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SUMMARY

A memory leak in a managed program occurs when the program inadvertently maintains references to
objects that it no longer needs. Memory leaks cause systematic heap growth which degrades performance
and results in program crashes after perhaps days or weeks ofexecution. Prior approaches for detecting
memory leaks rely on heap differencing or detailed object statistics which store state proportional to the
number of objects in the heap. These overheads preclude their use on the same processor for deployed
long-running applications.

This paper introduces Cork as a tool that accurately identifies heap growth caused by leaks. It is space
efficient (adding less than 1% to the heap) and time efficient (adding 2.3% on average to total execution
time). We implement this approach of examining and summarizing the class of live objects during garbage
collection in a class points-from graph (CPFG). Each node in theCPFG represents a class and and edges
between nodes represent references between objects of the specific classes. Cork annotates nodes and edges
with the corresponding volume of live objects. Cork identifies growing data structures across multiple
collections and computes aclass slice to identify leaks for the user. We experiment with two functions
for identifying growth and show that Cork is accurate: it identifies systematic heap growth with no false
positives in 4 of 15 benchmarks we tested. Cork’s slice report enabled us to quickly identify and eliminate
growing data structures in large and unfamiliar programs, something their developers had not previously
done.

KEY WORDS: memory leaks, runtime analysis, dynamic, garbage collection

1 Introduction
Memory-related bugs are a substantial source of errors, especially for languages with explicit memory
management. For example, C and C++ memory-related errors include (1) dangling pointers–
dereferencing pointers to objects that the program previously freed, (2)lost pointers– losing all
pointers to objects that the program neglects to free, and (3) unnecessary references– keeping pointers
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Figure 1. Heap-Occupancy Graphs

to objects the program never uses again. Garbage collectionprecludes the first two errors, but not
the last. Since garbage collection is conservative, it cannot detect or reclaim objects referred to by
unnecessary references. Thus, amemory leakin a garbage-collected language occurs when a program
maintains references to objects that it no longer needs, preventing the garbage collector from reclaiming
space. In the best case, unnecessary references degrade program performance by increasing memory
requirements and consequently collector workload. In the worst case, a leaking, growing data structure
will cause the program to run out of memory and crash. In long-running applications, small leaks can
take days or weeks to manifest. These bugs are notoriously difficult to find because the allocation that
finally exhausts memory is not necessarily related to the source of the heap growth.

To demonstrate leaks, we measure heap composition using heap-occupancy graphs [8, 21, 39]. A
heap-occupancy graph plots the total heap occupancy on the y-axis over time measured in allocation
on the x-axis by collecting the entire heap very frequently (i.e., every 10K of allocation). Figure 1
shows the heap occupancy graphs forjavac from SPECjvm [37] andfop from DaCapo [9]. A heap-
occupancy curve with an overall positive slope clearly indicates systematic heap growth. Figure 1(a)
shows four program allocation phases forjavac that reach the same general peaks and indicate that
javac uses about the same maximum amount of memory in each phase andno phase leaks memory to
the next. On the other hand, Figure 1(b) shows that the heap occupancy graph forfop continue to grow
during execution. Such growth indicates the presence of potential leaks, but they do not pinpoint the
source of the leak.

Previous approaches for finding leaks use heap diagnosis tools that rely on a combination of heap
differencing [15, 16, 30] and allocation and/or fine-grain object tracking [10, 13, 14, 19, 29, 35, 36, 40,
41]. These techniques can degrade performance by a factor oftwo or more, incur substantial memory
overheads, rely on multiple executions, and/or offload workto a separate processor. Additionally,
they yield large amounts of low-level details about individual objects. For example, if aString
leaks, they can report individualStrings numbering in the 10,000s to 100,000s and allocation sites
numbering in the 100s to 1000s. Interpreting these reports requires a lot of time and expertise. Some
prior work reportsstaleobjects that the program is no longer accessing [10, 14, 29].A problem with
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2 JUMP & MCKINLEY

using staleness is that data structures such as arrays and hash tables occasionally touch all the objects
when the data structure grows, which defeats leak detectionbased only on stale objects. Prior work thus
lacks efficiency and precision. Our approach is efficient because it piggyback on the garbage collector
and it is precise because it identifies growing data structures that cause heap growth

We introducedCork, an accurate, scalable, and online memory leak detection tool for typed
garbage-collected languages in prior work [23]. This paperextends our prior work with more rigorous
descriptions and a comparison of leak identification algorithms. It describes in more detail our pruning
techniques and experimental results, including describing the leaks Cork finds in Java programs and
how to fix them.

Cork uses a novel approach to summarize, identify, and report data structures with systematic heap
growth. We show that it provides both efficiency and precision. For performance efficiency, Cork
piggybacks on full-heap garbage collections. As the collector scans the heap, Cork summarizes the
dynamic object graph by summarizing objects by their user-defined class inclass points-from graph
(CPFG). The nodes of the graph represent the volume of live objectsof each class. The edges represent
the points-from relationship between classes weighted by volume. At the end of each collection, the
CPFGcompletely summarizes the live-object points-from relationships in the heap.

For space efficiency, Cork stores class nodes together with their globaltype information block(TIB).
The TIB, or equivalent, is a required implementation element for managed languages, such as Java and
C#, that instructs the compiler on how to generate correct code and instructs the garbage collector on
how to scan objects. The number of nodes in theCPFG scales with the number of loaded classes.
While the number of edges between classes are quadratic in theory, programs implement simpler class
relations in practice; we find that the edges are linear in thenumber of classes.

Cork uses multipleCPGFs to detect and report a dynamicclass slicewith systematic heap
growth. We show that even with multipleCPFG, Cork never adds more than 0.5% to heap memory.
Additionally, this paper compares two heuristics for detecting leaks and controlling for natural
variations in the heap object graphs:Slope RankingandRatio Ranking. We find that although slope
ranking is more principled, ratio ranking works better. Slope ranking computes the slope between heap
summaries. When the heap volume fluctuates a lot, it requiresmore summaries to accurately find slow
leaks. Ratio ranking instead accumulates cumulative heap growth statistics from each summary, which
makes it accurate even when the heap size fluctuates a lot and the leak is slow. We store points-from
instead of points-to information to efficiently compute thecandidate class slice from a growing node.
We demonstrate that the construction and comparison ofCPFGs across multiple collections adds on
average 2.3% to total time to a system with a generational collector.

