
Finding Your Cronies:
Static Analysis for Dynamic Object Colocation�

Samuel Z. Guyer
The University of Texas at Austin

Austin, TX, 78712

sammy@cs.utexas.edu

Kathryn S. McKinley
The University of Texas at Austin

Austin, TX, 78712

mckinley@cs.utexas.edu

ABSTRACT
This paper introducesdynamic object colocation, an optimization
to reduce copying costs in generational and other incremental garbage
collectors by allocating connected objects together in thesame space.
Previous work indicates that connected objects belong together be-
cause they often have similar lifetimes. Generational collectors,
however, allocate all new objects in anurseryspace. If these ob-
jects are connected to data structures residing in thematurespace,
the collector must copy them. Our solution is a cooperative opti-
mization that exploits compiler analysis to make runtime allocation
decisions. The compiler analysis discovers potential object con-
nectivity for newly allocated objects. It then replaces these alloca-
tions with calls tocoalloc, which takes an extra parameter called
the colocatorobject. At runtime,coalloc determines the loca-
tion of the colocator and allocates the new object together with it in
either the nursery or mature space. Unlike pretenuring, colocation
makes precise per-object allocation decisions and does notrequire
lifetime analysis or allocation site homogeneity. Experimental re-
sults for SPEC Java benchmarks using Jikes RVM show colocation
can reduce garbage collection time by 50% to 75%, and total per-
formance by up to 10%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Mem-
ory management (garbage collection)

General Terms
Languages, Performance, Experimentation, Algorithms

Keywords
Cooperative optimization, static analysis, compiler-assisted mem-
ory management�This work is supported by NSF ITR CCR-0085792, NSF CCR-
0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, and
IBM. Any opinions, findings and conclusions expressed herein are
the authors and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. INTRODUCTION
This work introduces thecolocation (or crony) optimization for
garbage collectors that divide the heap into separately collected re-
gions, such as generational collectors. A problem for thesecollec-
tors is that they record and treat as live pointers into independently
collected regions. Pointers in connected data structures that cross
regions will cause the collector to retain their referents.For ex-
ample, Figure 1 depicts a connected data structure that straddles
two collection regions. Since collectors must assume that point-
ers between separately collected regions are live, they will retain
this data structure, perhaps needlessly. Furthermore, previous work
shows that connected objects usually die together [21, 22].The
goal of colocation is to allocate a new object directly into the same
region as an object that will reference it. Grouping and collect-
ing connected objects together will thus avoid the work of tracking
and processing pointers from different regions, and more promptly
reclaim objects when they die. Colocation is acooperativeopti-
mization because it uses compiler analysis to selectively introduce
dynamic allocation decisions.

Figure 1: Connected structures belong in the same space.

Colocation uses the following static and runtime components.
(1) A static compiler analysis finds old objects, calledcolocators
that will reference newly allocated objects and that the program
does not immediately overwrite. (2) A new allocation routine,
coalloc, which takes a colocator object parameter. (3) At run-
time, coalloc puts new objects in the same region as the colo-
cator object. The analysis finds connections between newly allo-
cated objects and existing objects, with special provisions to ex-
clude volatile (quickly overwritten) connections. The interprocedu-
ral compiler analysis is flow-insensitive and exploits static-single-
assignment (SSA) form. The compiler analysis need not be sound
since the location of the object does not affect correctness, and we
exploit this feature to make our analysis fast. We implementthis
analysis in the IBM Jikes RVM [2, 3] optimizing compiler.

At runtime, coalloc makes precise per-allocation decisions
based on the current location of existing colocator objects. Un-
like pretenuring [9, 12, 20] or prolific types [30], colocation does
not require lifetime analysis or call site homogeneity. Homogene-
ity limits applicability, especially for library routineswith many
different client uses. Colocation and pretenuring are mostlikely

synergistic, but that study is beyond the scope of this paper. Colo-
cation goes beyond age-based copying algorithms [8, 27, 33,36]
to exploit dynamic connectivity, but does not require strict analysis
correctness as does connectivity-based collection [21]. We discuss
related work in more detail in Section 2. Although we evaluate
colocation in two generational collectors, it will work forany col-
lector that divides the heap into independently collected regions.

Using MMTk [6, 7], a Memory Management Toolkit for Java in
IBM Jikes RVM [2, 3], we evaluate the overhead of colocation,the
potential reduction from connected objects in two generational col-
lectors, and the performance impact. The current implementation
produces its best results when all methods are compiled ahead of
time – in this setting our analysis only increases compilation cost
by about 10%. It is considerably less expensive than previous alias
and escape analysis for Java [10, 15], and we believe we can fur-
ther reduce this cost. We evaluate colocation using a copying nurs-
ery with both copying and mark-sweep mature spaces. It reduces
garbage collection time for all the SPEC JVM benchmarks by up
to a factor of 2. For a few benchmarks, the generational collectors
augmented with colocation can execute in a smaller heap sizes than
without it because colocation helps them to use heap space more
efficiently. For most programs, the collection time improvements
translate into total time improvements, of up to 10%, since garbage
collection time is a fraction of total time.

The rest of this paper is organized as follows. In Section 2 we
review related work. In Section 3 we describe the overall system
for performing cooperative object colocation. In Sections4 and 5
we describe our static analysis and run-time system. In Sections 6
and 7 we present our experiments and results.

2. RELATED WORK
This section overviews generational collectors and the opportuni-
ties they expose for colocation. We then compare our work to con-
nectivity analysis, allocation for locality, and static and dynamic
lifetime prediction and its use by pretenuring. Colocationis unique
from previous work because it does not require call site homogene-
ity or lifetime profiling or prediction. We also compare our com-
piler analysis to other static heap analyses.

All generational collectors exploit the weak-generational hypoth-
esis [27, 36], that young object die quickly. Copying generational
collectors divide the heap, allocate the youngest objects into the
nursery, and most frequently collect the nursery [5, 36]. Toavoid
scanning the mature space when collecting the nursery, the write
barrier tests all heap pointer stores, and remembers the source of
pointers that point from the mature space into the nursery atrun-
time. At collection time, it copies objects reachable from the stacks,
registers, global variables, and these remembered pointers into the
mature space. The collector re-examines remembered pointers first,
since a later update may have overwritten the nursery target.

Recent work on connectivity-based garbage collection [21,22]
shows that connected objects often die together, which bolsters our
hypothesis. However, their collector organization completely elim-
inates write barriers with a static analysis that allocatesobjects into
static partitions that contain connected objects, forminga hierar-
chical directed acyclic graph of partitions. The collectormust al-
ways collect ancestors together with descendents, and thusdoes not
exploit dynamic connections. The colocation optimizationexploits
object connectivity in a much less restricted setting, and is thus able
to couple itself with the high performance generational collectors,
and could also improve other incremental collectors [8, 24,29].

Research that uses copying collection to improve object local-
ity [14, 23, 25, 37] can also exploit connectivity. This worklocates
objects that are frequently accessed together on the same cache line.

Object colocation may have a positive benefit on page locality since
it will tend to allocate connected objects closer together,but it will
not generally improve cache line locality. Locality and colocation
optimizations are thus orthogonal, but could work well together.

