Detecting memory leaks in
managed languages with Cork

Maria Jump and Kathryn S McKinley

1 King’s College
2The University of Texas at Austin

SUMMARY

A memory leak in a managed program occurs when the program inadvertently naintains references to
objects that it no longer needs. Memory leaks cause systeniaheap growth which degrades performance
and results in program crashes after perhaps days or weeks afxecution. Prior approaches for detecting
memory leaks rely on heap differencing or detailed object sttistics which store state proportional to the
number of objects in the heap. These overheads preclude thieiise on the same processor for deployed
long-running applications.

This paper introduces Cork as a tool that accurately identifes heap growth caused by leaks. It is space
efficient (adding less than 1% to the heap) and time efficientadding 2.3% on average to total execution
time). We implement this approach of examining and summariing the class of live objects during garbage
collection in a class points-from graph (CPFG). Each node in theCPFG represents a class and and edges
between nodes represent references between objects of tipesific classes. Cork annotates nodes and edges
with the corresponding volume of live objects. Cork identifes growing data structures across multiple
collections and computes &lass dice to identify leaks for the user. We experiment with two functions
for identifying growth and show that Cork is accurate: it identifies systematic heap growth with no false
positives in 4 of 15 benchmarks we tested. Cork’s slice repbenabled us to quickly identify and eliminate
growing data structures in large and unfamiliar programs, something their developers had not previously
done.

KEY WORDS. memory leaks, runtime analysis, dynamic, garbage catliect

1 Introduction

Memory-related bugs are a substantial source of errorecesly for languages with explicit memory
management. For example, C and C++ memory-related erratadie (1) dangling pointers—
dereferencing pointers to objects that the program preWofreed, (2)lost pointers— losing all
pointers to objects that the program neglects to free, anan(3ecessary referencekeeping pointers

*Correspondence to: Department of Mathematics and Comguatence, King's College, 133 North River Street, WilkesiBa

PA 18711, USA.

Contract/grant sponsor: This work is supported by NSF SBIE3818, NSF CCF-0811524, NSF CNS-0719966, NSF CCF-
0429859, IBM, and CISCO. Any opinions, findings and conduosiexpressed herein are the authors’ and do not necessarily
reflect those of the sponsors.

SRE CORK 1

- 15
& 104 &
= S
P >
Q
< 2 10
o Q.
3 3
S 57 g
Q =3 -
$ g °
I T
0 T T T T 0 T T T
0 50 100 150 200 0 20 40 60 80
Total allocation (MB) Time (MB of allocation)
(a) javac (b) fop

Figure 1. Heap-Occupancy Graphs

to objects the program never uses again. Garbage collegptexiudes the first two errors, but not
the last. Since garbage collection is conservative, it cadetect or reclaim objects referred to by
unnecessary references. Thugyeamory leakn a garbage-collected language occurs when a program
maintains references to objects that it no longer needgeptiag the garbage collector from reclaiming
space. In the best case, unnecessary references degrgdenpperformance by increasing memory
requirements and consequently collector workload. In thestcase, a leaking, growing data structure
will cause the program to run out of memory and crash. In lnngiing applications, small leaks can
take days or weeks to manifest. These bugs are notorioufityuttito find because the allocation that
finally exhausts memory is not necessarily related to thecgoaf the heap growth.

To demonstrate leaks, we measure heap composition usipgdoeapancy graphs [8, 21, 39]. A
heap-occupancy graph plots the total heap occupancy ondhesyover time measured in allocation
on the x-axis by collecting the entire heap very frequernitly.,(every 10K of allocation). Figure 1
shows the heap occupancy graphsjévac from SPECjvm [37] andfop from DaCapo [9]. A heap-
occupancy curve with an overall positive slope clearly ¢gatiés systematic heap growth. Figure 1(a)
shows four program allocation phases javac that reach the same general peaks and indicate that
javac uses about the same maximum amount of memory in each phase ahése leaks memory to
the next. On the other hand, Figure 1(b) shows that the heappaacy graph fofop continue to grow
during execution. Such growth indicates the presence @npial leaks, but they do not pinpoint the
source of the leak.

Previous approaches for finding leaks use heap diagnodssttad rely on a combination of heap
differencing [15, 16, 30] and allocation and/or fine-graijest tracking [10, 13, 14, 19, 29, 35, 36, 40,
41]. These techniques can degrade performance by a factwoafr more, incur substantial memory
overheads, rely on multiple executions, and/or offload worla separate processor. Additionally,
they vyield large amounts of low-level details about induadl objects. For example, if &t ri ng
leaks, they can report individu&t r i ngs numbering in the 10,000s to 100,000s and allocation sites
numbering in the 100s to 1000s. Interpreting these repedsires a lot of time and expertise. Some
prior work reportsstaleobjects that the program is no longer accessing [10, 14 28foblem with

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

2 JUMP & MCKINLEY SRE
&

using staleness is that data structures such as arrays simdblfides occasionally touch all the objects
when the data structure grows, which defeats leak detelstisad only on stale objects. Prior work thus
lacks efficiency and precision. Our approach is efficientlge it piggyback on the garbage collector
and it is precise because it identifies growing data stresttirat cause heap growth

We introducedCork, an accurate, scalable, and online memory leak detectiohfto typed
garbage-collected languages in prior work [23]. This pax¢ends our prior work with more rigorous
descriptions and a comparison of leak identification athars. It describes in more detail our pruning
techniques and experimental results, including desaitiie leaks Cork finds in Java programs and
how to fix them.

Cork uses a novel approach to summarize, identify, and tefada structures with systematic heap
growth. We show that it provides both efficiency and precisiBor performance efficiency, Cork
piggybacks on full-heap garbage collections. As the ctillescans the heap, Cork summarizes the
dynamic object graph by summarizing objects by their usdindd class irtlass points-from graph
(CPFG). The nodes of the graph represent the volume of live obfdaach class. The edges represent
the points-from relationship between classes weighteddbyme. At the end of each collection, the
CPFGcompletely summarizes the live-object points-from relaships in the heap.

For space efficiency, Cork stores class nodes togetherhkdgthglobaltype information blockTIB).

The TIB, or equivalent, is a required implementation eleni@nmanaged languages, such as Java and
C#, that instructs the compiler on how to generate corret¢ @nd instructs the garbage collector on
how to scan objects. The number of nodes in @G scales with the number of loaded classes.
While the number of edges between classes are quadratieanttprograms implement simpler class
relations in practice; we find that the edges are linear imtimaber of classes.

Cork uses multipleCPGFs to detect and report a dynamitass slicewith systematic heap
growth. We show that even with multipePFG, Cork never adds more than 0.5% to heap memory.
Additionally, this paper compares two heuristics for déter leaks and controlling for natural
variations in the heap object grapt®&ope RankingndRatio RankingWe find that although slope
ranking is more principled, ratio ranking works better.@aanking computes the slope between heap
summaries. When the heap volume fluctuates a lot, it reqoicge summaries to accurately find slow
leaks. Ratio ranking instead accumulates cumulative heapth statistics from each summary, which
makes it accurate even when the heap size fluctuates a loharieek is slow. We store points-from
instead of points-to information to efficiently compute tt@didate class slice from a growing node.
We demonstrate that the construction and comparis@@R¥Gs across multiple collections adds on
average 2.3% to total time to a system with a generationkdatol.

We apply Cork to 15 Java programs: one fromElipse developer report and the others from
theDaCapo b.050224 [9] and SPECjvm [37, 38] benchmarks. Cork precisely identifies and reports
unbounded heap growth in four of them:

Eclipse configured to exercise a known leak in comparing filEslipse bug #115789) grows
2.97MB every 64MB of allocation. Due to the size and compiexif Eclipse and our lack
of experience with the implementation, we needed abouéthnel a half days to find and fix this
leak using the Cork report.

fop grows 4.8MB every 64MB of allocation in a data structure whigin use throughout the entire
program. While Cork precisely pinpoints a single growingadstructure, it does not sample
or track individual access to heap objects [14] so it canigitrdjuish between a growing data

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 3

structure which will never be used again from one that isistilse. Regardless, even systematic
heap growth in a data structure that is still in use is a camrssoincern as it can affect application
reliability and performance.

jess grows 45KB every 64MB of allocation. Cork precisely pinptsia single growing data structure
that contains a growing number of objects that are never agath.

jbb2000 grows 127KB every 64MB of allocation. Cork’s precision pajftallowing us to quickly
fix the memory leak that had eluded developers for many ygédound it and fixed it in a day
with Cork’s report.

