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Abstract

Despite large caches, main-memory access latencies atifiec significant
performance losses in many applications. Numerous harehaad soft-

ware prefetching schemes have been proposed to tolerase th&ncies.
Software prefetching typically provides better prefetchuaacy than hard-
ware, but is limited by prefetch instruction overheads alnel tompiler's

limited ability to schedule prefetches sufficiently far ivance to cover
level-two cache miss latencies. Hardware prefetching careffective at
hiding these large latencies, but generates many uselesfetpnes and
consumes considerable memory bandwidth. In this paper, rogope a

cooperative hardware-software prefetching scheme caBeitied Region
Prefetching (GRP), which uses compiler-generated hinteéed in load in-

structions to regulate an aggressive hardware prefetclengine. We com-
pare GRP against a sophisticated pure hardware stride prhér and a

scheduled region prefetching (SRP) engine. SRP and GRP tsieobest
performance, with respective 22% and 21% gains over no fofafeg, but

SRP incurs 180% extra memory traffic—nearly tripling bardtfvirequire-

ments. GRP achieves performance close to SRP, but with aeiggr of

the extra prefetching traffic, a 23% increase over no préietg. The GRP
hardware-software collaboration thus combines the accyraf compiler-

based program analysis with the performance potential gfegsive hard-
ware prefetching, bringing the performance gap versus dgoeil2 cache
under 20%.

1

Modern out-of-order processors can tolerate latenciegrfoiti-
cycle level-one cache hits, and many of the level-one cadksas
that result in level-two hits [42]. However, the hundredscygt
cles that result from DRAM accesses cannot be tolerateds thu
causing significant performance degradations. For the QP&T
benchmarks running on a modern, high-performance micogsro
sor, over half of the time is spent stalling for loads thatsmisthe
level-two cache [28]. We observe similar results in our datians

for a subset of SPEC2000 benchmarks and Sphinx, a speedh reco
nition application [27]. Figure 1 compares the performanta
system with a realistic memory hierarchy versus one withréepe

L1 cache and one with a perfect L2 cache, in the leftmost sthck
bar for each benchmark. The benchmarks are sorted by thefsize
the gap between a realistic system and one with a perfectdtieca
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latencies [28]. Hardware only schemes can prefetch spagial
gions [10, 11, 22, 34, 38], pointer chains [14, 21, 35], omrec
ring patterns [26]. While these schemes can hide much of #&ia m
memory access time, they can also consume substantial &noun
of memory bandwidth. This additional traffic need not degrad
uniprocessor performance, but it increases power consomgind
will likely degrade performance on multiprocessors. Sioffechip
bandwidth will be the dominant limiter of scalability fortfuire chip
multiprocessors (CMPs) [20], prefetch schemes that coasand-
width inefficiently will not be practical. While some schesiérot-
tle prefetching when the accuracy drops below a threshbkely t
then miss opportunities for issuing useful prefetches.[16]

In this paper, we propose a cooperative hardware/software
prefetch framework called Guided Region Prefetching (GRi®)
GRP, sophisticated compiler analysis is used to producehasgt
of load hints, including the presence or absence of spatiallity,
pointer structures, or indirect array accesses. A runtiareare
engine, triggered by L2 cache misses, generates prefebeises]
on the compiler’s hints. GRP thus benefits from compiler ysial
of application reference patterns, but—unlike traditicsattware
prefetching—the compiler is not required to generate oeduale
individual prefetch addresses. Because the hardware ajesghe
prefetches, it can run far ahead of the missing referencesaise
the compiler guides it, the hardware need not struggle tacked
future references with complex pattern matching on priceases
stored in large tables.

Using previously proposed techniques [28], the GRP hard-
ware prefetching engine keeps uniprocessor bus contelativhy
prefetching only when the memory bus is otherwise idle, aepk
cache pollution low by loading prefetches into the LRU sethef
L2 cache. Without compiler support, this prefetching haaciwis
effective at improving performance, but consumes copicarsdb
width. Through GRP, the compiler informs the hardware ofiapp
tion reference patterns, enabling the hardware to pretetshvhen
it is likely to be effective. We evaluate compiler hints tmaark
loads with the following hintsspatial-prefetch the spatial region
around a loadsize-how many lines to fetch on a spatial reference;
pointerprefetch by following the pointer in the load’s cache line;
recursive-prefetch this pointer data structure recursively. §iae
hints, the compiler can encodevariable-size regiorthat specifies
how much to prefetch based on enclosing loop bounds, ingttad

a geometric mean performance gap of 33.7%. As a summary of using a fixed value. The compiler also generates indiredefmie-

our results, we also show the performance afforded by tlifictra
efficient GRP L2 prefetching scheme, displayed as the rightm
bar for each benchmark.

To tolerate these latencies, researchers have proposadea la
number of both software and hardware prefetching schemesh E
of these two classes of prefetch solutions have distincartdges
and drawbacks. Pure software prefetching is typically lyigtt-
curate, but incurs runtime overhead and cannot issue pheet
sufficiently far in advance of a load to hide main memory asces

ing instructions which trigger prefetching a set of refemsnusing
an indirection array.

This cooperative GRP hardware/software interface imgohe
high performance of the previously proposed scheduledoregi
prefetching (SRP) [28] by over 10% on two of the SPEC2000
benchmarks, and match the performance of SRP on the rest. Ta-
ble 1 shows a summary of the GRP results using the geometric
mean. We show GRP both with (GRP/Var) and without (GRP/Fix)
variable-size region prefetching. Without prefetchinige imean
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Figure 1: Processor performance
traffic | Performance gay a load instruction. Conceptually, the latency of a giverdlaa
Speedup| increase| from perfect L2 struction is hidden by inserting a prefetch with the sameatifie
No prefetching 1 1 33.72 address into the instruction stream sufficiently far in axbesof the
Stride prefetching| 1.147 1.09 23.99 load. Because the compiler only inserts prefetches for kngw
SRP| 1.226 2.80 18.75 very likely) loads, software prefetch accuracy is typigddigh. In
GRP/Fix | 1.216 1.62 19.42 practice, the compiler faces two key challenges in dateeprking:
GRP/NVar| 1.212 1.23 19.69 selectionandscheduling