The pretenuring optimization uses static profiling to classify ob-
jects as long lived, and then directly allocates them into the older
generation [9, 12, 34, 35], or uses dynamic samples [1, 17, 20, 28]
through weak pointers and write barriers. All of these techniques
require call site lifetime homogeneity, which is restrictive. For ex-
ample, the top allocation site injavac creates entry nodes for a hash
table and the lifetimes are split 55-45 short-lived versus long-lived.
Object colocation works without call site homogeneity because it
asks on a per-instance basis: “Is the existing colocator in the nurs-
ery or mature space?”

Our compiler analysis is similar in spirit to work that finds con-
nected heap objects [11, 19], but is much faster and less precise. In
fact, colocation analysis need not be conservative, since the alloca-
tion of an object in the mature space or the nursery does not affect
correctness, only performance. We use a flow insensitive, single
pass analysis, and experiment with intraprocedural and interproce-
dural propagation. This approach makes the compiler analysis vi-
able for a just-in-time compiler, where as escape [10, 15] and other
pointer analyses are too costly in this context.

3. DYNAMIC OBJECT COLOCATION
The goal of dynamic object colocation is to allocate connected ob-
jects in the same garbage collection space. Since collectors use
connectivity to determine survivors, the lifetimes of connected ob-
jects are correlated [22], and placing them in the same spacecan
improve collector efficiency. Colocation produces this effect dy-
namically by determining in which space the source of a pointer
resides, and then allocating the target of the pointer in thesame
space.

Similar to pretenuring, colocation tends to put short-lived con-
nected objects in the nursery, and long-lived ones in the mature
space. In contrast to pretenuring, however, a given allocation site
can allocate to either the old or young space, depending on the
objects involved. This flexibility is particularly important for allo-
cation sites inside widely reused code, such as the Java container
classes. For example, theLinkedList class contains an inter-
nal “link” class that makes up the backbone of the list, and the
add() method allocates instances of this class in order to accom-
modate new elements. Pretenuring schemes that are triggered by
types or allocation sites must decide, for all linked lists,in which
spaceadd() will place new instances of the link. This decision
presents a difficult tradeoff in programs that create both short-lived
and long-lived lists. In contrast, colocation avoids this tradeoff by
making the decision dynamically: it allowsadd() to place new
link elements into whichever space contains the existing elements
of the list.

Our approach uses a new memory allocation routine, which we
call coalloc, that takes an addition argument of typeObject, which
we call thecolocator. Coalloc allocates the new object into the
same space as the colocator. Unlike previous approaches to colo-
cation for locality, we do not expose the allocation interface to the
user [13]. Our system automatically identifies candidate allocation
sites and computes appropriate colocators for them. Since finding a
colocator requires knowledge of the future use of a new object (e.g.,
its incorporation into a list), our system performs this task at com-
pile time using static analysis. Since the particular spacein which
the colocator resides is only known at run-time (and is collector-
specific), our system makes allocation decisions at run-time using
a dynamic test. Our system consists of two parts.

void Simple(A a){
B newB = new B();
a.f = newB;

}

void Simple(A a){
B newB = coalloc B(a);
a.f = newB;

}

a

B

Figure 2: Simple example: the newly allocated B object is stored in the A object parameter, therefore we convert the new into a call
to coalloc, passinga as the colocator.

void BottomUp(A a){
B newB = new B();
C newC = new C();
newC.f = newB;
a.f = newC;

}

void BottomUp(A a){
B newB = coalloc B(a);
C newC = coalloc C(a);
newC.f = newB;
a.f = newC;

}

a

C

B

Figure 3: More complex example: we cannot usenewC as the colocator for the new B because the new C is created later; however
we can safely usea as the colocator for both.

Compile-time analysis identifies colocators and inserts calls to
coalloc.

Run-time system provides thecoalloc allocation routine.

Figure 2 shows a simple example of how colocation works. The
code fragment on the left shows a method calledSimple that cre-
ates a new object of type B and stores a reference to it in the object
of type A pointed to by the variablea. The graph in the middle of
the figure depicts the resulting data structure. Unless the program
subsequently overwrites the reference, the newly allocated B object
will live at least as long as A. Therefore, the variablea is a good
choice for the colocator of the new B object. The code on the right
shows the result of our compiler pass. Our analysis automatically
identifiesa as a suitable colocator and replaces thenew construct
with a call tocoalloc, passing in the variablea. Thecoalloc
routine makes an allocation decision based ona: if a refers to an
object in the mature space, thencoalloc puts the new B object in
the mature space, otherwisecoalloc puts it in the nursery. The
key is that this decision depends on the run-time value ofa, which
can vary from one invocation of the method to another.

Unfortunately, it is not always possible to colocate a new object
with the object that directly references it. The reason is that pro-
grams need not create objects in the same order that they connect
them together. The methodBottomUp in Figure 3 demonstrates
this problem:newC is the logical choice of colocator for the al-
location ofnewB, butnewC does not yet exist at that point. One
solution is to abandon colocation is such cases. Another solution
is to attempt to transform the code so that the order of creation
matches the order of connection. Both of these solutions require
some form of dependence analysis and may still miss colocation
opportunities.

Our solution is to use only the formal parameters of a method (in-
cluding the receiver object) as potential colocators. The advantage
of this solution is that the formal parameters are guaranteed to exist
before any allocations take place in the method, so no dependence
analysis is needed. This solution works because connectivity, and
therefore survival, is transitive: sincenewB lives as long asnewC,
andnewC lives as long asa, we can conclude thatnewB lives as
long asa. Therefore,a is a suitable colocator for both allocation
sites. The code fragment on the right in Figure 3 shows the appli-
cation of this policy to theBottomUp method.

More formally, we select colocators as follows: given an alloca-
tion siteA inside a methodM, we choose a colocatorC from among
the formal parameters ofM (including the receiver) such that dur-
ing the execution ofM the object or objects created atA become

reachable, by some sequence of pointers, fromC. If no parameter
is suitable, then the allocation site has no colocator.

4. FINDING COLOCATORS
This section describes our static analysis for finding colocators.
The goal of this analysis is to find a suitable colocator for each
allocation site. We start by presenting our basic analysis algorithm,
followed by two interprocedural enhancements. This algorithm can
discover most of the potential connectivity between objects in a
program. This information, however, is often overly aggressive for
colocation because some of the connections are volatile andshort-
lived at runtime. Examples of volatile connections includerefer-
ences that are created conditionally and containers that are cleared.
Therefore we add to our algorithm a set of heuristics that prune out
potentially volatile connections.

Our colocation analysis resembles existing algorithms forpointer
analysis, but differs in several unique ways. Central to these differ-
ences is that our analysis is unsound: its results do not necessarily
represent all the connections that might occur at runtime. Therefore
it cannot be used for traditional optimizations, which require sound
analysis in order to preserve program correctness. For colocation,
however, our analysis need not be sound because changing theal-
location space is always safe, even if it’s not always profitable.

We exploit our exemption from soundness in several ways. First,
the volatility heuristics mentioned above intentionally ignore cer-
tain connections between objects. We present these heuristics in
detail in the last part of this section. Second, we significantly sim-
plify our algorithm. For example, since colocation is only con-
cerned with overall reachability of one object from another(as op-
posed to pointer aliasing), we do not need to accurately model the
number of pointer hops between objects. This flexibility allows
us to employ a simple and compact representation for the method
summaries used in our interprocedural analysis. Finally, by giv-
ing up soundness we avoid the problems presented by certain Java
language features, such as dynamic class loading, reflection, and
native methods. These features present significant challenges for
sound pointer analysis algorithms [?]. Our analysis can safely ig-
nore these features even in programs that use them, obviating the
need for the so-called “closed-world assumption”.

