarations, the or-
acle declares the identifier as a namespace or a function depending on
a particular error message. Otherwise, it backtracks the most recent

speculative iteration.

C. Semantic error. There are many error messages in this category, for

b

example, “too many arguments to function ...” or “invalid conversion
... The oracle just ignores the messages about semantic errors that do

not mask syntax errors.

D. Syntax error. An example of a syntax error is “expected ‘;’ before ...”.
When the oracle encounters such an error, it either fails the most recent

speculation, or it forwards the error message the user.

5.4 Checking Naming Discipline

This section describes how the Marco system checks that code genera-
tion does not cause accidental name capture in the target language. Accidental
name capture is a typical bug when using the C preprocessor, as illustrated

by Figure 5.5.

1 #define swap (v,w) {int temp=v; v=w; w=temp;}
2 int temp = thermometer();
3 i1f (temp<lo_temp) swap(temp, lo_temp)

Figure 5.5: Example of accidental name capture bug when using the C pre-
processor [17,22].

131

Line 1 in Figure 5.5 declares a macro swap that contains a local decla-
ration of a variable temp (short for “temporary”). Line 2 declares a different
variable temp (short for “temperature”) that is not nested in the macro. Line 3
passes identifier temp as an actual parameter to the formal v of swap. The
problem is that at the use of v, the identifier temp gets captured. Since the au-
thor of the code intended to use temp to refer to “temperature,” this problem

is called an accidental name capture.

More generally, accidental name capture happens when a first fragment
f1 contains a free identifier z; a second fragment f, unintentionally captures
identifier x at blank b; and f; flows into b. Marco detects this situation as
follows. The freeNamesOracle discovers all free identifiers in fragment f;. The
capturedNameOracle checks whether blank b in fragment f, unintentionally
captures a given identifier x. Marco uses a forward data-flow analysis to
propagate free identifiers to capturing blanks. Marco uses static data-flow
analysis for the static checker at macro development time, and dynamic data-
flow analysis for the interpreter at code generation time. The oracles are
target-language specific and use the target-language processor as a black-box
to generate error messages that reveal information about free and captured

names. The data-flow analyses are target-language independent.
5.4.1 Free-Names Oracle

The signature of the free-names oracle is:

freeNamesOracle : lang
— (nonT, list<nonT>, ap$lay ... $nay,)
— list</D>

132

For example, consider the following fragment, which contains a free name:
‘cpp (expr) [100 = (1.0 / (foo))]. Marco invokes the free-names oracle

for it as follows:

freeNamesOracle(cpp)(expzr, [], ‘100 » (1.0 / (foo))’)

A name in a fragment is free if it is not bound inside the fragment. In the
example, foo is free, and thus, the oracle call returns the list [foo|. The first
three steps of the free-name oracle algorithm mimic the form of the syntax or-
acle from Section 5.3.1. In particular, freeNamesOracle executes the following

five steps for the example:

Step 1: Fill in blanks. This step is the same as Step 1 of the syntax oracle.
Since ‘cpp (expr) [100 * (1.0 / (foo))] hasno blanks to fill in, this case

is a no-op.

Step 2: Complete the fragment. This step is the same as Step 2 of the

syntax oracle. The completed example fragment is:

int query expr() { return 100 = (1.0 / (foo)); }

Step 3: Run the target-language processor. For this query, gcc returns

an error message of the form “identifier ‘foo’ was not declared in this scope”.

Step 4: Resolve declaration errors. The free-names oracle looks for par-
ticular error messages complaining that a name is used without definition.

In the example, the message specifies the name foo. The oracle speculates

133

that foo is free. To validate this hypothesis, it runs one more experiment. It
prepends a declaration of the name foo to the translation unit, and sends it
again to the target language processor. In the example, the test is:

int foo;
int query expr() { return 100 x (1.0 / (foo)); }

In this case, the modification resolves the declaration error, confirming that the
hypothesis is correct. Hence, the oracle adds the name foo to the list of free
names. It repeats this process until it does not observe any more declaration
errors. The insight Marco exploits is that a name in a fragment is free, as long

as it could be bound by a declaration from an enclosing scope.

Step 5: Return free identifiers. The free-names oracle returns the list
of free identifiers it found, which the Marco data-flow analysis will propagate

and Marco will use these names as inputs to the captured-name oracle.

5.4.2 Captured-Name Oracle

The captured-name oracle checks, for a given fragment, blank number,
and identifier, whether that identifier is captured at the blank. In other words,
the captured-name oracle checks whether it is safe to fill in the blank with a
fragment in which the identifier is free. The signature of the captured-name

oracle is:

capturedNameOracle : lang
— (nonT,list<nonT>,
ap$lay ... $na,, int, ID)
— boolean

Here, int is the blank number, and ID is the free identifier whose cap-

134

ture is to be checked. Consider the fragment for swapping two integers:
‘cpp(stmt) [{int temp=$v; $v=$w; $w=temp;}]. The following oracle

call checks whether blank 1 captures identifier temp:

capturedNameOracle (cpp)
(stmt, [expr, expr, expr, expr],
‘{int temp=$1; $2=$3; $4=temp;}’,
1, temp)
Since blank 1 in the fragment does in fact capture the name temp, the oracle

returns true. As another example, consider fragment:
‘sqgl (query) [select name from Patrons where $pred].

Blank 1 in this fragment captures any identifier that refers to column names
in the Patrons table in the database. Note that SQL’s scoping rules imple-
ment semantics similar to a with-statement, presenting a different challenge
for naming discipline than the C++ scoping rules. The algorithm for the

capturedNameOracle handles both target languages with the same steps:

Step 1: Fill in blanks. This step differs somewhat from Step 1 in the other
oracles. Assume that capturedNameOracle was invoked to check whether free
name z is captured at blank number i. Like the other oracles, the captured-
name oracle fills in all blanks j with ¢ # j using the place-holders corresponding
to their non-terminals from Table 5.1. However, for blank ¢, our analysis
hypothesizes that x is captured at the blank. To find counter-evidence, it
places x in the blank, wrapping it as necessary in some boiler-plate code for

syntactic well-formedness.

Step 2: Complete the fragment. This step is the same as in the other

oracles.

135

(Marco Statement] (Input State l

Freeinv,..v,
A 4

e

C— lang (nonT, capture capt) O$v - Sy Vi o,]

M/

Captured- Free-Names
Name Oracle Oracle

Intentional

Captured

Free in
Accidental Free inw u#Ew

A
Error Report

Output State
(a) Transfer function for static data-flow analysis.

Input Fragments

(Marco Statement)

Free-Names
Oracle
il Freeinv,..v, l
Gv=‘lang (nonT, capture=capt) [a $v‘10(1...$t o]D
/%(S— ”\”\
A 4
Intentional Captured-
Instantiate
Name Oracle

Accidental

A 4

Error Report (Output Fragment)

(b) Dynamic analysis piggy-backed on interpreter.

Figure 5.6: Transfer functions for the naming-discipline analysis.

Step 3: Run the target-language processor. This step is the same as

in the other oracles.

136

Step 4: Determine oracle result. If the target-language processor reports
an error message indicating that = is unknown, then the oracle concludes that
x is not captured at blank ¢, and returns false. Otherwise, the oracle returns

true.

5.4.3 Static Data-Flow Analysis

The static data-flow analysis runs as part of the static checker. The
static checker first reads in the entire Marco program, and checks all fragments
for syntactic well-formedness. If there are no syntax errors, the static checker
runs the static data-flow analysis, which in turn invokes the free-names and

captured-name oracles as needed.

The static data-flow analysis propagates free target-language identifiers
through variables and blanks. It reports an error whenever a free identifier
gets accidentally captured at a blank. To determine whether a capture is
accidental or intentional, the analysis uses the optional capture annotation
in the fragmentHead clause of the Marco grammar (see Figure 5.2). If an
identifier is listed in the capture annotation, the analysis knows that the
capture is intentional, otherwise it assumes that the capture is accidental and

reports an error.