Because prefetch instructions occupy instruction caclaeesp
pipeline slots, and data cache ports, the compiler seiscta sub-
set of the loads for which to generate prefetches. Accuatede-
performance across the benchmark suite is 33.7% lower tpana time identification of the loads that will cause cache misgesin-
fect level-two cache. Stride prefetching (using the Shexivet al. time is complex, requiring both knowledge of hardware paam
design [38]) provides a 15% speedup over no prefetching. , SRP ters (cache block size, capacity, and associativity) aptiisticated
which uses no compiler analysis, outperforms stride peafeg by code analysis (e.g., to determine the volume of other datasaed
7%, but consumes excessive memory bandwidth, a 180% imcreas between references to a particular block) [7, 17, 33, 45].
over a system with no prefetching. GRP provides near-etgriva The compiler also faces the difficult challenge of issuing th

Table 1: Summary of prefetching performance and traffic

performance to SRP but with substantially less traffic, amease
of only 23% over the not prefetching. This reduction in taffaves

power and is more amenable to multiprocessor systems, valere

ditional traffic can directly affect performance. Both SRRRI&RP
still incur a 19% gap versus a perfect L2.

We review related work in Section 2, showing that much of it

does not pursue a balance between aggressive prefetchdnef-an

prefetches sufficiently early to hide the memory latency,rimi so
early that useful data are needlessly evicted. To find thiat pibe
compiler must estimate cache miss latencies and run-tisteuicy
tion execution rates [25]. The compiler is further constedi in that
it cannot schedule a prefetch until it can compute the éffectd-
dress. While this constraint is not significant for arrays38], it
limits compiler-based greedy pointer prefetching [5, 3, Jump

ficient use of memory bandwidth. Section 3 describes the-hard pointers bypass this limitation by identifying records ese links
ware used for the GRP hardware prefetching engine, and how it ahead in the structure, but require much more sophisticatett

uses the hints. Section 4 describes the compiler analysistail.

Section 5 evaluates the degree to which a GRP engine canthéang

performance of most benchmarks close to that of a perfecatBe
while keeping memory traffic increases small. Section 5 afso-
pares the performance of GRP to that of stride prefetchiy e

conclude in Section 6 that GRP eliminates main memory aesess
as a source of performance loss for all but four of the SPEC200

benchmarks andphinx Of those four, one simply requires more
memory bandwidth, and can benefit from more sophisticatéid so

ware/hardware cooperation.

2 Related Work

In this section, we focus on the most pertinent aspects dftige
body of literature on software and hardware data prefegglgtong
with the small number of previously proposed hybrid schemes

Software prefetching relies on non-binding prefetch ingtiopns
that bring the indicated block of memory into the cache, mil@h

ysis, dynamic updates, and the addition of a jump pointeatihe
object [5, 30, 36]. Other approaches prefetch pointer aegus
at call sites [29], and decouple prefetches from the maignam
using a separate thread context [13, 24, 31].

The converse approach is hardware-only prefetching, irchvhi
the hardware predicts prefetch addresses by observingyeapns
runtime behavior. Since prefetches do not not incur ovetlrethe
processor itself, the hardware need not be as selective eisaing
prefetch operations. Recent work shows that simple dynpnoc-
itization techniques eliminates memory bandwidth contenand
cache pollution problems [28]. However, unlike the compitbe
hardware has no direct knowledge of future memory reference
the key challenge in hardware-based prefetching is denémmia
reasonable set of predicted addresses to use as prefegehstar
Hardware prefetching thus suffers relative to softwardgching
in both accuracy (because the predictions may be wrong) and ¢
erage (because some addresses may require the compibgréstsc



predict). Prefetch

Many hardware prefetchers exploit only spatial locality, Engine
prefetching one or more subsequent blocks on a cache miss [15
22, 40]. More sophisticated schemes detect non-unit stride Prefetch '(-:%rif‘;:‘eer L1 Cache
cess patterns, such as Chen and Baer’s reference prediakitn Queue
(RPT) [10] and Palacharla and Kessler’s strided streanelsif84].
Other approaches exploit pointer-based access sequescesth
correlation-based and Markov prefetching [1, 9, 21], or @ader Prefetch Access | |\ oo ]
class of patterns, using dead block information [26]. Aeoth Prioritizer Prioritize
approach involves decoupling the data structure traversah !
the computation, using specialized pointer-traversaiware [35] : s Grarma
or dedicated pre-execution hardware [2]. Researchers &iage A
_ . . Rambus Controller .
proposed memory-side prefetching to reduce latencies dsgtw M

prefetches [19, 41, 46].

Most pertinent to this work are two previous papers. First,
predictor-directed stream buffering, proposed by Shedveo
al. [38], unifies strided stream buffers and Markov preftghnto
a single, consistent hardware prefetching framework. ktie 5, with loads, which an aggressive, simple, and general hamiwa
we compare the GRP scheme to the strided stream buffers echem prefetcher uses only when necessary. Thus, the pertinemiley
only, since the Markov predictor consumes too much stateeto b analysis is communicated to the hardware without requieitgn-
practical. Second, Cooksey et al. [14] propose a statefgs®ach sive static lookahead, software guarantees, or high ictitruover-
to pointer prefetching, foregoing explicit identificatioh pointer head. In the subsequent sections, we describe first the asrdw

traversal patterns and simply prefetching any referencechony engine, then the software hints and analysis necessaryedvard-
value that could be reasonably interpreted as a memory sgldre ware to balance prefetch coverage and accuracy.