We apply Cork to 15 Java programs: one from anEclipse developer report and the others from
theDaCapo b.050224 [9] andSPECjvm [37, 38] benchmarks. Cork precisely identifies and reports
unbounded heap growth in four of them:

Eclipse configured to exercise a known leak in comparing files (Eclipse bug #115789) grows
2.97MB every 64MB of allocation. Due to the size and complexity of Eclipse and our lack
of experience with the implementation, we needed about three and a half days to find and fix this
leak using the Cork report.

fop grows 4.8MB every 64MB of allocation in a data structure which is in use throughout the entire
program. While Cork precisely pinpoints a single growing data structure, it does not sample
or track individual access to heap objects [14] so it cannot distinguish between a growing data
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CORK 3

structure which will never be used again from one that is still in use. Regardless, even systematic
heap growth in a data structure that is still in use is a cause for concern as it can affect application
reliability and performance.

jess grows 45KB every 64MB of allocation. Cork precisely pinpoints a single growing data structure
that contains a growing number of objects that are never usedagain.

jbb2000 grows 127KB every 64MB of allocation. Cork’s precision paysoff allowing us to quickly
fix the memory leak that had eluded developers for many years.We found it and fixed it in a day
with Cork’s report.

We confirm there are no additional memory leaks in the other 11benchmarks by examining their
heap composition graphs [8], showing Cork is accurate on allthe programs we tested. In practice,
Cork’s novel summarization technique is efficient and precisely reports data structures responsible for
systematic heap growth. Its low space and time overhead makes it appealing for periodic or consistent
use in deployed production systems.

2 Related Work

The problem of detecting memory leaks falls in three categories: static analysis detection, heap
differencing, and online staleness detection. Compile-time static analysis can find double free and
missing frees [20] and is complimentary to our work. Offline diagnostic tools accurately detect
leaks using a combination of heap differencing [15, 16, 30] and fined-grained allocation/usage
tracking [13, 19, 35, 36, 40, 41]. These approaches are expensive and often require multiple executions
and/or separate analysis to generate complex reports full of low-level details about individual objects.
In contrast, Cork’s completely online analysis reports summaries of objects by class while concisely
identifying the dynamic data structure containing the growth. Other online diagnostic approaches
rely on detecting when objects exceed their expected lifetimes [29] and/or detecting when an object
becomesstale[10, 14]. This work differentiates in-use objects from those not in-use. We instead detect
growing data structures, which finds leaks when the program keeps touches these objects, such as when
growing a hash table. Approaches based on staleness miss these cases.

Static approaches, for example Heine and Lam [20], rely on compile-time analysis to detect
memory leaks. Here a pointer analysis identifies potential memory leaks in C and C++ using the
object ownership abstraction. They find double frees and missing frees that occur when the program
overwrites the most recent pointer to an object or data structure without first freeing it. It does not find
growing data structures and thus static approaches are complementary to our work. The challenge in
implementing our approach for C and C++ is connecting the allocation type to memory, sincemalloc
is untyped. Their static analysis of ownership types could provide similar information to explicit types
used in Java.

The closest related work is Leakbot which combines offline analysis with online diagnosis to find
data structures with memory leaks [18, 24, 26]. Leakbot usesJVMPI to take heap snapshots offloaded
to another processor for analysis (we call thisofflineanalysis since it is not using the same resources as
the program although it may occur concurrently with programexecution). By offloading the expensive
part of the analysis to another processor, Leakbot minimizes the impact on the application while
maintaining detailed per-object information. It then relies on an additional processor to perform heap
differencing across multiple copies of the heap–a memory overhead potentially 200% or more that is
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4 JUMP & MCKINLEY

proportional to the heap–and ranking which parts of theobjectgraph may be leaking. Leakbot produces
very detailed object-level statistics, which depend precision of the heap snapshots. Cork, on the other
hand, summarizes object instances in aCPFGgraph that preserves a subset object class information,
which minimizes the memory overhead (less than 0.5%). Cork is thus time and space efficient enough
to run continuously and concurrently with the application.

Several completely online instance-based approaches for finding memory leaks exist for C/C++
and Java. Qin et al. detect memory leaks in C/C++ by looking for objects that exceed their expected
lifetimes [29]. They use special hardware to detect and eliminate false positives, which gives them low
time overhead and greater accuracy, but space overhead grows proportionally to the number of objects.

Relying only on software, other online techniques detect memory leaks identifiesstaleobjects as
those that have not been accessed in a long time [10, 14]. Chilimbi and Hauswirth introduced this
technique for C/C++ where they added per-object bookkeeping information to track stale objects [14].
Per-object bookkeeping information does not translate well to Java where even the smallest application
creates millions of distinct objects, making per-object tracking too expensive in both space and time.
Bond and McKinley address this expense by significantly reducing the space overhead of identifying
stale objects as likely leaks by introducing a statistical approach for storing per-object information in
a single bit [10]. Using this technique, combined with an offline processing step, they detect memory
leaks by reporting allocation and last-use sites of stale objects. Although they achieve space efficiency,
tracking per-object information adds overheads of 45% on average which they reduce to 14% with
sampling losing accuracy. For finding memory leaks, differentiating in-use objects from those not-
in-use adds additional information and is complimentary tofinding heap growth. However, staleness
can miss leaking objects. For example, when the program leaks objects in a hash table, the hash
table eventually exceeds its size. Rehashing all the objects touches them and defeats staleness-based
approaches. Cork finds the data structures and their allocation sites responsible for systematic heap
growth, which will eventually crash the program.

3 An Example Memory Leak

Figure 2 shows a simple order processing system that includes a memory leak.NewOrderinserts new
Order into the allOrdersHT hashmap and into thenewOrderQ, as shown in Figure 2(a). In
Figure 2(b),ProcessOrdersprocesses thenewOrderQ one order at a time. It removes each order
from the newOrderQ and fills it. If the customer is aCompany (subtype of Order ), it then
issues a bill, putting it on thebillingQ , and ships the order to the customer. In Figure 2(c),
when the customer sends a payment,ProccessBillremoves the order from thebillingQ and
the allOrdersHT hashmap. However, if the customer is aPerson (subtype of Order ),
ProcessOrderscalls ProcessPaymentwith the customer-provided payment information and ships the
order.ProcessOrdersshould, but does not, remove the order fromallOrdersHT which results in a
memory leak. Figure 2(d) lists abbreviations and statistics for these classes. We use this memory leak
as a running example throughout this paper.