In the remainder of this section we present our analysis in de-
tail and point out its unique features, particularly those that make
it unsound. We implement this analysis using the Jikes RVM op-
timizing compiler, which includes an internal representation based
on static-single assignment form (SSA) [16]. Each method consists
of a list of simple operations applied to temporary variables (virtual

registers). Our analysis algorithm is flow insensitive in that it does
not associate analysis information with particular program points.
However, since only one definition of a variable reaches eachuse,
SSA form provides some flow sensitivity.

4.1 Basic colocation analysis
The basic colocation analysis builds a graph that represents a con-
servative approximation of the connectivity between objects in a
method. This algorithm resembles Andersen-style pointer analy-
sis [4, 18]: it is flow-insensitive and inclusion-based. Thegraph
it creates captures connectivity among the objects allocated by the
method and connectivity from local variables to those objects. The
compiler then searches this graph to identify potential colocators.
The analysis starts by identifying the relevant componentsof each
method:

S Set of statements in the method (in compiler IR)
V Set of variables in the method
pi 2V Formal parameters – indexed by parameter numberi
as2 S Allocation sites – indexed by statements

Each node in the connectivity graph represents a heap-allocated
object: either an “old” object (pointed to by a parameter) ora new
object (generated by an allocation site). For example, Figures 2
and 3 depict the connection graph for the two example code frag-
ments wherea represents an old node, andB andC represent new
nodes. The graph nodes are identified as follows:

oi 2 Nold A node for each parameterpi – “old” objects
ns2Nnew A node for each alloc siteas – “new” objects
N = Nold[Nnew Set of all graph nodes

Edges in the graph are directed and represent possible points-to
relationships. An edge between two nodes represents a pointer be-
tween two heap-allocated objects. Our analysis does not distin-
guish between the different fields of an object. There are also edges
from elements ofV to nodes in the graph, which represent pointers
from the method’s local variables into the heap. We initialize the
points-to graph with an edge from each of the formal parameters
to its corresponding old object. This initial structure implies that
parameters do not alias each other, which is not generally a safe
assumption.

points-to: (N[V)! 2N Graph edges – a mapping from
a variable or node to its
possible targets8i :points-to(pi) = oi Initialize parameter variables to
point to “old” objects

The analyzer takes one pass over the statements in a method, adding
edges to the points-to graph according to the analysis rulesshown
below. The rules for allocation, assignment, and SSAφ functions
are straight-forward: they just transfer the points-to sets from the
right-hand side expression to the left-hand side variable.

Op Statement Effect
new s:v = new O(); points-to(v) = ns
assign v = y; points-to(v) [=points-to(y)
phi v= φ(v0,...); points-to(v) [= 8i;points-to(vi)
getfield v = y.f; points-to(v) [= points-to(y)
aload v = y[i];

putfield v.f = y; 8m2 points-to(v) :
astore v[i] = y; points-to(m) [= points-to(y)

Unlike other pointer analysis algorithms, our rule forgetfield
(andaload) does not dereference the right-hand side variable. In-
stead, it ignores the field altogether and just treats the statement as
an assignment. Skipping the dereference operation furthersimpli-
fies analysis and it does not affect overall reachability. For example,
we can treatv=y.f asv=y because anything reachable fromy.f
is also reachable fromy.

After it builds the points-to graph, the analysis simply computes
which, if any, allocation nodes are reachable from each parameter
in the graph. We test reachability by computing the closure over the
points-to function for each parameter. A parameter is a potential
colocator for an allocation site if that node is in the closure.

reach(p) = f m j m2points-to(p) _
m2reach(points-to(p))g

coloc(as) = f pi j ns2reach(pi)g
Notice that the analysis may find multiple suitable colocators for
a single allocation site. In early experiments we compared the ef-
fects of choosing different colocation policies: (1) taking the first
colocator, in parameter order, (2) only usingcoalloc if there is a
single colocator, (3) combining multiple colocators at run-time by
taking the conjunction or disjunction of the colocation decisions.
We found, however, no significant difference in the run-timeeffect
of the different policies. Most of the time, the colocators agree on
the colocation decision. Therefore, all the results shown in Sec-
tion 7 use policy (1).

4.2 Interprocedural algorithm
The analysis algorithm described so far is intraprocedural: it only
considers allocations and connections that occur within a single
method. It is common, however, for programs to create objects
in one method and assemble them in a different method. To han-
dle this case, we compute a simple summary for each method and
apply the summary wherever the method is called. Since our anal-
ysis does not require soundness, we can safely ignore methodcalls
when no summary is available. In practice, though, we find the
summaries are critical for effective colocation and we quantify these
benefits in Section 7. Method summaries cover two programming
constructs found frequently in object-oriented programs:factories
and containers.

4.2.1 Factory methods
Factory methods are a common design pattern in object-oriented
programming: a factory method just creates and returns objects on
behalf of other methods, and thus behaves as an allocation routine.
Our solution is to detect these methods, and then treat them as al-
location sites in their callers. We describe the modifications to our
analysis below, and Section 5 shows the run-time instrumentation
for colocation in a factory method.

To detect factory methods we add the following analysis ruleto
collect the set of variablesR that might be returned from a method:

Op Statement Effect
return return v; R[=points-to(v)

At the end of the analysis, the analyzer checks to see if any alloca-
tion nodes are reachable from returned variables. If so, it marks the
method as a factory and records the allocation sites that generate
the returned objects. Section 5 describes how we provide coloca-
tors for these sites.

is f actory(m) = true if9as : as2reach(Rm)
false otherwise

We also need a rule to handle the factory call sites. This rulemirrors
the existing rule for regular allocation sites:

Op Statement Effect
call s: v = obj.m(); if is f actory(m) :

Create nodens as alloc site,
points-to(v) = ns

4.2.2 Connector methods
Another common programming practice is the use of container
classes, such as the standard Java library. Container classes present
a problem for our intraprocedural analysis because they encapsulate
the code that connects new objects to their containers. For example,
at a call toVector.addElement() our intraprocedural analy-
sis cannot determine that this method creates a connection between
the vector and the input argument. Our solution is to providethis
additional information in the form of method summaries.

We compute a connection summary for a method while comput-
ing colocators. In addition to detecting allocation nodes that are
reachable from the parameters, we compute reachability between
parameters. For each parameterpi , if some other parameterp j is
reachable frompi then we record the parameter numbers as a pair:

Summary(m) = f (i; j) j p j 2 reach(pi) g
For example, our analysis generates a summary consisting of(0;1)
for theVector.addElement() method because the new ele-
ment (parameter 1) is attached to the receiver Vector (parameter 0).
During analysis, we use the method summary at a call site by ap-
plying theputfield rule to each of the integer pairs(i; j). Note
that the edges created by this rule might represent many edges in
the callee method, but collapsing those edges into a single edge
does not affect overall reachability.

