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The programming language and underlying hardware determine application
performance, and both are undergoing revolutionary shifts. As applications have
become more sophisticated and capable, programmers have chosen managed lan-
guages in many domains for ease of development. These languages abstract mem-
ory management from the programmer, which can introduce time and space over-
head but also provide opportunities for dynamic optimization. Optimizing memory
performance is in part paramount because hardware is reaching physical limits. Re-
cent trends towards chip multiprocessor machines exacerbate the memory system
bottleneck because they are adding cores without adding commensurate bandwidth.
Both language and architecture trends add stress to the memory system and degrade

application performance.

This dissertation exploits the language abstraction to analyze and optimize
memory efficiency on emerging hardware. We study the sources of memory inef-
ficiencies on two levels: heap data and hardware storage traffic. We design and

implement optimizations that change the heap layout of arrays, and use program
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semantics to eliminate useless memory traffic. These techniques improve memory

system efficiency and performance.

We first quantitatively characterize the problem by comparing many data
compression algorithms and their combinations in a limit study of Java benchmarks.
We find that arrays are a dominant source of heap inefficiency. We introduce z-rays,
a new array layout design, to bridge the gap between fast access, space efficiency
and predictability. Z-rays facilitate compression and offer flexibility, and time and

space efficiency.

We find that there is a semantic mismatch between managed languages, with
their rapid allocation rates, and current hardware, causing unnecessary and exces-
sive traffic in the memory subsystem. We take advantage of the garbage collector’s
identification of dead data regions, communicating information to the caches to
eliminate useless traffic to memory. By reducing traffic and bandwidth, we improve

performance.

We show that the memory abstraction in managed languages is not just a
cost to be borne, but an opportunity to alleviate the memory bottleneck. This the-
sis shows how to exploit this abstraction to improve space and time efficiency and
overcome the memory wall. We enhance the productivity and performance of ubiq-

uitous managed languages on current and future architectures.
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Chapter 1

Introduction

Chip manufacturing has recently undergone a major shift as silicon technol-
ogy hits its physical limits. Dennard’s scaling rule that says power and switching
time shrink as fabrication technology shrinks, has come to a halt [20]. Processors
can no longer depend on smaller transistors yielding less power and faster clocks
which translate into better performance. Now manufacturers are creating chip mul-
tiprocessors to keep attaining performance benefits, and producing more embedded
devices to meet demand for new product capabilities. The consequences of this
shift are an increase in power consumption, and increased stress on the memory
subsystem which has always lagged behind processor speeds. Previously, hardware
has been able to hide some of the memory latency behind non-blocking caches,
prefetching, and out-of-order processors. As hardware is hitting its physical lim-
its, the memory bottleneck is more exposed. Industry’s trends towards more cores
which require parallel communication has throttled scalability and performance.
Since cache and memory consume a disproportionate amount of area and are ex-
pensive [65], the demand for memory efficiency is likely to remain constant or

increase in the future.

To program these machines, developers are increasingly turning to managed
languages, such as Java [70], due to their productivity benefits, which include re-
duced errors through memory management, reliability due to pointer disciplines,

and portability. Managed languages are not known for their memory efficiency and



are therefore in conflict with hardware trends. However, because Java provides a
high-level abstraction to the programmer, it is able to change the underlying im-
plementation and management of memory in the managed runtime, and therefore

offers opportunities for dynamically optimizing applications.

In this thesis, we explore sources of memory inefficiency both in the Java
heap and in how it uses the underlying memory system. We exploit the memory
transparency of managed languages to change the layout of the heap and commu-
nicate with hardware to reduce memory traffic, optimizing memory efficiency and

improving the performance of modern programs on current and future architectures.

1.1 Heap Data Organization

We first analyze the inefficiencies of modern program heap data. Heap organization
inefficiencies are a symptom of the complexity of software and a by-product of

high-level language abstraction.

1.1.1 The Problem

Researchers have characterized Java memory composition and usage patterns [13,
28, 54], and found that the heap is intricately connected and bloated with spurious
data and connection glue. To address this problem, many researchers have pro-
posed and measured specific compression approaches [5, 6, 21, 53, 66, 78]. We
instead study memory efficiency with a global view. We create models for known
and new heap data compression techniques, and then quantitatively compare them
in a limit study of Java benchmarks [63]. We periodically snapshot the heap during
garbage collection, and post-process these snapshots to calculate memory savings
for different compression models and for the first time, hybrid techniques combin-
ing compression models. Overall we see that arrays take up the majority of space in

the heap and yield larger compression opportunities, so we focus our optimization



efforts on arrays. We find that zero-based array compression saves the most mem-
ory as an individual compression model: on average 41% of the application heap.
Our novel hybrid technique combines six compression models, and saves 52% of
the application heap. The results of this limit study suggest focusing on reorga-
nizing and compressing arrays to help contain bloat and make managed languages

more memory efficient.