For an example of intentional capture, consider the Marco function
boundIf in Figure 5.7. This function implements an if-statement that binds
the value of the condition to a variable it, so that it can be used in the
body. The annotation capture=[it] in Line 4 indicates that the fragment
intentionally captures identifier it. Now, assume that blank 2 gets filled with
fragment printf("%d", it);. Since the analysis should only report acci-

dental capture and not intentional capture, it will not report an error for it

137

Code<cpp, stmt>
boundIf (Code<cpp, expr> cond, Code<cpp, stmt> body) {
the following fragment intentionally captures ‘it’
return ‘cpp(stmt, capture=[it]) [{
int it = $cond; #blank 1
if (it) { $body } #blank 2
b1

Figure 5.7: Example for intentional name capture when using Marco to gen-
erate C++ code.

even though it appears free in the fragment and gets captured in blank 2.

A Marco location is a formal parameter of a function or a local vari-
able in the meta-language, whereas an identifier /D is a token in the target-
language. The analysis state at a program point is a map from Marco locations
to lists of free target-language identifiers. In other words, the state is an ele-

ment of the following lattice:

analysisState = location — 2P

The join function, or least-upper bound, for the lattice unions the lists of free

identifiers for each location. In other words, for each Marco location v:

join(statey, states)(v) = statey(v) U states(v)

As usual with data-flow analyses, the name-discipline analysis uses join func-
tions to combine analysis state at control-flow merges. The lattice has finite
height, because the state of each location is a subset of the finite set of all

identifiers that are free in fragments of the program.

138

The naming-discipline analysis is a forward data-flow analysis, and the

transfer function has the usual signature:
transferFunction : statement — analysisState — analysisState

The interesting statements for the data-flow analysis are statements with frag-
ments and blanks. Figure 5.6(a) shows the transfer-function for such state-

ments.

Given a Marco statement and an input analysis state inState, the
transfer function computes an output analysis state outState. The analy-
sis state only changes for the Marco location w assigned by the statement.
The captured-name oracle from Section 5.4.2 checks whether free names from
inState(vy) thru inState(v,) are captured by the fragment. If they are cap-
tured, and the capture is not intentional, the analysis reports an error. On the
other hand, if they are not captured, then they are still free in w. In addition,
the free-names oracle checks for free names in the constant portionsfor aq thru
a, of the fragment. Those free names are also free in w. The resulting output
state outState(w) uses the free names for w as discovered by the oracles. For
all other locations u # w, the transfer function forwards the free names from

the input state outState(u) = inState(u).

We implement our data-flow analysis with a work-list algorithm. Ini-
tially, all analysis states are empty, and the work-list contains all statements
that manipulate fragments. While the work-list is non-empty, the analysis
removes a statement from the work-list, applies its transfer function, and if
the output analysis state changes, adds all successor statements to the work-
list. The analysis terminates, because analysis states grow monotonically, and

because the lattice has finite height.

139

One pragmatic issue is how to report high-quality error messages in
the case of accidental name captures. The analysis remembers which errors
it has reported so far and avoids duplicates. Furthermore, the analysis tracks
the originating fragment for each free identifier to more accurately report the
source of accidental name captures. When the analysis detects an accidental
capture, it reports both the line number of the origin and the line number of

the capture in the Marco program.

5.4.4 Dynamic Data-Flow Analysis

The static data-flow analysis checks the naming discipline. It reports
accidental name capture errors to macro authors at development time. How-
ever, a Marco program may also receive fragments from external input pa-
rameters. These fragments may contain free identifiers, and thus, the Marco
dynamic interpreter checks for accidental captures at code-generation time as
well. As before, a capture is accidental if the programmer has not designated

it as intentional using an annotation in the fragment head.

Figure 5.6(b) shows how the dynamic interpreter piggy-backs the data-
flow analysis on the execution of the Marco program. When the interpreter
instantiates a fragment, the data-flow analysis collects the free names from
each blank, using the freeNamesOracle. For each free name, it uses the cap-
turedNameOracle to check whether the free name is captured at the blank. If
the name is captured and the capture is not intentional, the analysis reports
an error and aborts the program. Otherwise, the interpreter fills in the blanks

with the input fragments to produce an output fragment.

140

5.5 Implementation

This section presents our implementation choices in adapting Marco to
realistic programming environments. Section 5.5.1 and Section 5.5.2 respec-
tively present a few primitive functions to express low-level operations and a
foreign function interface that use legacy libraries. Section 5.5.3 shows how
we adapt the factory method pattern in object-orient programming languages

to build the Marco framework that embraces language-specific oracles.

5.5.1 Primitive Functions

Primitive functions express the low-level operations that a user-defined
Marco function cannot perform. Such low-level operations include generating
fresh identifiers (gensym) and concatenating strings to generate an identifier
(catid). Our static checker does not analyze the effect of executing them. For
instance, our static dataflow analyzer assumes that catid does not generate
any free name. Our dynamic interpreter discovers the free names and ensures

that they are not accidentally captured.

5.5.2 Foreign Function Interface

Foreign function interfaces enable one language to use legacy libraries
in another language. The Marco foreign function interface to Java requires
very little extension to the Marco system while allowing it to reuse legacy
libraries in Java. For instance, some of our applications read code fragments
from XML files. Writing an XML parser in Marco from scratch would be an
unnecessary effort given that there are high-quality XML parsers that have
stood the test of time. To check the safety of foreign functions, Marco uses

the dynamic interpreter instead of the static checker. For locating the origin

141

of errors, a programmer must specify the origin of code fragments generated
through the foreign function interface. For instance, the programmer may
point out an XML file and one of its source lines. Specifically, a Marco native
method would manually create the fragment tokens with their file names and
line numbers that copied from those in the XML tree generated by an XML

parser.

5.5.3 Factory Method Pattern

We use a factory method pattern to abstract how language-specific
analyses are created. Each factory is responsible for a target language, cre-
ating instances of the oracles for syntax, free names, and captured names of
a fragment. Figure 5.8 presents the class hierarchy diagram for the factory
classes for SQL and C++4. OracleFactory is an abstract class that declares
three methods for creating language-specific oracles. The createSyntaxOracle
method creates an object of the ISyntaxOracle interface that checks the syntac-
tic well-formedness of a fragment. The createFreeNamesOracle method creates
an object of the IFreeNamesOracle interface that extracts the free names from
a fragment. The createCapturedOracle method creates an object of the |Cap-
turedNameOracle interface that checks whether or not a given name is captured

at a blank in a fragment.

To map the language of a fragment to its factory class, we use a hash-
table and reflection in Java. The hash-table maps from language identifiers
(e.g,. sql or cpp) to factory class names (e.g., SQLOracleFactory or CPPOra-
cleFactory). To add a new target language and its oracle factory class, a Marco
plug-in writer edits the Marco property file used for populating the hash ta-

ble. When a language lookup is successful, the analysis framework dynamically

142

OracleFactory

createSyntaxOracle: ISyntaxOracle
createFreeNameOracle: IFreeNameOracle

createCapturedNameOracle: ICapturedNameOracle

SQLOracleFactory CPPOracleFactory ‘
~=* SQLSyntax -* CPPSyntax
:'—— > SQLFree == CPPFree
--» SQlCaptured ~~% CPPCaptured

————mm e ———

Figure 5.8: Java class hierarchy for oracle factories.

loads a factory class using the factory name. Then, it instantiates a factory
object from the class using Java reflection and executes a method for creating
the oracle object. For instance, the method SQLOracleFactory.createSyntax cre-
ates a syntax oracle object for an SQL fragment. This oracle checks syntactic
well-formedness of the SQL fragment by repeating the process of synthesizing
an SQL query, sending it to a database management system, and receiving the

€Irror messages.