Our hardware schemes are also stateless. We find that for our

Figure 2: Prefetch Engine Organization

benchmarks, GRP with spatial hints usually performs beftehe 3 Hardware Prefetching Engine

same as pointer prediction with or without pointer hints. The GRP hardware prefetching engine builds on the schedeiled
In the end, all hardware schemes are forced to trade coveragegion prefetching design by Lin et al. [28]. We extend the iorid)

for accuracy (or vice versa), and focus either only on stmect design with two capabilities. First, we add support for &ggive

access patterns which can be predicted with high accuraayoihg prefetching of pointer-based data structures. Second,ddettee

coverage of less structured access patterns), or consgméczint ability to prefetch indirect array references under sofengontrol.

amounts of bandwidth with incorrect prefetches in an attetop
cover less-structured references.

The relative strengths and weaknesses of hardware and soft-Scheduled region prefetching (SRP) aggressively exputial
ware prefetching are complementary and thus suggest a nethbi  locality by attempting to prefetch large (4 KB) memory reggo
hardware/software approach. An ideal scheme would expieit on each L2 cache miss [28]. The two negative effects of aggres
compiler’s knowledge of future reference patterns, andauk®v- sive prefetching—memory bus contention and cache poliutiare
overhead channel to convey this information to a hardwaefepoh- addressed directly by reducing the priority of prefetchesiem-
ing engine, which could then generate and schedule apptepri ory bus request scheduling and in replacement decisiospgce
prefetches based on dynamic information regarding caches mi tively. Unlike most prefetching schemes, which must mamta

3.1 Scheduled Region Prefetching

events and resource availability. high prefetch accuracy to avoid degrading performance, &RP
The limited previous work in this area has either exploited identify and access prefetch candidates liberally witltmgrading

prefetching for restricted classes of access patterngovided an uniprocessor performance.

interface that is overly general and complex. On the comsige/ Figure 2 shows the memory system with the SRP engine that

side, Gornish and Veidenbaum [18] let software select thelmax forms the experimental baseline. The access prioritizérésen-

of contiguous blocks to prefetch upon a miss, whereas Chdn an tral component of the SRP prefetching engine. It forwardsiests
Baer [11, 12] use the compiler to supply address and striie-in ~ to the memory controller whenever the controller indicaktes the
mation to augment a reference prediction table. Skeppstedt memory channels are idle. The prioritizer forwards préfete-

Dubois use a trap handler to trigger prefetching using simii- quests only when there are no outstanding demand missestisom
formation [39]. Karlsson et al. [23] ugarefetch arraygo enable L2 cache. Demand misses thus encounter contention only from
a hardware engine to perform a generalized variant of graedy prefetches the memory controller has already issued, anfior
jump-pointer prefetching. Zhang and Torrellas [47] use dbm- prefetch candidates buffered in the prefetch queue. The stégus
piler to mark blocks in memory as belonging to contiguougiafig holding registers (MSHRs) track all outstanding accessmrd-
local regions or containing indirection pointers. Theiheme re- less of type.

quires additional bits in main memory and significant supjpothe On an L2 cache miss, the prefetching engine allocates a new
memory controller. Finally, fully programmable prefetchgees entry in the prefetch queue representing the aligned menagign
provide flexibility but require significant memory systenpport containing the accessed block. Each prefetch queue enitgine

and have not yet demonstrated that the required compil@ostis the base address of the region, a bit vector indicating tetefmh
realistic [41, 43, 46]. candidate blocks in the region, and an index field which ifiest

GRP combines the advantages of both software and hardwarethe next block within the region to prefetch. On the first msa
prefetching in a scheme that is simple yet effective. It eysv region, the engine initializes the bit vector to identifg thlocks not
sophisticated compiler analysis by associating a rangeii6 h  already present in the L2 cache, and sets the index field toaited



the next prefetch candidate block after the miss block. dsatese
new entries to the head of the queue, giving them priority older,
and thus typically less relevant, entries. The queue is al fekee
(32 in these experiments), and old entries fall off the buott®n a
miss to a region already in the queue, it clears the bit cpording
to the miss block, sets the index field to the next prefetchlickte
block after the new miss block, and moves the prefetch bitovec
entry to the head of the queue. In this work, we use a baserregio
size of 4 KB and a cache block size of 64 bytes, resulting in-ai64
vector and a 6-bit index field. Once the controller prefeschiéthe
candidates, it deallocates the entry.

Although the access prioritizer practically eliminatesfpe
mance loss from useless prefetches due to bandwidth cartent
prefetching can still pollute the cache by generating a yeav
prefetch stream. We address this issue by placing prefddaz
in the lowest priority position of the replacement schemtee Ton-
troller puts prefetched data in the LRU position of the pexit
cache set, and moves a block to the MRU position only if it is
referenced explicitly by the CPU. As a result, useless prhés
in ann-way associative cache can displace at mostrheof the
useful data in the cache. (We use a 4-way set associative éach
our experiments.) The drawback is that the controller docadly
replaces potentially useful prefetches before they arereated;
however, previous work [28] shows this effect to be insigaifit.

As a final optimization, the queue issues prefetches firshose
DRAM banks that already have the needed page open.

Scheduled region prefetching is highly effective at expigi
spatial locality to improve performance [28]. However, dshtwo
shortcomings addressed by GRP. First, SRP does not promide a
direct support for non-spatial reference patterns. We agdra
hardware pointer prefetching mechanism to address this icee
Section 3.2). We also add an indirect array scheme that nesyui
compiler support (see Section 3.3). However, for the SPHE{CIbe
marks, we find that spatial prefetching works as well as point
schemes—even for pointer-intensive benchmarks—becdube o
regular layout programmers use and memory allocation npatte
for pointer data structures. Second, SRP can produce c®piou
amounts of excess memory traffic. Although this uselesgidraf
does not reduce uniprocessor performance due to SRP'stiprior
zation techniques, it consumes energy, can cause comteinio
useful prefetches, and may reduce performance in a mutégsmr
environment. We thus use compiler hints for spatial andtpoiac-
cesses to gain both low bandwidth and high accuracy. Weibdescr
the GRP hardware modifications and hints below in Section 3.3
and the compiler analysis itself in Section 4.