4 Finding Leaks with Cork

This section overviews how Cork identifies candidate leaks by examining the objects in the heap,
finding growth, and reporting the corresponding class for growing objects to the user along with their
allocation site and the data structure which contains them.For clarity of exposition, we describe Cork
in the context of a full-heap collector.
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1 NewOrder(Order n) {
2 int id = getOrderId();
3 allOrdersHM.add(id, n); // insert into HashMap
4 newOrderQ.add(n); // insert into NewOrderQ
5 }

(a) Incoming order

1 ProcessOrders() {
2 while (! newOrderQ.isEmpty()) {
3 Order n = newOrderQ.getNext();
4 newOrderQ.remove(n); // remove from NewOrderQ
5 FillOrder(n);
6 if (n.getCustomer() instanceof Company) {
7 IssueBill(n); // insert into BillingQ
8 ShipOrder(n);
9 } else if (n.getCustomer() instanceof Person) {

10 ProcessPayment(n);
11 ShipOrder(n);
12 // A MEMORY LEAK!! -- not removed from HashMap
13 }}}

(b) Processing orders

1 ProcessBill(int orderId) {
2 Order n = allOrdersHT.get(orderId);
3 billingQ.remove(n); // remove from Billing Q
4 allOrdersHM.remove(orderId); // remove from HashMap
5 }

(c) Process bills

Class Variable Symbol Size in Bytes
HashMap allOrdersHM H 256
PriorityQueue newOrderQ N 256
Queue billingQ B 256
Company : Order n C 64
Person : Order n P 32

(d) Object statistics
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Figure 2. Order Processing System
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6 JUMP & MCKINLEY

1 void scanObject(TraceLocal trace,
2 ObjectReference object) {
3 MMType type = ObjectModel.getObjectType(object);
4 type.incVolumeTraced(object); // added
5 if (!type.isDelegated()) {
6 int references = type.getReferences(object);
7 for (int i = 0; i < references; i++) {
8 Address slot = type.getSlot(object, i);
9 type.pointsTo(object, slot); // added

10 trace.traceObjectLocation(slot);
11 }} else {
12 Scanning.scanObject(trace, object);
13 }}

Figure 3. Object Scanning

4.1 Building the Class Points-From Graph

To detect growth, Cork summarizes the heap in aclass points-from graph(CPFG). TheCPFGconsists
of class nodesandreference edges. The class node, annotated with volume of instances of that class,
represents the total volume of objects of classc (Vc). The reference edges are directed edges from class
nodec′ to class nodec and are annotated with the volume of objects of classc′ that are referred to
by objects of classc (Vc′|c). Looking at our example leak, Figure 2(e) shows a heap consisting of an
object points-to graph, i.e., objects and their pointer relationships, for objects of classesH, C, P, B,
andN from the example order-processing system. Each vertex represents a different object class in the
heap and each arrow represents a reference between two objects classes. Figure 2(f) shows the class
points-from graph that Cork computes.

To minimize the costs associated with building theCPFG, Cork piggybacks its construction on the
scanning phase of garbage collection which detects live objects by starting with the roots (statics,
stacks, and registers) and performing a transitive closurethrough all the live object references in
the heap. For each live, reachable objecto, Cork determines the object’s classco and increments
the corresponding class node by the object’s size. Then for each reference from objecto to object
o′, it increments the reference edge fromc′ to c by the size ofo′. At the end of the collection, the
CPFGcompletely summarizes the volumes of all classes and references that are live at the time of the
collection.

Figure 3 shows the modified scanning code from MMTk, a memory-management toolkit which
implements a number of garbage collection algorithms [6, 7]. Cork requires two simple additions that
appear in lines 4 and 9. AssumescanObjectis processing an object of classB that refers to an object
of classC from Figure 2(e). It takes a reference and the object as parameters and finds the object
class. Line 4 increments the volume of classB (VB) for our example. Since the collectorscans, i.e.,
detects liveness of, an object only once, Cork increments the total volume of this class only once
per object instance. Next,scanObjectdetermines if it needs to scan each referent of the object. Asit
iterates through the fields (slots), the added line 9 resolves the referent class of each outgoing reference
(B→C) and increments the volume of the appropriate edge (B←C) in the graph (VC|B). Thus, this step
increments the edge volume for all references to an object, not just the first one. Because this step adds
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Figure 4. Comparing Class Points-From Graphs to Find Heap Growth

an additional class look up for each reference, it also introduces the most overhead. Finally,scanObject
enqueues those objects that have not yet been scanned in line10. The additional work of the garbage
collector depends on whether it is moving objects or not, andis orthogonal to Cork.

At the end of scanning, theCPFGcompletely summarizes the live objects in the heap. Figure 2(f)
shows theCPFG for our example. Notice that the reference edges in theCPFGpoint in the opposite
direction of the references in the heap. Also notice that, inthe heap, objects of classC are referenced
by H, B, andN represented by the outgoing reference edges ofC in theCPFG. SinceC has multiple
references to it in the heap, the sum of the weights of its outgoing reference edges is greater than its
class node weight. Cork uses volume rather than simple countto detect heap growth in order to capture
not only when the number of instances of a class increase, butalso when the number stays constant
but the size of the the instances grow, as may be the case with arrays. Volume gives a heavier weight
to larger classes which tend to make the heap grow faster thansmaller classes. Cork differences the
CPFGvolumes from distinct collections to determine where growth is occurring in the heap.

4.2 Finding Heap Growth

At the end of each collection, Cork compares theCPFG for the current collection with data from
previous collections. We define those class nodes whose volume increases across several collections as
candidates. For each candidate, Cork follows growing reference edges through theCPFGto enumerate
the class data structures involved in the growth.
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8 JUMP & MCKINLEY

For example, Figure 4 shows theCPGFs created during three collections of our example program.
Figure 4(a) represents an initial state of the system after three orders arrive, but have not yet been
processed. Figure 4(b) shows four orders processed: two billed and two completed. Notice that the
program removes orders from individuals (P) from all the processing queues (B, N), but not from the
hashmap (H) resulting in the memory leak shown in Figure 2(b). Comparing theCPFG from the first
two collections shows bothC andP objects are potentially growing (depicted with bold arrows). To
be sure, we need more history. Figure 4(c) represents the state at the next collection, at which point it
becomes clearer that the volume ofP objects is monotonically increasing, whereas the volume ofC
objects is simply fluctuating. In practice, we find that classvolumejitters, i.e., it fluctuates with high
frequency. We say that a class whose volume monotonically increases showsabsolute growthand one
whose volume fluctuates but still increases showspotential growth. Cork detects both absolute and
potential growth.