5.6 Results

This section experimentally validates three characteristics of Marco: expres-
siveness, safety, and scalability. Section 5.6.1 describes the methodology and
tools for our experiments. To evaluate expressiveness, we implemented sev-

eral macros in Marco, ranging from micro-benchmarks from prior work to a

143

code-generation template for a high-performance stream processing operator.
To evaluate safety, we ran Marco on each of the micro-benchmarks and on the
streaming operator. The expressiveness and safety results are in Section 5.6.2.
To evaluate scalability, Section 5.6.3 reports statistics on the implementation

effort for supporting different target languages.

5.6.1 Methodology

Experimental environments. We used Marco r237 running on Sun HotSpot
Client 1.6.0_21-ea. For the unmodified target language processors for C++ and
SQL, we downloaded and built gee 4.6.0 164675 (20100928) and SQLiteJDBC
v056 based on SQLite 3.4.14.2. We conducted all the experiment on a Pentium
D T3200 with 2 GB main memory. The machine runs on Ubuntu 11.04 on the
Linux 2.6.35-28 kernel.

Marco programs. We used several Marco programs: micro-benchmarks
derived from related work [17,84] and the aggregate operator derived from
IBM InfoSphere Streams [18]. The micro-benchmarks are a collection of 8
small Marco programs that generate C++ programs without classes, names-
paces, and templates. The Aggregate operator generates C++ declarations,

statements, and expressions that exercise classes, namespaces, and templates.

Data collection methodology. To collect statistical results from analyzing
fragments, we turned on Marco’s -pstat command-line option. To count source

lines of code, we ran the sloccount utility.

144

5.6.2 Expressiveness and Safety

This section demonstrates expressiveness of Marco by presenting several
Marco micro-benchmarks and the Aggregate operator written in Marco. This
section demonstrates safety of Marco by running the Marco system on all the

tests.

5.6.2.1 Micro-Benchmarks

Table 5.2 presents our micro-benchmarks. We rewrote the first four
programs in the MS? paper by Weise and Crew [84] in the Marco language.
These macros complement the C language with abstractions such as resource
management (paint), dynamic binding (dynamic_bind), exception handling
(exception_handling), and multiple declarations (myenum). The remaining
three programs re-implement examples in the “macros that work” paper by
Clinger and Rees [17] in Marco. These macros illustrate naming issues in macro
expansions. All seven micro-benchmarks produce expressions, statements, and

declarations in C+-+.

Each program contains a few fragments (Column “Fragment”). We
name them using the name of the functions they appear in and the order in
which they appear. Column “Code type” shows the types of the macros, which
indicate the target language and the non-terminal. Column “Size” counts
the number of target-language tokens and blanks. The remaining columns
present statistical results from running the oracle analysis. The oracle analysis
synthesizes several query programs before it concludes that the input fragment
is syntactically correct. Column “Backtracks” counts how often the syntax
oracle needed to backtrack before it finished. Column “Queries” counts the

number of compilation units sent to the target-language processor. Column

145

"SYIRWYOUSG-0IDTW 9T} UT SJUSWISRI] Y} I0] SHMNSAI SISATRUR S[ORI() :g'G S[R],

<qu3s ‘7hbs>9poDd Zpoob
N W N m <axdxs ‘Tbs>9p0oD jyslelels xe3udsTI0S
11 e1 G 1¢ <jqw3s ‘ddo>ap0o)d cdems
4 ¥ I 1 <pT ‘ddo>epo)d gdems dems
4 4 1 1 <pT ‘ddo>epod rdems
ré ¥ 1 CT <qw3s ‘ddo>9pod gureu
ré ¥ 1 1 <Idxs ‘ddo>9po) rureu ure7dwoo
1 ¢ 0 G <juw3s ‘ddo>spo)d rureTdwod
0 1 0 6 <Idxs ‘ddo>9po) TIUPUTWIIOS TP JUPUTWIIOSTIP
1 e 0 0% <Toep ‘ddo>epod cunusAu
q L ré JA <quys ‘ddo>epod punusAul
0 T 0 GT <To8p ‘ddo>epo)d cunusAuw wnusAu
¢ G 1 01 <juw3s ‘ddo>spod cunusAu
0 1 0 9 <To8p ‘ddo>9poD TunusAw
G . é &7 <jugs ‘ddo>epo)y gioe30xd purmun
ré ¥ 1 1 <adxs ‘ddo>9po) T130930ad purmun
€ S ! & <qur3s 'ddo>9pod c=3Eo burtTpury uoridodoxo
b ¥ 1 1 <Idxo ‘ddo>epoDd Tyo3edo ' ’
9 8 ¢ Q7 <jqw3s ‘ddo>apo)d ZMOIY3
9 8 4 Gg <3w3s ‘ddo>8poD TMOIY3
., 6 e 1 <jqw3s ‘ddo>apo)d IPUTq OoTWeUuip purg - ortweulp
9 Q ré 61 <jw3s ‘ddo>9po)d rburjuredg qured

SUOIJRIR[DS(] SOLION() syorIYPRY 9ZIG odA£y) apoD JuowISRI WRISOIJ 024D

146

“Declarations” shows the number of declarations that the oracles needed to

synthesize provide evidence for syntactic well-formedness.

For fragments containing 1-52 tokens or blanks, our oracle analyzer
concludes syntactic well-formedness after evaluating 1-9 query fragments. The
number of queries is proportional to the number of synthesized declarations
rather than the size of input fragments. This result is not surprising, because
the number of C++ parsing errors for syntactically well-formed fragments
would be proportional to the number of undefined symbols. About 10-20% of

query programs backtrack speculations during the oracle analysis.

5.6.2.2 Aggregate Operator

In a data-stream management system (DSMS), an application is a di-
rected graph of data streams and operators. Each stream is conceptually
infinite, and each operator has its own thread of control, which continuously
consumes data from input stream(s) and produces data on output streams(s).
Often, there are many variants of an operator. For example, an Aggregate
operator can use sum, average, maximum, etc. for aggregation, customized
for various different types of streaming data, over a sliding window or a tum-
bling window, and so on. To implement all these variants efficiently, some
commercial DSMSs allow users to write their operators as “code generation
templates”, in other words, as macros that generate custom code for a specific
variant of an operator. One such DSMS is IBM’s InfoSphere Streams [18],
and one of the operators in the standard library of InfoSphere Streams is the
Aggregate operator. We have re-implemented the Aggregate operator from

the academic trial version of InfoSphere Streams in Marco.

Table 5.3 presents statistics from running the oracle analyzer over the

147

Code type Count Size Backtracks Queries Declarations

Code<cpp, id> 5 1.00 0.80 4.00 2.00
Code<cpp, type_spec> 8 6.88 0.00 7.50 1.88
Code<cpp, type_id> 1 1.00 0.00 3.00 1.00
Code<cpp, expr> 12 4.75 0.08 3.25 1.58
Code<cpp, stmt> 40 14.95 1.42 6.88 5.65
Code<cpp, fdef> 11 33.18 0.64 11.09 8.18
Code<cpp, mdecl> 21 14.05 0.05 3.95 1.90
Code<cpp, decl> 1312.38 0.00 4.77 2.00
Code<cpp, cunit> 3 7.00 0.00 3.00 1.00

Table 5.3: Oracle analysis results for the fragments in the Aggregate operator.

114 fragments in the Aggregate operator. We classify these fragments by their
code type in the first column and present the number of fragments for each
code type in column “Count”. The remaining columns average the number
of tokens and blanks (“Size”), the number of backtracks during oracle query
analysis (“Backtracks”), the number of generated C++ compilation units for
queries (“Queries”), and the number of helper declarations to disambiguate

the C++ syntax (“Declarations”).

