
Interprocedural Transformations for Parallel Code GenerationMary W. Hall Ken Kennedy Kathryn S. McKinleyDepartment of Computer Science, Rice University, Houston, TX 77251-1892AbstractWe present a new approach that enables compileroptimization of procedure calls and loop nests con-taining procedure calls. We introduce two inter-procedural transformations that move loops across pro-cedure boundaries, exposing them to traditional opti-mizations on loop nests. These transformations areincorporated into a code generation algorithm for ashared-memorymultiprocessor. The code generator re-lies on a machine model to estimate the expected ben-e�ts of loop parallelization and parallelism-enhancingtransformations. Several transformation strategies areexplored and one that minimizes total execution time isselected. E�cient support of this strategy is providedby an existing interprocedural compilation system. Wedemonstrate the potential of these techniques by ap-plying this code generation strategy to two scienti�capplications programs.1 IntroductionModern computer architectures, such as pipelined,superscalar, VLIW and multiprocessor machines, de-mand sophisticated compilers to exploit their perfor-mance potentials. To expose parallelism and compu-tation for these architectures, the compiler must con-sider a statement in light of its surrounding context.Loops provide a proven source of both context andparallelism. Loops with signi�cant amounts of com-putation are prime candidates for compilers seekingto make e�ective utilization of the available resources.Given that increased modularity is encouraged to man-age program computation and complexity, it is naturalto expect that programs will contain many procedurecalls and procedure calls in loops, and the ambitiouscompiler will want to optimize them.Unfortunately, most conventional compiling systemsabandon parallelizing optimizations on loops contain-ing procedure calls. Two existing compilation technolo-gies are used to overcome this problem: interproceduralanalysis and interprocedural transformation.Interprocedural analysis applies data-ow analysistechniques across procedure boundaries to enhance thee�ectiveness of dependence testing. A sophisticatedform of interprocedural analysis, called regular sectionanalysis, makes it possible to parallelize loops with callsby determining whether the side e�ects to arrays as aresult of each call are limited to nonintersecting subar-rays on di�erent loop iterations [12, 20].Interprocedural transformation is the process of mov-ing code across procedure boundaries, either as an op-timization or to enable other optimizations. The most

common form of interprocedural transformation is pro-cedure inlining. Inlining substitutes the body of acalled procedure for the procedure call and optimizesit as a part of the calling procedure.Even though regular section analysis and inlining arefrequently successful, each of these methods has its lim-itations [20, 23]. Compilation time and space consider-ations require that regular section analysis summarizearray side e�ects. In general, summary analysis forloop parallelization is less precise than the analysis ofinlined code. On the other hand, inlining can yield anexplosion in code size which may disastrously increasecompile time and seriously inhibit separate compila-tion [13]. Furthermore, inlining may cause a loss ofprecision in dependence analysis due to the complex-ity of subscripts that result from array parameter re-shapes. For example, when the dimension size of aformal array parameter is also passed as a parameter,translating references of the formal to the actual canintroduce multiplications of unknown symbolic valuesinto subscript expressions. This situation occurs wheninlining is used on the spec Benchmark program ma-trix300 [8].In this paper, a hybrid approach is developed thatovercomes some of these limitations. We introduce apair of new interprocedural transformations: loop em-bedding, which pushes a loop header into a procedurecalled within the loop, and loop extraction, which ex-tracts the outermost loop from a procedure body intothe calling procedure. These transformations exposesuch loops to intraprocedural optimizations. In this pa-per, the intraprocedural optimizations considered areloop fusion, loop interchange and loop distribution.However, many other transformations that require loopnests will also bene�t from embedding and extraction.Some examples are loop skewing [36] and memory hi-erarchy optimizations such as unroll and jam [10].As a motivating example, consider the Fortran codein Example 1(a). The J loop in subroutine Smay safelybe made parallel, but the outer I loop in subroutine Pmay not be. However, the amount of computation inthe J loop is small relative to the I loop and may notbe su�cient to make parallelization pro�table. If the Iloop is embedded into subroutine S as shown in (b), theinner and outer loops may be interchanged as shownin (c). The resulting parallel outer J loop now containsplenty of computation. As an added bene�t, procedurecall overhead has been reduced.Loop embedding and loop extraction provide manyof the optimization opportunities of inlining withoutits signi�cant costs. Code growth of individual pro-Page 1

SUBROUTINE P SUBROUTINE P SUBROUTINE PREAL A(N,N) REAL A(N,N) REAL A(N,N)INTEGER IDO I = 1, 100CALL S(A,I) CALL S(A) CALL S(A)ENDDOSUBROUTINE S(F,I) SUBROUTINE S(F) SUBROUTINE S(F)REAL F(N,N) REAL F(N,N) REAL F(N,N)INTEGER I,J INTEGER I,J INTEGER I,JDO J = 1,3 DO I = 1, 100 PARDO J = 1, 3F(J,I) = F(J,I-1) + 10 DO J = 1, 3 DO I = 1, 100ENDDO F(J,I) = F(J,I-1) + 10 F(J,I) = F(J,I-1) + 10ENDDO ENDDOENDDO ENDPARDO(a) before transformation (b) loop embedding (c) loop interchangeExample 1:cedures is nominal, so compilation time is not seri-ously a�ected. Overall program growth is also mod-erate because multiple callers may invoke the same op-timized procedure body. In addition, the compilationdependences among procedures are reduced since thecompiler controls the small amount of code movementacross procedures and can easily determine if an editingchange of one procedure invalidates other procedures.Our approach to interprocedural optimization is fun-damentally di�erent from previous research in that theapplication of interprocedural transformations is re-stricted to cases where it is determined to be pro�table.This strategy, called goal-directed interprocedural opti-mization, avoids the costs of interprocedural optimiza-tion when it is not necessary[8]. Interprocedural trans-formations are applied as dictated by a code genera-tion algorithm that explores possible transformations,selecting a choice that minimizes total execution time.Estimates of execution time are provided by a machinemodel which takes into account the overhead of par-allelization. The code generator is part of an inter-procedural compilation system that e�ciently supportsinterprocedural analysis and optimization by retainingseparate compilation of procedures.The remainder of this paper is organized into �vemajor sections, related work, and conclusions. Sec-tion 2 provides the technical background for the restof the paper. In Section 3, a compilation system isdescribed which is powerful enough to support inter-procedural optimization but also retains the advan-tages of a separate compilation system. Section 4 ex-plains the interprocedural and intraprocedural trans-formations in more detail, and Section 5 presents a codegeneration algorithm that uses these to parallelize pro-grams for a shared-memory multiprocessor. Section 6describes an experiment where this approach was ap-plied to the Perfect Benchmark programs spec77 andocean.2 Technical Background2.1 Dependence AnalysisDependence analysis and testing have been widely re-searched, and in this paper a working knowledge of