To detect systematic heap growth, Cork compares theCPFG from the current collection with data
from previous collections and ranks each node according to how likely it is that a particular class is
a candidate. Additionally it ranks edges in a similar fashion. We examine two different methods for
ranking candidates: slope ranking and ratio ranking. Although slope ranking is more principled, ratio
ranking is more space efficient and better captures slow growth when the volume of objects fluctuates
a lot between collections.

4.2.1 Slope Ranking

Recall from Section 1, a positive slope in a heap-occupancy graph clearly indicates systematic heap
growth. The Slope Ranking Technique (SRT) uses the insight that a growing class must contribute
to the overall positive slope in the heap-occupancy graph. The more a class contributes, the higher
the likelihood that it leaks. Thus, SRT ranks candidates according to the portion of the overall heap
growth that each class contributes. In this configuration, Cork storesCPFGs from each collection and
calculates the rate of change, orslope, between the current collection and previous collections.Slope
for classc at collectioni is calculated assci = δvc/δA, wherevc is the volume of classc live in the heap
andA is the total volume allocated. A class node is classified a candidate if it is growing more often
than it is shrinking. SRT uses the percentage of the overall growth caused by the candidate leaking class
c to calculate rankrci for collectioni such thatrci = rci−1 + pci ∗sci /S, wherep is the number of phases
(or collections) thatc has been growing andS is the rate of change of the total heap (Si = δVi/δA). SRT
reports classes with positives ranks (r i > 0) as candidates.

While SRT is based on the principle of heap occupancy, it doesnot detect growth well. One reason
problem is that SRT depends on the number of collections in the window. Larger windows are more
likely to detect absolute growth. However, large windows are more likely to show false positives, since
for example, the heap always grows at the beginning of any application run. If we choose smaller
window sizes and accumulate rank over time, SRT misses slow growing leaks. Rank depends both on
the slope of the class (sci ) and the overall slope (Si), since heap fluctuations may cause either one to be
negative, SRT is not accurate enough.

4.2.2 Ratio Ranking

The Ratio Ranking Technique (RRT) ranks class nodes according to the ratio of volumes between two
consecutive collections, accumulates the differences (adding or subtracting, as appropriate) over all
collections, and reports classes with ranks above a rank threshold (rc > Rc

thres) as candidate leaks.
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1 public double calculateRatioRank() {
2 if (thisVolume > 0) {
3 if (thisVolume > maxVolumeTraced * (1 - decayFactor)) {
4 // growth phase detected
5 leakPhases++;
6 if (thisVolume > maxVolumeTraced)
7 maxVolumeTraced = thisVolume;
8 // calculate rank
9 if (thisVolume > lastVolume) {

10 rank += leakPhases * (thisVolume/lastVolume - 1);
11 } else {
12 rank -= leakPhases * (lastVolume/thisVolume - 1);
13 }
14 } else {
15 // non-growth phase detected
16 reset();
17 }
18 if (leakPhases >= MAX_LEAK_PHASES &&
19 rank > RANK_THRESHOLD) {
20 // report candidate
21 findSlice();
22 }
23 return rank;
24 }

Figure 5. Ratio Ranking Technique Algorithm

Figure 5 shows the ranking algorithm for the RRT. Assume thatthisVolume represents the
volume from this collection andlastVolume the volume from the previous collection. RRT uses
a decayFactor, f , where 0< f < 1 to adjust for jitter and detect potential growth. RRT considers
only those class nodes whose volumes satisfyVCi > VCi−1 ∗ (1− f ) (line 3) on consecutive collections
as potential candidates. The decay factor keeps class nodesthat shrink a little in this collection but
which show potential growth. We find that the decay factor is increasingly important as the size of the
leak decreases.

To rank class nodes, RRT uses the ratio of volumes between twoconsecutive collectionsQ such that
Q> 1. SinceQ> 1, thenQ−1 represents the percentage change in the volume between this collection
and the previous collection. Each class node’s rankrc is calculated by accumulating the percent change
multiplied by the number of phases (or collections) thatc has been potentially growing such that
absolute growth is rewarded and decay is penalized (lines 10and 12). Higher ranks represent a higher
likelihood that the corresponding volume of the class growswithout bound. RRT reports candidates
that show potential growth for at least two (2) phases and never reports a class the first time it appears
in the graph (lines 18-22).

Cork reports candidate leaks and their ranks back to the user. Next, we describe how Cork correlates
the candidate leaks back to the data structure that containsthem and the allocation sites that allocated
them.
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10 JUMP & MCKINLEY

(a) Type Summary Graph (b) Total connections to the reported candi-
dates

(c) Slice Diagram

Figure 6. Pruning the summary graph

4.3 Correlating to Data Structures and Allocation Sites

Reporting a low-level class such asString as a potential leak is not very useful. To demonstrate the
complexity of theCPFG, Figure 6(a) shows one instance of theCPFGof Eclipse from DaCapo. A
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Header

Data

Method
Table

VM_Type MMType
info

offset_i
...

offset_n

Type Information Block

phases
TPFG_i
TPFG_i-1
TPFG_rnk

Figure 7. Type Information Block (TIB)

node exists for each class in the heap and an edge exists between any two classes if a corresponding
reference exists in the heap. Notice that the completeCPFG is large and complex. Even if we refine
this graph to simply include the candidate class nodes and all the classes that point to them, the graph
still exhibits a fair amount of complexity, as shown in Figure 6(b). Cork automatically prunes the graph
and isolates the growing data structure by constructing aslicethrough theCPFGthat only includes the
growing classes and references.