Op Statement Effect
call obj.m(v0,...); 8(i; j) 2 Summary(m) :

applyvi.f = vj

4.3 Volatility heuristics
This section describes our volatility heuristics, which help prevent
overly aggressive colocation. The colocation analysis described
above detects almost all potential connectivity between the objects
in a program. However, this analysis is too aggressive because pro-
grams often introduce volatile or unstable connectivity. For exam-
ple, programs sometimes quickly overwrite a connection, oronly
install connections under special conditions. Excessive colocation
can force objects with dramatically different lifetimes into the same
space, hurting the efficiency of collection. In our experiments using
generational collectors this effect manifests itself as anexcess of
short-lived objects colocated in the mature space, requiring costly
full-heap collections to recover.

These heuristics are conservative in the sense that if a reference
appears to be volatile then we exclude it from colocation. For some
programs these additions are overly conservative, but in several
cases they prevent pathological behavior.

The code fragment in Figure 4 shows two examples of volatile
connections. The first example creates a new string, but onlyadds
it to the container if it is not already there. At compile time, we
do not know how frequently that condition might be true, so weact
conservatively and avoid colocating the string with the container. In
the second example, the loop fills the container with new objects,
but then immediately clears it. Again, to conservatively prevent
excessive colocation, the analysis prohibits colocation.To capture

1 void Volatile(Container c, Value v) {
2 // -- The newly created string is not always
3 // stored in the container:
4 String value_name = v.toString();
5 if (! c.contains(value_name))
6 c.add(value_name);
7

8 // -- Objects don’t remain in the container
9 // for long...

10 for (...) {
11 c.add(new String(...));
12 }
13 c.clear();
14 }

Figure 4: Examples of volatile connectivity.

this notion of volatility, we place two additional conditions on the
analysis rules and modify the reachability computation.

We place two restrictions on theputfield rule in order to
avoid volatile or uncertain connections. First, we prohibit colo-
cation when theputfield that connects a new object to an old
one is guarded by a condition, but the creation of the new object is
not. We test for this case using post-dominance: We only apply the
putfield rule when theputfield post-dominates the creation
of the stored object.

Second, we prohibit colocation when the program stores the re-
sults of a getfield operation. Our reasoning is that the object pro-
duced by a getfield is already connected to some other data struc-
ture, so the additional connectivity is unlikely to help colocation.
We can imagine cases where this condition would help colocation.
For example, if an object is stored in a temporary object before
being connected to another data structure. We prefer to act conser-
vatively, and find this opportunity is rare.

Our third heuristic is designed to detect cleared data structures.
During the analysis we compute the set of objectsC into which the
program explicitly stores null. We add the following analysis rules:

Op Statement Effect
putfield null v.f = null; C [= points-to(v)
astore null v[i] = null;

During the closure computation we do not follow the outgoing
edges from cleared objects:

reach(p) = f m j m =2C ^
(m2 points-to(p) _

m2 reach(points-to(p)) g
5. RUNTIME SYSTEM
This section describes the run-time components of dynamic object
colocation: (1) Thecoalloc routine, which replaces the regular
memory allocation routine and performs the run-time colocation
test, (2) the mechanism for passing colocators down throughfac-
tory methods to the underlying allocation sites, and (3) an exten-
sion tocoalloc that speculative colocates objects based on their
relative ages. This last feature is more aggressive than thestandard
colocation system, but can improve colocation in collectors that use
an unbounded nursery.

5.1 Coalloc
The compiler replaces calls to the regular memory allocation rou-
tine with acoalloc call only when the analysis finds a suitable
colocator. Figure 5 shows an abstraction of the original code and
its replacement. Since we use two-generational collectorsfor all of
our experiments,coalloc tests the colocator to decide whether
to allocate the new object in the nursery or in the mature space.

Our VM assigns specific address ranges to each of these spaces, so
we can determine which space the colocator occupies by a simple
address comparison. In our collectors the nursery space resides at a
higher range than the mature space, so the less-than test in Figure 5
returns true if the colocator is not in the nursery. Since allocation
time typically represents less than 1% of total time [23], and since
these values are usually in registers, this overhead is negligible.

1 public VM_Address alloc(int bytes) {
2 return nursery.alloc(bytes);
3 }

(a) Original allocation.

1 public VM_Address coalloc(int bytes,
2 VM_Address colocator) {
3 if (! colocator.isZero() &&
4 colocator.LT(NURSERY_START))
5 return matureAlloc(bytes);
6 else
7 return nursery.alloc(bytes);
8 }

(b) Coalloc.

Figure 5: The colocator argument selects the allocation space
in coalloc.

5.2 Factory methods
Factory methods colocate objects based on the use of objectsin the
calling method. Therefore, we provide a mechanism for the caller
to pass a specialfactory colocatordown into the factory method.
Ideally, we might alter the factory method interface to accept an
additional object argument. However, this strategy requires us to
make sure that any potential callers and any factory subclasses are
properly modified to reflect the new interface. Therefore, the cur-
rent system instruments the caller to store the factory colocator in-
side the VM, and the callee retrieves the value and holds it ina
local variable. This strategy is easy to implement and is correct
even if the caller does not recognize the callee as a factory method.
Figure 6 shows an example of this instrumentation. We avoid con-
fusion and contention across threads by allowing the VM to save
factory colocators on a per-thread basis.

1 void someMethod(Container c) {
2

3 VM_save_factory_colocator(c);
4 Element e = Factory.makeElement();
5 c.add(e);
6 }

(a) Caller.

1 class Factory {
2 Element makeElement() {
3 Object factory_colocator =
4 VM_get_factory_colocator();
5 return coalloc(..., factory_colocator);
6 }
7 }

(b) Callee.

Figure 6: The caller passes colocators to Factory methods.

5.3 Speculative age-based colocation
In generational collectors, dynamic object colocation primarily serves
to allocate new objects into the mature spaceonlywhen the coloca-
tor is in the mature space. However, we can also look at the relative
age of a colocator, even if it currently resides in the nursery. Fig-
ure 7 shows a diagram of the nursery space with a colocator close
to the older end of the nursery and the current bump pointer atthe
young end of the nursery. The colocator is almost certainly live at

this point, and thus likely to survive the next collection, especially
for large nurseries. Therefore we can speculatively place the new
object in the mature space when the colocator is old, but still in the
nursery.

colocator bump-ptr

Relative age

Nursery

Figure 7: Age-based colocation: even if the colocator is notin
the mature space, if it is “old enough” we can allocate the new
object in the mature space.

1 public VM_Address coalloc(int bytes,
2 VM_Address colocator) {
3 int age = nursery.cursor.diff(colocator).toInt();
4 if (! colocator.isZero() &&
5 (colocator.LT(NURSERY_START) ||
6 (age > AGE_THRESHOLD)))
7 return matureAlloc(bytes);
8 else
9 return nursery.alloc(bytes);

10 }

Figure 8: Coalloc routine with age-base speculative promotion.

The implementation of this feature involves adding an address-
relative test to thecoalloc routine. Figure 8 shows the modified
coalloc routine with an age-relative colocation test. In Section 7
we show the effect of this policy under an unbounded “Appel-style”
nursery using a 4 MB age threshold. This nursery configuration
delays collection of the nursery as long as possible, resulting in
relatively old objects residing in the nursery instead of inthe ma-
ture space. Age-based colocation places new objects in the mature
space when their colocators are old enough, but not yet in thema-
ture space.