these is assumed [3, 7, 9, 17, 18, 27, 37]. In partic-ular, the reader should be familiar with dependencegraphs, where dependence edges are characterized withsuch information as dependence type and hybrid direc-tion/distance vectors [25]. The dependence graph spec-i�es a conservative approximation of the partial orderof memory accesses necessary to preserve the semanticsof a program. The safe application of program trans-formations is based on preserving this partial order.2.2 Augmented Call GraphThe program representation for interprocedural trans-formations requires an augmented call graph to describethe calling relationship among procedures and specifyloop nests. The code generation algorithm considersloops containing procedure calls and loops adjacent toprocedure calls. For this purpose, the program's callgraph, which contains the usual procedure nodes andcall edges, is augmented to include special loop nodesand nesting edges. If a procedure p contains a loop l,there will be a nesting edge from the procedure noderepresenting p to the loop node representing l. If aloop l contains a call to a procedure p, there will be anesting edge from l to p. Any inner loops are also rep-resented by loop nodes and are children of their outerloop. The outermost loop of each routine is markedenclosing if all the other statements in the procedurefall inside the loop. Figure 1(a) shows the augmentedcall graph for the program from Example 1.2.3 Regular Section AnalysisA regular section describes the side e�ects to thesubstructures of an array. Sections represent a re-stricted set of the most commonly occurring array ac-cess patterns; single elements, rows, columns, gridsand their higher dimensional analogs. This restrictionon the shapes assists in making the implementation
Page 2

PISJ(a) AugmentedCall Graph
Ref: A[1:100, I-1]Mod: A[1:100, I](b) Sections

Ref:A[J=1,100, I-1]Mod:A[J=1,100, I](c) SlicesFigure 1:e�cient [20]. The representation of the dimensions of aparticular array variable may take one of three forms:(1) an invocation invariant expression, representing asingle element; (2) a range consisting of a lower bound,an upper bound and a step size; or (3) the special el-ement ?, signifying that all of this dimension may bea�ected. Sections are separated into modi�ed and ref-erenced sets. The sections for Example 1 are shown inFigure 1(b).By using sections, the problem of locating depen-dences on procedure calls is simpli�ed to the problemof �nding dependences on ordinary statements. Themodi�ed and referenced subsections for the call appearto the dependence analyzer like the left- and right-handsides of an assignment, respectively. For single-elementsubsections, dependence testing is the same as it wouldbe for any other variable access. For subsections thatcontain one or more dimensions with ranges, the de-pendence analyzer simulates do loops for each of therange dimensions, with the lower bound, upper boundand step size of the loop corresponding to those ofthe range. Sections are necessarily an approximationof actual accesses. To assist conservative dependencetesting, they are marked exact and inexact to indicatewhether they are an approximation.Regular sections enable dependence analysis to de-termine if loops containing calls are parallel. Sectionsare also currently used to determine the safety of intra-procedural transformations on a loop nest containingcalls. In this paper, sections are extended to enablethe code generator to determine the safety of inter-procedural transformations. We introduce an annota-tion to a section, called a slice. Slices resemble dataaccess descriptors, but they are not as detailed [5]. Aslice identi�es the section of an array accessed and theorder of that access in terms of a particular loop's in-dex expression. Symbolic slices are stored only for theoutermost loop of a procedure. They are also markedas exact or inexact. Figure 1(c) illustrates the sliceannotations for the program in Example 1.

3 Support for InterproceduralOptimizationIn this section, we present the compilation systemof the ParaScope Programming Environment [11, 14].This system was designed for the e�cient support ofinterprocedural analysis and optimization. The toolsin ParaScope cooperate to enable the compilation sys-tem to perform interprocedural analysis without directexamination of source code. This information is thenused in code generation to make decisions about inter-procedural optimizations. The code generator only ex-amines the dependence graph for the procedure cur-rently being compiled, not the graph for the entire pro-gram. In addition, ParaScope employs recompilationanalysis after program changes to minimize programreanalysis [15].3.1 The ParaScope Compilation SystemInterprocedural analysis in the ParaScope compilationsystem consists of two principal phases. The �rst takesplace prior to compilation. At the end of each editingsession, the immediate interprocedural e�ects of a pro-cedure are determined and stored. For example, thisinformation includes the array sections that are locallymodi�ed and referenced in the procedure. The proce-dure's calling interface is also determined in this phase.It includes descriptions of the calls and loops in theprocedure and their relative positions. In this way, theinformation needed from each module of source code isavailable at all times and need not be derived on everycompilation.Interprocedural optimization is orchestrated by theprogram compiler, a tool that manages and provides in-formation about the whole program [14, 19]. The pro-gram compiler begins by building the augmented callgraph described in Section 2.2. The program compilerthen traverses the augmented call graph, performinginterprocedural analysis, and subsequently, code gen-eration. Conceptually, program compilation consistsof three principal phases: (1) interprocedural analysis,(2) dependence analysis, and (3) planning and codegeneration.Interprocedural analysis. The program compilercalculates interprocedural information over the aug-mented call graph. First, the information collectedduring editing is recovered from the database and as-sociated with the appropriate nodes and edges in thecall graph. This information is then propagated in atop-down or bottom-up pass over the nodes in the callgraph, depending on the interprocedural problem. Sec-tion analysis is performed at this time. Interproceduralconstant propagation and symbolic analysis are alsoperformed, as these greatly increase the precision ofsubsequent dependence analysis.Dependence analysis. Interprocedural informa-tion is then made available to dependence analysis,which is performed separately for each procedure.Dependence analysis results in a dependence graph.Edges in the dependence graph connect statementsthat form the source and sink of a dependence. If thesource or sink of a dependence is a call site, a sec-Page 3