3.2 Hardware Prefetching of Pointer-Based Structures

As discussed in Section 2, hardware prefetching for poindsed
structures is challenging. Instead of using complex harewarec-
ognize pointer traversal patterns or store pointer cdicglg, the
base GRP pointer prefetching scheme greedily generatefetgr
for any fetched value that falls within the ranges of legétmheap
memory addresses. The GRP implementation performs a simple
base-and-bounds check using the start and end addressks of t
heap. In the Alpha ISA, pointers are aligned 8-byte entitibas
the engine must check only eight values out of each 64-bydeeca
block?

Once the controller identifies a datum as a possible poiateey

1Cooksey et al. [14] describe a similar but more efficient frin
test using bit masks, and apply it to prefetching in the mdra-c
lenging IA32 environment.

recursive
code inloop| spatial indirect pointer pointer size
ali] v v
a[bfi]] v v
*p; p+=c v
p—f v
p = p—hext Vv

Table 2: Compiler Hints for Representative References ioplso

it translates the virtual address to a physical address @meafds
the address to the SRP prefetch queue, which allocates @regi
style entry for the prefetch. Because these pointer demetes fre-
quently do not exhibit spatial locality, it sets only twoshih the en-
try’s prefetch bit vector, indicating the block containiting prefetch
address and its immediate successor (which prefetchestlata
tures that span two cache blocks). We generalize this mésrhan
chase recursive pointers by scanning prefetched linesifireases
and generating additional prefetches.

3.3 GRP: Incorporating Compiler Prefetch Hints

This section describes the compiler hints used by GRP toawepr
the precision of L2 spatial and pointer prefetching.

The GRP compiler annotates load instructions with hintdligte
ing whether spatial or pointer-based prefetches will bdulsén
this study, the compiler conveys the hints with unused ANhA-
format floating point load opcodes. The memory system praiesg
the load’s hint bits through the memory hierarchy with arguie
ing request. Table 2 presents the five hints and shows tympal
resentative code snippets for each. We summarize the change
the hardware for each hint below, and then describe the grsint
recursive pointers, and the indirection hardware in motailde

e A spatial hint indicates that a reference is likely to exhibit
spatial locality. GRP initiates a spatial prefetch only whiee
L2 miss is marked spatial.

A sizehint combined with a loop upper bound indicates how
many cache lines prefetch.

An indirect hint indicates that the program is using an array to
index a second array. On an indirect L2 miss, GRP generates
sets of prefetches based on the base address and the index
values.

A pointer hint indicates that the reference is to a structure
that contains one or more other pointers that the program is
likely to follow. If the reference is an L2 miss, GRP scans
the returned block for pointer values and generates prefstc
only for those values.

A recursive pointehint indicates not only that the reference is

to a structure that contains other pointers, but that thgrara
recursively follows these pointers. On a recursive poihter
miss, GRP scans the returned data for pointer values, gener-
ates prefetches for these addresses, and continues gegerat
prefetches on the subsequentevels into the recursive data
structure. (We use = 6 in our experiments.)



3.3.1 GRP for Pointer and Recursive Pointer References implementation could use a single instruction prior to alaest to
set the base address, and an additional hint bit oofhi§ loads
to trigger the indirect prefetches. This approach wouldicedexe-
cution overhead at the cost of limiting an application tdf@iehing
one single indirection array concurrently per base adfineisect
hint pair.

GRP uses the same mechanism for pointer and recursive pointe
hints. However, GRP applies the mechanism only to a poinigr h
miss, and GRP applies it repeatedly to the resulting prieéettines

for recursive pointer hints.

We implement GRP for pointer and recursive pointer hints by
adding a three-bit counter to both the L2 MSHRs and prefetch
gueue entries to control pointer and recursive pointerepcafng ] i ) ) )
uniformly. GRP initializes the counter on the L2 miss: fminters This section describes the analyses for the five classesisf&pa-
it sets the value to one, and fazcursive pointersit sets the value ~ tial, size indirect, pointer, recursive pointey that guide the L2
to six. Thus the only difference between a pointer and régars ~ Préfetching engine. We implement these analyses in the Soa-
pointer prefetching is their initial counter value. piler and use it to generate these hints automatically ftin Boand

When GRP fetches a pointer hinted missing line, it starts the Fortran codes.
pointer prefetching engine on the returned line. The engirezks
the counter. If it is zero, it stops queuing prefetches. @irse, it
decrements the counter, and queues prefetches for pointére In GRP, the compiler predicts which misses truly have sphiia
returned line. We prefetch two cache blocks for each poirased cality, examining arrays in Fortran or C, and spatial pairge-
on our statistics that the typical structure size in SPECherarks cesses to structures in C. The compiler uses locality aisatgs

4 Compiler Analysis Framework

4.1 Spatial Locality Analysis for Arrays

is less than 64 bytes (one L2 cache block in our configuratibn mark references with the spatial hint annotation, and tmepder
blocks are sufficient to cover structure alignment. The maghus back-end augments the special load instruction with a alaitit.
terminates after one level for pointers and six levels foursive The prefetch engine then only prefetches misses with masjgad
prefetching? tial references and does not prefetch misses without $padieks.

. . . . We describe our array analysis and then spatial pointeysisal
3.32 GRP for Variable-Size Region Prefetching We augment prior work that statically detects spatial libgdly
GRP by default prefetches the same fixed region size as SRP. Ifextending dependence testing [32, 44]. Dependence tefiting
the spatial reuse of a reference does not span the defaidhreg finds induction variables and then detects when the spatiart
size, prefetching wastes bandwidth. We enhanced GRP tw allo sjon (the row in C, the column in Fortran) is accessed as aifimc
the compiler to control region sizes for references in simgisted of the index variable, and whether it is the inner or outettings

loops. The compiler computes the loop upper bound for threany level. The dependence testing detects locality onlyaftine sub-
induction variable and conveys the bound to the hardwaregusi  scription expressions, i.e., linear functions of loop ictiion vari-
special instruction. The compiler encodes a coefficientelach  aples. Our approach marks references with either inner @ ou
spatial reference in the loop. On a miss, the prefetch engges  |oop spatial locality. The typical array reference with tigddocal-
this bound and the coefficient to calculate the region size@s ity is accessed in its spatial dimension in an innermost.loepr
bound< < coefficient value example, we mark a(i,j) in Figure 3, assuming column-majar F

tran storage. The compiler also marks arrays with spatéality

) ) that crosses larger distances within a deep nest or betweamests
Two of the benchmarks from the SPEC2000 suver @ndbzip2) (inter-nest reuse We use the level 2 cache size as our upper bound
incur a significant number of misses due to indirect arragregfces on the distance of the spatial reuse we mark, assuming thkeél-

of the forma[ b[ i ] ] . References ta are not amenable to spatial 2 cache has sufficient set associativity to avoid conflicsessand
prefetching unless the[ i ] values are clustered, which cannot be  exploit the reuse.