Arrays are the ubiquitous method for organizing indexed data; first invented
by Konrad Zuse [10] in 1946, they are used in every modern programming lan-
guage. Traditional implementations use contiguous storage, which often wastes
space and leads to unpredictable performance. For example, large arrays cause
fragmentation, which can trigger premature out-of-memory errors and make it im-
possible for real-time collectors to offer provable time and space bounds. Over-
provisioning and redundancy in arrays wastes space, as shown in our limit study.
In managed languages, garbage collection uses copying to coalesce free space and
reduce fragmentation. However, copying and scanning arrays incur expensive un-
predictable collector pause times, and make it impossible to guarantee real-time

deadlines.

Managed languages, such as Java and C#, give programmers a high-level
contiguous array abstraction that hides implementation details and offers virtual
machines (VMs) an opportunity to ameliorate the above problems. To meet space
efficiency and time predictability, researchers proposed discontiguous arrays, which
divide arrays into indexed chunks [8, 21, 67]. Siebert’s design organizes array mem-
ory in trees to reduce fragmentation, but requires an expensive tree traversal for ev-
ery array access [67]. Bacon et al. and Pizlo et al. use a single level of indirection
to fixed-size arraylets [8, 57]. Chen et al. contemporaneously invented arraylets to

aggressively compress arrays during allocation and collection, and decompress on



demand for memory-constrained embedded systems [21]. All prior work introduces
substantial overheads due to indirection upon access. Regardless, three production
Java Virtual Machines (JVMs) already use discontiguous arrays to achieve real-time
bounds: IBM WebSphere Real Time [40, 8], AICAS Jamaica VM [3, 67], and Fiji
VM [31, 57]. Thus, although discontiguous arrays are needed for their flexibility,
which achieves space bounds and time predictability, so far they have sacrificed

throughput and time efficiency.

1.1.2 Our Solution

We present z-rays, a discontiguous array design and JVM implementation that com-
bines flexibility, memory efficiency, and performance [62]. Z-rays store indirection
pointers to arraylets in a spine. Z-rays optimizations include: a novel first-N op-
timization, lazy allocation, zero compression, fast array copy, and copy-on-write.
Our novel first-N optimization inlines the first N bytes of the array into the spine
for direct access. First-N eliminates the majority of pointer indirections because
access statistics show that many arrays are small and most array accesses, even to
large arrays, fall within the first 4KB. These properties are similar to file access
properties exploited by Unix indexed files, which organize inodes to have direct
pointers to initial data, taking less indirection to access small files and the begin-
ning of large files [58]. First-N is our most effective optimization. Besides making
indirections rare, it makes other optimizations more effective. For example, with
lazy allocation, the allocator lazily creates arraylet upon the first non-zero write.
This additional indirection logic degrades performance in prior work, but improves

performance when used together with first-N.

Our design and implementation are configurable and users may choose from
the optimizations and tune first-N and arraylet sizes. Z-rays thus bridge the time and

space gap between contiguous and discontiguous layouts. Our experimental results



on 19 SPEC and DaCapo Java benchmarks show that our best z-ray configuration
adds an average of 12.7% overhead, including a reduction in garbage collection cost
of 11.3% due to reduced space consumption. In contrast, we show that previously

proposed designs have overheads two to three times higher than z-rays.

Because making arrays discontiguous has ramifications on heap space ef-
ficiency, we further investigate the effect on fragmentation, a first-order concern
in memory management in high-level languages. We present formal equations for
quantitatively measuring two kinds of fragmentation, internal and external. We
then discuss how to measure the worst-case theoretical limit of fragmentation in
our system, as well as how to measure fragmentation levels in practice with our

benchmarks.

Z-rays are immediately applicable to discontiguous arrays in embedded and
real-time systems, since they improve flexibility, space efficiency, and add time
efficiency. Our results demonstrate that z-rays achieve both performance and flex-
ibility, making them an attractive building block for language implementation on

general-purpose architectures.