AugmentedCall GraphRSDAnalysis RSDs DependenceAnalysis Marked k LoopsDependence Graphsw/RSDs & Slices CodeGenerationFigure 2: Flow of information for interprocedural transformations.tion annotates it. The section may more accuratelydescribe the portion of the array involved in the depen-dence. Dependence analysis also distinguishes parallelloops in the augmented call graph. Dependence analy-sis is separated from code generation for an importantreason; it provides the code generator knowledge abouteach procedure without reexamining their source or de-pendence graph.Planning and Code Generation. The �nalphase of the program compiler determines where inter-procedural optimization is pro�table. When more thanone option for interprocedural transformation exists,it selects the most pro�table option. Planning is im-portant to interprocedural optimization since unnec-essary optimizations may lead to signi�cant compile-time costs without any execution-time bene�t. To de-termine the pro�tability of transformations requires amachine model. To determine the safety of transfor-mations, the dependence graph and sections are suf-�cient. Once pro�table transformations are located,they are applied and parallelism is introduced in thetransformed program.The relationship among the compilation phases isdepicted in Figure 2. Each step adds annotations to thecall graph that are used by the next phase. Followingprogram transformation, each procedure is separatelycompiled. Interprocedural information for a procedureis provided to the compiler to enhance intraproceduraloptimization.3.2 Recompilation AnalysisA unique part of the ParaScope compilation systemis its recompilation analysis, which avoids unnecessaryrecompilation after editing changes to the program.Recompilation analysis tests that interprocedural factsused to optimize a procedure have not been invalidatedby editing changes [15]. To extend recompilation analy-sis for interprocedural transformations, a few additionsare needed. When an interprocedural transformation isperformed, a description of the interprocedural trans-formations annotates the nodes and edges in the aug-mented call graph. On subsequent compilations, thisinformation indicates to the program compiler that thesame tests used initially to determine the safety of thetransformations should be reapplied.To determine if interprocedural transformations arestill safe, the new and old sections are �rst compared,in most cases avoiding examination of the dependencegraph. This means that dependence analysis is only ap-

plied to procedures where it is no longer valid, allowingseparate compilation to be preserved. The recompila-tion process after interprocedural transformations havebeen applied is described in more detail elsewhere [19].4 Interprocedural TransformationWe introduce two new interprocedural transforma-tions, loop extraction and loop embedding. These ex-pose the loop structure to optimization without incur-ring the costs of inlining. The movement of a sin-gle loop header is detailed below. Moving additionalstatements that precede or are enclosed by a loop isa straightforward generalization of these two transfor-mations and for simplicity is not described. This sec-tion also describes the additional information neededto perform the applicability and safety tests for loopfusion and loop interchange across call boundaries. Allof these are used in our code generation algorithm. Thecode generation algorithm also uses loop distribution,but does not apply it across call boundaries. Therefore,it may be performed with no additional information.Loop distribution is discussed in detail in Section 5.2.4.1 Loop ExtractionLoop extraction moves an enclosing loop of a procedurep outward into one of its callers. This optimizationmaybe thought of as partial inlining. The new version of pno longer contains the loop. The caller now contains anew loop header surrounding the call to p. The indexvariable of the loop, originally a local in p, becomes aformal parameter and is passed at the call. The call-ing procedure creates a new variable to serve as theloop index, avoiding name conicts. It is always safeto extract an outer enclosing loop from a procedure.Example 2(a) contains a loop with two calls to proce-dure S and (b) contains the result after loop extraction.Note that (b) has an additional variable declaration forthe loop index J in P. It is included in the actual pa-rameter list for S. In this example, the J loop may nowbe fused and interchanged to improve performance.4.2 Loop EmbeddingLoop embedding moves a loop that contains a proce-dure call into the called procedure and is the dual ofloop extraction. The new version of the called proce-dure requires a new local variable for the loop's indexvariable. If a name conict exists, a new name for theloop's index variable must be created. This transfor-mation is illustrated in Example 1. Page 4

SUBROUTINE P(A) SUBROUTINE P(A)REAL A(N,N), B(N,N) REAL A(N,N), B(N,N)INTEGER I INTEGER I,JDO I = 1, 3DO I = 1, 3 DO J = 1, 100CALL S(A,I) CALL S(A,I,J)CALL S(B,I) ENDDOENDDO DO J = 1, 100CALL S(B,I,J)ENDDOENDDOSUBROUTINE S(F,I) SUBROUTINE S(F,I,J)REAL F(N,N) REAL F(N,N)INTEGER I,J INTEGER I,JDO J = 1,100F(J,I) = F(J,I) + 10 F(J,I) = F(J,I) + 10ENDDO(a) before transformation (b) loop extractionExample 2:If the index variable of the loop to be embedded ap-pears in an actual parameter in the call, this parameteris no longer correctly de�ned. To remedy this problem,the formals that depend on it must be assigned andcomputed in the newly embedded loop. In the sim-plest case, an index variable i is passed to a formal f .Here, f should be assigned i on every iteration of theembedded loop, prior to the rest of the loop body.If an actual is an array reference whose subscript ex-pression contains the loop index variable, the actualpassed at the call becomes simply the array name. Inthe called procedure, the original subscript expressionfor each dimension of the actual is added to the sub-script expression for the corresponding dimension ofthe formal at each reference to the formal. If the arrayparameter is reshaped across the call, this translationis more complicated. The array formal is replaced bya new array with the same shape as the actual. Thereferences to the variable are translated by linearizingthe formal's subscript expressions and then convert-ing to the dimensions of the new array[9]. Finally, thesubscript expressions for each dimension of the actualare added to those for the translated reference. Thismethod is also the one that is used in inlining.Procedure CloningProcedures optimized with embedding or extractionmay have multiple callers, and an optimization validfor one caller may not be valid for another. To avoidsigni�cant code growth, multiple callers should sharethe same version of the optimized procedure wheneverpossible. This technique of generating multiple copiesof a procedure and tailoring the copies to their callingenvironments is called procedure cloning [14].Dependence UpdatesBecause our code generator only applies loop extrac-tion and loop embedding after safety and pro�tabilityare ensured, an update of local dependence informa-tion is not necessary. However, if further optimiza-tion is desired, updating the dependence information