determined statically. Pointer prefetching for these nefees is If the compiler determines the loop bounds and step sizeanit
ineffective since the desired addresses are computedontétined  ¢ompute the reuse distances accurately at compile time.aior
in the memory as pointers. A specialized extension to GRIetar  rays with spatial intra- and inter-nest locality, it comgsithe reuse
these patterns. A singledirect prefetchinstruction conveys both  gisiances. It marks all array references with spatial locaith

3.3.3 GRP for Indirect Array References

a base addresg4[ 0] ), an element sizes{ zeof (a[ 0] ) ), and a known distance less than the level 2 cache size. When the com
an index array addresgff[ i ] ) to the prefetching engine. The  pjler does not know the reuse distances statically due tdefim
prefetch engine reads the cache block contaiihfi ] and, for loop bounds and uncertain executions paths, it estimategetise

each word in the block, generates a prefetch address by@dn  gistance based on the nesting level of the loop. The comiiler
scaled value t&a[ 0] . GRP then forwards these addresses to the ¢onservative when reuse distance is unknown; we mark eerefer
prefetch queue, as in the pointer prefetching scheme. @Hyre a5 spatial only if its spatial reuse is in the innermost esintploop.

we assume the index array element sigezeof (b[ 0] )) is 4, The above analysis works well for Fortran arrays and heaysur
which is typical on most systems, although the element SIBIC  j, ¢ if the array elements are referenced as subscript esipres

be included in the instruction if necessary. o We handle heap arrays in C using the same analysis. In Fightg 4
This scheme is distinct from the mechanisms proposed ip&his s 4 heap array with typ&**. In addition to detecting the obvious
per because the information is encoded as a separate timtruwot spatial reuse obuf[i][j] whenj is an loop induction variable, the

a hint onan exi;ting load. Although the introduction of gp!k)tt compiler is able to find the spatial reusebadf[i][a * j + b] when
prefetch instruction adds overhead, the number of suchuictiins « andb are constants.

is small, and each one generates up to 16 prefetches (onador e
index within a cache block of the indirection array). An afi@e 42 Spatial Locality Analysis for Pointer Dereferences

2Formcf we terminate recursion after three levels to make sim- To prefetch pointer references that show spatial locadisyillus-
ulation tractable. trated in Figure 5, the compiler performs loop inductioniakle




T *x buf;

buf = malloc (...);

for (; p<s; p+=c){

struct t{
T f;
struct t * next;

Txp, x5S,

struct t=xa;

integer a[N][M], B[N] buf[i] = malloc (...); /= if T is a primary type */ while (...) {

do j=1, m Lk P ca=>f..;

do i=1, n for (i=0; i<m; i++) /% if T is a structure */ a = a—>next;
coalig)... for (j=0; j<n; j++) R T .
<oc(b(i). ). - buf[i][j] ... } }

Figure 3: Fortran Array Figure 4: C Heap Array

Figure 5: C Induction Pointer

Figure 6: C Recursive Pointer

generatespatialhints ()

I/« recognize induction variables including pointexs
induction.variable-recognition ();

/= perform dependence testing/
dependencegesting ();

for (each loop){
I/« generate basic spatial hints/
for (each memory reference r in the loop()
if (r is an array referencey
if (r has spatial reuse in the enclosing innermost loop)
mark r spatial ;
else {
compute the reuse distance for r if applicable;
if (reuse distance< the level 2 cache size)
mark r spatial ;
+}

if (r is an loop induction pointer)
mark r spatial ;
}

/= propagate spatial
do {
for (each memory reference r{
if (r is a loop induction pointer)
mark xr as spatial ;
else if (r is a>f & a is marked as spatial )
mark a—>f as spatial;

hints for loop induction pointers

} while (no new hints generated);

Figure 7: Algorithm generating spatial hints

recognition on pointers that are repeatedly incremented bgn-
stant. The typeT in Figure 4 and Figure 5 does not have to be
a primary type. We treat pointgras a special integer, and insert
spatial hints for«p or p — f, if constantc is small. This paper’s
analysis on L2 cache misses shows almost all spatial rensés i
code are covered by regular spatially local array refereméeng
with the cases in Figure 4 and Figure 5.

Figure 7 summarizes the algorithm used for generating apati
hints for both arrays and spatial pointer accesses. Thepfirstof
the algorithm inserts the spatial hints for arrays and lowuction
pointers, and the second part propagates spatial hintg tostts of
loop induction pointers. This algorithm is intra-procealand flow
insensitive, and it marks only references enclosed in loops

4.3

The compiler also detects and marks indirect array accessek
asc(b(z), 7) in Figure 3. In particular, it looks for the access pattern
in the form ofa(s * b(i) + e) wheres ande are constants, and
is a loop induction variable. Dependence testing deteetspiatial

Indirect Analysis

generatepointer_hints ()

for (each field access
if (a pointer field from the same structure
is accessed in the same loop)
mark the field access as pointer;
if (the field access updates a recurrent pointer)
mark the field access as recursive pointer;
}

for (each array reference marked as spat}af
if (the reference points to a heap array)
mark the reference as pointer;
}
}
Figure 8: Algorithm generating pointer and recursive paifitints

¢, as described in Section 3.3.