We confirm there are no additional memory leaks in the othebdrdichmarks by examining their
heap composition graphs [8], showing Cork is accurate othallprograms we tested. In practice,
Cork’s novel summarization technique is efficient and elgireports data structures responsible for
systematic heap growth. Its low space and time overheadsrg&ppealing for periodic or consistent
use in deployed production systems.

2 Related Work

The problem of detecting memory leaks falls in three catiegorstatic analysis detection, heap
differencing, and online staleness detection. Compiteetstatic analysis can find double free and
missing frees [20] and is complimentary to our work. Offlineghostic tools accurately detect
leaks using a combination of heap differencing [15, 16, 30§l dined-grained allocation/usage
tracking [13, 19, 35, 36, 40, 41]. These approaches are skmeaind often require multiple executions
and/or separate analysis to generate complex reportsffiolwelevel details about individual objects.
In contrast, Cork’s completely online analysis reports siaries of objects by class while concisely
identifying the dynamic data structure containing the glowDther online diagnostic approaches
rely on detecting when objects exceed their expectedrtifeti [29] and/or detecting when an object
becomestale[10, 14]. This work differentiates in-use objects from tao®t in-use. We instead detect
growing data structures, which finds leaks when the progmap& touches these objects, such as when
growing a hash table. Approaches based on staleness nmssschses.

Static approaches, for example Heine and Lam [20], rely ompile-time analysis to detect
memory leaks. Here a pointer analysis identifies potentaory leaks in C and C++ using the
object ownership abstraction. They find double frees andimisfrees that occur when the program
overwrites the most recent pointer to an object or data straeevithout first freeing it. It does not find
growing data structures and thus static approaches arelepraptary to our work. The challenge in
implementing our approach for C and C++ is connecting thecation type to memory, sineaalloc
is untyped. Their static analysis of ownership types coutdjge similar information to explicit types
used in Java.

The closest related work is Leakbot which combines offlinalysis with online diagnosis to find
data structures with memory leaks [18, 24, 26]. Leakbot US®4PI to take heap snapshots offloaded
to another processor for analysis (we call wfiineanalysis since it is not using the same resources as
the program although it may occur concurrently with progexmcution). By offloading the expensive
part of the analysis to another processor, Leakbot minisnthe impact on the application while
maintaining detailed per-object information. It then @slion an additional processor to perform heap
differencing across multiple copies of the heap—a memoeytead potentially 200% or more that is

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

4 JUMP & MCKINLEY SRE
&

proportional to the heap—and ranking which parts ofabjectgraph may be leaking. Leakbot produces
very detailed object-level statistics, which depend pieci of the heap snapshots. Cork, on the other
hand, summarizes object instances IBRFG graph that preserves a subset object class information,
which minimizes the memory overhead (less than 0.5%). Cotfius time and space efficient enough
to run continuously and concurrently with the application.

Several completely online instance-based approachesnding memory leaks exist for C/C++
and Java. Qin et al. detect memory leaks in C/C++ by lookimgfgects that exceed their expected
lifetimes [29]. They use special hardware to detect andirlte false positives, which gives them low
time overhead and greater accuracy, but space overhead groportionally to the number of objects.

Relying only on software, other online techniques deteamniony leaks identifiestale objects as
those that have not been accessed in a long time [10, 14]in®hiand Hauswirth introduced this
technique for C/C++ where they added per-object bookkegpiiormation to track stale objects [14].
Per-object bookkeeping information does not translatétadiava where even the smallest application
creates millions of distinct objects, making per-objeatking too expensive in both space and time.
Bond and McKinley address this expense by significantly caduthe space overhead of identifying
stale objects as likely leaks by introducing a statistiggdraach for storing per-object information in
a single bit [10]. Using this technique, combined with aninélprocessing step, they detect memory
leaks by reporting allocation and last-use sites of stajeatd. Although they achieve space efficiency,
tracking per-object information adds overheads of 45% @raye which they reduce to 14% with
sampling losing accuracy. For finding memory leaks, difféieging in-use objects from those not-
in-use adds additional information and is complimentarfinnding heap growth. However, staleness
can miss leaking objects. For example, when the progranslealects in a hash table, the hash
table eventually exceeds its size. Rehashing all the abjeaches them and defeats staleness-based
approaches. Cork finds the data structures and their dbocsites responsible for systematic heap
growth, which will eventually crash the program.

3 An Example Memory Leak

Figure 2 shows a simple order processing system that insladeemory leakiNewOrderinserts new

Or der into the al | Or der sHT hashmap and into theewOr der Q, as shown in Figure 2(a). In
Figure 2(b),ProcessOrderprocesses th@mewOr der Q one order at a time. It removes each order
from the newOr der Q and fills it. If the customer is &Conpany (subtype of Or der), it then
issues a bill, putting it on thebi | | i ngQ, and ships the order to the customer. In Figure 2(c),
when the customer sends a paymédmipccessBillremoves the order from théi | | i ngQ and
the al | Or der sHT hashmap. However, if the customer is Rer son (subtype of Or der),
ProcessOrdergalls ProcessPaymemith the customer-provided payment information and shiyes t
order.ProcessOrdershould, but does not, remove the order frai Or der sHT which results in a
memory leak. Figure 2(d) lists abbreviations and statidtic these classes. We use this memory leak
as a running example throughout this paper.

4 Finding Leaks with Cork

This section overviews how Cork identifies candidate leakexamining the objects in the heap,
finding growth, and reporting the corresponding class fomngng objects to the user along with their
allocation site and the data structure which contains tiemclarity of exposition, we describe Cork
in the context of a full-heap collector.

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE

CORK 5

1 NewOrder(Order n) {

2 int id = getOderld();
3 al | OrdersHM add(id, n); // insert into HashMap
4 newOr der Q add(n) ; /1 insert into NewOrderQ
5}
(a) Incoming order
1 ProcessOrders() {
2 while (! newOrderQisEnpty()) {
3 Order n = newOrderQ get Next();
4 newOQr der Q renove(n); // renove from NewOrderQ
5 Fill Order(n);
6 if (n.getCustomer() instanceof Conpany) {
7 IssueBill(n); /1 insert into BillingQ
8 Shi pOrder(n);
9 } else if (n.getCustoner() instanceof Person) {
10 ProcessPaynent (n);
11 Shi pOrder(n);
12 /1 A MEMORY LEAK!'! -- not renoved from HashMap
13 }}}
(b) Processing orders
1 ProcessBill(int orderld) {
2 Order n = all OrdersHT. get (orderld);
3 billingQ renove(n); /'l remove fromBilling Q
4 al | OrdersHM renmove(orderld); // renove from Hashivap
5}
(c) Process bills
Class Variable Symbol Size in Bytes
HashMap al | Or der sHM H 256
PriorityQueue newOr der Q N 256
Queue billingQ B 256
Company : Order n C 64
Person:Order n P 32

(d) Object statistics

(e) Object points-to graph

(f) Class points-from graph

Figure 2. Order Processing System

Copyright(© 2009 John Wiley & Sons, Ltd.