is straightforward.4.3 Loop FusionLoop fusion places the bodies of two adjacent loopswith the same number of iterations into a singleloop [1]. When several procedure calls appear contigu-ously or loops and calls are adjacent, it may be possibleto extract the outer loop from the called procedure(s),exposing loops for fusion and further optimization. Inthe algorithm checkFusion, we consider fusion for anordered set S = fs1; : : : ; spg, where si is either a callor a loop. There cannot be any intervening statementsbetween si and si+1 and each call must contain an en-closing loop which is being considered for fusion.Fusion is safe for two loops l1 and l2 if it does notresult in values owing from the statements in l2 backinto the statements in l1 in the resultant loop and viceversa. The simple test for safety performs dependencetesting on the loop bodies as if they were in a singleloop. Each forward dependence originally between l1and l2 is tested. Fusion is unsafe if any dependences arereversed, becoming backward loop-carried dependencesin the fused loop.This test requires the inspection of the dependencesource and sink variable references in l1 and l2. If oneor more of the loops is inside a call, the variable refer-ences are represented instead as the modi�ed and ref-erenced sections for the call. The slices that annotatethe sections correspond to the loops being consideredfor fusion and are tested identically to variable refer-ences (see Section 2.3). Unfortunately, while variablereferences are always exact, a section and its slice arenot. If the slice is not exact, fusion is conservativelyassumed to be unsafe. To be more precise would re-quire the inspection of the dependence graphs for eachcalled procedure, possibly a signi�cant overhead.checkFusion (S)/� Input: S = fs1; : : : ; spg, si is a call or a loop �//� si is adjacent to si+1 �//� Output: returns true if fusion is safe 8 si �/F = fs1gfor i = 2 to nlet li = the loop header of siif the number of iterations of li di�er from F thenreturn falsefor each forward dependence (srcF , sinksi)if srcF or sinksi is not exact thenreturn falseif (srcF , sinksi) becomesbackward loop-carried thenreturn falseendforF = F [fsigendforreturn true4.4 Loop InterchangeLoop interchange of two nested loops exchanges theloop headers, changing the order in which the itera-Page 5

tion space is traversed. It is used to introduce par-allelism or to adjust granularity of parallelism. Inparticular, when a loop containing calls is not paral-lel or parallelizing the loop is not pro�table, it maybe possible to move parallel loops in the called proce-dures outward using loop interchange as in Examples 1and 2. The safety of loop interchange may be deter-mined by inspecting the distance/direction vector toensure that no existing dependence is reversed afterinterchange [3, 37].Our algorithm considers loop interchange only whena perfect nest can be created via loop extraction, em-bedding, fusion, and distribution. If a loop containsmore than one call, it may be possible to fuse the outerenclosing loops of calls to create a perfect nest. Even ifthere are multiple statements and calls, it may be pos-sible to use loop distribution to create a perfect nest. Ifa perfect nest may be safely created, testing the safetyof interchange simply requires inspection of the direc-tion vectors and slices for dependences between calls orstatements in the nest.5 Interprocedural Parallel CodeGenerationIn this section we present an algorithm for the inter-procedural parallel code generation problem. This al-gorithmmoves loops across procedure boundaries whenother transformations such as loop fusion, interchange,and distribution may be applied to the resulting loopnests to introduce or improve single-level loop paral-lelism. The goal of this algorithm is to only applytransformations which are proven to minimize execu-tion time for a particular code segment. To determinethe minimum execution time of a code segment, a sim-ple machine model is used. This model includes thecost of arithmetic and conditional statements as wellas operations such as parallel loops, sequential loops,and procedure call overhead. Both Polychronopoulosand Sarkar have used similar machine models in theirresearch [33, 34].5.1 Machine Model and PerformanceEstimationA cost model is needed to compare the costs of variousexecution options. First, a method for estimating thecost of executing a sequential loop is presented. Con-sider the following perfect loop nest, where ub1, : : : ,ubn are constants and B is the loop body.DO i1 = 1; ub1: : :DO in = 1; ubnBENDDO: : :ENDDOIn order to estimate the cost of running this loop ona single processor, a method for estimating the run-ning time of the loop body is needed. If B consists ofstraight-line code, simply sum the time to execute eachstatement in the sequence. To handle control ow, weassume a probability for each branch and compute theweighted mean of the branches. Once the sequential

running time of the loop body t(B) is computed, thenthe running time for the inner loop is given by the for-mula: ubn(t(B) + o);where o is the sequential loop overhead. The runningtime for the entire loop nest is then given by the fol-lowing: ub1(: : : (ubn(t(B) + o) : : :) + o):In order to estimate the running time of a parallelloop, we need to take into account any overhead intro-duced by the parallel loop. Our experiments on uni-form shared-memory machines indicate that this over-head consists of a �xed cost cs of starting the parallelexecution and a cost cf of forking and synchronizingeach parallel process. If there are P parallel processors,an estimate of the cost of executing the inner loop ofthe above example in parallel is given by the equationcs + cfP + �ubnP � (t(B) + o) :This formula assumes that the iterations are dividedinto nearly equal blocks at startup time and the over-head of an iteration o remains the same. Given a per-fect loop nest where just one loop is being consideredfor parallel execution, these two formulae may be gen-eralized to compute the expected sequential and paral-lel execution time. If the parallel execution time is lessthan the sequential execution time, it is pro�table torun the loop in parallel.To enable the parallel code generator to compare thecosts of di�erent transformation choices, we introducethe following cost function:cost(L; how;B), whereL = fl1; : : : lng, a perfect loop nesthow indicates whether ln is parallel (k) or sequentialB = the loop bodyThe function cost estimates the running time of a loopnest l1; : : : ; ln, where the inner loop ln is speci�ed aseither parallel or sequential, and all outer loops aresequential. The loop body B may contain any types ofstatements, including calls and inner loop nests.5.2 Code Generation AlgorithmThe goal of our interprocedural parallel code genera-tion algorithm is to introduce e�ective loop parallelismfor programs which contain procedure calls and loops.This algorithm applies the following transformations:loop fusion, loop interchange, loop distribution, loopembedding, loop extraction, and loop parallelization.These transformations are applied at call sites and fora loop nest containing call sites. The algorithm seeksa minimum cost single loop parallelization based onperformance estimates.Potential loop and call sequences that may bene�tfrom these interprocedural transformations are adja-cent procedure calls, loops adjacent to calls, and loopnests containing calls. To �nd candidates for inter-procedural optimization, the augmented call graph istraversed in a top-down pass. If a candidate bene�tsfrom interprocedural transformation, the transforma-Page 6