6. METHODOLOGY
This section briefly describes our experimental methodology, in-
cluding our generational collectors, MMTk, Jikes RVM, compile-
time strategy, and platform.

6.1 Generational Collectors
We perform our experiments in an efficient, composable Java mem-
ory management toolkit that implements a wide variety of high
performance collectors that reuse shared components [7]. MMTk
manages large objects (8K or bigger) separately in a non-copy space,
and puts the compiler and a few other system pieces in the bootim-
age, an immortal space. We apply colocation to two generational
collectors with different mature space policies, and two different
nursery configurations.

The first collector is a generational copying collector (GenCopy)
that divides the heap into two parts, a copying nursery for newly
allocated objects, and a mature space that is managed using semi-
space collection [5, 36]. Awrite barrier remembers pointers from
the mature space to the young space. For every pointer store,the
compiler inserts write-barrier code. At execution time, itcondi-
tionally records pointers depending on the collector policy. Gen-
Copy collects the nursery when it is full (see nursery policydis-
cussion below). It finds all reachable objects by tracing from the
roots (stacks, registers, statics, and remembered set) andpromot-
ing survivors into the mature space. We use a variant of depth-first

copying order that attains good mutator locality [23]. Since the
mature space is a semi-space, it must reserve half of its space for
copying.

The second collector is a generational collector with a mark-
sweep mature space (GenMS). The mark-sweep space uses a seg-
regated free-list modeled after Lea’s allocator [26]. The system
collects this space by tracing and marking the live objects using
bit maps, and lazily finds free slots during allocation. Tracing is
thus proportional to the number of live objects, and reclamation
is incremental and proportional to allocation. MMTk uses 51size
classes that attain a worst case internal fragmentation of 1/8. Col-
lection of the nursery proceeds in the same manner as GenCopy.
Since GenMS need not reserve half the heap for copying, it is more
space efficient than GenCopy. However, our results confirm recent
work showing that copying collectors produce better mutator lo-
cality, which outweighs space efficiency in some cases [23].See
Blackburn et al. for additional MMTk details [6, 7].

We test both GenCopy and GenMS under two nursery config-
urations: abounded4 MB nursery and an unboundedAppel [5]
nursery. In MMTk, theboundednursery takes a command line
parameter as the initial nursery size, collects when the nursery is
full, and resizes the nursery below the bound only when the ma-
ture space cannot accommodate a nursery of survivors. When the
nursery size falls below a lower bound (we use 256KB), it triggers
a mature space collection. AnAppel nursery uses the same dis-
cipline, but with the heap size as the upper bound. Previous work
finds that these two have similar performance, but the Appel config-
uration is sometimes slightly faster and the bounded 4 MB nursery
has lower average pause times [6].

Colocation is sensitive to the nursery configuration because it
determines which objects end up in the mature space and when.
For example, with an unbounded nursery the first collection only
occurs after the whole heap has been exhausted, which delaysthe
initiation of colocation. With a 4 MB nursery, collection occurs
earlier, allowing colocation to start working earlier. Forthis reason,
we focus on the 4 MB bounded nursery.

6.2 IBM Jikes RVM and compiler
Jikes RVM (v 2.3.0.1) is a high-performance VM written in Java
with an aggressive adaptive just-in-time optimizing compiler [2,
3]. We use configurations that pre-compile as much as possible,
including key libraries and the optimizing compiler itself(theFast
build-time configuration), and turn off assertion checking.

Our experiments direct the compiler to optimize all methodsin
the application before executing the program and measuringperfor-
mance. While this strategy is not strictly necessary, it significantly
improves the effectiveness of colocation. We added our colocation
analysis and instrumentation phase to the sequence of high-level
optimizations that take place in SSA form. The compiler analysis
goes bottom up on call graph to obtain interprocedural summaries
for all methods (see Section 4). The overhead of optimizing the
entire application is quite high, but the fraction of this overhead
added by the colocation analysis is only 5% to 10%. By compari-
son, other pointer analysis and escape analysis, appear to be signif-
icantly more costly [10, 15]. In addition to the analysis, the more
complex allocation routine places a heavier load on the optimizing
compiler. For now we view colocation as an ahead-of-time opti-
mization, which might be suitable for a Java-to-bytecode compiler.

6.3 Experimental Platform
We perform all of our experiments on a 3.2 GHz Intel Pentium 4
with hyper-threading enabled, with an 8KB 4-way set associative
L1 data cache, a 12Kµops L1 instruction trace cache, a 512KB uni-

fied 8-way set associative L2 on-chip cache, 1GB main memory,
and runs Linux 2.6.0.

7. RESULTS
This section presents our findings from applying dynamic coloca-
tion to the SPEC JVM98 benchmarks, under the four generational
garbage collector configurations (see Section 6.1). In thissetting,
the primary benefit of colocation is to reduce the cost of nursery
collections by allocating some objects directly in the mature space.
We start by describing the potential for colocation: the amount of
memory copied from the nursery by the unmodified collectors.We
quantify runtime overhead ofcoalloc, which is on average less
than 1%, using a configuration that includes all colocation instru-
mentation, but always allocates objects in the nursery. We examine
the tradeoff between accuracy and efficacy of colocation, finding
that our analysis finds much of the potential while making some,
but not many errors.

We then present the central result of the paper. We examine the
impact of colocation on performance by measuring garbage col-
lection time, mutator time, and overall execution time. Colocation
substantially reduces copying from the nursery without overbur-
dening the mature space. The resulting collection time improve-
ments translate into total execution time improvements. Coloca-
tion is particularly effective on the three benchmarks withhigh
nursery survival rates. Finally, we explore the design space of the
colocation analysis by showing the impact of turning off various
features, including the volatility heuristics and the interprocedural
summaries.

7.1 Potential of colocation
Table 2 presents the allocation characteristics of our benchmarks:
the total allocation in MB (Total) and the amount the collector pro-
motes from the nursery to the mature space (Copy) in MB and as
a percentage. We order programs by their nursery survival rate.
These base statistics show that colocation in this generational set-
ting has the potential to improvepseudojbb, javac, anddb since a
significant fraction of their nursery objects survive. We omit com-
press because it allocates only 3 MB into the nursery, and thus it
never triggers a nursery collection.

Table 1 shows the compile-time properties of the benchmarks:
the numbers of methods and allocation sites, as well as the spe-
cific colocation decisions the compiler generates. The second col-
umn shows the number of methods identified as factory methods.
The third column shows the total number of allocation sites.The
last three columns show the number of allocation sites converted
to coalloc. In general, the compiler finds many opportunities
for colocation, but these opportunities comprise less thanhalf of
all the allocation sites. For factories, we separate out theuses of
coalloc inside the factory method itself from uses of the factory
method in the caller.

Methods Allocation sites
Factory

Benchmark total Factory Total coalloc inside caller
pseudojbb 598 89 1404 120 77 155

javac 919 121 1953 512 274 431
db 192 18 683 83 25 36

mtrt 322 18 747 138 24 35
jack 430 22 1386 198 35 90

raytrace 324 19 751 138 25 35
jess 605 49 1266 255 159 88

Table 1: Compile-time colocation decisions

7.2 Colocation overhead
Colocation incurs a small runtime overhead that results from the ad-
ditional test on the colocator object in each call tocoalloc. We
measure this overhead using a version ofcoalloc that includes
the test, but still allocates all objects in the nursery. This configu-
ration separates the direct overhead ofcoalloc from secondary
effects of colocation, such as changes in locality. Figure 9shows
that that the overhead of the additional test is on average less than
1%, and thus a negligible consideration.