1.2 Memory Subsystem Traffic

As mentioned above, industry’s trend toward chip multiprocessors (CMPs) has put
pressure on memory bandwidth and traffic, which is exacerbated by modern appli-

cation’s frequent allocation. We analyze the impact of high-level language’s rapid

allocation of short-lived data on the cache memory hierarchy.

1.2.1 The Problem

As applications evolve, they have a seemingly insatiable need for memory. For ex-

ample, recent studies of managed and native programs executing on CMPs show



that memory bandwidth limits performance and scaling [41, 61, 77]. In particu-
lar, they identify an allocation wall due to high allocation rates. Programmers are
writing in a style that rapidly allocates short-lived objects. They have been en-
couraged in this style in part because generational garbage collectors for managed
languages and region allocators make allocation relatively cheap on uniprocessors.
Unfortunately, this style creates an object stream [17], a small irregular window
of temporal and spatial reuse stemming from allocation. This irregularity makes
traditional remedies for streaming data unsuitable. Object streams march linearly
through the cache, displacing other useful data. Because object streams start with
a write, when the cache evicts a line in an object stream, the line is dirty and must
be written. Since objects in the object stream are usually short-lived, the line con-
taining them is often dead when it is evicted and never read again. The write-back

is therefore useless.

We first quantify this problem by measuring the number of essential and
useless write-backs to memory using the DaCapo Java benchmarks. A write-back
is essential when the program subsequently reads the written data. A write-back
is useless when the program never again reads the written data. On average, a

surprising 88% of write-backs are useless.

1.2.2 Our Solution

This result motivates a software-hardware cooperative approach because hardware
alone can never predict which program writes are useless. The memory manager
does know, however, which regions of memory are dead. We design an invalida-
tion approach in which the memory manager communicates candidate regions and
when they are invalid. The hardware support uses existing cache line valid bits. It
adds a candidate byte to each cache line and a few control registers to store candi-

date region information. We focus on using the nursery in a generational collector



as the candidate region for three reasons. (1) Most useless writes are due to fresh
allocation in the nursery (see Section 2.1). (2) Frequent nursery collections offer an
opportunity to communicate dead regions. (3) The nursery is usually stored in one
contiguous region, which simplifies the hardware. However, the approach general-
izes to region allocators used in both automatic and explicit memory managers and

to multiple disjoint coarse-grained regions.

We design several powerful optimizations with our simple interface for in-
validation. For our invalidation optimization, the memory manager identifies a dead
region and the hardware invalidates resident cache lines in the region. Invalidation
expedites early eviction of these cache lines, improving cache efficiency. Further-
more, it prevents useless write-backs of resident cache lines that contain written, but
dead objects. We design in-cache zeroing of all objects at a cache line granularity in
a candidate region in a uniprocessor setting. Java and most managed languages re-
quire zero-initialization of all objects. Automating initialization in hardware elimi-
nates the software initializing instructions that write, read, and fetch zeros, and their
cache effects. We also experiment with a less invasive approach that reduces cache
pollution by changing the cache line placement of lines in the candidate region; pri-
ority biasing a candidate region favors placing them lower in the least-recently-used
(LRU) positions of the cache sets for eager eviction. This approach is not nearly as
effective as invalidation. These cooperative optimizations rely on program seman-

tics to improve cache efficiency and eliminate useless memory traffic.

We implement our software design in Jikes RVM [4] with the default gener-
ational immix garbage collector [18] and measure DaCapo Java benchmarks [13].
We implement the hardware design in Valgrind [56], a binary re-writer and high-
level simulator, and in PTLsim [76], a cycle-level simulator. Since Valgrind is sev-

eral orders of magnitude faster than PTLsim, we use it to characterize cache effects



across many configurations. Using a range of cache sizes and memory manager
configurations, Valgrind results show that cache invalidation of a candidate region
eliminates on average 26% of all write-backs, and for some configurations invalida-
tion saves 46% of write-backs. These improvements come equally from improving
cache replacement decisions and eliminating useless write-backs. PTLsim shows
these savings translate into a 17% reduction in total memory traffic, an average per-
formance improvement of 7% over all configurations, and 13% when bandwidth is
limited. For the DaCapo jython benchmark, cooperative invalidation eliminates 78%

of write-backs and when bandwidth is limited, improves performance by 35%.