Prepared usingpeauth.cl

S

Softw. Pract. Expe2009;0:0-0

6 JUMP & MCKINLEY SRE
&

1 void scan(bj ect(TraceLocal trace,

2 Obj ect Ref erence object) {

3 MMIype type = Cbj ect Model . get Obj ect Type(obj ect);
4 type.incVol uneTraced(object); /1 added

5 if (ltype.isDelegated()) {

6 int references = type. get Ref erences(object);

7
8
9

for (int i =0; i < references; i++) {
Address sl ot = type.getSlot(object, i);
type. poi nt sTo(obj ect, slot); /1 added
10 trace.traceOj ect Location(slot);
11 }} else {
12 Scanni ng. scanObj ect (trace, object);
13 }}

Figure 3. Object Scanning

4.1 Building the Class Points-From Graph

To detect growth, Cork summarizes the heap dteas points-from grap{CPFG). TheCPFGconsists

of class nodesindreference edged he class node, annotated with volume of instances of thasc
represents the total volume of objects of cla$g;). The reference edges are directed edges from class
nodec to class node and are annotated with the volume of objects of cledbat are referred to

by objects of class (Vc|c). Looking at our example leak, Figure 2(e) shows a heap stingiof an
object points-to graph, i.e., objects and their pointeatiehships, for objects of classek C, P, B,
andN from the example order-processing system. Each vertersepts a different object class in the
heap and each arrow represents a reference between twasotlpgsses. Figure 2(f) shows the class
points-from graph that Cork computes.

To minimize the costs associated with building @BFG, Cork piggybacks its construction on the
scanning phase of garbage collection which detects liveabbjby starting with the roots (statics,
stacks, and registers) and performing a transitive clotwi@ugh all the live object references in
the heap. For each live, reachable objectCork determines the object’'s class and increments
the corresponding class node by the object’s size. Thendodhn eeference from object to object
o, it increments the reference edge frafito ¢ by the size ofo’. At the end of the collection, the
CPFGcompletely summarizes the volumes of all classes and refesgthat are live at the time of the
collection.

Figure 3 shows the modified scanning code from MMTK, a menmaytragement toolkit which
implements a number of garbage collection algorithms [6C8fk requires two simple additions that
appear in lines 4 and 9. AssurseanObjecis processing an object of claBghat refers to an object
of classC from Figure 2(e). It takes a reference and the object as ptEamand finds the object
class. Line 4 increments the volume of cl&s$Vg) for our example. Since the collectscansi.e.,
detects liveness of, an object only once, Cork incremerggdtal volume of this class only once
per object instance. NexdcanObjectletermines if it needs to scan each referent of the objecit As
iterates through the fields (slots), the added line 9 resdhereferent class of each outgoing reference
(B— C) and increments the volume of the appropriate e@ge-(C) in the graph¥cg). Thus, this step
increments the edge volume for all references to an objetjust the first one. Because this step adds

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 7

Object Points-to Graphs

(a) After collection 1 (b) After collection 2 (c) After collection 3

Figure 4. Comparing Class Points-From Graphs to Find Heap/tr

an additional class look up for each reference, it also thioes the most overhead. FinalganObject
enqueues those objects that have not yet been scanned 0lifidne additional work of the garbage
collector depends on whether it is moving objects or not,iamdthogonal to Cork.

At the end of scanning, thePFG completely summarizes the live objects in the heap. Fig(fle 2
shows theCPFG for our example. Notice that the reference edges inGREG point in the opposite
direction of the references in the heap. Also notice thathéheap, objects of clagsare referenced
by H, B, andN represented by the outgoing reference edges infthe CPFG. SinceC has multiple
references to it in the heap, the sum of the weights of itsantgreference edges is greater than its
class node weight. Cork uses volume rather than simple ¢oulgtect heap growth in order to capture
not only when the number of instances of a class increaseglfoitwhen the number stays constant
but the size of the the instances grow, as may be the case métysaVolume gives a heavier weight
to larger classes which tend to make the heap grow fasterstimatier classes. Cork differences the
CPFGvolumes from distinct collections to determine where gtoistoccurring in the heap.

4.2 Finding Heap Growth

At the end of each collection, Cork compares BFG for the current collection with data from
previous collections. We define those class nodes whoseradlhicreases across several collections as
candidatesFor each candidate, Cork follows growing reference edyesigh theCPFGto enumerate
the class data structures involved in the growth.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

8 JUMP & MCKINLEY SRE
&

For example, Figure 4 shows tiBPGFs created during three collections of our example program.
Figure 4(a) represents an initial state of the system dfiieretorders arrive, but have not yet been
processed. Figure 4(b) shows four orders processed: thex ldhd two completed. Notice that the
program removes orders from individuaR®) from all the processing queueB, (N), but not from the
hashmapHl) resulting in the memory leak shown in Figure 2(b). Compathre CPFG from the first
two collections shows botE and P objects are potentially growing (depicted with bold arrpwio
be sure, we need more history. Figure 4(c) represents tteeadtthe next collection, at which point it
becomes clearer that the volumeRbbjects is monotonically increasing, whereas the volumé of
objects is simply fluctuating. In practice, we find that clagskimejitters, i.e., it fluctuates with high
frequency. We say that a class whose volume monotonicalhgases showabsolute growttand one
whose volume fluctuates but still increases shpwetential growth Cork detects both absolute and
potential growth.

To detect systematic heap growth, Cork comparesREG from the current collection with data
from previous collections and ranks each node accordingtoltkely it is that a particular class is
a candidate. Additionally it ranks edges in a similar fashid/e examine two different methods for
ranking candidates: slope ranking and ratio ranking. Altifoslope ranking is more principled, ratio
ranking is more space efficient and better captures slowthrasven the volume of objects fluctuates
a lot between collections.

4.2.1 Slope Ranking

Recall from Section 1, a positive slope in a heap-occupanagtyclearly indicates systematic heap
growth. The Slope Ranking Technique (SRT) uses the instytta growing class must contribute
to the overall positive slope in the heap-occupancy grapie. fore a class contributes, the higher
the likelihood that it leaks. Thus, SRT ranks candidate®@bog to the portion of the overall heap
growth that each class contributes. In this configuratiarkGtoresCPFGs from each collection and
calculates the rate of change,stope between the current collection and previous collecti®spe
for classc at collectioni is calculated as; = dvc/0A, wherev. is the volume of classlive in the heap
andA is the total volume allocated. A class node is classified aidate if it is growing more often
thanitis shrinking. SRT uses the percentage of the overaliigy caused by the candidate leaking class
cto calculate rankg for collectioni such thatg =r¢_, + pg *S; /S wherepis the number of phases
(or collections) that has been growing arfglis the rate of change of the total he& 6Vi/5A). SRT
reports classes with positives ranks* 0) as candidates.

While SRT is based on the principle of heap occupancy, it doésletect growth well. One reason
problem is that SRT depends on the number of collectionsémtimdow. Larger windows are more
likely to detect absolute growth. However, large windowesraore likely to show false positives, since
for example, the heap always grows at the beginning of anjicapion run. If we choose smaller
window sizes and accumulate rank over time, SRT misses slowigg leaks. Rank depends both on
the slope of the class{) and the overall slope5(), since heap fluctuations may cause either one to be
negative, SRT is not accurate enough.

4.2.2 Ratio Ranking

The Ratio Ranking Technique (RRT) ranks class nodes acuptdithe ratio of volumes between two
consecutive collections, accumulates the differencedifgdor subtracting, as appropriate) over all
collections, and reports classes with ranks above a ramistoid (. > R,) as candidate leaks.

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 9

1 public doubl e cal cul at eRati oRank() {

2 if (thisvolunme > 0) {

3 if (thisVolune > maxVol unmeTraced * (1 - decayFactor)) {
4 /1l growth phase detected

5 | eakPhases++;

6 if (thisVolune > maxVol umeTr aced)

7 maxVol umeTraced = thi sVol ung;

8 /1 cal cul ate rank

9 if (thisVolune > |astVolunme) {

10 rank += | eakPhases * (thisVolune/lastVolume - 1);
11 } else {

12 rank -= | eakPhases * (| astVol unme/thisVolume - 1);
13 }

14 } else {

15 /1 non-growt h phase detected

16 reset();

17

18 if (leakPhases >= MAX_LEAK_PHASES &&

19 rank > RANK_THRESHOLD) {

20 /'l report candi date

21 findSlice();

22 }

23 return rank;

24 }

Figure 5. Ratio Ranking Technique Algorithm

Figure 5 shows the ranking algorithm for the RRT. Assume thai sVol une represents the
volume from this collection andl ast Vol urre the volume from the previous collection. RRT uses
adecayFact or, f, where O< f < 1 to adjust for jitter and detect potential growth. RRT cdes$
only those class nodes whose volumes salisfy> \c, , * (1— f) (line 3) on consecutive collections
as potential candidates. The decay factor keeps class tloateshrink a little in this collection but
which show potential growth. We find that the decay facton@éasingly important as the size of the
leak decreases.