7.3 Accuracy and efficacy of colocation
In our current implementation, colocation reduces copyingfrom
the nursery by allocating some new objects in the mature space, by-
passing the nursery. This effect, however, only yields a benefit un-
der two conditions: first, colocation must select the right objects to
place in the mature space, and second, it must do so often enough to
significantly lower nursery survival rate. These two requirements,
which we refer to asaccuracyandefficacyrespectively, are com-
peting forces. For example, we could increase efficacy arbitrarily
by allocating most or all new objects in the mature space, butsince
many of these objects do not belong there the resulting inaccuracy
would force many expensive full-heap collections. Similarly, we
could improve accuracy by using a more conservative colocation
analysis, but the low efficacy would yield little improvement in per-
formance. The following measurements show that our formulation
effectively balances these two requirements.

Ideally colocation would always select exactly those objects that
would have survived nursery collection, so that no objects are copied
– perfect accuracy and efficacy. For a number of reasons, however,
colocation cannot attain this goal. First, some nursery survivors

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120 140

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenCopy
Coloc Overhead

(a) Mean Mutator Time

1

1.05

1.1

1.15

1.2

1.25

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120 140

N
or

m
al

iz
ed

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenCopy
Coloc Overhead

(b) Mean Total Time

Figure 9: Colocation overhead (mean over all benchmarks):
colocation instrumentation has a low overhead.

are not connected to objects in the mature space but are instead
reachable from the stacks and global variables. Second, coloca-
tion can only start to place new objects directly in the mature space
once some initial set of colocators is already there. Therefore colo-
cation requires a ‘warm up’ of at least one nursery collection to
produce these initial colocators. Third, some allocation sites pro-
duce objects whose lifetimes are not accurately predicted by their
connectivity. In these cases, our volatility heuristics conservatively
place these objects in the nursery to avoid triggering excess full-
heap collections. Finally, even with these heuristics, colocation can
mistakenly place objects in the mature space.

Figure 10 shows the effects of colocation on the allocation and
copying of each benchmark as compared to the unmodified collec-
tors. To focus on accuracy, we measure these values using specially
instrumented collectors configured with a 4 MB nursery with an in-
finite mature space. (Table 2 also presents these raw numbersand
adds percentages.) Each bar shows the amount of memory that
ends up in the mature space, broken down into two parts: the dark
part represents memory copied from the nursery and the lightpart
represents memory allocated directly in the mature space. The bar
labeled “Base” shows the behavior of the unmodified collections,
which allocate all objects in the nursery. We normalize the graph to
this value because it represents the potential for colocation. The bar
labeled “Coloc” shows the result of colocation. Our goal is to push
down the dark bar (reduce copying) without allowing the total size
of the bar (copying plus mature space allocation) to significantly
exceed the base value.

For all but one benchmark, colocation reduces copying by 50%
to 75%. Colocation is usually accurate as well, increasing mature
space allocation by 1 to 6% on four programs, but is not accurate
on pseudojbb. We discuss the impact ofpseudojbb’s behavior
on performance below.jess has the fewest nursery survivors, and
the smallest reduction. Furthermore, colocation increases mature
space promotion usage by 28%, but in absolute terms the amount of
memory (0.6 MB) is so low that it has little impact on performance.
The most significant reductions are forjavac, pseudojbb, anddb
which are non-trivial applications that allocate large amounts of
memory and have high nursery survival rates.

7.4 Write barrier
Colocation also has the potential to reduce intergenerational point-
ers, and therefore reduce the number of write barriers. The last two
columns of Table 2 show the percent of all writes that the write
barrier records in the remembered set (remset). We observe this
secondary reduction forpseudojbb, javac, anddb, which is not
surprising since these are the benchmarks for which colocation is
most effective. Forjess andjack colocation slightly increases the
number of remset entries. Forraytrace andmtrt (which are closely
related programs), however, the number of remset entries grows
considerably. As an absolute percentage, the number is still low.
These could be errors, but Figure 11 shows how colocation canin-
crease remset entries, while still improving overall performance. If
only part of a data structure is colocated in the mature spacethen a
broad slice of it may span the boundary between spaces.

7.5 Performance
We present the geometric mean for collection, mutator, and total
time (Figure 12) using a 4 MB bounded nursery, and the individual
program results (Figures 13, 14, and 15) with and without coloca-
tion.

Figure 12 shows that colocation consistently reduces collector
work in a bounded 4 MB nursery, reducing collection times from
40% to 60% lower in large heaps. In overall time, colocation pro-

Allocation (MB) Write barriers
Base Colocation % taken

Total Copy % Surv % Copy % Surv % Mature space Base Colocation
pseudojbb 216 59.8 27.7 23.1 10.7 63.6 5.72 3.51

javac 185 47.7 25.8 13.8 7.5 34.9 2.70 0.99
db 82 7.7 9.4 4.1 5.0 3.7 1.22 0.17

mtrt 142 6.4 4.5 3.3 2.3 3.2 0.07 0.36
jack 231 6.7 2.9 3.6 1.6 4.2 8.19 8.57

raytrace 135 3.2 2.3 0.9 0.7 2.4 0.01 0.33
jess 261 2.1 0.8 2.0 0.8 0.7 0.09 0.17

Table 2: Benchmark Characteristics. Copying and colocation are measured using a 4 MB nursery and infinite mature space.

Base
Base

Base
Base

Base
Base

Base
Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

0

50

100

150

M
em

or
y

pu
t i

n
m

at
ur

e
sp

ac
e

(a
s

%
 o

f b
as

e) Colocate
CopyMB

MB

pseudojbb javac db mtrt jack raytrace jess

59.8 47.7 7.7 6.4 6.7 3.2 2.1

63.6

34.9 3.7 3.2
4.2

2.4

0.7

86.7

48.7 7.8 6.5
7.8

3.4

2.7

23.1
13.8

4.1 3.3 3.6

0.9

2.0

Figure 10: Colocation reduces copying without significantly increasing mature-space allocation in all but two cases.

1

1.5

2

2.5

3

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(a) Mean GC Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(b) Mean Mutator Time

1

1.05

1.1

1.15

1.2

1.25

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(c) Mean Total Time

Figure 12: Colocation results with 4MB nursery: (a) Colocation reduces work for the garbage collector, (b) improves locality for
copying mature space, (c) these benefits are reflected in overall execution time.

duces reasonable improvements for the GenCopy collector, but not
for the GenMS collector. This result is explained by the muta-
tor time graph. In a copying mature space, colocation improves
locality without significant allocation overhead. In a mark-sweep
mature space, however, locality is poor and allocation is more ex-
pensive – objects placed directly in the mature space cannoteven
benefit from fleeting nursery locality [23]. This effect is likely to
hurt the mutator time in any scheme that allocates objects directly
in the mature space.

Figure 13 reports the reduction in collection time for the indi-
vidual benchmark programs. These results show four kinds ofbe-
havior under colocation. First, forjavac, raytrace, jack, andmtrt
colocation chooses the right objects to allocate in the mature space,
reducing collection time for both collectors and across a range of
heap sizes. Second, forjess andjack, our analysis detects the po-
tentially high mutation rate in the mature space (using the volatility

heuristics described in Section 4) and prevents incorrect colocation.
Without this special case, colocation can cause collectiontime in
jess to grow by a factor of three or four.