4.4 Variable-Size Region Analysis

The compiler detects and marks array references withinlysing
nested loops for variable-size region prefetching. Forraayeaac-
cess with a pattern af(b * ¢ + ¢) and an array element size of
the compiler encodés e into a three-bit value such thate < 7
and2® is closest td x e. We reserve the encoding value 7 for fixed-
size region prefetching. The compiler marks the upper banind
the loop induction variablé. The two hints are used to control the
region size as described in Section 3.3.

4.5 Pointer and Recursive Pointer Analysis

As with spatial locality, the compiler can improve the aeayr of
hardware-based pointer prefetching by restricting it teses on a
load to a field from a structure that contains a pointer or nsce
field. We mark a field reference awinter if a pointer field from
the same structure is accessed in the same loop. We marktarpoin
update to beecursiveif it updates itself in a loop with an object
of the same data type. For example, in Figure & updated with

its nextfield which points to a structure of the same tygiruct t
This idiom analysis simply identifies pointer updates in@plohat
use a field with the same type and marks them as recursivespoint
updates.

We mark pointer accesses with the spatial hint for referetze
arrays of pointers. For example, Figure 4 shows an array-refe
encebuf[i], whose access pattern results in a spatial hint from the
compiler. Furthermore, eadbuf[i] points to a heap array, so the
compiler marks it with the pointer hint as well. GRP will thege

reuse onb(i) in the standard way. We add a simple analysis that the address to prefetch the pointed-to array.

detects when a sequentially accessed array is used as arintale

The algorithm to generate pointer and recursive pointeresice

another arraydin this example), and generates an indirect prefetch hints is shown in Figure 8. It is complementary to the spatiatk-

instruction using the address &) and the base address of array

ing algorithm for pointers shown in Figure 7.
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Figure 9: Performance gains from pointer prefetching
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gap vpr twolf parser mcf
Benchmark mem insts | spatial | pointer | recursive ratio(%) indirect
164.9zip 1873 433 268 0 37.1 9
168.wupwise 507 152 0 0 30.0 0
171.swim 250 115 0 0 46.0 0
172.mgrid 314 232 0 0 73.9 3
173.applu 1491 858 0 0 57.5 0
175.vpr 4230 1001 682 74 33.8 84
177.mesa 26777 4532 4419 76 32.8 9
179.art 1016 732 278 0 77.6 0
181.mcf 845 168 287 201 60.8 0
183.equake 1679 597 473 0 51.3 7
186.crafty 11702 1994 736 0 21.6 5
188.ammp 6271 1043 1158 0 33.2 5
197.parser 4090 915 932 1263 70.2 2
254.gap 29781 5102 11243 0 52.6 36
256.bzip2 698 279 59 0 48.3 14
300.twolf 12397 2080 2577 1398 45.1 38
301.apsi 3225 1001 0 0 31.0 0
sphinx 6335 2211 1129 364 46.8 106

Table 3: Number of compiler hints for each benchmark

5 Experimental Evaluation

In this section, we compare the performance benefits of SRP, G
and unified stride prefetching for the SPEC CPU2000 bendkenar
and one additional benchmark. We demonstrate that GRPda®vi
a compelling balance between higher performance and isedea
memory traffic among the three prefetching techniques. \Weode
strate the effectiveness of the compiler generated sipenration,
and the sensitivity of our results to the compiler’s heigifir com-
puting the useful distance of spatial locality. We concludth a
discussion of the characteristics of the remaining bencksnfor
which GRP does not eliminate main memory accesses as a signifi
cant loss of performance.

5.1 Experimental Methodology

The Scale compiler infrastructure inserts the prefetcisHiB]. It
performs a number of scalar optimizations such as constapap
gation and common subexpression elimination. It compilen@
Fortran 77 code to Alpha assembly code, with the memory himts
notated as comments. We then post-process the annotagsdbdgs
code to generate binaries containing compiler-hinteducsbns.
We simulate program binaries on a version of sim-outordgr [4

with scheduled region prefetching (SRP) [28] added to thriki-
tor. We added the GRP hardware pointer prefetching meamhanis
and modified the simulator to accept compiler hints and adeed
prefetches accordingly if the binaries contain the hintg. st the

Alpha-ISA and configure the simulator as a 1.6 GHZ, 4-wayedssu
64-entry RUU (reorder buffer), out-of-order core with 64Kh2y

split level one caches and a unified 4-way 1MB level 2 cachés Th
cache hierarchy is combined with an effective 800-Mhz, drctel
Rambus memory system. The L1 and L2 latencies are 3 and 12
cycles®, respectively. Each cache contains 8 MSHRs. For SRP, the
prefetching queue size is 32 and uses LIFO scheduling. Tiie st
predictor [38] uses a 4-way history table with 1K entriesefnare

8 entries in each of 8 streaming buffers sharing the histainjet
Finally, we use the SimPoint [37] tool set to select a repredive
starting point beyond the program’s initialization phagée simu-

late for 200M instructions from that point.

We use the 17 SPEC CPU2000 C and Fortran benchmarks that
the Scale infrastructure is able to compile correctly, [@phinx a
speech recognition application [27]. Table 3 lists thesehmarks,
along with statistics on memory instructions and the nunzret
type of compiler hints generated. The second column canthie
total number of static memory reference instructions. Gwis 3
to 5 show the number of instructions the compiler marksgasial
pointer, andrecursive (Note that the compiler can mark an instruc-
tion bothspatialandpointer.) Column 6 lists the fraction of static
memory operations with hints, and Column 7 shows the static-n
ber of indirect prefetch instructions. We do not presentrésilts
for craftyin subsequent results because its L2 miss rate is negligible
(0.4%).

5.2 Comparison of Stride Prefetching, SRP, and GRP

In this section, we first present the effects of both hardveaiater

and recursive pointer prefetching. We show that explicintes
prefetching is generally subsumed by aggressive spagédighing
(SRP or GRP). We then compare stride prefetching with SRP and
GRP. GRP uses all the compiler analysis including variaddgon
sizes. The end of this section compares variable and fixadrreg
sizes, and finds variable sizes decrease bandwidth recgritsrfor

3 programs.