To rank class nodes, RRT uses the ratio of volumes betweeadnsecutive collection® such that
Q> 1. SinceQ > 1, thenQ — 1 represents the percentage change in the volume betwsamtigiction
and the previous collection. Each class node’s rgrig calculated by accumulating the percent change
multiplied by the number of phases (or collections) thdtas been potentially growing such that
absolute growth is rewarded and decay is penalized (linesti(L2). Higher ranks represent a higher
likelihood that the corresponding volume of the class grastbout bound. RRT reports candidates
that show potential growth for at least two (2) phases anémn@ports a class the first time it appears
in the graph (lines 18-22).

Cork reports candidate leaks and their ranks back to the Ns&t, we describe how Cork correlates
the candidate leaks back to the data structure that cortteéns and the allocation sites that allocated
them.

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

10 JUMP & MCKINLEY

SRE

(a) Type Summary Graph

(b) Total connections to the reported candi-
dates

HashMap$
Hash terator

HashMap$.
HashEntry[]

.

Fosource”
Hashiaps Y.
SOURCE Gomparelnput$
RuleBasedCallator ResourceCompareinput$
Amaglist FiteredBufieredResourceNods Elementree

0
t ‘
T \ .
ooeet] File Folder ElementTrees
ChildiDsCache

‘Comparelnput

(c) Slice Diagram

Figure 6. Pruning the summary graph

4.3 Correlating to Data Structures and Allocation Sites

Reporting a low-level class such 86r i ng as a potential leak is not very useful. To demonstrate the

gureo(a OWS0One

o > 0

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 11

Type Information Block

Header | Method [==p>| VM _Type fe=pp-| MMType
oo Table info
offset_i

offset_n

phases

TPFG_i
TPFG_i-1
TPFG_rnk

Figure 7. Type Information Block (TIB)

node exists for each class in the heap and an edge existsdveamg two classes if a corresponding
reference exists in the heap. Notice that the com@#lEG s large and complex. Even if we refine
this graph to simply include the candidate class nodes drleatlasses that point to them, the graph
still exhibits a fair amount of complexity, as shown in Figi(b). Cork automatically prunes the graph
and isolates the growing data structure by constructisigathrough theCPFGthat only includes the
growing classes and references.

A slicethrough theCPFGis the set of all paths originating from class nagesuch that the rank of
eachreference edgg.q,., on the path is positive. A slice defines the growth origingtinclass node
¢o following a sequence of class nodgs,c1,...,Cn} and a sequence of reference ed@®gsci 1)
where class nodex points tocg, 1 in the CPFG. Figure 6(c) shows the reported slice feclipse
(Section 5.5.4 discusses this leak in more detail). The simntains candidate leak classes and the
dynamic data structure containing them. Cork also reptasallocation sites. However, unlike some
more expensive techniques, it does not find the specificatlmt site(s) responsible for the growth.
Instead, it reports all allocation sites for each candidkss. As each allocation site is compiled, Cork
assigns it a unique identifier, and constructs a magi{@MVayp to it from the appropriate class. For
each leaking class, Cork searches the map to find allocasitess for that class. For each class, the
SiteMap includes the method and byte-code index or linedchellocation site.

4.4 Implementation Efficiency and Scalability

We implement several optimizations to make Cork’s impletaton scalable and efficient in both time
and space. First, we limit the number@PFGs that we keep. For SRT, the size of the window we use
determines how mang@PGFs are required. For RRT, onlyGPGFs were requiredCPFG, CPFG_1,

and CPFGank, WhereCPFGank is a graph which stores node and edge rank rather than volume.
Cork piggybacks class nodes on the VM'’s globade information blocKTIB). This structure or an
equivalentis required for a correct implementation of ngeathlanguages such as Java or C#. Figure 7
shows the modified TIB from Jikes RVM. Notice that every livgerct of a classdbject) points to

the TIB corresponding to its class. The TIB consists of thdierent parts. The first is the method

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

12 JUMP & MCKINLEY SRE
&

table which stores pointers to code for method dispatch.mi#hod table points to a corresponding
VMType which stores field offsets and type information used by the féiefficient type checking
and is used by the compiler for generating correct codelllyjtlae VM.Ty pe points to a corresponding
MMTy pe used by the memory management system to do correct allacatio to identify references
during garbage collection. Recall from Figure 3 that obgnning resolves theMlype of each
object (line 3). Cork store€PFG class node data for eac®PFG in the correspondindyMType,
adding only one word per storétPFG. One additional word stores the number of consecutive ghase
that a class node shows potential growth. Thus, the classsraahle with the type system of the VM.
While the number of reference edges in 8BFG are quadratic in theory, one class does not
generally reference all other classes. Programs implementich simpler class hierarchy, and we
find reference edges are linear with respect to the classsndthés observation motivates a simple
edge implementation consisting of a pool of available edijyesv edges are allocated only when the
edge pool is empty. AEPFGs expire because they are in graphs outside the history winge return
the edges to the pool for reuse. New edges are added ©©ORR& by removing them from the edge
pool and adding them to the list of reference edges kept witterdata. We encode a pointer to the
edge list with the node data which eliminates the need foimaddny extra words to thé/MType
structure. We further reduce the space required for reéeredges by pruning those that do not grow.

4.5 Corkin Other Collectors

Cork performs its analysis on each full heap garbage catle@t our implementation. The frequency
could be increased by performing more full heap collectionslecreased by only performing it on a
subset of full heap collections. We did not find either opti@cessary.

Since Cork’s implementation piggybacks on live-heap stanuluring garbage collection, it is
compatible with any mark-sweep or copying collector, igtracing collector. Cork and thus can
be added as described to any collector that does perioditewleap collections. To find leaks in our
benchmarks, Cork needed approximately six full heap ctidles during which heap growth occurs.
An incremental collector that never collects the entirepheey add Cork by defining intervals and
combining statistics from multiple collections until thellector has considered the entire heap (i.e.,
an interval). Cork would then compute difference statiskietween intervals to detect leaks.

4.6 Corkin Other Languages

Cork’s heap summarization, t&PFG, relies on the garbage collector’s ability to determinediass

of an object. We exploit the object model of managed langsiagech as Java and C#, by piggybacking
on their required global class information to keep spacertmads to a minimum. There are,
however, other implementation options. For garbage-ctdtklanguages that lack user-defined class
information, such as Standard ML, other mechanisms may leetalprovide equivalent information.
Previous work provides some suggestions for functionajyages that tag objects [32, 33, 34]. For
example, type-specific tags could be used to index into athaglfior storing class nodes. Alternatively,
objects could be tagged with allocation and context infdiomeallowing Cork to summarize the heap

in anallocation-site points-from grapirhese techniques, however, would come at a higher space and
time overhead.

5 Results

This section presents overhead and qualitative resul8ddt. Section 5.1 describes our methodology,
Section 5.2 shows that Cork has a very small space overhedd&ection 5.3 shows that Cork adds

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SR E CORK 13

very little to total execution time, although it does slowndogarbage collections. Section 5.4 shows
that ratio ranking has few false positives and higher aayutzat slope ranking, and that furthermore, a
variety of reasonable values for the decay factor and thettaeshold give similarly accurate results.
Applying Cork to four commonly used benchmarks, Cork findaghgrowth in four benchmarkgp,
jess, SPECjbb2000 andEclipse, and the data structure reports enabled us to fix them veokigyi
even though we were not previously familiar with these aggions.