Although other researchers have proposed cooperative cache replacement
hints [74, 73], as far as we know, only Isen and John use software semantics for
invalidation [42]. They show improvements in energy by reducing useless write-
backs for C programs, but not performance or cache replacement decisions. Their
approach works at a cache line granularity. Each allocation and free communicates
with the hardware, and the hardware stores a map of allocations to cache lines.
This map requires fine-grained tracking of objects and their alignment in cache
lines. In contrast to a map proportional to allocations, our approach adds only a
few registers to hardware and one byte to each cache line. We exploit contiguous
region allocation, used exclusively for the nursery in high performance generational
collectors and for explicit region management in demanding C programs, such as

the Apache web server.

The contributions of this work are thus (1) to identify an enormous oppor-
tunity to eliminate useless memory traffic using program semantics, and (2) the
design and demonstration of cooperative software-hardware invalidation. This ap-
proach significantly reduces this traffic and improves performance with very mod-

est software and hardware modifications. Memory, power, and energy efficiency



are becoming increasingly important as industry moves into the CMP and power-
constrained era. Achieving high memory efficiency requires software and hardware
to cooperate to exploit program semantics. We show cooperation is a fruitful opti-

mization area and ripe for exploration.

1.3 Impact

It is commonly accepted that the tradeoff for higher productivity in wide-spread
managed languages is reduced performance, in time and space, especially due to its
interaction in memory with current hardware’s use of more cores. However, we take
advantage of both the high-level abstraction that the managed language provides to
the programmer, and the dynamic optimization opportunity of the underlying run-
time environment to reduce this sacrifice. To ameliorate heap inefficiency problems,
we change the layout of arrays to be more flexible, with both time and space effi-
ciency. To reduce memory traffic and bandwidth on current hardware, which has
been shown to be a major bottleneck to scalability and performance, we introduce a
software-hardware cooperative optimization to eliminate costs from programmatic
dead data in the memory subsystem. Combined, we improve memory efficiency
and performance for sophisticated modern applications running on emerging hard-
ware, easing the conflict between the productivity of managed languages and cur-

rent computer architectures.

1.4 Organization

This thesis is organized as follows. Chapter 2 details background necessary to un-
derstand our research, including details of Java and the virtual machine, and stud-
ies of traffic and bandwidth between the cache hierarchy and memory. Chapter 3
discusses our heap data compression limit study in detail, including experimental

results. We present z-rays, our optimized discontiguous array design in Chapter 4,



and study the ramifications of our discontiguous layout on fragmentation in detail
in Chapter 5. Chapter 6 describes our research on our software-hardware cooper-
ative optimization to reducing traffic in the memory subsystem. We conclude in

Chapter 7.
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Chapter 2

Background

This section briefly discusses the background for studying both heap and
memory inefficiencies in the context of Java. Our techniques are applicable to
other managed languages as they take advantage of the memory virtualization to
perform optimization. For our limit study, implementation of z-rays, and saving
useless write-backs, we use Jikes Research Virtual Machine (RVM) [4], a high per-
formance Java-in-Java virtual machine, but our use of Jikes RVM is not integral to

our approach.

We first summarize heap organization and memory management pertinent to
our optimizations. The chapter then presents simulation results for Java benchmarks
that show that a large fraction of all write-backs are useless. It presents time series
measurements for two Java Virtual Machines (JVMs) that show these write-backs

are responsible for peak bandwidth.

Java Heap. We consider a conventional representation for dynamically allocated
objects in a program. The heap contains two kinds of objects: class instances with
fields and arrays with elements. Each object occupies a contiguous chunk of mem-
ory that consists of its fields or elements plus a header. We assume a conventional
two-word object header with type information, garbage collector (GC) bits, and
bookkeeping information for locking and hashing. Arrays have a third header word

to store the length. Since we perform our experiments with Jikes, a Java-in-Java
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virtual machine (JVM), the heap contains both application and JVM objects [4].
Experimental results for our compression limit study will have numbers for both

the total heap with application and JVM objects, and just the application heap.

Java Arrays. Because we are looking at the space inefficiencies particularly of
arrays, and we want to change their layout in memory, it is important to know how
Java currently represents arrays. All arrays in Java are one-dimensional; multi-
dimensional arrays are implemented as arrays of references to arrays. Hence, Java
explicitly exposes its discontiguous implementation of array dimensions greater
than one. Accesses to these arrays require an indirection for each dimension greater
than one, whereas languages like C and Fortran compute array offsets from bounds
and index expressions, without indirection. Java directly supports nine array types:
arrays of each of Java’s eight primitive types (boolean, byte, float, etc.), and ar-
rays of references. Java enforces array bounds with bounds checks, and enforces
co-variance on reference arrays by cast checks on stores to reference arrays. The
programmer cannot directly access the underlying implementation of an array be-
cause (1) Java does not have pointers (unlike C), and (2) native code accesses to
Java must use the Java Native Interface (JNI). These factors combine to make dis-
contiguous array representations feasible in managed languages, including not only

Java, but others such as C#, JavaScript, and Python.