We apply pointer prefetching alone to all benchmarks, whith
surprisingly has little effect on the Fortran benchmarksghEC
benchmarks show a significant performance improvemenabhot
a 48.3% boost foequake a 15.9% increase fancf and a 14.4%

3We mistakenly put 1 and 16 in our published version. But they
do not affect our conclusions.
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Figure 10: Performance gains from region prefetching andesprefetching for integer benchmarks

improvement forsphinxas shown in Figure 9. Faequake the
performance gain is not from the pointer structure travexsax-
pected. It stems instead from prefetching arrays of pairitem the
heap arrays. Similarly, imcf the performance gain comes from a
loop which sequentially resets a field in each object in a lzeeyy.
Pointer prefetching happens to prefetch the objects aeddater.
Pointer prefetching outperforms SRP only faolf andsphinx by
2%. In all other cases, SRP performs much better than poanter
recursive prefetching. Applying SRP and pointer prefetghio-
gether gives little benefit and sometimes degrades therpeafice
due to much higher bandwidth consumption, which can result i
fewer successful prefetches. GRP with pointer and recifsints
shows performance gains similar to SRP for the seven bergsma
but with lower average memory traffic .

Figure 10 and Figure 11 show the performance of SRP, GRP, and
stride prefetching for integer and floating point benchraadspec-

tively. In most cases and on average, SRP and GRP both perform

better than stride prefetching. For 10 benchmarks, SRPowvesr
performance to within 10% of a perfect L2. Fewim GRP per-
forms over 10% better than SRP due to its lower traffic. Dudéo t
indirect prefetching, GRP is 4% faster than SRPHpip2 It also
outperforms SRP faart andammp Forgzip mcf, parser, andgap,
the IPC of GRP is at least 2% less than that of SRP. A typicalrea
is that the compiler misses locality outside of loops.

Although we detect indirect references in 11 benchmarldi; in
rect prefetching shows significant speedups for apliyandbzip2
Forvpr, the indirect references show high spatial locality. SRR th
performs as well as GRP, but with 50% additional traffizip2is
one of the benchmarks where SRP does not perform well. With in
direct prefetching, the gap from a perfect L2 is reduced t&%2
from 15.9%, with only 15% of the memory traffic of SRP.

In terms of both performance and memory traffic, GRP using a
variable region size (GRP/Var) and a fixed region size (GR®P/F
only differ in three benchmarksnesa bzip2 andsphinx Table 4
shows that fomesaandbzip2 both strategies deliver roughly the
same performance while GRP/Var results in much less traféio t
GRP/Fix, as we discuss in Section 5.3. Bphinx GRP/Var has
5.8% lower performance than GRP/Fix, but benefits from an 82%
traffic reduction. The compiler cannot guarantee that tiespa-
tial locality, so it chooses small prefetch regions, andsesssome
opportunities.

GRP Traffic Region Size Distribution

Var | Fix 2 4 8 64
mesa | 1.11 | 6.55 90.3| 95 | 01 |01
bzip2 | 1.47| 4.97 76.8| 224 0.0 | 0.8
sphinx | 2.09 | 11.66| 829 | 1.0 | 16.1| 0.0

Table 4. GRP/Var versus GRP/Fix

5.3 Prefetching Accuracy, Coverage, and Memory Traffic

Although SRP and GRP provide comparable performance, SRP
consumes much more bandwidth than does GRP. Figure 12 shows
the normalized memory traffic for the three prefetch sche/8&
increases memory traffic from 2% tdactor of 25.5 times over no
prefetching. GRP generates a mean of only 23.0% additiceféict
compared to no prefetching, versus an SRP increase of 186%. G
eliminates over 20% of the total memory traffic for ten of teg-s
enteen benchmarks compared to SRP, and over 50% for six-bench
marks. The traffic for stride prefetching is 11% less than GRIP
stride prefetching only achieves 69% of the performance dvg
ment that GRP does.

Compared to GRP/Fix, GRP (GRP/Var) cuts memory traffic sig-
nificantly for three benchmarks while showing the same trdf
the others. Table 4 lists the three benchmarks and thefictraf
crease compared to no prefetching in columns one througte.thr
The subsequent four columns show the distribution of pcafag
requests by the region sizes (no regions of 16 or 32 blockprare
duced). We observe that GRP/Var only prefetches one additio
block (region size = 2) in most cases due to the poor spatality
of these references.

Table 5 shows both prefetching accuracies and coveragéédor t
three prefetching techniques that we implemented. We #spéh
centage reduction in L2 misses as a metric for coverage. &n av
age, SRP provides the best coverage and the worst accutadg S
prefetching trades the lowest coverage with the highestracy.
GRP obtains the best of both worlds: an accuracy that is ictose
stride prefetching, but coverage closer to that of SRP.