BestCost (S;L)/� Input: a set of statements S = fs1; : : : ; spg in perfect loop nest L = fl1; : : : lng �//� Output: a tuple h�;T i, where � = the minimum execution time and �//� T = the set of transformations that result in � �/h�;T i = hcost(L; sequential; S); ;iif (L = ;) thenif (checkFusion(S) & (fused loop lf is k)) thenh�;T i = min (hcost(lf ; k; body(lf)), ffuse, make lf kg i, h�;T i)return h�;T iendiffor (i = 1, n)if (li is k) thenh�;T i = min (hcost(fl1; : : : ; lig; k; body(li)), fmake li kg i, h�;T i)if i 6= n then return h�;T iendifendforif (checkFusion(S)) thenif (fused loop lf is k) thenif (checkInterchange(ln; lf) & lf is k after interchange) then(1) h�;T i = min(hcost(fl1; : : : ; ln�1; lfg; k; ln � body(lf)), ffuse, interchange, make lf kgi, h�;T i)else(2) h�;T i = min(hcost(fl1; : : : ; ln; lfg; k; body(lf)), ffuse, make lf kg i, h�;T i)else if (ln is : k) & (checkInterchange (ln; lf)) & (ln k after interchange) then(3) h�;T i = min(hcost(fl1; : : : ; ln�1; lf ; lng; k; body(lf)), ffuse, interchange, make ln kgi, h�;T i)endifreturn h�;T itions are performed and no further optimization of thatcall sequence is attempted. Additional candidates foroptimization may be created by using judicious codemotion and loop coalescing (combining nested loopsinto a single loop)[33].BestCost AlgorithmBestCost considers L = fl1; : : : ; lng a perfect loop nestwith body S = fs1; : : : ; spg, where ln is the innermostloop and L may be the empty set ;. S consists of atleast one call and may also contain other statementssuch as loops, control ow, and assignments.The BestCost algorithm makes use of loop paral-lelization, fusion, interchange, extraction, and embed-ding (loop distribution is excluded) to determine a tu-ple h�; T i, such that � is the best execution time andT speci�es the transformations needed to obtain thistime. Unfortunately, �nding the best ordering of a loopnest via loop interchange requires that all possible per-mutations (n!) be considered. Therefore to restrict thesearch space and simplify this presentation, BestCostonly considers loop interchange of ln the innermost nestand lf the result of fusing S. However, opportunitiesto test various interchange strategies are pointed outin the text.The sequential execution time is computed �rst(T = ;). If there is no surrounding loop nest (L = ;), Smay be a group of adjacent calls and loops that can befused. If fusion of all members of S is possible and pro-duces a parallel loop, its execution time is computedand compared to the sequential cost using the functionmin. The function min assigns � the minimum of thetwo times, and T the corresponding program transfor-

mation. If L 6= ;, other transformations are consideredas follows.First, the outermost parallel loop of L is sought andcompared with the sequential time. If any of l1 : : : ln�1are parallel, BestCost returns. Loop interchange out-ward of any of these parallel loops could also be con-sidered. Otherwise, if all of S fuses into lf , three trans-formations on lf and ln are considered.1. Interchanging a parallel lf with ln to make a par-allel loop with increased granularity.2. A parallel lf in its current position.3. Interchanging ln and lf to introduce inner loopparallelism.Case 1 is illustrated in Examples 1 and 2. Furtherinterchanging of lf to enable a more outer loop to beparallel may also be tested here.Embedding versus ExtractionTo apply the set of transformations speci�ed by h�; T i,the loops involved may need to be placed in the sameroutine. In particular, if T speci�es interchange or fu-sion across a call then one of embedding or extractionmust be applied. If there is only one call, then em-bedding loop ln into the called procedure is preferablebecause it reduces procedure call overhead. If thereis more than one call and T requires fusion, extrac-tion from all the calls is performed. Fusion, inter-change, and parallelization may then be performed onthe transformed loops.Loop DistributionIf BestCost(L, S) cannot introduce parallelism, thenit may be possible to use loop distribution to do so.Page 7