5.1 Methodology

We implement Cork in MMTk, a memory management toolkit ine3ilRVM version 2.3.7. MMTk
implements a number of high-performance collectors [6,1¥] dikes RVM is a high-performance
VM written in Java with an aggressive optimizing compiler, . We use configurations that
precompile as much as possible, including key librariestaeptimizing compiler (th&ast build-
time configuration), and turn off assertion checking. Forammement purposes, we remove the
nondeterministic behavior of the adaptive compilatiortesysby applying replay compilation [22].

Eeckhout et al. [17] show that adaptive compilation in JIR&/ obscures application behavior in
performance measurements. Thus, for our overhead measutgnwve factor out compilation using
replay compilation[22]. Replay compilation deterministically applies thetiopzing compiler to
frequently executed methods chosen by the adaptive compitgevious (offline) runs. We factor out
the adaptive compiler by running each benchmark multiphes. The first run uses replay compilation
to give a realistic mixture of optimized and unoptimized eo@hen we turn off compilation and
flush all compiler objects from the heap. During the secondg we measure and report application
performance.

For performance results, we explore the time-space tréfdsrexecuting each program on moderate
to large heap sizes, ranging from 2.5X to 6 X the smallestmizsible for the execution of the program.
We execute timing runs five times in each configuration andsédthe best execution time (i.e., the one
least disturbed by other effects in the system). We perfepasate runs to gather overall and individual
collection statistics. We perform all of our performancpesiments on a 3.2GHz Intel Pentium 4 with
hyper-threading enabled, an 8KB 4-way set associative td ciche, a 12ops L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip caaheé 1GB of main memory, running
Linux 2.6.0.

For SPECjvm andDaCapo benchmarks, we use the standard large inputs. SiRteCjbb2000
measures throughput as operations per second for a dudt®minutes for an increasing number
of warehouses (1 to 8) and each warehouse is strictly indkggnwe change the default behavior.
To perform a performance-overhead comparison, wepasadojbb, a variant ofSPECjbb2000 that
executes 10,000 transactions. For memory-leak analysissomfigureSPECjbb2000 to run only
one warehouse for one hour. Heclipse, we use thédaCapo benchmark for general statistics and
performance-overhead comparisons &edsion 3.1.2 to reproduce a documented memory leak by
repeatedly comparing two directory structurgsl{pse bug #115789).

5.2 Space Overhead

We evaluate our techniques using ®RECjvm [37], DaCapo b.050224 [9], SPECjbb2000 [38],
andEclipse [43]. Table | shows benchmark statistics including theltetdume allocated (column 1)
and number of full-heap collections in both a whole-heagufom 2) and a generational (column 3)
collector in a heap that is 2.5X the minimum size in which teadhmark can run. Column 4 reports

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

14 JUMP & MCKINLEY SRE
&

of # of
Alloc colltn classes

Benchmark| MB whl gen| bm +VM

Eclipse 3839 73 11| 1773 3365
fop 137 9 0| 700 2292
pmd 518 36 1| 340 1932
ps 470 89 0| 188 1780
javac 192 15 0| 161 1753
jython 341 39 0| 157 1749
jess 268 41 0| 152 1744
antlr 793 119 6| 112 1704
bloat 710 29 5 71 1663
jbb2000 Fho Rk Rk 71 1663
jack 279 47 0 61 1653
mtrt 142 17 0 37 1629
raytrace 135 20 0 36 1628
compress 106 6 3 16 1608
db 75 8 0 8 1600
Geomean 303 27 n/al] 104 1813

Table I. Benchmark Characteristics. **Volumes f8iPECjbb2000 depend on how long the warehouse to runs.

the number of classedif) in each benchmark. However since Jikes RVM is a Java-ia-datual
machine, Cork analyzes the virtual machine along with thmebmark during every run. Thus column
5 (+VM) is the actual number of classes potentially analyzed 4t ealtection.

The heuristics we introduced in Section 4.4 keep Cork spfitgeat. Table ll(a) report<CPFG
space overhead statistics. Columns one and#aj ¢lassesreport the average and maximum number
of classes in the heap during any particular garbage cmlltedtVe notice that an average of 44% of all
classes used by programs are present in the heap at a timde#tire reduces the number of potential
candidates that Cork must analyze.

Table ll(a) shows the average (column 3) and maximum (coldymmumber of reference edges per
class node in th€PFG. We find that most class nodes have a very small number of mggeference
edges (2 on average). The more prolific a class is in the hbapgreater the number of reference
edges in its node (up to 406). We measure the average and omaxinmmber of reference edges in any
CPFG(columns 5 and 6) and the percent of those our heuristiceedranause their ranks drop below
zero fe < 0) (column 7). These results demonstrate that the numbefefences edges is linear in the
number of class nodes in practice.

Finally, Table II(b) shows the space requirements for thpe tinformation block beforel(B) and
the overhead added by CorkiB+Cork). While Cork adds significantly to the TIB information, it@sl
only modestly to the overall heap (0.145% on average andrmewee than 0.5% as shown in column
5). For the longest-running and largest progré&tijpse, Cork has a tiny space overhead (0.004%).

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 15

g E - - Mark_SweeJ
= 251, --%-- SemiSpace
o] °
£]
£ 5ol . X
& ':lgzzléizl, i -k
g fer T S B
N 1.5+ & X X x x X
‘6 B
£
S 1.0 x

"""" | I AL LR |

3 4 5 6

Heap size relative to minimum
(a) Scan Time

E — -o— MarkSweep
o 2.5 ——x=—SemiSpacs
E 40
=R .
O 1) X
® 2.0
s LA b g
N Je HRS ! X ‘ ----- Tx : X

X
g 1.5—_ % < ~ X <
S
Z]
1.0- .
"""" R I I |
3 4 5 6
Heap size relative to minimum
(b) GC Time
- - MarkSweep

g 1o x --%-- SemiSpace
= X
T —
% R g e X X X x X
— Te X._ o X hd 32 ° g ° x
i L] § .-."Xn.‘. § % ° X s
L 1.2 S . % X
N -__ ¢ FH [°
= 8 x § - o X R R é
© o X *to--9 7 __ 8 ____
£ $x ofF % §F % %
S 1.01 : x * e

Heap size relative to minimum
(c) Total Time

Figure 8. Geometric Mean Overhead Graphs over all benchmfarkvhole-heap collector

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

16 JUMP & MCKINLEY SRE
&

g] —x— GenMS
l; 2.5 ™
c
g 1 % X x X X
:ng 20—: ” % y
g] " "
N 1.5 <
©] X
£ {x X)
2 104n Kk ¥ X] g
3 4 5 6
Heap size relative to minimum
(a) Scan Time
] —>— GenMS
o 2.5
=]
5 : X X X X X
R x
N] x x
3] .
£ 1.5 ™ x
o X X X
bz 1 e—s
1.0 % K
3 4 5 6
Heap size relative to minimum
(b) GC Time
—*— GenMS
Q
=]
= 1.24
AP IV
- I I x x
3] T
S ol b ——F—
o]
32 1
X X
"""" R I I |
3 4 5 6

Heap size relative to minimum
(c) Total Time

Figure 9. Geometric Mean Overhead Graphs over all bencterarlgenerational collector

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 17

(a) Class Points-From Statistics (b) Space Overhead
of # edges # edges %
classes perclass | per TPFG pru- TIB TIB+Cork

Benchmark avg max avg max| avg max ned|| MB %H MB %H Diff

Eclipse 667 775 2 203| 4090 7585 42.2| 0.53 0.011] 0.70 0.015 0.1671
fop 423 435| 3 406| 1559 2623 45.2| 0.36 0.160| 0.55 0.655 0.495
pmd 360 415 3 121| 967 1297 66.0| 0.30 0.031| 0.44 0.186 0.155
ps 314 317 2 93| 813 824 66.3| 0.28 0.029| 0.39 0.082 0.053
javac 347 378 3 99| 1118 2126 45.8| 0.28 0.071| 0.43 0.222 0.151
jython 351 368 2 114| 928 940 66.2] 0.28 0.041| 0.39 0.112 0.071
jess 318 319| 2 89| 844 861 66.0| 0.27 0.049| 0.38 0.143 0.094
antlr 320 356 2 123| 860 1398 55.8| 0.27 0.016| 0.39 0.282 0.266
bloat 345 347 2 101| 892 1329 50.6| 0.26 0.017| 0.38 0.064 0.0471
jbb2000 318 319 2 110(904 1122 59.0| 0.26 ** 1 0.38 ** o

jack 309 318 2 107| 838 878 66.2] 0.26 0.042| 0.37 0.131 0.089
mtrt 307 307 2 91| 820 1047 57.5/ 0.26 0.081| 0.37 0.258 0.177
raytrace 305 306 2 91| 814 1074 56.1 0.26 0.085| 0.37 0.272 0.187
compress 286 288 2 89| 763 898 60.9| 0.25 0.105/ 0.36 0.336 0.231
db 289 289 2 91| 773 787 66.1] 0.25 0.160| 0.35 0.467 0.307
Geomean 342 357 2 116 1000 1303 57.4] 0.29 0.048| 0.41 0.168 0.145

Table Il. Cork Statistics. **Volumes foBPECjbb2000 depend on how long the warehouse runs.