Allocation. Java memory managers conventionally use either a bump-pointer al-
locator or a free list, and may copy objects during garbage collection. The contents
of objects are zero-initialized. Because copying large objects is expensive and typ-
ically size and lifetime are correlated, large objects are usually allocated into a

distinct non-moving space that is managed at the page granularity using operating
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system support. One of the primary motivations for discontiguous arrays in prior
work is that they reduce fragmentation, since large arrays are implemented in terms
of discontiguous fixed-size chunks of storage. The base version of Jikes RVM we

use has a single non-moving large-object space for objects 8KB and larger.

Garbage Collection. Garbage collection starts with the roots (statics, stacks and
registers) and performs a transitive closure, tracing through the object reachability
graph to identify live data in the heap. Objects not marked as live can be reclaimed
and used for future allocation. The garbage collector must be aware of the under-
lying structure of arrays when it scans pointers to find live objects, possibly copies
arrays, and frees memory. Discontiguous arrays in general, and z-rays in particular
are independent of any specific garbage collection algorithm. We chose to evalu-
ate our implementation in the context of a generational garbage collector, which
is used by most production JVMs. A generational garbage collector leverages the
weak generational hypothesis that most objects die young [50, 72]. The collec-
tor bump-allocates objects into a nursery which is frequently collected. When the
nursery fills up, the collector copies surviving objects into a mature space. Most
objects do not survive, and the nursery space is freed en masse to be used again.
The mature space has its own allocation and reclamation organization, often segre-
gating objects based on size classes and using a free list to keep track of memory
(a mark-sweep organization). To avoid scanning the mature space for a nursery
collection, a generational write barrier records pointers from the mature space to
the nursery space [50, 72]. By adding the source of these pointers to the root set,
the garbage collector can collect just the nursery, reclaiming a large portion of the
heap quickly. Once frequent nursery collections fill the mature space, a full heap

collection scavenges the entire heap from the original root set.
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Read and Write Barriers. Read and write barriers are actions performed upon
every load or store, respectively. Java has barriers for bounds checks on every
array read and write (shown in Figure 4.3(a)), cast checks on every reference array
write, and the generational write barrier described above. Java optimizing compilers
eliminate provably redundant checks [19, 43]. Jikes RVM implements a rich set of
read and write barriers on arrays of references. Z-rays require additional barriers for
arrays of primitives, which presented a significant engineering challenge since these

are a new type of barrier for our and most JVMs (for more details see Section 4.3.2).

Allocation Regimes and Object Streams. The highest performance memory
managers for explicit and garbage collected languages have converged on a sim-
ilar allocation regime. Explicit memory managers use region allocators when pos-
sible [11] and garbage collectors use generational collectors with a copying nurs-
ery [14]. Both allocate contiguously into a large region of memory. Thus, objects
allocated together in time are adjacent in virtual and physical memory, which pro-

vides the program with cache locality benefits [14].

In explicitly managed languages, this region allocation is only possible when
all the objects die together. However, this case is relatively frequent [11] and is a
popular approach in servers for managing transactions, such as the Zend PHP VM

and the Apache web server.

Both allocation regimes result in an object stream [17]. An object stream
is a small irregular window of temporal and spatial reuse stemming from an initial
allocation. Traditional remedies for streaming data, such as cache bypassing and
vector registers, are unsuitable because the window of accesses is too irregular,
spanning multiple instructions that are highly dependent on the allocation and usage

context. Object streams march linearly through the cache and displace other useful
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data. They have a short window of use. When the cache later evicts these lines, they
are dirty and must be written to memory. Because most objects in these streams and
their cache lines are short-lived, the line is usually — but not always — dead and

therefore never read again.
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Figure 2.1: Breaking down essential versus useless write-backs into mature and
nursery data at various nursery sizes for a 4MB L2.
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2.1 Useless Write-Backs

This section analyzes how much traffic between the last level cache and memory
is necessary. We perform our experiments in the context of a generational garbage
collector, using the default generational immix collector in Jikes RVM [4, 13]. We
show that the vast majority of write-backs are useless. Most of these accesses come

from the nursery, motivating an approach that focuses on the nursery.