Third, for db colocation chooses the right objects to allocate in
the mature space, but the performance improvement is not dueto
the reduction in garbage collection time, but due to the reduction
in mutator time. We only see this improvement in GenCopy, which
suggests that it is a result of locality: colocation places critical data
structures together in the mature space in allocation order.

Finally, for pseudojbb colocation places many objects in the
mature space that would not have survived a nursery collection. At
larger heap sizes the cost of these incorrect decisions is hidden –
pseudojbb even shows a measurable improvement. In small heaps
excess allocation in the mature space triggers whole-heap collec-
tions more frequently, and degrades performance.

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(a)pseudojbb GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(b) javac GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

40 60 80 100 120 140

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(c) db GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(d) mtrt GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(e) jack GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(f) raytrace GC Time

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

0.6

0.8

1

1.2

20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(g) jess GC Time

Figure 13: GC Time with and without Colocation, 4 MB bounded nursery.

7.6 Design space analysis
We explore the analysis design space by turning off components of
the interprocedural analysis and volatility heuristics. These experi-
ments use an unbounded mature space to isolate nursery behavior.
The results, shown in Figures 16, 17, and 18, use the same axes
as Figure 10 described at the beginning of this section. We also
present performance numbers using the unbounded nursery.

Figure 16 shows the effects of removing the interproceduralcom-
ponents of the analysis. The left bar shows the full colocation algo-
rithm (same as Figure 10.) The middle bar shows the results with-
out any interprocedural summaries. The effect is most detrimen-
tal to the larger benchmarks such asjavac, jack, andpseudojbb,
which rely on complex data structures to store their data. The right
bar shows the results of excluding factory colocation: thisconfigu-
ration effectively disables colocation for programs that rely heavily
on factories, such aspseudojbb. In fact,pseudojbb allocates al-
most all important data structures through a single factory.

Figure 17 shows the effects of turning off the analysis heuris-
tics that prune volatile references out of the connectivitygraph.
For some benchmarks eliminating the putfield and cleared-object
tests actually improves performance – these programs contain ref-

erences that appear volatile, but are in fact stable. However, the
heuristics are critical for many of the programs, which would oth-
erwise rapidly fill the mature space with garbage.jess andjack, in
particular, use container classes to hold ephemeral objects.

Figure 18 shows the effects of using speculative age-based colo-
cation (see Section 5). This feature primarily benefits smaller bench-
marks, such asdb andmtrt, which allocate many long-lived objects
in the first nursery collection. Speculative colocation allows these
programs to put objects in the mature space before the first nursery
collection.

This feature also helps colocation work more effectively inan
unbounded Appel nursery [5]. Figure 19 shows the geometric means
of collector time, mutator time, and overall time using an Appel
nursery. Colocation is less effective in this nursery configuration,
but still yields 15% to 25% improvement in collection time for
GenMS. These improvements occur for the smaller heap sizes,where
performance improvements are harder to obtain. Unfortunately,
colocation degrades locality in GenMS, which overwhelms this ben-
efit and results in a net slowdown for the overall runtimes.

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

6.4

6.6

6.8

7

7.2

7.4

7.6

50 100 150 200 250

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(a) pseudojbb Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

4.6

4.8

5

5.2

5.4

40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(b) javac Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

11

11.5

12

12.5

13

40 60 80 100 120 140

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(c) db Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(d) mtrt Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

2.8

2.9

3

3.1

3.2

3.3

20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(e) jack Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(f) raytrace Mutator Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55
20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(g) jess Mutator Time

Figure 14: Mutator time with and without Colocation, 4 MB bou nded nursery.

8. CONCLUSION
This paper introduces dynamic object colocation, a new coopera-
tive compiler and runtime optimization to improve the performance
of generational and other incremental garbage collectors.We demon-
strate a practical compiler analysis that computes object connectiv-
ity information and passes it to the garbage collector so that con-
nected data structures can be colocated in the same garbage col-
lection space. Our analysis finds many opportunities for profitable
colocation and reduces garbage collection time, sometimesdramat-
ically, on our benchmarks for two generational collectors.These
improvements translate to improvements in total executiontime as
well. Colocation makes a unique use of static and dynamic infor-
mation, and should play well with other optimizations to further
improve performance. Previous work suggests heap organizations
that segregate objects by connectivity, but with the restriction that
the objects must never install cross region pointers [21, 22]. The
success of colocation instead suggests collector organizations that
group connected objects into separately collected regionswhere a
write barrier handles cross region pointers.

9. REFERENCES
[1] O. Agesen and A. Garthwaite. Efficient object sampling via

weak references. InACM International Symposium on
Memory Management, pages 121–127, Minneapolis, MN,
Oct. 2000.

[2] B. Alpern et al. Implementing Jalapeño in Java. InACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 314–324, Denver, CO,
Nov. 1999.

[3] B. Alpern et al. The Jalapeño virtual machine.IBM Systems
Journal, 39(1):211–238, February 2000.

[4] L. O. Andersen.Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

[5] A. W. Appel. Simple generational garbage collection andfast
allocation.Software Practice and Experience,
19(2):171–183, 1989.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
ACM SIGMETRICS Conference on Measurement &
Modeling Computer Systems, pages 25–36, New York, NY,

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5
6.5

7

7.5

8

8.5

9

9.5
50 100 150 200 250

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(a)pseudojbb Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

5

5.5

6

6.5

40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(b) javac Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5
40 60 80 100 120 140

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(c) db Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(d) mtrt Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

3

3.2

3.4

3.6

3.8

4

20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(e) jack Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(f) raytrace Total Time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

2.4

2.6

2.8

3

3.2

20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
Coloc GenMS

GenCopy
Coloc GenCopy

(g) jess Total Time

Figure 15: Total Time with and without Colocation, 4 MB bounded nursery.

June 2004.
[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and

water? High performance garbage collection in Java with
JMTk. In Proceedings of the International Conference on
Software Engineering, pages 137–146, Scotland, UK, May
2004.

[8] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock.
In ACM Conference on Programming Languages Design and
Implementation, pages 153–164, Berlin, Germany, June
2002.

[9] S. M. Blackburn, S. Singhai, M. Hertz, , K. S. McKinley, and
J. E. B. Moss. Pretenuring for Java. InACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 342–352, Tampa, FL, Oct. 2001. ACM.

[10] B. Blanchet. Escape analysis for Java: Theory and practice.
ACM Transactions on Programming Languages and Systems,
25(6):713–775, Nov. 2003.

[11] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. InACM Conference on
Programming Languages Design and Implementation, pages

296–310, White Plains, NY, June 1990.
[12] P. Cheng, R. Harper, and P. Lee. Generational stack

collection and profile-driven pretenuring. InACM
Conference on Programming Languages Design and
Implementation, pages 162–173, Montreal, Canada, May
1998.

[13] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. InACM Conference on Programming
Languages Design and Implementation, pages 1–12, Atlanta,
GA, May 1999.

[14] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
ACM International Symposium on Memory Management,
pages 37–48, Vancouver, BC, Oct. 1998.

[15] J. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Stack allocation and synchronization optimizations
for Java using escape analysis.ACM Transactions on
Programming Languages and Systems, 25(6):876–910, Nov.
2003.