5.3 Performance Overhead Results

Cork’s time overhead comes from constructing BBFG during scanning and from differencing
betweenCPGFs to find growth at the end of each collection phase. FigureadB%graphs the
normalized geometric mean over all benchmarks to show eaerin scan time, collector (GC) time,
and total time. In each graph, the y-axis represents timmalized to the unmodified Jikes RVM using
the same collector, and the x-axis graphs heap size retatihee minimum size each benchmark can
run in a mark-sweep collector. Eagliepresents one program.

For mark-sweep (MarkSweep) and copying (SemiSpace) wiedg- collectors, Figure 8 shows
that the scan time overhead is 80.8% to 85.5% and 76.1% td&%/&8llector time is 75.4% to
82.9%; and total time is 10.3% to 25.8% respectively. Theselwads represents the worst case since
Cork analyzes the heap at every collection. Whole-heapduolt overheads can easily be reduced by
analyzing the heap eventh collection or by using a generational collector that perfewhole-heap
collections less frequently. In fact, this configuratiomyrfiad leaks faster. Similarly, including Cork in
a high-performing generation collector with many less-hdlp collections significantly reduces these
overheads by performing Cork’s analysis less frequentturfe 9 shows Cork’s average overhead in
a generational collector to be 11.1% to 13.2% for scan tide3% to 14.9% for collector time; and
1.9% to 4.0% for total time. Individual overhead resultsgahigher, but Cork’s average overhead is
low enough to consider using it online in a production system

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

18 JUMP & MCKINLEY SRE
&

(a) SRT (b) RRT Decay Factor (c) RRT Rank Thres
Benchmark 0% 5% 10% 15% 20% 25% O 50 100 200
Eclipse bug #115789 6 0 6 6 6 6 6 12 6 6 6
fop 2 2 2 2 2 2 2 35 2 2 1
pmd 0 0 0 0 0 0 0 11 2 0 0
ps 0 0 0 0 0 0 0 3 0 0 0
javac 2 0 0 0 0 0 0 71 2 0 0
jython 0 0 0 0 0 0 1 3 0 0 0
jess 2 0 1 1 1 1 2 9 1 1 1
antlr 0 0 0 0 0 0 0 9 O 0 0
bloat 3 0 0 0 0 0 0 33 0 O 0
jbb2000 1 0 4 4 4 4 4 10 6 4 4
jack 0 0 0 0 0 0 0 9 O 0 0
mtrt 0 0 0 0 0 0 0 3 2 0 0
raytrace 0 0 0 0 0 0 0 4 0 0 0
compress 0 0 0 0 0 0 0 4 0 0 0
db 0 0 0 0 0 0 0 2 0 0 0

Table 1ll. Number of classes reported in at least 25% of ggebeollection reports: (a) From Slope Ranking
Technique. (b) Varying thdecay factofrom Ratio Ranking TechniqueR{hres: 100). We choose a decay factor
f = 15%. (c) Varying theank thresholdfrom Ratio Ranking Techniquef (= 15%). We choose rank threshold

REhres: 100.

5.4 Achieving Accuracy

Cork’s accuracy depends on its ability rank and report gngwelasses. Table Ili(a) shows the number
of candidates that are reported using slope ratio (SRT)leNhaccurately identifies growth ifop,
jess, jbb2000, andEclipse bug #115789, it also falsely identifies heap growth javac andbloat,
programs that do not display systematic heap growth. Tligltres mainly due to very erratic growth
patterns in both programs. Ratio ranking (RRT) offers a motmist heuristics for ranking classes.
By increasing the rank when the class grows and decreasiviggit it shrinks, RRT more accurately
captures growth across many collections without depenalogm window size.

For the RRT, we experiment with different sensitivities fimth the decay factof and the rank
thresholdRines: Table IlI(b) shows how changing the decay factor changestimber of reported
classes. We find that the detection of growing classes iserditive to changes in the decay factor
ranging from 5 to 20%. We choose a moderate decay fadter {5%) for which Cork accurately
identifies the only growing data structures in our benchmavikhout any false positives. Table 111(c)
shows how increasing the rank threshold eliminates falsdéipes from our reports. Additionally we
experiment with different rank thresholds and find that a eratk rank thresholdR{yes = 100) is
sufficient to eliminate any false positives. We discuss iffergnces in the number of reported classes
between SRT and RRT as we discuss each benchmark in the n8ahse

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SR E CORK 19

5.5 Finding and Fixing Leaks

Cork identifies heap growth in four of our benchmarfap, jess, SPECjbb2000, and Eclipse.
Each section first describes the benchmark, demonstrate€bik found the growing class and data
structure, and concludes with an analysis of the growth.

5.5.1 fop

The progranfop (Formatting Objects Processor) is from thaCapo benchmark suite. It uses the
standard XSL-FO file format as input, lays the contents ottt pages, and then renders it to PDF.
Converting a 352KB XSL-FO file into a 128KB PDF generates thathoccupancy graph in Figure 10,
which clearly demonstrates an overall monotonic heap drowhile we limit the heap size to 15MB,
this size is simply a function of the input size. Given anye&e, we can givéop an input that will
cause the heap to expand and crdsp.shows aggressive heap growth (7.5% compared to the 0.19%
in SPECjbb2000).

Cork analyze$op and Figure 10(a) shows the RRT reports. Both SRT and RRTtréporayLi st
andCbj ect [] as candidates for growth. Sinder ayLi st isimplemented a€bj ect [], we focus
justonAr r ayLi st for our analysis. We begin our exploration by examining fiees of theCPFGto
determine what is keeping tie r ayLi st alive. Figure 10(a) shows part of the slice farr ayLi st
. Itshows thaf#\r r ayLi st s are nested in a data structure. Finally, Cork lists the atioa sites for all
the class giving the user a starting point for debuggingaBee the allocation sites are numerous, it is
not useful to explorér r ayLi st . We go to secondary allocations sitéér dAr eaandLi neAr ea.

Next we explordop’s implementationfop performs two passes over a single complex data structure
built with ArrayLi st : the first pass builds the formatting object tree whare ayLi st contains
different formatting object which themselves can contaire @r more ArrayLi st . Oncefop
encounters an end of page sequence, it begins renderimggdugecond pass over the data structure
it built during parsing. Thus, rendering uses the entiraddtucture. While our analysis accurately
pinpoints the source of the growtop does not have a memory leak because it uses the entire heap. Th
developers ofop agree with this analysis, that the heap growth fbhptexperiences is partly inherent
to the formatting process and partly caused by poor impleatien choices [3]. Cork identifies this
problem.

55.2 jess

From theSPECjvm benchmark suitgess is a Java Expert Shell System based on NASAs CLIPS. It
grows of 45KB every 64MB. In an expert system, the input istaé&acts and a set of rules. Each fact
represents an existing relationship and each rule a legabivaanipulating facts. The expert system
then reasons by using rulesassertnew facts andetraceexisting facts. As each part of a ruteatches
existing facts, the ruléires creating new facts and removing the rule from the set of atdi rules.
The system continues until the set of activated rules bes@mgpty.