A slice through theCPFG is the set of all paths originating from class nodec0 such that the rank of
each reference edgerck→ck+1 on the path is positive. A slice defines the growth originating at class node
c0 following a sequence of class nodes{c0,c1, . . . ,cn} and a sequence of reference edges(ck,ck+1)
where class nodeck points tock+1 in the CPFG. Figure 6(c) shows the reported slice forEclipse
(Section 5.5.4 discusses this leak in more detail). The slice contains candidate leak classes and the
dynamic data structure containing them. Cork also reports class allocation sites. However, unlike some
more expensive techniques, it does not find the specific allocation site(s) responsible for the growth.
Instead, it reports all allocation sites for each candidateclass. As each allocation site is compiled, Cork
assigns it a unique identifier, and constructs a map (aSiteMap) to it from the appropriate class. For
each leaking class, Cork searches the map to find allocationssites for that class. For each class, the
SiteMap includes the method and byte-code index or line for each allocation site.

4.4 Implementation Efficiency and Scalability

We implement several optimizations to make Cork’s implementation scalable and efficient in both time
and space. First, we limit the number ofCPFGs that we keep. For SRT, the size of the window we use
determines how manyCPGFs are required. For RRT, only 3CPGFs were required:CPFGi , CPFGi−1,
andCPFGrank, whereCPFGrank is a graph which stores node and edge rank rather than volume.
Cork piggybacks class nodes on the VM’s globaltype information block(TIB). This structure or an
equivalent is required for a correct implementation of managed languages such as Java or C#. Figure 7
shows the modified TIB from Jikes RVM. Notice that every live object of a class (ob jectL) points to
the TIB corresponding to its class. The TIB consists of threedifferent parts. The first is the method
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table which stores pointers to code for method dispatch. Themethod table points to a corresponding
VM Type which stores field offsets and type information used by the VMfor efficient type checking
and is used by the compiler for generating correct code. Finally, theVM Typepoints to a corresponding
MMType used by the memory management system to do correct allocation and to identify references
during garbage collection. Recall from Figure 3 that objectscanning resolves theMMType of each
object (line 3). Cork storesCPFG class node data for eachCPFG in the correspondingMMType,
adding only one word per storedCPFG. One additional word stores the number of consecutive phases
that a class node shows potential growth. Thus, the class nodes scale with the type system of the VM.

While the number of reference edges in theCPFG are quadratic in theory, one class does not
generally reference all other classes. Programs implementa much simpler class hierarchy, and we
find reference edges are linear with respect to the class nodes. This observation motivates a simple
edge implementation consisting of a pool of available edges. New edges are allocated only when the
edge pool is empty. AsCPFGs expire because they are in graphs outside the history window, we return
the edges to the pool for reuse. New edges are added to theCPFGby removing them from the edge
pool and adding them to the list of reference edges kept with node data. We encode a pointer to the
edge list with the node data which eliminates the need for adding any extra words to theMMType
structure. We further reduce the space required for reference edges by pruning those that do not grow.

4.5 Cork in Other Collectors

Cork performs its analysis on each full heap garbage collection in our implementation. The frequency
could be increased by performing more full heap collections, or decreased by only performing it on a
subset of full heap collections. We did not find either optionnecessary.

Since Cork’s implementation piggybacks on live-heap scanning during garbage collection, it is
compatible with any mark-sweep or copying collector, i.e.,a tracing collector. Cork and thus can
be added as described to any collector that does periodic whole-heap collections. To find leaks in our
benchmarks, Cork needed approximately six full heap collections during which heap growth occurs.
An incremental collector that never collects the entire heap may add Cork by defining intervals and
combining statistics from multiple collections until the collector has considered the entire heap (i.e.,
an interval). Cork would then compute difference statistics between intervals to detect leaks.

4.6 Cork in Other Languages

Cork’s heap summarization, theCPFG, relies on the garbage collector’s ability to determine theclass
of an object. We exploit the object model of managed languages, such as Java and C#, by piggybacking
on their required global class information to keep space overheads to a minimum. There are,
however, other implementation options. For garbage-collected languages that lack user-defined class
information, such as Standard ML, other mechanisms may be able to provide equivalent information.
Previous work provides some suggestions for functional languages that tag objects [32, 33, 34]. For
example, type-specific tags could be used to index into a hashmap for storing class nodes. Alternatively,
objects could be tagged with allocation and context information allowing Cork to summarize the heap
in anallocation-site points-from graph. These techniques, however, would come at a higher space and
time overhead.

5 Results
This section presents overhead and qualitative results forCork. Section 5.1 describes our methodology,
Section 5.2 shows that Cork has a very small space overhead, and Section 5.3 shows that Cork adds
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very little to total execution time, although it does slow down garbage collections. Section 5.4 shows
that ratio ranking has few false positives and higher accuracy that slope ranking, and that furthermore, a
variety of reasonable values for the decay factor and the rank threshold give similarly accurate results.
Applying Cork to four commonly used benchmarks, Cork finds heap growth in four benchmarks:fop,
jess, SPECjbb2000 andEclipse, and the data structure reports enabled us to fix them very quickly,
even though we were not previously familiar with these applications.

5.1 Methodology

We implement Cork in MMTk, a memory management toolkit in Jikes RVM version 2.3.7. MMTk
implements a number of high-performance collectors [6, 7] and Jikes RVM is a high-performance
VM written in Java with an aggressive optimizing compiler [2, 4]. We use configurations that
precompile as much as possible, including key libraries andthe optimizing compiler (theFast build-
time configuration), and turn off assertion checking. For measurement purposes, we remove the
nondeterministic behavior of the adaptive compilation system by applying replay compilation [22].

Eeckhout et al. [17] show that adaptive compilation in JikesRVM obscures application behavior in
performance measurements. Thus, for our overhead measurements, we factor out compilation using
replay compilation[22]. Replay compilation deterministically applies the optimizing compiler to
frequently executed methods chosen by the adaptive compiler in previous (offline) runs. We factor out
the adaptive compiler by running each benchmark multiple times. The first run uses replay compilation
to give a realistic mixture of optimized and unoptimized code. Then we turn off compilation and
flush all compiler objects from the heap. During the second run, we measure and report application
performance.