The Aggregate operator exercises more C++ specific code types than
the micro-benchmarks. For instance, the 12 fragments of type Code<cpp, mdec1>,
where mdec1 is the member-declarations non-terminal, generate fields, meth-
ods, and constructors in a C++ class. To the best of our knowledge, none
of the macro systems in prior work generates members of a C++ class and
checks syntactic correctness of the generated code. Due to ambiguity in the
C++ grammar, our oracle analyzer backtracked its speculations 72 times over
the 114 fragments. Most backtracks appeared in analyzing the fragments that
generated C++ statements. These fragments contain lots of unknown iden-

tifiers in either variable declarations or expression statements. This is not

148

surprising, because the C/C++ parser differentiates between declarations and
statements based on whether or not an identifier has been declared as a type.
In MS2, the programmers must carefully write their macros such that the pars-
ing ambiguity does not appear. Instead of asking the programmer to avoid
the ambiguity, our oracle analyzer tries inferring the context, possibly with
backtracking. This inference is more important in C++ than in C, because
C++ has more ambiguity and types. For instance, C++ templates add more
ambiguity in parsing. Even if a variable is bound to a type, the gcc parser for
C++ uses backtracking internally, so it comes as no surprise that our oracle

also needs to use backtracking.

While our oracle analyzer worked un-aided on 109 fragments in the
Aggregate operator, we had to provide additional annotations to help it an-
alyze the remaining 5 fragments. The problem was that the error messages
from gcc did not provide enough information. To handle these fragments, we
improved the C++ support in Marco with two additional annotations. The
first class of annotations tell the oracle that two blanks have the same value. In
our problematic fragments, the equality is guaranteed because the two blanks
in the fragment are textually the same expression without side-effects. How-
ever, value equality is undecidable in general. The second kind of annotation
specifies the enclosing class name for Code<cpp, mdecl> fragments. These
fragments can generate constructors and overloaded operators that share the
decl-specifier and declarator non-terminals. In order to tell these two kinds
of non-terminals apart, the parser relies deeply on types of identifiers in these
two non-terminals. For future work, we are planning to investigate annotation

inference.

149

5.6.3 Scalability

To support an additional target language in a traditional safe macro
system, the developer must modify the target-language processor, which is
usually a large and complex piece of software. To make matters worse, the
modified target-language processor is effectively a branch version, and keeping
it up-to-date with the main branch requires additional engineering efforts.
On the other hand, to support an additional target language in Marco, the
developer must write a plug-in consisting of a simplified lexer and three oracles.
The oracles wrap unmodified target-language processors. The effort is smaller

in the Marco approach.

Our C++ plug-in consists of the lexical analyzer and three oracles.
For the C++ lexical analysis, we define the TOKEN terminal in Figure 5.2.
This required a few lines of regular expressions for identifier (1), literal (5),
keyword (74), and preprocessing-op-or-punc (72) [69]. Most of the regular ex-
pressions were trivial, only identifier and literal (6) required any meta-level
operators in regular expressions. Our C++ oracles consists of 1K+ non-blank
source lines of code in Java. About half of the source lines are for describing
declarations in oracle queries, and the other half are for handling error mes-
sages. The error handlers contain 52 regular expressions to classify gcc error

messages.

In contrast, to quantify the code size of the gcc compiler itself, we
examined the source files under the cp directory of gcc. These files contain
the C++ front-end that includes the C++ parser [23]. The cp directory
contains 87K+ non-blank source lines in C source files. It has a hand-written
parser in the parser. c file that has 14K+ non-blank source lines. Compared

to these line counts, our C++ plug-in is much smaller at 1K+ source lines of

150

code. At the same time, it reuses a sophisticated, unmodified code base that

has been maintained for years.

Our SQL plug-in consists of the C++ lexical analyzer and the set of
three SQL oracle analyzers containing 400 more source lines of code. As a
direct consequence of using the C++ lexical analyzer, Marco recognizes a
subset of SQL tokens. On the other hand,We argue that SQLite has about
1K source lines in the parser.y file written in LALR(1) specification. While
the SQL plug-in and the SQLite parser have comparable source lines, this
result does not necessarily devalue our scalability claim. SQLite has been
maintained, adapted, and tested widely for over a decade. It is better to use a
proven parser than to reinvent a new one. Furthermore, Marco uses not just
the SQLite parser, but also other components of SQLite for checking naming

discipline.

Discussion: Extensible lexical analysis. We are working on an oracle
for lexical analysis that wraps target-language lexical analyzers, such as the
Antlr parser generator [58] . The extensible oracle analyzer would call plug-in
scanners on the fly. The oracle will recognize Marco tokens including back tick.
Whenever it finds a back tick and the following target language identifier, it
will delegate the scanning work to a plug-in scanner. Each target-language
plug-in would count opening and closing brackets in addition to recognizing
their own tokens. Whenever it finds the end of a code fragment, it will return

to the main driver analyzer.

151

5.7 Summary

Any program in one language can communicate with any program in
another language if both languages have a string type and their programs are
represented as strings. Specifically, a program generates another program as a
string value and sends it to a compiler or an interpreter to execute. While this
programming practice requires no extension to any language or its compiler or
interpreter, there is no guarantee that the generated programs are syntactically

and semantically correct, and the generation process is hygienic.

To bridge the gap between scalability and safety in code generation
interfaces, Marco raises the level of abstraction from a string type to a code
type. The Marco code types are parametrized by a target language and a
phrase type. In our code type system, an open fragment represents a set
of expressions and statements in target language. Our analyzer synthesizes
oracle queries from the open fragment, analyzes the error messages from target
language compilers, and infers information about the input fragment. Using
information from the oracle analyzers, our static and dynamic checker reports
errors in Marco programs. In summary, Marco presents a scalable analysis for

scalable code generation interfaces for any language.

152

Chapter 6

Related Work

This chapter compares our multilingual tools with previous work that
avoids and detects the bugs at foreign function interfaces in Section 6.1, at
code generation interfaces in Section 6.2, and across language interfaces in

Section 6.3.

6.1 Foreign Function Interfaces Safety

FFI programming is challenging because programmers must reason
about multiple languages and their semantic interactions. For example, Chap-
ter 10 of the JNI manual identifies fifteen pitfalls [49]. We list the most serious
of these in Table 6.1, using Liang’s numbering scheme, and include “bad criti-
cal region” from Section 3.3.1 as a 16th pitfall. We created small JNI programs
to exercise each pitfall and executed them with HotSpot and J9. Columns two
and three show that JNI mistakes cause a wide variety of crashes and silent
corruption. The two JVMs behave differently on four of the pitfalls. Columns
six and seven show the JVMs are not much better with built-in JNI checking

(turned on by the —-xcheck: jni command-line flag).

Table 6.1 also compares language designs, static analysis tools, and our
Jinn implementation. An empty entry indicates that we are not aware of a lan-

guage feature or static analysis that handles this pitfall. We fill in entries based

153

‘uorydadxa N[uull ®©

sostel :u01dooxsy uoljdooxe 1ojurod MU © SOSTRI (FFJN "SHOJe pue SISOuseIp syuLid :uo.lff ‘sonurjuod pue sisousderp sjurid
:buruam 4| -S1sOUSeIP INOYIIM SYIOqR [YSDL) "9Ye)s INA[Pouyepun jo 231ds UT 99NdaxXe 0 sanuryuod :buruuny “[6¥] syred INC

s[restd IN[:1°9 9[qRl,

uor)daoxa 10119 Sururem [e7] [gg] Soo[pesp {OO[peop UOIZaI [BI1ILID PRy 9T
uorydeoxo ysero 10119 [ge] sern Suruuna SpeaIy) ssoIde AUGIN[oY) Suis)) “§T
uo1ydeoxo 10119 10119 [e7] [ge] sero yser S9OUSISJOI [BDO] PI[eAUl SUIS)) €T
uorjdooxo Suruwrem Suruuna e[eol UOTJBOID 9DIUDIDJAI [BIO] QAISSIIXH T
uorjdooxo Sururem Suruuna [e7] 7] ‘Igg] e[B9 S9OINOSAI QUIYDBW [BNIIIA SUTUIRI] T
uor}deoxo AJIN AdN [72] ‘[cg] AdIN AdN SO[ILI [OIJUOD SSAJO® JUIPR[OIA "6
AN /Suruunt AdIN Suruuna [72] ‘[cg] AIN Suruuna s3urgs opooru SUIjeUIUIo], ‘|
uorydeoxo 10119 10119 [9g] [gg] [sern [sern S90USISJRI M S(] Sursnjuo)) ‘9
uor)dooxa 10119 IO1Id [92] 7] ‘[ge] [sern [seI 199(qol yym ssepol Sursnjuo)) g
uorydeoxo sern suruuni [92] ‘[9g] 7] ‘Isg] [SRID SUIUUNI SUOIJOUNJ [N[* 0} SJUdWINSIe PIfeAu] g
uorydooxo IOII0 Suturem [g7] ‘[eF] [72] ‘[cg] [SeId Suruuni SUROYD 10115 T
uuzp 6r 10dgjoHg sisd[euy udse(q 6r odgiog mesd INC
sisA[euy orwreuA(J onje)g aSen3uer] Joraeyayg jmejo(q