RRT reportsval ue as the overwhelmingly growing class. The slice of @feFGis diagrammed in
Figure 11(a) where the square node represents the reptassd Correlating it to the implementation,
jess compiles all the rules into a single set of nodes. Fact asseot retraction is then turned into
atoken which is fed to the input nodes of the network. Then the naodag pass the token on to its
children or filter it out. As tokens are propagated throughrtatwork, rules create new facts. Each new
fact is stored in &/al ue in aVal ueVect or implemented a¥al ue[] . Val ueVect or is stored
inaVal ueVect or[] inaToken. A global TokenVect or implemented a3oken[], stores the

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

20 JUMP & MCKINLEY SRE
&

AmayList

Object(]

/

WordArea

InlineSpace

(a) Slice Diagram

15

10

Heap occupancy (MB)

T T T T T T T

0 20 40 60 80
Time (MB of allocation)

(b) Heap Occupancy Graphs fiop

Figure 10. Fixingess

tokens in the system. Interestingly, SRT reported only tiihe classes both of which are in the slice
reported by RRTVal ue andVal ue[] . These facts are part of the input.

Examining the input forjess, we find the benchmark iterates over the same problem several
times. The developer made it artificially more complex byadticing distinct facts in the input file
representing the same information for each iteration. Thith each iteration, the number of facts to
test increases which triggers more allocation. This coritylés documented in the input file. In order
to remove the memory leak, we eliminated the artificial carjpy from the input file. Figure 11(b)
shows both the original heap occupancy graph and the neguittap occupancy graph. The heap
growth, and thus the memory leak, is gone.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SRE CORK 21

g
i

SOURCE

a4 e Before
—~ 1 After
o]
2] eeommaemtaeaen weemeeae]
c 2
g]
o]
S]
3]
3
°
g 1
S T
T
O e
0 50 100 150 200 250

Time (MB of allocation)
(b) Heap Occupancy Graphs feiss

Figure 11. Fixingess

5.5.3 SPECjbb2000

The SPECjbb2000 benchmark models a wholesale company with several warekdos districts).
Each warehouse has one terminal where customers can geragaests: e.g., place new orders or
request the status of an existing order. The warehouse &szoperations in sequence, with each
operation selected from the list of operations using a gribadistribution. It implements this system
entirely in software using Java classes for database tablédava objects for data records (roughly
25MB of data). The objects are stored in memory usngt and other data structures.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

22 JUMP & MCKINLEY SRE
&

A

y
OrderLine

/

longStaticBTree

longBTreeNode

A

3
NewOrder
i

LV

A

Order

\

Date

(a) Slice Diagram

* Before
o After
m ---
=3
>
(8]
c
I
o
=}
Q
o
o
o
I
o}
T
I ' I T T T T v
200 400 600 800 1000

Time (MB of allocation)
(b) Heap occupancy graph

Figure 12. FixingSPECjbb2000

RRT analysis reports four candidat€@:der, Date, NewOrder, andOrderLi ne. Therank
of the four corresponding class nodes oscillates betwelections making it difficult to determine
their relative importance. Examining the slices of the fogported class nodes reveals the reason.
There is an interrelationship between all of the candidatekif one is leaking then the rest are as
well. The top of Figure 12(a) shows the Cork slice report wthbe shaded nodes are growing. Notice
that despite the prolific use @bj ect [] in SPECjbb2000, its class node volume jitters to such a
degree that it never shows sufficient growth to be reportdeaddng. Since the slice includes all class

nodes withry > R{hres and reference edges with > 0, the slice sees beyond tl@j ect[] to the
containing data structures.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SR E CORK 23

30000+

20000 P -

100004

e
-
e

Heap occupancy (MB)
13

0 100000 200000 300000 400000 500000
Time (MB of allocation)

Figure 13. Heap occupancy graph: fixieglipse bug #115789

We correlate Cork’s results witBPECjbb2000’s implementation. We find that orders are placed
in an or der Tabl e, implemented as &8Tr ee, when they are created. When they are completed
during aDeliveryTransactionthey are not properly removed from theder Tabl e. By adding code
to remove the orders from thar der Tabl e, we eliminate this memory leak. Figure 12(b) shows the
heap occupancy, before and after the bug fix, runB8irgCjbb2000 with one warehouse for one hour.

It took us only a day to find and fix this bug in this large progthat we had never studied previously.

5.5.4 Eclipse

Eclipse is a widely-used integrated development environment (IDEjtten in Java [43].
Eclipse is big, complex, and open-sourc&clipse bug #115789 documents an unresolved
memory leak in theEclipse bug repository from September 2005. We manually compared
the contents of two directory structures multiple times tause the bug to be triggered
at a much higher frequency that would be triggered duringulegg use. In this way
we could isolate this bug from other potential bugs in the tsys Both RRT and
SRT reported six candidates:Fi |l e, Fol der, Path, ArrayList, Cbject[], and
Resour ceConpar el nput $Fi | t er edBuf f er edResour ceNode. Figure 6(c) shows the
growth slice for the candidates, the close interrelatignbletween them, and several possible roots
of the heap growth.

Correlating Cork’s results with th&clipse implementation showed that upon completion, the
differences between the two directory structures are aygul in theConpar e- Edi t or | nput
which is a dialog that is added to thdavi gat i onHi st ory. Further scrutiny showed that the
Navi gat i onHi st or yEnt ry managed by a reference counting mechanism was to blame. When
a dialog was closed, théNavi gati onHi st oryEntry reference count was not decremented
correctly resulting in the dialog never being removed frdme tNavi gati onHi story. The
Conpar eEdi t or | nput stores the differences of the two directory structures imkel list of
Resour ceConpar el nput %W Di f f Node. Figure 13(b) shows the heap occupancy graphs before

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

24 JUMP & MCKINLEY SRE
&

and after fixing the memory leak. This bug took us about threkaahalf days to fix, the longest of
any of our benchmarks, due to the size and complexitiaipse and our lack of expertise on the
implementation details.

6 Conclusion

This paper introduces a novel and efficient way to summakhigeheap to identify types of objects
which cause systematic heap growth, the data structureswebitains them, and the allocation site(s)
which allocate them. We implement this approach in Cork,a tioat identifies growth in the Java
heap and reports slices of a summarizing class points-fr@phy Cork calculates this information
by piggybacking on full-heap garbage collections. We shioat Cork adds only 2.3% to total time
on moderate to large heaps in a generational collector. Gatisely identifies data structures with
unbounded heap growth in four popular benchmafiyg; jess, jbb2000, andEclipse and we use
its reports to analyze and eliminate memory leaks. We weletalfix these leaks from the reports,
even though we had no prior experience with the code of thggkcations. Cork is highly-accurate,
low-overhead, scalable, and is the first tool to find memaaiganith low enough overhead to consider
using in production VM deployments.

ACKNOWLEDGEMENTS

We would like to thank Steve Blackburn, Robin Garner, Xiamgl Huang, and Jennifer Sartor for their help, input,
and discussions on the preliminary versions of this worldifidnal thanks go to Ricardo Morin and Elena llyina
(Intel Corporation), and Adam Adamson (IBM) for their asasigce with confirming the memory leakjinb2000,
and Mike Bond for his assistance wiltlipse.

REFERENCES

1. E. E. Aftandilian and S. Z. Samuel Z Guyer. Gc assertiosingJthe garbage collector to check heap propertieAQN!
Conference on Programming Language Design and Implenientggages 235—-244, Dublin, Ireland, June 2009.

2. B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smiih,Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and
M. Mergen. Implementing Jalapefio in Java.A@BM Conference on Object-Oriented Programming Systenrgjuages,
and Applicationspages 314-324, Denver, Colorado, USA, November 1999.

3. The Apache XML ProjectUsing FOP Documentatigrrelease 0.20.5 edition, 2005.

4. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. piil&e Optimization in the Jalapefio JVM. In
ACM Conference on Object-Oriented Programming Systemsguages, and Applicationpages 47-65, Minneapolis,
Minnesota, USA, October 2000.