For performance results, we explore the time-space trade-off by executing each program on moderate
to large heap sizes, ranging from 2.5X to 6X the smallest sizepossible for the execution of the program.
We execute timing runs five times in each configuration and choose the best execution time (i.e., the one
least disturbed by other effects in the system). We perform separate runs to gather overall and individual
collection statistics. We perform all of our performance experiments on a 3.2GHz Intel Pentium 4 with
hyper-threading enabled, an 8KB 4-way set associative L1 data cache, a 12Kµops L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip cache, and 1GB of main memory, running
Linux 2.6.0.

For SPECjvm andDaCapo benchmarks, we use the standard large inputs. SinceSPECjbb2000
measures throughput as operations per second for a durationof 2 minutes for an increasing number
of warehouses (1 to 8) and each warehouse is strictly independent, we change the default behavior.
To perform a performance-overhead comparison, we usepseudojbb, a variant ofSPECjbb2000 that
executes 10,000 transactions. For memory-leak analysis, we configureSPECjbb2000 to run only
one warehouse for one hour. ForEclipse, we use theDaCapo benchmark for general statistics and
performance-overhead comparisons andversion 3.1.2 to reproduce a documented memory leak by
repeatedly comparing two directory structures (Eclipse bug #115789).

5.2 Space Overhead

We evaluate our techniques using theSPECjvm [37], DaCapo b.050224 [9], SPECjbb2000 [38],
andEclipse [43]. Table I shows benchmark statistics including the total volume allocated (column 1)
and number of full-heap collections in both a whole-heap (column 2) and a generational (column 3)
collector in a heap that is 2.5X the minimum size in which the benchmark can run. Column 4 reports
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14 JUMP & MCKINLEY

# of # of
Alloc colltn classes

Benchmark MB whl gen bm +VM
Eclipse 3839 73 11 1773 3365
fop 137 9 0 700 2292
pmd 518 36 1 340 1932
ps 470 89 0 188 1780
javac 192 15 0 161 1753
jython 341 39 0 157 1749
jess 268 41 0 152 1744
antlr 793 119 6 112 1704
bloat 710 29 5 71 1663
jbb2000 ** ** ** 71 1663
jack 279 47 0 61 1653
mtrt 142 17 0 37 1629
raytrace 135 20 0 36 1628
compress 106 6 3 16 1608
db 75 8 0 8 1600
Geomean 303 27 n/a 104 1813

Table I. Benchmark Characteristics. **Volumes forSPECjbb2000 depend on how long the warehouse to runs.

the number of classes (bm) in each benchmark. However since Jikes RVM is a Java-in-Java virtual
machine, Cork analyzes the virtual machine along with the benchmark during every run. Thus column
5 (+VM) is the actual number of classes potentially analyzed at each collection.

The heuristics we introduced in Section 4.4 keep Cork space efficient. Table II(a) reportsCPFG
space overhead statistics. Columns one and two (# of classes) report the average and maximum number
of classes in the heap during any particular garbage collection. We notice that an average of 44% of all
classes used by programs are present in the heap at a time. This feature reduces the number of potential
candidates that Cork must analyze.

Table II(a) shows the average (column 3) and maximum (column4) number of reference edges per
class node in theCPFG. We find that most class nodes have a very small number of outgoing reference
edges (2 on average). The more prolific a class is in the heap, the greater the number of reference
edges in its node (up to 406). We measure the average and maximum number of reference edges in any
CPFG(columns 5 and 6) and the percent of those our heuristics prune because their ranks drop below
zero (re < 0) (column 7). These results demonstrate that the number of references edges is linear in the
number of class nodes in practice.

Finally, Table II(b) shows the space requirements for the type information block before (TIB) and
the overhead added by Cork (TIB+Cork). While Cork adds significantly to the TIB information, it adds
only modestly to the overall heap (0.145% on average and never more than 0.5% as shown in column
5). For the longest-running and largest program,Eclipse, Cork has a tiny space overhead (0.004%).
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Figure 8. Geometric Mean Overhead Graphs over all benchmarks for whole-heap collector

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;0:0–0
Prepared usingspeauth.cls



16 JUMP & MCKINLEY

3 4 5 6
Heap size relative to minimum

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 S
ca

nn
in

g 
T

im
e GenMS

(a) Scan Time

3 4 5 6
Heap size relative to minimum

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 G
C

 T
im

e

GenMS

(b) GC Time

3 4 5 6
Heap size relative to minimum

1.0

1.1

1.2

N
or

m
al

iz
ed

 T
ot

al
 T

im
e

GenMS

(c) Total Time

Figure 9. Geometric Mean Overhead Graphs over all benchmarks for generational collector
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(a) Class Points-From Statistics (b) Space Overhead
# of # edges # edges %

classes per class per TPFG pru- TIB TIB+Cork
Benchmark avg max avg max avg max ned MB %H MB %H Diff
Eclipse 667 775 2 203 4090 7585 42.2 0.53 0.011 0.70 0.015 0.167
fop 423 435 3 406 1559 2623 45.2 0.36 0.160 0.55 0.655 0.495
pmd 360 415 3 121 967 1297 66.0 0.30 0.031 0.44 0.186 0.155
ps 314 317 2 93 813 824 66.3 0.28 0.029 0.39 0.082 0.053
javac 347 378 3 99 1118 2126 45.8 0.28 0.071 0.43 0.222 0.151
jython 351 368 2 114 928 940 66.2 0.28 0.041 0.39 0.112 0.071
jess 318 319 2 89 844 861 66.0 0.27 0.049 0.38 0.143 0.094
antlr 320 356 2 123 860 1398 55.8 0.27 0.016 0.39 0.282 0.266
bloat 345 347 2 101 892 1329 50.6 0.26 0.017 0.38 0.064 0.047
jbb2000 318 319 2 110 904 1122 59.0 0.26 ** 0.38 ** **
jack 309 318 2 107 838 878 66.2 0.26 0.042 0.37 0.131 0.089
mtrt 307 307 2 91 820 1047 57.5 0.26 0.081 0.37 0.258 0.177
raytrace 305 306 2 91 814 1074 56.1 0.26 0.085 0.37 0.272 0.187
compress 286 288 2 89 763 898 60.9 0.25 0.105 0.36 0.336 0.231
db 289 289 2 91 773 787 66.1 0.25 0.160 0.35 0.467 0.307
Geomean 342 357 2 116 1000 1303 57.4 0.29 0.048 0.41 0.168 0.145

Table II. Cork Statistics. **Volumes forSPECjbb2000 depend on how long the warehouse runs.