154

on our reading of the literature [26, 35, 43,48, 74,76]. We did not execute the
static tools. Language designs cover the widest class of JNI bugs [35, 74|, but
new languages require developers to rewrite their code. Static analysis catches
some, but not all, pitfalls. For example, statically enforcing non-nullness with-
out language support (e.g., a @NonNull annotation) is undecidable. At the same
time, dynamic and static FFI analysis are complementary. Dynamic analysis

misses unexercised bugs, whereas static analysis reports false positives.

The last column shows that Jinn detects all but one of these serious
and common errors. Pitfall 8 depends on how C code uses character buffers
and requires analysis or instrumentation of a program’s entire C code, which
is beyond the scope of our more targeted dynamic analysis. Consequently, the
program exhibits the same behavior as a production run without Jinn, i.e.,
it either keeps on running (HotSpot) or signals a null pointer exception (J9).
When Jinn detects any of the other errors, it throws a JNI failure exception
and stops execution to help programmers debug. Jinn works out-of-the-box
on unmodified JNI which makes it practical for use on existing programs. It

systematically finds more errors than all the other approaches.

6.1.1 Safe Interface Languages

Two language designs propose to replace the JNI. SafeJNI [74] combines
Java with CCured [57], and Jeannie safely and directly nests Java and C code
into each other using quasi-quoting [35]. Both SafeJNI and Jeannie define their
language semantics such that static checks catch many errors and both add
dynamic checks in translated code for other errors. From a purist perspective,
preventing FFT bugs while writing code is more economical than spending time

to fix them after the fact. Another approach generates language bindings for

155

annotated C and C++ header files [8, 38]. Ravitch et al. reduce the annotations
required for generating idiomatic bindings [62]. Jinn is more practical than
these approaches, because it does not require developers to rewrite or annotate

their code in a different language.

6.1.2 Static FFI Bug Checkers

A variety of static analyses verify foreign function interfaces [25,26,
43,48,75,76]. All static FFI analysis approaches suffer from false positives
because the specification includes dynamic properties, such as non-null refer-
ence parameters, valid Java class and method names in string parameters, and
less than 16 local references. Static analysis cannot typically guarantee these
properties. For instance, J-Saffire reports false positives and warnings [26];
Tan et al. report a false positive rate of 15.4% [48]; and BEAM reports a false
positive, while missing the bug in Section 3.1.1. In contrast, Jinn never gen-
erates false positives but only finds bugs actually triggered during program
execution. Furthermore, whereas prior static analyses for JNI require the na-
tive library to be written in C and available in source form, Jinn is neither
restricted to C nor does it require source code access. For instance, Jinn found
FFT bugs in the Subversion Java binding written in C++4-. In summary, static
analysis finds a subset of FFI bugs without executing the program but suffers
from false positives. In comparison, Jinn finds more FFI bugs but only when
they are exercised; suffers from no false positives; and requires no source code

accCess.

156

6.1.3 Dynamic FFI Bug Checkers

Some JVMs provide built-in dynamic JNI bug checkers, enabled by
the -Xcheck: jni command-line flag. While convenient, these error checkers
only cover limited classes of bugs, and JVMs implement them inconsistently.
NaturalBridge’s BulletTrain ahead-of-time Java compiler performed several

ad-hoc JNT integrity checks on language transitions [56].

Jinn covers a larger class of JNI bugs, works consistently with any JVM
that implements the JVM Tools Interface (JVMTI), and explicitly throws
an exception at the point of failure. Exceptions provide a principled and
language supported approach to software quality — for example, enabling a
GUlI-based program to report the bug in a dialog instead of relying on the
user to sift through the system log. Furthermore, when the exception’s error
message and calling context do not suffice to identify the cause of the failure,
programmers can rerun the program with both Jinn and a Java debugger.
The debugger then catches the exception, and the programmer can access the

detailed program state at the point of failure.

6.1.4 State Machine Specifications

Several programmable bug checkers take state machine specifications,
and report errors when state machines reach error states. Dwyer et al. sur-
vey state-machine driven static analyses [20]. For instance, Metal [21] and
SLIC [7] for general program properties are languages for specifying state ma-
chines that are then used to find bugs through static analysis. On the dynamic
side, Allan et al. turn FSMs into dynamic analyses by using aspect-oriented
programming [1]; Chen and Rosu synthesize dynamic analyses from a variety

of specification formalisms, including FSMs [14]; and Arnold et al. implement

157

FSMs for bug detection in a JVM, controlling the runtime overhead by sam-
pling [2]. While in principle these specification languages are expressive enough
to describe many FFI constraints, in practice none of them address the unique
challenges of multi-lingual software. Also, unlike Jinn, most of them require

source code access.

6.2 Code Generation Interface Safety

In using code generation interfaces, the generator programs should re-
spect the rules of syntax, scope, and semantics in the target languages. Safe
programming systems verify these rules at the cost of being deeply coupled to
their target languages (Section 6.2.1). Language-agnostic systems do not check
safety, or they do not provide good error messages (Section 6.2.2). Language-
agnostic syntax embedding systems do not take advantage of the engineering
efforts in compilers and interpreters for target languages (Section 6.2.3). Marco
bridges the gap between safety, language agnostics, and engineering efforts by
analyzing the error messages from production compilers and interpreters (Sec-

tion 6.2.4).

6.2.1 Language-Specific Safe Macro Systems

Some programming languages check safety of generated code by deeply
coupling meta-languages and their target languages. Multi-stage programs
dynamically generate and execute safe code in Scheme, ML, C, and Java [17,
55,59,85]. There are meta-programming systems for ensuring safe genera-
tion of HTML documents and SQL queries [15,16,65]. C++ concepts add
constraints to template declarations to produce error messages before fully

expanding templates and discovering errors [19,29]. Researchers added types

158

to C macros [53,84]. Like Marco, these systems check safety in macros, but

unlike Marco, they are language-specific.

Syntax. The problem of respecting syntax rules is well-recognized in general-
purpose imperative language communities and in the web programming area [3,
4,53,84]. Syntax analysis faces huge challenges when the target languages
have rich syntax and when macros are dynamic. For target language with
rich syntax, MS? abstracted the level of macro processing from tokens to ab-
stract syntax trees [84]. ASTEC proposed a refactoring approach for legacy
C programs [53]. For dynamic code generation, Minamide statically checks
the syntax of the generated HTML pages from a PHP program by finding
a regular expression that over-approximates these HTML pages [54]. Apollo
explores a dynamic random-testing approach [3,4]. All these systems directly
recognize the syntax of their target languages only, while the Marco system

leverages unmodified target language compilers.

Some meta-programming systems eliminate security vulnerabilities in
web applications [12, 32,40, 83]. Static analyzers deeply track the string values
and their operations in host-language programs to find out the code and inputs
that breach security policy [32,40,83]. StringBorg eliminates these vulner-
abilities by raising the abstraction of inputs from strings to syntax trees [12].
Marco abstracts the input values and their operations to the lexical level that

is sufficient to eliminate these vulnerabilities.