Loop distribution seeks parallelism by separating inde-pendent parallel and sequential statements in L. Forexample, loop distribution may create loop nests of ad-jacent calls and loops which BestCost can optimize.Ordered Partitions. Loop distribution is safe ifthe partition of statements into new loops preservesall of the original dependences [24, 32]. Dependencesare preserved if any statements involved in a cycle ofdependences, a recurrence, are placed in the same loop(partition). The dependences between the partitionsthen form an acyclic graph that can always be orderedusing topological sort [3, 28].By �rst choosing a safe partition with the �nest pos-sible granularity and then grouping partitions, largerpartitions may be formed. Any one of these group-ings may expose the optimal parallelization of the loop.Unfortunately, there exists an exponential number ofpossible groupings [2].To limit the search space, statement order is �xedbased on a topological sort of all the dependences forL. Ambiguities are resolved in favor of placing parallelpartitions adjacent to each other. The advantage ofthis ordering is that loop-carried anti-dependences maybe broken, allowing parallelism to be exposed.Grouping partitions via dynamic program-ming. A dynamic programming solution is used tocompute the best grouping for the �nest granularityordered partitions. This algorithm is similar to tech-niques for calculating the shortest path between twopoints in a graph [31]. The algorithm is O(N �M3). Nis the number of perfectly nested loops. M is the max-imum number of partitions and is less than or equal tothe number of statements in the loop. Both N and Mare typically small numbers.The dynamic programming solution appears in Fig-ure 3. The algorithm begins by �nding the �nest par-tition for the inner loop ln that satis�es its own depen-dences and the ordering constraints. On subsequentiterations, the initial partition is further constrainedby including the dependences for the next outer loop.Since an inner loop may have more partitions than itsenclosing loop, a map is constructed that correlates astatement's partition for the previous and current it-eration; map(j) returns the partition from li+1 thatcorresponds to �j in li.For each loop level, BestCost calculates the best ex-ecution time of each possible grouping of partitions.The grouping algorithm �rst tests the �nest partitionand then each pair of adjacent partitions. Increasinglylarger groupings of partitions are tested for a partic-ular loop level. At each level, the minimal executiontime for each grouping analyzed is stored. The minimalgrouping time is taken from the grouping at this level,as well as that of the previous inner loops. This strat-egy allows inner loop distributions to be used withinan outer loop distribution to minimize overall execu-tion time. On completion, the best execution time forthe grouping of the entire loop nest is determined.Each time the algorithm locates a grouping of parti-tions that improves execution time, a set D is con-structed to describe how partitions are grouped to-

Input:L = fl1; : : : ; lng perfect loop nestS = fs1; : : : ; spg ordered body of LIT = fit1; : : : ; itng number of loop iterationstime(i)j;k = BestCost (f�j; : : : ; �kg; fli; : : : ; lng)Output:opt(i)j;k = minj�r�k(time(i)j;r + time(i)r+1;k)best execution time for liD(i)j;k = grouping of partitions at liwith best execution timeGrouping via dynamic programming:for i = n; 1;�1partition into �1; : : : ; �mfor � = 0;m� 1for j = 1;m� �opt(i)j;j+� = min(time(i)j;j+�; iti+1 � time(i+1)map(j);map(j+�))if (time(i)j;j+� < time(i+1)map(j);map(j+�)) thenD(i)j;j+� = ff�j; : : : ; �j+�ggelseD(i)j;j+� = D(i)map(j);map(j+�)endiffor k = 0; � � 1if (opt(i)j;j+� > opt(i)j;j+k + opt(i)j+k+1;j+�) thenopt(i)j;j+� = opt(i)j;j+k + opt(i)j+k+1;j+�D(i)j;j+� = D(i)j;j+k [D(i)j+k+1;j+�endifendforendforendforendfor Figure 3:gether. For a loop li,D(i)1;m provides the best group-ing of partitions at loop li. Upon termination of thealgorithm,D(1)1;m indicates the �nal grouping with theminimal cost. Implicit in D is also a description of anyadditional transformations speci�ed by BestCost.Improvements. To leverage the dynamic program-ming solution, the distribution algorithm generatespartitions based on a �xed statement order that sat-is�es all the dependences. A correct and less restric-tive statement order uses only the dependences for theparticular loop nest being distributed. In general, thisordering causes the map between solutions for adjacentloop partitions to be useless. It provides a single bestsolution for each nesting level of distribution instead ofone overall best solution. In practice, experimentationwill be needed to di�erentiate these strategies.6 Experimental ValidationThis section presents signi�cant performance improve-ments due to interprocedural transformation on twoscienti�c programs, spec77 and ocean, taken from thePerfect Benchmarks[16]. Spec77 contains 3278 non-comment lines and is a uid dynamics weather sim-ulation that uses Fast Fourier Transforms and rapidPage 8

elliptic problem solvers. Ocean has 1902 non-commentlines and is a 2-D uid dynamics ocean simulation thatalso uses Fast Fourier Transforms.To locate opportunities for transformations, webrowsed the dependences in the program using theParaScope Editor [6, 25, 26]. Using other ParaScopetools, we determined which procedures in the programcontained procedure calls. We examined the proce-dures containing calls, looking for interesting call struc-tures. We located adjacent calls, loops adjacent tocalls, and loops containing calls which could be op-timized.The rest of this section describes our experiences exe-cuting these programs on a 20-processor Sequent Sym-metry S81. Since the optimizations used and the exper-imentalmethodology di�ered slightly for each program,they are described separately.6.1 Optimizing spec77In spec77, loops containing calls were common. Over-all, transformations were applied to 19 such loops.Embedding and interchange were applied to 8 loopswhich contained calls to a single procedure. The re-maining 11 loops, which contained multiple procedurecalls, were optimized using extraction, fusion and in-terchange. These loops were found in procedures del4,gloop and gwater.For the 19 transformed loops, performance was mea-sured among three possibilities: (1) no parallelizationof loops containing procedure calls, (2) paralleliza-tion using interprocedural information, and (3) inter-procedural information and transformations. To ob-tain these versions, the steps illustrated in Figure 4were performed.The Original version contains directives to parallelizethe loops in the leaf procedures that are invoked by the19 loops of interest. The IPinfo version parallelizes the19 loops containing calls. For the IPtrans version, weperformed interprocedural transformation followed byouter loop parallelization. The parallel loops in eachversion were also blocked to allow multiple consecutiveiterations to execute on the same processor withoutsynchronization. The compiler default is to create aseparate process for each iteration of a parallel loop.Time in optimizedportion SpeedupProcessors = 7Original 81.9s 5.7IPinfo 80.0s 5.8IPtrans 80.6s 5.8Processors = 19Original 45.8s 10.1IPinfo 48.0s 9.7IPtrans 36.4s 12.7The results reported above are the best executiontime in seconds for the optimized portions of each ver-sion. The speedups are compared against the executiontime in the optimized portion of the program on a sin-gle processor, which was 463.7s. This accounted formore than 21 percent of the total sequential execution