5.3 Performance Overhead Results

Cork’s time overhead comes from constructing theCPFG during scanning and from differencing
betweenCPGFs to find growth at the end of each collection phase. Figures 8 and 9 graphs the
normalized geometric mean over all benchmarks to show overhead in scan time, collector (GC) time,
and total time. In each graph, the y-axis represents time normalized to the unmodified Jikes RVM using
the same collector, and the x-axis graphs heap size relativeto the minimum size each benchmark can
run in a mark-sweep collector. Eachx represents one program.

For mark-sweep (MarkSweep) and copying (SemiSpace) whole-heap collectors, Figure 8 shows
that the scan time overhead is 80.8% to 85.5% and 76.1% to 78.8%; collector time is 75.4% to
82.9%; and total time is 10.3% to 25.8% respectively. These overheads represents the worst case since
Cork analyzes the heap at every collection. Whole-heap collector overheads can easily be reduced by
analyzing the heap everynthcollection or by using a generational collector that performs whole-heap
collections less frequently. In fact, this configuration may find leaks faster. Similarly, including Cork in
a high-performing generation collector with many less full-heap collections significantly reduces these
overheads by performing Cork’s analysis less frequently. Figure 9 shows Cork’s average overhead in
a generational collector to be 11.1% to 13.2% for scan time; 12.3% to 14.9% for collector time; and
1.9% to 4.0% for total time. Individual overhead results range higher, but Cork’s average overhead is
low enough to consider using it online in a production system.
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(a) SRT (b) RRT Decay Factor (c) RRT Rank Thres
Benchmark 0% 5% 10% 15% 20% 25% 0 50 100 200
Eclipse bug #115789 6 0 6 6 6 6 6 12 6 6 6
fop 2 2 2 2 2 2 2 35 2 2 1
pmd 0 0 0 0 0 0 0 11 2 0 0
ps 0 0 0 0 0 0 0 3 0 0 0
javac 2 0 0 0 0 0 0 71 2 0 0
jython 0 0 0 0 0 0 1 3 0 0 0
jess 2 0 1 1 1 1 2 9 1 1 1
antlr 0 0 0 0 0 0 0 9 0 0 0
bloat 3 0 0 0 0 0 0 33 0 0 0
jbb2000 1 0 4 4 4 4 4 10 6 4 4
jack 0 0 0 0 0 0 0 9 0 0 0
mtrt 0 0 0 0 0 0 0 3 2 0 0
raytrace 0 0 0 0 0 0 0 4 0 0 0
compress 0 0 0 0 0 0 0 4 0 0 0
db 0 0 0 0 0 0 0 2 0 0 0

Table III. Number of classes reported in at least 25% of garbage collection reports: (a) From Slope Ranking
Technique. (b) Varying thedecay factorfrom Ratio Ranking Technique (Rt

thres= 100). We choose a decay factor
f = 15%. (c) Varying therank thresholdfrom Ratio Ranking Technique (f = 15%). We choose rank threshold

Rt
thres= 100.

5.4 Achieving Accuracy

Cork’s accuracy depends on its ability rank and report growing classes. Table III(a) shows the number
of candidates that are reported using slope ratio (SRT). While it accurately identifies growth infop,
jess, jbb2000, andEclipse bug #115789, it also falsely identifies heap growth injavac andbloat,
programs that do not display systematic heap growth. This result is mainly due to very erratic growth
patterns in both programs. Ratio ranking (RRT) offers a morerobust heuristics for ranking classes.
By increasing the rank when the class grows and decreasing itwhen it shrinks, RRT more accurately
captures growth across many collections without dependingupon window size.

For the RRT, we experiment with different sensitivities forboth the decay factorf and the rank
thresholdRthres. Table III(b) shows how changing the decay factor changes the number of reported
classes. We find that the detection of growing classes is not sensitive to changes in the decay factor
ranging from 5 to 20%. We choose a moderate decay factor (f = 15%) for which Cork accurately
identifies the only growing data structures in our benchmarks without any false positives. Table III(c)
shows how increasing the rank threshold eliminates false positives from our reports. Additionally we
experiment with different rank thresholds and find that a moderate rank threshold (Rthres = 100) is
sufficient to eliminate any false positives. We discuss the differences in the number of reported classes
between SRT and RRT as we discuss each benchmark in the next section
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5.5 Finding and Fixing Leaks

Cork identifies heap growth in four of our benchmarks:fop, jess, SPECjbb2000, and Eclipse.
Each section first describes the benchmark, demonstrates how Cork found the growing class and data
structure, and concludes with an analysis of the growth.

5.5.1 fop

The programfop (Formatting Objects Processor) is from theDaCapo benchmark suite. It uses the
standard XSL-FO file format as input, lays the contents out into pages, and then renders it to PDF.
Converting a 352KB XSL-FO file into a 128KB PDF generates the heap occupancy graph in Figure 10,
which clearly demonstrates an overall monotonic heap growth. While we limit the heap size to 15MB,
this size is simply a function of the input size. Given any heap size, we can givefop an input that will
cause the heap to expand and crash.fop shows aggressive heap growth (7.5% compared to the 0.19%
in SPECjbb2000).

Cork analyzesfop and Figure 10(a) shows the RRT reports. Both SRT and RRT report ArrayList
andObject[]as candidates for growth. SinceArrayList is implemented asObject[], we focus
just onArrayList for our analysis. We begin our exploration by examining the slices of theCPFGto
determine what is keeping theArrayListalive. Figure 10(a) shows part of the slice forArrayList
. It shows thatArrayListsare nested in a data structure. Finally, Cork lists the allocation sites for all
the class giving the user a starting point for debugging. Because the allocation sites are numerous, it is
not useful to exploreArrayList. We go to secondary allocations sites:WordAreaandLineArea.

Next we explorefop’s implementation.fop performs two passes over a single complex data structure
built with ArrayList: the first pass builds the formatting object tree whereArrayList contains
different formatting object which themselves can contain one or more ArrayList . Once fop
encounters an end of page sequence, it begins rendering during a second pass over the data structure
it built during parsing. Thus, rendering uses the entire data structure. While our analysis accurately
pinpoints the source of the growth,fop does not have a memory leak because it uses the entire heap. The
developers offop agree with this analysis, that the heap growth thatfop experiences is partly inherent
to the formatting process and partly caused by poor implementation choices [3]. Cork identifies this
problem.