Scope. The problem of respecting scope rules has been addressed by work on
hygiene in the functional language community [41,42]. Kohlbecker et al. in-

troduced hygienic expansion [42]. Clinger and Rees presented an improved al-

159

gorithm for renaming identifiers to guarantee hygiene [17]. In contrast, Marco
does not automatically rename identifiers, but rather reports errors when iden-
tifiers are accidentally captured. Kim et al. reached a complete system that
formally characterizes both accidental captures and intentional captures [41].
All these systems depend on the syntax and scope rules in their specific target
language. On the other hand, the Marco system indirectly recognizes scopes

by querying target language compilers.

Semantics. Some systems check whether or not all the expanded fragments
will pass type checking in their target languages. C++ concepts add contracts
to templates [29]. MorphJ verifies some contracts statically so that expanded
code will not have name-resolution conflicts [37]. Quail checks types between
SQL queries and the database system [77]. Target-language agnostic type
checking is an open problem that has not been addressed by any of these

systems, and that we have not addressed it in Marco either.

All the safe macro systems are tightly coupled to specific target languages.
Instead of modifying the target language compilers, Marco relies on compi-
lation error messages to infer all these properties. Production-level compiler
writers are strongly motived to generate high-quality error messages to serve
their users. Based on this assumption, we believe that our weakly coupled
analysis approach is the right direction for safely handling many programming

languages.

160

6.2.2 Language-Agnostic Unsafe Macro Systems

Language-agnostic macros are quite common in practice, because most
programming languages have string data types that can represent both well-
formed and ill-formed programs in any target languages. A JSP web pro-
gram generates SQL queries and HTML/JavaScript pages to talk to back-end
database systems and front-end web browsers, respectively. The C preproces-
sor does not incorporate much information about its target language, because
it takes tokenized streams as input and output. Unfortunately, none of these
language-agnostic macro systems provide safety checks. Ernst et al. present
an empirical study that finds that programmers often break safety rules when
using the C preprocessor [22]. Reading ill-formed generated-code and locating

the erroneous code is hard and tedious.

Compared to these systems, our Marco system adds safety checks while
remaining expressive and language-agnostic. The Marco system relies on high-
quality error messages from its target language compilers, while these unsafe
system assume nothing. We believe that our assumption aligns well with com-
piler writers who want to give good explanations for compilation failures. The
Marco language raise the abstraction level of target programs from character
strings or token sequences to fragments. A fragment’s type constrains both
its target-language and its non-terminal, so that Marco can check syntactic
well-formedness for each fragment in isolation. Furthermore, Marco checks for

naming discipline.

6.2.3 Language-Agnostic Syntax Embedding Systems

Language-agnostic syntax embedding systems offer extensible gram-

mars to embed guest-language fragments into host-language programs. MetaB-

161

org [13] and StringBorg [12] propose scannerless generalized LR parsing to
extend grammars (embedding) and define their transformation rules (assimila-
tion). Metafront reduces the overhead from scannerless parsing [11]. While
Marco shares the goal of language agnostics and error checking, it relies on the
guest-language compilers and interpreters using oracle queries. This approach
adds a few strengths over these systems. Marco takes advantage of the highly
tuned parsers, error reports, and scope analyses in guest-language compilers
and interpreters. Unlike these systems, Marco resolves context-sensitivity and
grammatical ambiguity in C++4, produces human readable error reports for
fragments, and enforces naming disciplines in expanding the blanks in frag-

ments.

6.2.4 Using Messages from Black-Box Compilers

A few systems consume error messages from compilers and interpreters
for a variety of reasons. SEMINAL takes error messages from the OCaml and
g++ compilers and suggest changes for ill-formed programs [46]. Autoconf
macros generates C/C++ programs, and send them to C/C++ compilers.
They check error messages to determine whether or not some header files and
some preprocessor symbols are available in the build host environment. The
HelpMeOut system mines IDE logs to discover common fixes, and then pro-
poses them to programmers based on which error messages are displayed [34].
Like Marco, each of these systems runs unmodified language compilers, and
then inspects their error messages for clues. Unlike Marco, none of these sys-
tems is a macro system. To our knowledge, Marco is the first system that

mines error messages from black-box compilers for safe code generation.

162

6.3 Multilingual Debuggers

While programmers have adapted high-level languages such Java, Java-
Script, and Python with managed runtime environments in addition to the
legacy native C environment, debuggers do not recognize them completely.
One contribution of this thesis is an implementation of the most portable
and powerful debugger for Java and C to date. Blink’s power and portability

derives from composing existing powerful and portable debuggers.

6.3.1 Mixed-Environment Debuggers

The closest work to mixed-environment debugging is by White, who
describes a manual technique for mixed-environment debugging for Java and
C that attaches single-environment debuggers to the same process [86, 87]. The
resulting system is limited because it cannot examine a mixed stack, step into
cross-environment calls or set breakpoints in one environment when stopped

in the other, all of which Blink supports.

We are aware of three mixed-environment debuggers (dbx, XDI, and
the Visual Studio debugger) that are practical but, unlike Blink, do not use
a compositional approach. These debuggers are not easily extended nor are

they portable.

The dbx debugger extends an existing C debugger for Java [73]. XDI
extends an existing Java debugger for C [60]. Both XDI [60] and dbx [73]
are powerful but they are less portable than Blink. XDI works only with the
Harmony JVM, which is a non-standard JVM. Dbx only works with Sun’s
JVM on Solaris, and, with limited functionality, on Linux. Because we use
composition, Blink is more portable; it supports multiple JVMs (HotSpot and
J9) and C debuggers (cdb and gdb) on both Linux and Windows.

163

The Visual Studio debugger debugs C#, C, C++, and other .NET
languages in the CLR (Common Language Runtime) [67]. It is also extensible
through debug engines [82]. However, in contrast to Blink, where multiple
debuggers attach to a single mixed-environment program, each Visual Studio’s
debug engine is responsible for one program. The CLR provides two debugging
APIs: one native and one managed. To handle a mixed-environment program,
a debug engine must use both APIs. Given two CLR debuggers, one for the
native API and one for the managed API, our compositional approach would

yield a mixed-environment debugger.

6.3.2 Single-Environment Multilingual Debuggers

Some multilingual debuggers require all the languages to implement a
single interface in the same environment [10,52,64]. For example, the GNU
debugger, gdb, can debug C together with a subset of Java statically compiled
by gcj [10]. Many real-world Java applications, however, exceed the gcj
subset and require a full JVM to run. Compared to these approaches, ours is

the only one that leverages independently developed debuggers.

6.3.3 Portable Debuggers

Portability of debuggers depends on their construction mechanisms:
reverse engineering or instrumentation. In the reverse engineering model,
debuggers interpret machine-level state with symbol tables emitted by com-
pilers, and generalize the symbol table formats to add more platforms. For
instance, dbx, gdb, and 1db recognize portable symbol table formats includ-
ing dbx “stabs” [52], DWARF [24], and even PostScript [61]. In the instrumen-

tation model, a debuggee process executes its debugger code. By construc-

164

tion, the instrumentation-based debuggers are as portable as the languages of
the in-process debuggers. For instance, TIDE [80], sm1d [79], and Hanson’s
machine-independent debugger [33] do not need any extra effort for additional
platforms. However, instrumentation causes a factor 3—4 slowdown, which may

impede adoption.

Blink leverages portability of its component debuggers, and the con-
struction mechanisms are portable. For reverse engineering, the symbol table
for Jeannie discussed in Section 4.6 is platform-independent. For instrumen-

tation, the intermediate agent has only 10-20 lines of low-level assembly code.

6.3.4 Mixed-Language Interpreters

One contribution of this dissertation is Blink’s read-eval-print loop
(REPL) for mixed Java and C expressions. Debuggers that support multi-
ple languages, such as gdb, often include an interpreter for expressions in
each language. Blink is novel in that it interprets expressions by delegating
subexpressions to the appropriate single-language debuggers. Blink’s REPL
uses a syntax for embedding Java in C (and vice versa) that was developed in
an earlier paper on Jeannie [35]. The Jeannie paper described the language

and its compiler but did not describe an interpreter, let alone a debugger.