[16] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

No-sum
m

No-sum
m

No-sum
m

No-sum
m

No-sum
m

No-sum
m

No-sum
m

No-fact

No-fact

No-fact

No-fact

No-fact

No-fact

No-fact

0

50

100

150

M
em

or
y

pu
t i

n
m

at
ur

e
sp

ac
e

(a
s

%
 o

f b
as

e) Colocate
CopyMB

MB

pseudojbb javac db mtrt jack raytrace jess

63.6

34.9 3.7 3.2
4.2

2.4

0.7

86.7

48.7 7.8 6.5
7.8

3.4

2.7

23.1
13.8

4.1 3.3 3.6

0.9

2.0
0.1 17.4 0.1 3.5 0.9 2.4

0.460.0 49.5 7.8 6.6 6.8 3.4
2.4

59.9

32.1

7.7

3.1

5.9

0.9

2.0
0.7 17.5 3.7 5.4 3.9 2.4

0.7
61.3 48.6 7.8 6.7 7.4 3.4

2.7

60.6

31.1
4.1

1.3

3.4

0.9

2.0

Figure 16: Interprocedural analysis is important, particularly for the larger benchmarks such asjavac, jack, and pseudojbb.

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Any-clear

Any-clear

Any-clear

Any-clear

Any-clear

Any-clear

Any-clear

Any-put

Any-put

Any-put

Any-put

Any-put

Any-put

Any-put

0

50

100

150

200

M
em

or
y

pu
t i

n
m

at
ur

e
sp

ac
e

(a
s

%
 o

f b
as

e)

Colocate
CopyMB

MB

pseudojbb javac db mtrt jack raytrace jess

63.6

34.9 3.7 3.2
4.2

2.4

0.7

86.7

48.7 7.8 6.5
7.8

3.4

2.7

23.1
13.8

4.1 3.3 3.6

0.9

2.0

78.0

35.2 3.7 3.8

7.8

2.7

88.6

48.4 7.8 6.5 3.4

10.6
13.2

4.1
2.7

6.0

0.6
0.7

87.3
51.8

3.7 3.1

5.6

2.4

0.7

104.3
76.8

7.8 6.5

8.5

3.4

2.7

17.1

25.1 4.1 3.4
2.9

0.9

1.9

Figure 17: Volatility heuristics effectively prevent excessive colocation, particular injess which otherwise puts 150 MB in the mature
space.

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Coloc

Age2M
B

Age2M
B

Age2M
B

Age2M
B

Age2M
B

Age2M
B

Age2M
B

0

50

100

150

M
em

or
y

pu
t i

n
m

at
ur

e
sp

ac
e

(a
s

%
 o

f b
as

e) Colocate
CopyMB

MB

pseudojbb javac db mtrt jack raytrace jess

63.6

34.9 3.7 3.2
4.2

2.4

0.7

86.7

48.7 7.8 6.5
7.8

3.4

2.7

23.1
13.8

4.1 3.3 3.6

0.9

2.0

66.6

36.0 5.7 4.8
4.2

2.4

0.8

89.2

49.6 7.8 6.6
7.8

3.3

2.7

22.6
13.7 2.1 1.9

3.6

0.9

1.9

Figure 18: Speculative age-based-colocation helps the smaller benchmarks such asdb and mtrt which need to start colocation before
the first nursery collection.

form and the control dependence graph.ACM Transactions
on Programming Languages and Systems, 13(4):451–490,
Oct. 1991.

[17] T. Domani, G. Goldshtein, E. Kolodner, E. Lewis,
E. Petrank, and D. Sheinwald. Thread-local heaps for Java.
In ACM International Symposium on Memory Management,
pages 76–87, Berlin, Germany, June 2002.

[18] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive

interprocedural Points-to analysis in the presence of function
pointers. InACM Conference on Programming Languages
Design and Implementation, pages 242–256, June 1994.

[19] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In
ACM Symposium on the Principles of Programming
Languages, St. Petersburg Beach, FL, Jan. 1996.

[20] T. L. Harris. Dynamic adaptive pre-tenuring. InACM

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc Age-based GenMS

GenCopy
Coloc Age-based GenCopy

(a) Mean GC Time

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc Age-based GenMS

GenCopy
Coloc Age-based GenCopy

(b) Mean Mutator Time

1

1.05

1.1

1.15

1.2

1.25

1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

GenMS
Coloc Age-based GenMS

GenCopy
Coloc Age-based GenCopy

(c) Mean Total Time

Figure 19: Colocation results with unbounded nursery: Colocation yields less of a benefit for collection time, and incurs a higher
mutator time overhead.

Nursery

Old space

(a) No colocation

Nursery

Old space

(b) With colocation
Figure 11: Colocation can increase remset sizes even when itis
working correctly.

International Symposium on Memory Management, pages
127–136, Minneapolis, MN, Oct. 2000.

[21] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based
garbage collection. InACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
359–373, Anaheim, CA, Oct. 2003.

[22] M. Hirzel, J. Hinkel, A. Diwan, and M. Hind. Understanding
the connectivity of heap objects. InACM International
Symposium on Memory Management, pages 36–49, Berlin,
Germany, June 2002.

[23] X. Huang, Z. Wang, S. M. Blackburn, K. S. McKinley,
J. E. B. Moss, and P. Cheng. The garbage collection
advantage: Improving mutator locality. InACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications, Vancouver, BC, 2004. To appear.

[24] R. L. Hudson and J. E. B. Moss. Incremental garbage
collection for mature objects. In Y. Bekkers and J. Cohen,
editors,International Workshop on Memory Management, St.
Malo, France, volume 637 ofLecture Notes in Computer
Science. Springer-Verlag, 1992.

[25] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type
directed garbage collection to improve locality. In Y. Bekkers
and J. Cohen, editors,ACM International Workshop on
Memory Management, number 637 in Lecture Notes in

Computer Science, pages 404–425, St. Malo, France, Sept.
1992. Springer-Verlag.

[26] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[27] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects.Communications
of the ACM, 26(6):419–429, 1983.

[28] F. Qian and L. Hendren. An adaptive, region-based allocator
for Java. InACM International Symposium on Memory
Management, Berlin, Germany, June 2002.

[29] N. Sachindran and J. E. B. Moss. Mark-Copy: Fast copying
GC with less space overhead. InACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 326–343, Anahiem, CA, Oct. 2003.

[30] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh.
Exploiting prolific types for memory management and
optimzations. InACM Symposium on the Principles of
Programming Languages, pages 295–306, Portland, OR, Jan.
2002.

[31] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, March 1999.

[32] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[33] D. Stefanović, K. McKinley, and J. Moss. Age-based
garbage collection. InACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
370–381, Denver, CO, Nov. 1999.

[34] D. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation. InACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 1–17, San Diego, California, Nov. 1988.

[35] D. Ungar and F. Jackson. An adaptive tenuring policy for
generation scavengers.ACM Transactions on Programming
Languages and Systems, 14(1):1–27, 1992.

[36] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. InACM
Software Engineering Symposium on Practical Software
Development Environments, pages 157–167, April 1984.

[37] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective
static-graph reorganization to improve locality in
garbage-collected systems. InACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages
177–191, Toronto, Canada, June 1991.