5.5.2 jess

From theSPECjvm benchmark suite,jess is a Java Expert Shell System based on NASA’s CLIPS. It
grows of 45KB every 64MB. In an expert system, the input is a set of facts and a set of rules. Each fact
represents an existing relationship and each rule a legal way of manipulating facts. The expert system
then reasons by using rules toassertnew facts andretraceexisting facts. As each part of a rulematches
existing facts, the rulefires creating new facts and removing the rule from the set of activated rules.
The system continues until the set of activated rules becomes empty.

RRT reportsValue as the overwhelmingly growing class. The slice of theCPFG is diagrammed in
Figure 11(a) where the square node represents the reported class. Correlating it to the implementation,
jess compiles all the rules into a single set of nodes. Fact assertion or retraction is then turned into
a token, which is fed to the input nodes of the network. Then the nodesmay pass the token on to its
children or filter it out. As tokens are propagated through the network, rules create new facts. Each new
fact is stored in aValue in a ValueVector implemented asValue[]. ValueVector is stored
in a ValueVector[] in a Token. A globalTokenVector implemented asToken[], stores the
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Figure 10. Fixingjess

tokens in the system. Interestingly, SRT reported only two of the classes both of which are in the slice
reported by RRT:Value andValue[]. These facts are part of the input.

Examining the input forjess, we find the benchmark iterates over the same problem several
times. The developer made it artificially more complex by introducing distinct facts in the input file
representing the same information for each iteration. Thus, with each iteration, the number of facts to
test increases which triggers more allocation. This complexity is documented in the input file. In order
to remove the memory leak, we eliminated the artificial complexity from the input file. Figure 11(b)
shows both the original heap occupancy graph and the resulting heap occupancy graph. The heap
growth, and thus the memory leak, is gone.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;0:0–0
Prepared usingspeauth.cls



CORK 21

(a) Slice Diagram

0 50 100 150 200 250

Time (MB of allocation)

0

1

2

3

H
ea

p 
oc

cu
pa

nc
y 

(M
B

)

Before
After

(b) Heap Occupancy Graphs forjess

Figure 11. Fixingjess

5.5.3 SPECjbb2000

TheSPECjbb2000 benchmark models a wholesale company with several warehouses (or districts).
Each warehouse has one terminal where customers can generate requests: e.g., place new orders or
request the status of an existing order. The warehouse executes operations in sequence, with each
operation selected from the list of operations using a probability distribution. It implements this system
entirely in software using Java classes for database tablesand Java objects for data records (roughly
25MB of data). The objects are stored in memory usingBret and other data structures.
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Figure 12. FixingSPECjbb2000

RRT analysis reports four candidates:Order, Date, NewOrder,andOrderLine.The rank
of the four corresponding class nodes oscillates between collections making it difficult to determine
their relative importance. Examining the slices of the fourreported class nodes reveals the reason.
There is an interrelationship between all of the candidatesand if one is leaking then the rest are as
well. The top of Figure 12(a) shows the Cork slice report where the shaded nodes are growing. Notice
that despite the prolific use ofObject[] in SPECjbb2000, its class node volume jitters to such a
degree that it never shows sufficient growth to be reported asleaking. Since the slice includes all class
nodes withrt > Rt

thres and reference edges withre > 0, the slice sees beyond theObject[] to the
containing data structures.
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Figure 13. Heap occupancy graph: fixingEclipse bug #115789

We correlate Cork’s results withSPECjbb2000’s implementation. We find that orders are placed
in an orderTable, implemented as aBTree, when they are created. When they are completed
during aDeliveryTransaction, they are not properly removed from theorderTable. By adding code
to remove the orders from theorderTable, we eliminate this memory leak. Figure 12(b) shows the
heap occupancy, before and after the bug fix, runningSPECjbb2000 with one warehouse for one hour.
It took us only a day to find and fix this bug in this large programthat we had never studied previously.

5.5.4 Eclipse

Eclipse is a widely-used integrated development environment (IDE)written in Java [43].
Eclipse is big, complex, and open-source.Eclipse bug #115789 documents an unresolved
memory leak in theEclipse bug repository from September 2005. We manually compared
the contents of two directory structures multiple times to cause the bug to be triggered
at a much higher frequency that would be triggered during regular use. In this way
we could isolate this bug from other potential bugs in the system. Both RRT and
SRT reported six candidates:File, Folder, Path, ArrayList, Object[], and
ResourceCompareInput$FilteredBufferedResourceNode. Figure 6(c) shows the
growth slice for the candidates, the close interrelationship between them, and several possible roots
of the heap growth.

Correlating Cork’s results with theEclipse implementation showed that upon completion, the
differences between the two directory structures are displayed in theCompare- EditorInput
which is a dialog that is added to theNavigationHistory . Further scrutiny showed that the
NavigationHistoryEntry managed by a reference counting mechanism was to blame. When
a dialog was closed, theNavigationHistoryEntry reference count was not decremented
correctly resulting in the dialog never being removed from the NavigationHistory . The
CompareEditorInput stores the differences of the two directory structures in a linked list of
ResourceCompareInput%MyDiffNode. Figure 13(b) shows the heap occupancy graphs before
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and after fixing the memory leak. This bug took us about three and a half days to fix, the longest of
any of our benchmarks, due to the size and complexity ofEclipse and our lack of expertise on the
implementation details.

6 Conclusion

This paper introduces a novel and efficient way to summarize the heap to identify types of objects
which cause systematic heap growth, the data structures which contains them, and the allocation site(s)
which allocate them. We implement this approach in Cork, a tool that identifies growth in the Java
heap and reports slices of a summarizing class points-from graph. Cork calculates this information
by piggybacking on full-heap garbage collections. We show that Cork adds only 2.3% to total time
on moderate to large heaps in a generational collector. Corkprecisely identifies data structures with
unbounded heap growth in four popular benchmarks:fop, jess, jbb2000, andEclipse and we use
its reports to analyze and eliminate memory leaks. We were able to fix these leaks from the reports,
even though we had no prior experience with the code of these applications. Cork is highly-accurate,
low-overhead, scalable, and is the first tool to find memory leaks with low enough overhead to consider
using in production VM deployments.
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