165

Chapter 7

Conclusion

Programs are increasingly written in a variety of languages as pro-
grammers take advantage of new innovative languages and legacy libraries.
Although multilingual programming is inevitable in any real-world software
projects, it requires lots of expertise to write correct multilingual programs.
As a direct consequence, multilingual programs are full of bugs, and debugging

is notoriously tedious and painful.

We showed that multilingual programming tools can be built with rel-
atively low effort by combining single-language tools. Our tooling experience
and experiment results indicate that tool composition is scalable and effective.
We avoid re-implementing what single-language tools provide. The composed
tools help programmers to debug and fix multilingual programs. The insight is
that multilingual programming interfaces define language boundaries and their
correctness conditions. We next apply the principle of interposition to com-
posing tools that recognize language boundaries and use single-language tools.
Our tools include a dynamic checker for foreign function interfaces (Jinn), an
interactive debuggers (Blink), and a safe macro language for code generation

interfaces (Marco).

As part of this dissertation, we introduced a taxonomy for describing
multilingual programming interfaces. Foreign function interface rules capture

key language differences in thread state, types, and resources. Code generation

166

interface rules respect language constructs in syntax, scope, and semantics.

This dissertation also offers following contributions and tools:

1. The first complete dynamic JNI analysis, a partial specification of Pyth-
on/C, and an approach that automatically generates them from the spec-

ifications and mapping functions.
2. The first fully functional Java and C debugger.

3. The first system for agnostically analyzing code generators for code gen-

eration interfaces.

Our compositional approach will influence language designers, tool de-
velopers, and programmers. Language designers would document FFI rules us-
ing our classification when they introduce innovative programming languages.
Tool developers would begin composing multilingual programming tools by
following our approach. Programmers will write more correct programs using

composable multilingual programming tools.

167

Bibliography

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace matching with free vari-
ables to AspectJ. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 345-364, Octo-
ber 2005.

Matthew Arnold, Martin Vechev, and Eran Yahav. QVM: An efficient
runtime for detecting defects in deployed systems. In ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 143-162, October 2008.

Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Practical fault
localization for dynamic web applications. In International Conference

on Software Engineering (ICSE), pages 265-274, May 2010.

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit
Paradkar, and Michael D. Ernst. Finding bugs in dynamic web appli-

cations. In International Symposium on Software Testing and Analysis

(ISSTA), pages 261-272, July 2008.

Jonthan Bachrach and Keith Playford. The java syntactic extender
(JSE). In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 31-42, October 2001.

168

(6]

[10]

[11]

[12]

Chris Bailey. Java technology, IBM style: Introduction to the IBM devel-
oper kit. http://www.ibm.com/developerworks/java/librar

urly /j-ibmjaval.html, May 2006.

Thomas Ball and Sriram K. Rajamani. SLIC: a specifcation language for
interface checking (of C). Technical Report MSR-TR-2001-21, Microsoft
Research, January 2002.

David M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In USENIX Tcl/Tk Workshop, pages 129
139, July 1996.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria
Jump, Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-
mann. The DaCapo benchmarks: Java benchmarking development and
analysis. In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 169-190, October 2006.

Per Bothner. Compiling Java with GCJ. http://www.linuxjournal
url.com/article/4860, January 2003.

Claus Braband, Michael I. Schwartzbach, and Mads Vanggaard. The
metafront system: Extensible parsing and transformation. Technical

Report BRICS RS-03-7, BRICS, February 2003.

Martin Bravenboer, Eelco Dolstra, and Eelco Visser. Preventing injec-

tion attacks with syntax embeddings. In Generative Programming and

169

[13]

[14]

[17]

[18]

Component Engineering (GPCE), pages 312, October 2007.

Martin Bravenboer and Eelco Visser. Concrete syntax for objects. In
ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 365-383, October 2004.

Feng Chen and Grigore Rosu. MOP: An efficient and generic runtime
verification framework. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pages 569588,
October 2007.

Adam Chlipala. Static checking of dynamically-varying security poli-
cies in database-backed applications. In Operating systems design and

implementation (OSDI), October 2010.

Adam Chlipala. Ur: Statically-typed metaprogramming with type-level
record computation. In ACM Conference on Programming Language

Design and Implementation (PLDI), pages 122-133, June 2010.

William Clinger and Jonathan Rees. Macros that work. In Principles of
Programming Languages (POPL), pages 155-162, January 1991.

IBM Corporation. InfoSphere Streams: Stream processing system. http:

//www—01.ibm.com/software/data/infosphere/streams/.

Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ concepts. In
Principles of Programming Languages (POPL), pages 295-308, October
2006.

170

[20]

[21]

22]

[26]

[27]

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In International

Conference on Software Engineering (ICSE), pages 411-420, May 1999.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking
system rules using system-specific, programmer-written compiler exten-
sions. In Operating systems design and implementation (OSDI), October
2000.

Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical anal-
ysis of C preprocessor use. IEEE Transactions on Software Engineering,

28(12):1146-1170, December 2002.

Free Software Foundation, Inc. GNU compiler collection (GCC) inter-
nals. http://gcc.gnu.org/onlinedocs/gccint/.

Free Standards Group. DWARF 3 debugging information format. http:
//www.dwarfstd.org/Dwarf3.pdf, December 2005.

Michael Furr and Jeffrey S. Foster. Checking type safety of foreign func-
tion calls. In ACM Conference on Programming Language Design and

Implementation (PLDI), pages 62-72, June 2005.

Michael Furr and Jeffrey S. Foster. Polymorphic type inference for the
JNI. In European Symposium on Programming (ESOP), pages 309-324,
March 2006.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language
Specification, Second Edition: The Java Series. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

171

28]

[31]

32]

[35]

David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference for
Java. In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 321-336, October 2007.

Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos
Reis, and Andrew Lumsdaine. Concepts: Linguistic support for generic

programming in C++. pages 291-310, October 2006.

Robert Grimm. xtc — eXTensible C. http://www.cs.nyu.edu/

rgrimm/xtc/.

Robert Grimm. Better extensibility through modular syntax. In Pro-

gramming Language Design and Implementation (PLDI), June 2006.

William G. J. Halfond, Ro Orso, and Panagiotis Manolios. Using positive
tainting and syntax-aware evaluation to counter SQL injection attacks.
In Foundation of Software Engineering (FSE), pages 175-185, November
2006.

David R. Hanson. A machine-independent debugger—revisited. Soft-
ware: Practice and Ezperience (SPE), 29(10):849-862, 1999.

Bjorn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klem-
mer. What would other programmers do: suggesting solutions to error

messages. In ACM Conference on Human Factors in Computing Systems

(CHI), pages 1019-1028, April 2010.

Martin Hirzel and Robert Grimm. Jeannie: Granting Java native in-
terface developers their wishes. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages
19-38, October 2007.

172

[36]

[38]

[41]

[42]

Urs Holzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization. In ACM Conference on Programming

Language Design and Implementation (PLDI), pages 32—43, June 1992.

Shan Shan Huang and Yannis Smaragdakis. Expressive and safe static
reflection with MorphJ. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 79-89, June 2008.

Alan Kaplan, John Bubba, and Jack C. Wileden. The Exu approach
to safe, transparent and lightweight interoperability. In IFEFE Inter-
national Computer Software and Applications Conference (COMPSAC),
pages 393-394, October 2001.

Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Lan-
guage. Prentice Hall, second edition, April 1988.

Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D.
Ernst. Automatic creation of SQL injection and cross-site scripting at-
tacks. In International Conference on Software Engineering (ICSE),
pages 199-209, May 2009.

Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic
modal type system for Lisp-like multi-staged languages. In Principles of
Programming Languages (POPL), pages 257-268, January 2006.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In ACM Conference on LISP and
Functional Programming (LFP), pages 151-161, August 1986.