time.With seven processors, the results are similar for allthree versions, since each program version provided ad-equate parallelism and granularity for seven processors.On 19 processors, IPinfo was slower than the originalprogram because the parallel outer loops had insu�-cient parallelism { only 7 to 12 iterations. The paral-lel inner loops of Original were better matched to thenumber of processors because they had at least 31 it-erations. The interprocedural transformation versionIPtrans demonstrated the best performance, a speedupof 12.7, because it combined the amount of paral-lelism in Original with increased granularity. The inter-procedural transformations resulted in a 21 percent im-provement in execution time over Original in the opti-mized portion.Parallelizing just these 19 loops resulted in a speedupfor the entire program of about 1.25 on 19 processorsand 1.23 on 7 processors. Higher speedups might resultfrom parallelizing the entire application.6.2 Optimizing oceanThere were 31 places in the main routine of oceanwhere we extracted and fused interprocedurally adja-cent loops. They were divided almost evenly betweenadjacent calls and loops adjacent to calls. In all 15cases where a loop was adjacent to a call, the loopwas 2-dimensional, while the loop in the called proce-dure was 1-dimensional. Prior to fusion, we coalescedthe 2-dimensional loop into a 1-dimensional loop bylinearizing the subscript expressions of its array refer-ences. The resulting fused loops consisted of between2 and 4 parallel loops from the original program, thusincreasing the granularity of parallelism.To measure performance improvements due to inter-procedural transformation, we performed steps similarto those in Figure 4. Directives forced the paralleliza-tion and blocking of the individual loops in the Originalversion, and the fused loops in IPtrans. The executiontimes were measured for the entire program and justthe optimized portion. The optimized execution timesare shown below. Processors = 19Time in optimizedportion SpeedupOriginal 116.6s 5.5IPtrans 79.3s 8.1The speedups are relative to the time in the op-timized portion of the sequential version of the pro-gram, which was 645.9 seconds. The optimized codeaccounted for about 5 percent of total program exe-cution time. For the whole program, the parallelizedversions achieve a speedup of about 1.06 over the se-quential execution time.Note that IPtrans achieved a 32 percent improvementover Original in the optimized portion. This improve-ment resulted from increasing the granularity of paral-lel loops and reducing the amount of synchronization.It is also possible that fusion reduced the cost of mem-ory accesses. Often the fused loops were iterating overPage 9

spec77 Transform Directives oninner loopsDirectives onouter loops Block OriginalIPinfoIPtransFigure 4: Stages of preparing program versions for experiment.the same elements of an array. These 31 groups of loopswere not the only opportunities for interprocedural fu-sion; there were many other cases where fusion wassafe, but the number of iterations were not identical.Using a more sophisticated fusion algorithm might re-sult in even better execution time improvements.7 Related WorkWhile the idea of interprocedural optimization is notnew, previous work on interprocedural optimization forparallelization has limited its consideration to inlinesubstitution [4, 13, 23] and interprocedural analysis ofarray side e�ects [5, 9, 12, 20, 29, 30, 35]. The variousapproaches to array side-e�ect analysis must make atradeo� between precision and e�ciency. Section anal-ysis used here loses precision because it only representsa few array substructures, and it merges sections for allreferences to a variable into a single section. However,these properties make it e�cient enough to be widelyused by code generation. In addition, experiments withregular section analysis on the linpack library demon-strated a 33 percent reduction in parallelism-inhibitingdependences, allowing 31 loops containing calls to beparallelized [20]. Comparing these numbers againstpublished results of more precise techniques, there wasno bene�t to be gained by the increased precision ofthe other techniques [29, 30, 35].Sections inspired a similar but more detailed ar-ray summary analysis, data access descriptors, whichstores access orders and expresses some additionalshapes [5, 21, 22]. In fact, the slice annotation to sec-tions could be obviated by using some of the techniquesin Huelsbergen et. al. for determining exact array de-scriptors for use in dependence testing. However, slicesare appealing due to our existing implementation andtheir simplicity.8 ConclusionsThis paper has described a compilation system; intro-duced two interprocedural transformations, loop em-bedding and loop extraction; and proposed a parallelcode generation strategy. The usefulness of this ap-proach has been illustrated on the Perfect Benchmarkprograms spec77 and ocean. Taken as a whole, the re-sults indicate that providing freedom to the code gen-

erator becomes more important as the number of pro-cessors increase. E�ectively utilizing more processorsrequires more parallelism in the code. This behaviorwas particularly observed in spec77, where the bene�tsof interprocedural transformation were increased withthe number of processors.Although it may be argued that scienti�c programsstructured in a modular fashion are rare in practice, webelieve that this is an artifact of the inability of previ-ous compilers to perform interprocedural optimizationsof the kind described here. Many scienti�c program-mers would like to program in a more modular style,but cannot a�ord to pay the performance penalty. Byproviding compiler support to e�ectively optimize pro-cedures containing calls, we encourage the use of modu-lar programming,which, in turn, will make these trans-formations applicable on a wider range of programs.AcknowledgmentsWe are grateful to Paul Havlak, Chau-Wen Tseng,Linda Torczon and Jerry Roth for their contributionsto this work. Use of the Sequent Symmetry S81was provided by the Center for Research on Paral-lel Computation under NSF Cooperative Agreement# CDA8619893.References[1] F. Allen and J. Cocke. A catalogue of optimizing transfor-mations. In J. Rustin, editor, Design and Optimization ofCompilers. Prentice-Hall, 1972.[2] J. R. Allen, D. Callahan, and K. Kennedy. Automatic de-composition of scienti�c programs for parallel execution. InProceedings of the Fourteenth Annual ACM Symposium onthe Principles of Programming Languages, Munich, Ger-many, January 1987.[3] J. R. Allen and K. Kennedy. Automatic translation of For-tran programs to vector form. ACM Transactions on Pro-gramming Languages and Systems, 9(4):491{542, October1987.[4] R. Allen and S. Johnson. Compiling C for vectorization,parallelization, and inline expansion. In Proceedings of theSIGPLAN '88 Conference on Program Language Designand Implementation, Atlanta, GA, June 1990.[5] V. Balasundaram and K. Kennedy. A technique for sum-marizing data access and its use in parallelism enhancingPage 10