Since the normalized traffic in Figure 12 does not reflect the
absolute bandwidth consumption of each benchmark, we &iso |
the actual memory traffic, in bytes, of each benchmark inérabl
On average, SRP consumes 99.8% more memory bandwidth over
the no-prefetching system. GRP and stride prefetchingym®a
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Figure 11: Performance gains from region prefetching andesprefetching for floating-point benchmarks
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Figure 12: Normalized traffic
[ Benchmark ] Base Il Stride Il SRP Il GRP
[ || Miss Rate [ Traffic [| Coverage | Accuracy [ Traffic [[ Coverage [ Accuracy [ Traffic [[ Coverage | Accuracy | Trafﬁ
mesa 9.3 51k 60.9 93.2 53K 29.3 0.8 1305K 435 70.1 56K
apsi 25.0 85K 79.2 99.8 85K 96.4 95.8 86K 88.8 97.6 84K
gzip 25.3 182K 65.2 99.8 183K 76.3 94.4 192K 0.0 91.2 182K
gap 46.8 179K 66.7 99.6 179K 97.6 86.3 202K 52.8 99.3 179K
ammp 15.3 594K -7.8 23.1 982K -7.8 0.9 8340K 0.7 275 665K
wupwise 73.1 486K 425 75.4 553K 96.3 60.2 788K 96.2 61.6 772K
mgrid 43.9 504K 779 89.9 544K 87.5 80.7 597K 85.6 81.7 589K
vpr 40.2 730K 15.9 85.5 749K 86.3 27.6 2820K 76.4 49.4 1399K
twolf 12.6 1125K 0.0 27.3 1167K 15.9 4.2 17878K 3.2 28.7 1575K
bzip2 22.4 1163K 8.4 85.7 1186K 27.2 5.3 11255K 37.1 51.6 1713K
parser 334 1450K 67.4 75.0 1756K 775 447 2804K 56.0 825 1625K
mcf 61.6 43901K 51.0 80.5 49284K 247 53.9 65263K 5.4 51.1 52656K
sphinx 65.9 1208K 12.6 27.3 1449K 42.8 4.7 14429K 21.7 20 2521K
applu 58.0 2578K 62.6 95.7 2631K 96.9 89.0 2810K 96.9 89.2 2806K
equake 59.8 3628K 75.6 99.2 3649K 96.3 86.9 4127K 95.2 95.3 3790K
art 44.4 20229K 17.3 99.7 21189K 8.6 40.6 28632K 20.9 78.0 23031K
swim 57.8 7861K 34.6 70.8 8966K 67.3 65.2 10249K 68.2 96.5 8021K
[Caverage || 209 | 5057K [| 229 | 781 | 5665K || 59.9 | 495 | 10105K || 299 | 689 | 598IK |

Table 5: Prefetching accuracy, coverage and memory traffic



Benchmark GRP Performance Gap (% L2 Miss Causes | Ratio (%)
171.swim 38.32 transpose array access 92.08
179.art 56.07 bandwidth 24.26

transpose heap array access 35.92
181.mcf 63.94 tree traversal 60.70
188.ammp 15.18 linked list traversal 88.64
256.bzip2 15.89 indirect array reference 49.68
300.twolf 22.40 linked list and random pointer¢ 35.37
sphinx 31.28 hash table lookup 28.79

Table 6: Level 2 miss characteristics

18.3% and 10.1% increase in memory requests, respectively.

5.4 Compiler Sensitivity

We explored the sensitivity of our results to the compileliqyoby
implementing both more and less aggressive variants ofctinense
described in Section 4. The more aggressive policy markéea-re
ence aspatial even its reuse distance is greater than the L2 cache
size. The more conservative scheme marks a referenspaisl
only when its reuse sits in the innermost loop. Compared to ou
default GRP policy, the aggressive policy degrades peidona by
2% overall and increases traffic by an additional 5%. The @ens
vative scheme shows little effect on memory traffic compaveti
GRP, but causes moderate performance losses across far-ben
marks: apply, art, equake andapsi, and reduces performance by
an average of 5% across the benchmark suite.

5.5 Remaining L2 Misses

Seven of the benchmarks show a gap of greater than 15% betwee
SRP and a perfect L2. We list them in Table 6 with a description
the key causes of the misses, obtained by analyzing theesourc

With its more accurate prefetching, coupled with indirect a
cesses and pointer prefetching, GRP is able to bhrnig2 and
ammpunder 15%.Swimhas a low IPC due to pathological array
conflicts. We can prevent that benchmark from being memory-
bound by manually applying loop distribution and loop petaru
tion [8]. We observe thadrt is bandwidth bound. While GRP re-
duces traffic and increases performance over SRP by 10.%%,
performance gap is still large. Larger caches and wider roddan
improve art appreciably. Fosphinx the hash table lookup usu-
ally touches only a small number of adjacent hash slots inoat sh
loop. Prefetches occur simply too late to tolerate the e Fi-
nally, mcfandtwolf contain heavy traversals of short linked lists and
tree data structures, making them poor matches for the GRepo
prefetching or spatially-based schemes.

th

6 Conclusions and Future Work

Purely compiler-based prefetching techniques have difficoan-
aging the large latencies of modern main memories. Previous
shows that aggressive hardware prefetching addressessihésef-
fectively for applications with spatial locality, at thestaf poten-
tially significant increases in memory bandwidth. As the benof
processors per chip increases, this bandwidth will becortreas-
ingly precious.

This paper shows that a cooperative approach between campil
based analysis and hardware-based aggressive prefeprbirides
benefits comparable to aggressive hardware prefetchitgmitch
lower traffic. Compiler techniques identify accesses thearty
possess spatial locality. Rather than use this informatbont-
tempt to schedule software prefetches—with the resultorgyti-
cations of providing timely prefetches while minimizingtruction
overhead—our system simply passes this access-pattemmisaf
tion to a hardware prefetching engine. The engine then geseer
prefetches at the L2 cache with low overhead. Compared t® pur

hardware prefetching, the compiler analysis saves bartbviig
avoiding useless prefetches to addresses with littleitycal

We also extend the hardware prefetching engine to address
pointer-based applications by aggressively prefetchimgdatum
that appears to be a pointer. As with spatial locality, we sige
nificant traffic benefits from having the compiler indicatdrnper
and recursive-pointer loads. However, for the SPEC200@Hen
marks, the aggressive spatial locality analysis subsuh@egdinter
prefetches for most benchmarks, due to spatially localuts/of
pointer-connected objects. Ev&phinx which we chose for its
sparse irregular pointer behavior, benefits very littlerfrpointer
prefetching. It still remains to be seen whether this phesrmon
will dominate the benchmarks that other researchers haee tas
show the importance of greedy pointer hardware prefetcHidp

With solely the spatial and indirect hints, the GRP com-
piler/hardware prefetch framework eliminates most L2t
stalls across the SPEC2000 suite, with comparatively niddes
creases in traffic. The remaining three benchmarks thatrared
by L2 memory system performance are either bandwidth bound
(art) or contain many irregular linked-lists and/or tree traeds
(mcf, twolf) where memory-side prefetching may help. For the
rest of the SPEC2000 suite, however, the GRP approach eliesin
physical memory accesses as a performance bottleneck nvake
ing significantly more efficient use of the system bandwiditant
similarly aggressive prefetch engines.
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