5. M. Arnold, M. Vechev, and E. Yahav. Qvm: An efficient runénfor detecting defects in deployed systems. In
ACM Conference on Object-Oriented Programming Systemsguiages, and Applicationpages 143-162, Nashville,
Tennessee, USA, October 2008.

6. S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths andIfiea: The Performance Impact on Garbage Collection. In
International Conference on Measurement and Modeling oh@ater Systempages 25-36, New York, New York, USA,
June 2004.

7. S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Watefigh Performance Garbage Collection in Java with
JMTK. In International Conference on Software Engineeripgges 137-146, Scotland, United Kingdom, May 2004.
IEEE Computer Society.

8. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. Maley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. MpB. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo Benchmarks: Java Benchmarkingl@enent and Analysis. Technical report, October
2006. http://www.dacapobench.org.

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

SR E CORK 25

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

32.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. Maley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Mp®D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks: JavetBnarking Development and Analysis. ACM
Conference on Object-Oriented Programming Systems, lagegy and ApplicationsPortland, Oregon, USA, October
2006. http://www.dacapobench.org.

M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online@hory Leak Detection. linternational Conference on
Architectural Support for Programming Languages and OfieraSystemsSan Jose, California, USA, October 2006.

M. D. Bond and K. S. McKinley. Tolerating memory leaks AGM Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 109-126, Nashville, Tennessee, USA, October 2008.

M. D. Bond and K. S. McKinley. Leak pruning. International Conference on Architectural Support for gramming
Languages and Operation Systempages 277-288, Washington, DC, USA, March 2009.

J. Campan and E. Muller. Performance Tuning EssentialZ8E and J2EE: Minimize Memory Leaks with Borland
Optimizeit Suite. White Paper, Borland Software Corporativarch 2002.

T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory lkeBetection using Adaptive Statistical Profiling. In
International Conference on Architectural Support for ramming Languages and Operation Systepagies 156-164,
Boston, Massachusetts, USA, October 2004.

W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. ExecWRatterns in Object-Oriented Visualization. WSENIX
Conference on Object-Oriented Technologies and Systeages 219-234, Santa Fe, New Mexico, USA, April 1998.

W. De Pauw and G. Sevitsky. Visualizing Reference Rettfar Solving Memory Leaks in Java&Concurrency: Practice
and Experiencel2(12):1431-1454, November 2000.

L. Eeckhout, A. Georges, and K. De Bosschere. How Java@r&res Interact with Virtual Machines at the
Microarchitecture Level. IPACM Conference on Object-Oriented Programming Systemsguages, and Applications
pages 244-358, Anaheim, California, USA, October 2003.

S. C. Gupta and R. Palanki. Java Memory Leaks — Catch Melf @an: Detecting Java Leaks using IBM Rational
Application Developer 6.0. Technical report, IBM, Augu§i05.

R. Hastings and B. Joyce. Purify: A Tool for Detecting MeynLeaks and Access Errors in C and C++ Programs. In
USENIX Conferengepages 125-138, Berkley, California, USA, January 1992.

D. L. Heine and M. S. Lam. A Practical Flow-Sensitive armhtgxt-Sensitive C and C++ Memory Leak Detector. In
ACM Conference on Programming Language Design and Impleatien pages 168-181, San Diego, California, USA,
June 2003.

M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley,daB. Stevanovit. Error Free Garbage Collection Traces:
How to Cheat and Not Get Caught. ACM Conference on Measurement & Modeling Computer Systesmes 140-151,
Marina Del Rey, California, USA, June 2002.

X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, \Blang, and P. Cheng. The Garbage Collection
Advantage: Improving Program Locality. WCM Conference on Object-Oriented Programming Systemsguages,
and Applicationspages 69-80, Vancouver, BC, Canada, October 2004.

M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak Dztten for Java. IPACM Symposium on the Principles of
Programming Languagepages 31-38, Nice, France, January 2007.

N. Mitchell, May 2006. Personal communication.

N. Mitchell and G. Sevitsky. The causes of bloat, the tnof health. INACM Conference on Object-Oriented
Programming Systems, Languages, and Applicatipages 245-260, Montreal, Quebec, Canada, October 2007.

N. Mitchell and G. Sevitzky. LeakBot: An Automated andtiweight Tool for Diagnosing Memory Leaks in Large Java
Applications. InEuropean Conference on Object-Oriented Programmirglume 2743 ofLecture Notes in Computer
Sciencepages 351-377, Darmstadt, Germany, July 2003. Springiag/

H. H. Nguyen and M. Rinard. Detecting and eliminating rogmeaks using cyclic memory allocation. International
Symposium on Memory Managemerages 15-30, Montreal, Quebec, Canada, June 2007.

G. Novark, E. D. Berger, and B. G. Zorn. Efficiently andgisely locating memory leaks and bloat. ACM Conference
on Programming Language Design and Implementatgages 397-407, Dublin, Ireland, June 1009.

F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Meynfor Detecting Memory Leaks and Memory Corruption
During Production Runs. IrSymposium on High Performance Computer Architectpeges 291-302, Cambridge,
Massachusetts, USA, February 2002. IEEE Computer Society.

QuestSoftware. JProbe Memory Debugger: Eliminate Mgmbeaks and Excessive Garbage Collection.
http://www.quest.com/jprobe/profiler.asp.

D. Rayside and L. Mendel. Object ownership profiling: éhteique for finding and fixing memory leaks. pages 194—-203,
Atlanta, Georgia, USA, November 2007.

N. Réjemo. Generational Garbage Collection withounperary Space Leaks. International Workshop on Memory
Management1995.

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0
Prepared usingpeauth.cls

26

JUMP & MCKINLEY SRE
&

33

34.

35.

36.

37.

38.

39.

40.

42.

43.

. N. Rgjemo and C. Runciman. Lag, Drag, Void and Use — HeafiliRg and Space-Efficient Compilation Revised. In
ACM International Conference on Functional Programmipgges 34—41, Philadelphia, Pennsylvania, USA, May 1996.
C. Runciman and N. Rojemo. Heap Profiling for Space Efiicy. In E. M. J. Launchbury and T. Sheard, edit&yanced
Functional Programming, Second International Schoolefial Text pages 159-183, London, United Kingdome, August
1996. Springer-Verlag.

M. Serrano and H.-J. Boehm. Understanding Memory Atlonaof Scheme Programs. KCM International Conference
on Functional Programmingpages 245-256, Montréal, Québec, Canada, Septemb@r 200

R. Shaham, E. K. Kolodner, and M. Sagiv. Automatic RerhofaArray Memory Leaks in Java. Ilinternational
Conference on Compiler Constructiorolume 1781 otf.ecture Notes in Computer Sciengages 50-66, London, United
Kingdom, 2000. Springer-Verlag.

Standard Performance Evaluation CorporatiSBRECjvm98 Documentatiprelease 1.03 edition, March 1999.

Standard Performance Evaluation Corporati®@PECjbb2000 (Java Business Benchmark) Documenjatitease 1.01
edition, 2001.

D. Stefanovi€. Properties of Age-Based Automatic Memory Reclamation ralgns PhD thesis, University of
Massachusetts, Ameherst, Massachusetts, USA, 1999.

Sun Microsystems. Heap Analysis Tool. https://hatjaea.net/.

. Sun Microsystems. HPROF Profiler Agent. http://java.som/j2se/ 1.4.2/docs/guide/jvmpi/jvmpi.html.

Y. Tang, Q. Gao, and F. Qin. Leaksurvivor: Towards sdielgrating memory leaks for garbage-collected languages.
USENIX Conferengepages 307-320, Boston, Massachusetts, USA, July 2008.

The Eclipse Foundation. Eclipse Homepage. http://veslipse.org.

44. G. Xu and A. Rountev. Precise memory leak detection fea goftware using container profiling. International
Conference on Software Engineerjqmges 151-160, Leipzig, Germany, May 2008.

99

Copyright© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:0-0

Prepared usingpeauth.cls