transformations. In Proceedings of the SIGPLAN '89 Con-ference on Program Language Design and Implementation,Portland, OR, June 1989.[6] V. Balasundaram,K. Kennedy, U. Kremer, K. S. McKinley,and J. Subhlok. The ParaScope Editor: An interactive par-allel programming tool. In Proceedings of Supercomputing'89, Reno, NV, November 1989.[7] U. Banerjee. Dependence Analysis for Supercomputing.Kluwer Academic Publishers, Boston, MA, 1988.[8] P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-directed interprocedural optimization. Technical ReportTR90-147, Dept. of Computer Science, Rice University, De-cember 1990.[9] M. Burke and R. Cytron. Interprocedural dependence anal-ysis and parallelization. In Proceedings of the SIGPLAN'86 Symposium on Compiler Construction, Palo Alto, CA,June 1986.[10] D. Callahan, J. Cocke, and K. Kennedy. Estimating inter-lock and improving balance for pipelinedmachines. Journalof Parallel and Distributed Computing, 5(4):334{358, Au-gust 1988.[11] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Tor-czon. ParaScope: A parallel programming environment.The International Journal of Supercomputer Applications,2(4):84{99, Winter 1988.[12] D. Callahan and K. Kennedy. Analysis of interproceduralside e�ects in a parallel programming environment. In Pro-ceedings of the First International Conference on Super-computing. Springer-Verlag, Athens, Greece, June 1987.[13] K. Cooper, M. W. Hall, and L. Torczon. An experimentwith inline substitution. Software|Practice and Experi-ence, 21(6):581{601, June 1991.[14] K. Cooper, K. Kennedy, and L. Torczon. The impact ofinterprocedural analysis and optimization in the IRn pro-gramming environment. ACM Transactions on Program-ming Languages and Systems, 8(4):491{523, October 1986.[15] K. Cooper, K. Kennedy, and L. Torczon. Interproceduraloptimization: Eliminating unnecessary recompilation. InProceedings of the SIGPLAN '86 Symposium on CompilerConstruction, Palo Alto, CA, June 1986.[16] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Super-computer performance evaluation and the Perfect bench-marks. In Proceedings of the 1990 ACM International Con-ference on Supercomputing, Amsterdam, The Netherlands,June 1990.[17] J. Ferrante, K. Ottenstein, and J. Warren. The programdependence graph and its use in optimization. ACM Trans-actions on Programming Languages and Systems, 9(3):319{349, July 1987.[18] G. Go�, K. Kennedy, and C. Tseng. Practical dependencetesting. In Proceedings of the SIGPLAN '91 Conference onProgram Language Design and Implementation, Toronto,Canada, June 1991.[19] M. W. Hall. Managing Interprocedural Optimization. PhDthesis, Rice University, April 1991.[20] P. Havlak and K. Kennedy. Experiencewith interproceduralanalysis of array side e�ects. In Proceedings of Supercom-puting '90, New York, NY, November 1990.[21] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependenceanalysis using data access descriptors. In Proceedings of the1990 International Conference on Parallel Processing, St.Charles, IL, August 1990.[22] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependenceanalysis using data access descriptors. Technical Report

945, Dept. of Computer Science, University of Wisconsin,Madison, July 1990.[23] C. A. Huson. An inline subroutine expander for Parafrase.Master's thesis, Dept. of Computer Science, University ofIllinois at Urbana-Champaign, 1982.[24] K. Kennedy and K. S. McKinley. Loop distribution witharbitrary control ow. In Proceedings of Supercomputing'90, New York, NY, November 1990.[25] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis andtransformation in the ParaScope Editor. In Proceedings ofthe 1991 ACM International Conference on Supercomput-ing, Cologne, Germany, June 1991.[26] K. Kennedy, K. S. McKinley, and C. Tseng. Interac-tive parallel programming using the ParaScope Editor.IEEE Transactions on Parallel and Distributed Systems,2(3):329{341, July 1991.[27] D. Kuck. The Structure of Computers and Computations,Volume 1. John Wiley and Sons, New York, NY, 1978.[28] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe.Dependence graphs and compiler optimizations. In Confer-ence Record of the Eighth Annual ACM Symposium on thePrinciples of Programming Languages, Williamsburg, VA,January 1981.[29] Z. Li and P. Yew. E�cient interprocedural analysis for pro-gram restructuring for parallel programs. In Proceedingsof the ACM SIGPLAN Symposium on Parallel Program-ming: Experience with Applications, Languages, and Sys-tems (PPEALS), New Haven, CT, July 1988.[30] Z. Li and P. Yew. Interprocedural analysis and program re-structuring for parallel programs. Technical Report 720,Center for Supercomputing Research and Development,University of Illinois at Urbana-Champaign, January 1988.[31] R. McNaughton and H. Yamada. Regular expressions andstate graphs for automata. IRE Transactions on ElectronicComputers, 9(1):39{47, 1960.[32] Y. Muraoka. Parallelism Exposure and Exploitation in Pro-grams. PhD thesis, Dept. of Computer Science, Universityof Illinois at Urbana-Champaign, February 1971. ReportNo. 71-424.[33] C. Polychronopoulos. On Program Restructuring, Schedul-ing, and Communication for Parallel Processor Systems.PhD thesis, Dept. of Computer Science, University of Illi-nois at Urbana-Champaign, August 1986.[34] V. Sarkar. Partition and Scheduling Parallel Programs forMultiprocessors. The MIT Press, Cambridge, MA, 1989.[35] R. Triolet, F. Irigoin, andP. Feautrier. Direct parallelizationof CALL statements. In Proceedings of the SIGPLAN '86Symposium on Compiler Construction, Palo Alto, CA, June1986.[36] M. J. Wolfe. Loop skewing: The wavefront method re-visited. International Journal of Parallel Programming,15(4):279{293, August 1986.[37] M. J. Wolfe. Optimizing Supercompilers for Supercomput-ers. The MIT Press, Cambridge, MA, 1989.
Page 11