173

[43]

48]

[49]

[50]

[51]

Goh Kondoh and Tamiya Onodera. Finding bugs in Java native interface
programs. In International Symposium on Software Testing and Analysis

(ISSTA), pages 109-118; July 2008.
Jay A. Kreibich. Using SQLite. O’Reilly Media, Inc., 1st edition, 2010.

Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn S. McKin-
ley. Debug all your code: Portable mixed-environment debugging. In

ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 207-226, 2009.

Benjamin Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.
Searching for type-error messages. In ACM Conference on Programming

Language Design and Implementation (PLDI), June 2007.

Xavier Leroy. The Objective Caml System Release 3.12. http://

caml.inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.p

df, April 2010.

Siliang Li and Gang Tan. Finding bugs in exceptional situations of JNI
programs. In ACM conference on Computer and communications security

(CCS), pages 442-452, November 2009.

Sheng Liang. The Java Native Interface: Programmer’s Guide and Spec-
ification. Addison-Wesley, 1999.

Jorn Lind-Nielsen. BuDDy. http://buddy.sourceforge.net/.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, September 1996.

174

[52]

[53]

[55]

[56]

[57]

[58]

[59]

Mark A. Linton. The evolution of Dbx. In Useniz Technical Conference,

1990.

Bill McCloskey and Eric Brewer. ASTEC: A new approach to refactoring
C. In Proceedings of the 10th Furopean Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 21-30, September 2005.

Yasuhiko Minamide. Static approximation of dynamically generated web
pages. In International World Wide Web Conference (WWW), pages
432-441, May 2005.

Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard.
An idealized MetaML: Simpler, and more expressive. In Furopean Sym-

posium on Programming Languages and Systems (ESOP), pages 193207,
March 1999.

NaturalBridge. BulletTrain JNI Checking Examples. http://web.
archive.org/web/x/http:///www.naturalbridge.com/jnic

hecking.html, January 2001.

George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-
safe retrofitting of legacy code. In Principles of Programming Languages

(POPL), pages 128-139, January 2002.

Terence Parr. The Definitive ANTLR Reference. The Pragmatic Pro-
grammers, May 2007.

Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and M. Frans

Kaashoek. ‘C and tcc: A language and compiler for dynamic code genera-

175

[62]

[65]

[66]

tion. Transactions on Programming Languages and Systems (TOPLAS),
21(2):324-369, March 1999.

Vitaly Providin and Chris Elford. Debugging native methods in Java
applications. In FEclipseCon User Conference, March 2007.

Norman Ramsey and David R. Hanson. A retargetable debugger. In
ACM Conference on Programming Language Design and Implementation

(PLDI), pages 22-31, June 1992.

Tristan Ravitch, Steve Jackson, Eric Aderhold, and Ben Liblit. Auto-
matic generation of library bindings using static analysis. In ACM Con-
ference on Programming Language Design and Implementation (PLDI),

pages 352-362, June 2009.

Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Struc-
tures, and Architecture. John Wiley & Sons, 1996.

Sukyoung Ryu and Norman Ramsey. Source-level debugging for multiple
languages with modest programming effort. In International Conference

on Compiler Construction (CC), 2005.

Anders Sandholm and Michael I. Schwartzbach. A type system for dy-
namic web documents. In Principles of Programming Languages (POPL),

pages 290-301, January 2000.

Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta: taming the
native beast of the jvm. In ACM conference on Computer and commu-

nications security (CCS), pages 201-211, November 2010.

176

[67]

[68]

[69]

Mike Stall. Mike Stall’s NET debugging blog. http://blogs.msdn.
com/Jmstall/default.aspx.

Standard Performance Evaluation Corporation. SPECjvm98 Documen-

tation, release 1.03 edition, March 1999.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley,
2000.

Sun Microsystems, Inc. Bug database Bug 4207056 was opened 1999-01-
29. http://bugs.sun.comn.

Sun Microsystems, Inc. Java SE HotSpot at a glance. http://Jjava.

sun.com/javase/technologies/hotspot/.

Sun Microsystems, Inc. JVM™ tool interface, version 1.1. http://
java.sun.com/Jjavase/6/docs/platform/jvmti/jvmti.html,

2006.

Sun Microsystems, Inc. Debugging a Java application with dbx. http:
//docs.sun.com/app/docs/doc/819-5257/blamm?a=view, 2007.

Gang Tan, Andrew W. Appel, Srimat Chakradhar, Anand Raghunathan,
Srivaths Ravi, and Daniel Wang. Safe Java native interface. In [EEFFE

International Symposium on Secure Software Engineering (ISSSE), pages
97-106, 2006.

Gang Tan and Jason Croft. An empirical security study of the native
code in the JDK. In Usenix Security Symposium, pages 365-377, July
2008.

177

[76] Gang Tan and Greg Morrisett. ILEA: Inter-language analysis across Java
and C. In ACM Conference on Object-Oriented Programming Systems
and Applications (OOPSLA), pages 39-56, October 2007.

[77] Zachary Tatlock, Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin
Lerner. Deep typechecking and refactoring. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 37-52, October 2008.

[78] The GNOME Project. GNOME bug tracking system. Bug 576111 was
opened 2009-03-20. http://bugzilla.gnome.orgq.

[79] Andrew P. Tolmach and Andrew W. Appel. Debugging standard ML
without reverse engineering. In LISP and Functional Programming (LFP),

1990.

[80] Mark van den Brand, Bas Cornelissen, Pieter Olivier, and Jurgen Vinju.
TIDE: A generic debugging framework — tool demonstration. FElectronic

Notes in Theoretical Computer Science, 141(4), 2005.

[81] Guido van Rossum and Fred L. Drake. Python/C API Manual - PYTHON
2.6: Python documentation MANUAL Part 4. CreateSpace, Paramount,
CA, 20009.

[82] Visual studio debugger extensibility. http://msdn.microsoft.com/
en-us/library/bbl161718(VS.80) .aspx.

[83] Gary Wassermann and Zhendong Su. Sound and precise analysis of
web applications for injection vulnerabilities. In ACM Conference on
Programming Language Design and Implementation (PLDI), pages 32—
41, June 2007.

178

[84]

[85]

[86]

Daniel Weise and Roger Crew. Programmable syntax macros. In
ACM Conference on Programming Language Design and Implementation

(PLDI), pages 156-165, June 1993.

Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abde-
latif, and Walid Taha. Mint: Java multi-stage programming using weak
separability. In ACM Conference on Programming Language Design and

Implementation (PLDI), pages 400-411, 2010.

Matthew White. Debugging integrated Java and C/C++ code. http:
//web.archive.org/web/20041205063318/www—106.ibm.com

/developerworks/java/library/j—jnidebug/, November 2001.

Matthew White. Integrated Java technology and C debugging using the
Eclipse platform. In JavaOne Conference, 2006.

Ben Wiedermann, Ali Ibrahim, and William R. Cook. Interprocedu-
ral query extraction for transparent persistence. In ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 19-36, October 2008.

Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, October 2005.

Craig Zilles. Accordion arrays: Selective compression of unicode arrays
in Java. In ACM International Symposium on Memory Management

(ISMM), pages 55-66, June 2007.

179

Vita

Byeongcheol Lee was born in Jeonju, S. Korea on August 30, 1976,
the second of two sons and one daughter of Dr. Sanghyun Lee and Gymok
Chang. He received a double B.E. in Electronic & Electrical Engineering and
Computer Science & Engineering, magna cum laude from POSTECH, S. Korea
in August 2004. In September 2004, he entered the Department of Computer
Sciences at The University of Texas at Austin. In May 2006, he received a
Master of Arts degree in Computer Science. Then, he continued onto this

Ph.D. program.

Permanent address: 103-304, Seogok Hyundai APT, Hyoja3-ga,
Wansan-gu, Cheunju, Cheonbuk, South Korea

This dissertation was typeset with IATEX' by the author.

'IATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

180