We examine write-backs on a word-granularity and place them into two
categories. An essential write-back occurs when a word is written to main memory
upon eviction from the last level cache, and the application subsequently reads the
evicted data. A useless write-back occurs when the data written out upon eviction
is never read again by the application—the application may well overwrite the data
with a new value. We gather these statistics in the Valgrind simulator [56] using
a bitmap for each word in memory. We keep track of when a word is written to
memory, and whether it is subsequently read, over-written without being read in

the cache, or never touched again.

Figure 2.1 shows the essential versus useless write-backs to memory at the
granularity of a word. We model a split data and instruction L1 cache each with
32KB, 64 byte line, and 8-way set associativity, and a shared L2 with 4MB, 64 byte
line, and 16-way set associativity. In these experiments, we vary the nursery size,
and keep the L1 and L2 constant. We experiment using the DaCapo benchmark
suite, version 2006-10-MR2 [13]. (Section 6.2.1 contains more details on method-
ology.) The figure breaks essential and useless write-backs down into addresses
in the nursery and mature address ranges. We vary the nursery size from 2MB
to 12MB. Across all nursery sizes, the overwhelming majority of all write-backs
are useless, on average 88%. 68% of all useless write-backs come from nursery

addresses.
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Most essential data written back to memory on average is also from nurs-
ery addresses: 9% of all write-backs. Only 2.2% of all write-backs are essential
and mature. These results demonstrate that the object stream is displacing use-
ful data, mostly interfering with itself in the nursery, but also in the mature space.
Benchmarks such as hsqgldb and xalan have a high percentage of mature write-backs
in general, and may benefit from an approach that targets the mature space. The
percentage of essential write-backs for all benchmarks and nursery sizes never goes
above 28% for any configuration, but benchmarks with higher essential percentages

include eclipse, pmd, and xalan.

For nursery sizes 4MB and greater, the percentage of mature write-backs is
fairly stable. As the nursery grows much larger than the last level cache, the frac-
tion of the nursery that is cache-resident when our optimization is invoked grows
smaller, reducing its effectiveness. Zhao et al. point out that Sun’s HotSpot JVM is
very sensitive to nursery size, and needs enormous nurseries (up to 2GB) to perform
well when large heaps are used [77]. It is not clear why HotSpot requires such large
nurseries, although we hypothesize that the problem stems from HotSpot’s use of
card-marking, which imposes a cost proportional to the heap size at each nursery
collection. This makes each nursery collection expensive when the heap is large,
encouraging larger nurseries and less frequent collections. In our own experiments
with Jikes RVM, we find that 2M and 4M nurseries perform only slightly worse
than all larger sizes. Our results are consistent with Blackburn et al. results on older
hardware that show nursery sizes of 4M to 8M balance mutator locality with lower

collection costs [14].

The percentage of mature useless write-backs increases at lower nursery
sizes. Since the L2 cache is 4MB here, lowering the nursery size below 4MB fills

more of the cache with long-lived mature data, and consequently a greater propor-
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tion of evictees are from the mature space. Very small nursery sizes reduce, but
do not eliminate, the opportunities to eliminate useless write-backs, since the nurs-
ery remains cache resident. Small nursery sizes have better cache behavior, but the
cost of more frequent collection dominates when the nursery is too small. The large
number of useless nursery write-backs across a range of practical, moderate to large

nursery sizes motivates our invalidation approach.

2.2 Measured Bandwidth

Whereas the previous section characterizes the semantics of write-backs, this sec-
tion presents time series bandwidth measurements. Since bandwidth requirements
are bursty, these measurements seek to characterize the bandwidth needs beyond av-
erages across a benchmark run. We use performance counters to sample the number
of full cache line write-backs and all full cache line front side bus (FSB) transac-
tions every 10ms on the Core 2 Quad CPU, model Q6600, 2.40GHz, 2GB of mem-
ory, and 1.06GHz front side bus. We measure five iterations of each benchmark on
HotSpot 1.6.0 and Jikes RVM 3.1.0. Figures 2.2 and 2.3 presents the total mea-
sured bandwidth and the write-back bandwidth for two representative benchmarks,
jython and xalan. The jython benchmark has a lot of useless nursery write-backs. The
xalan benchmark has fewer useless write-backs as shown in the previous subsec-
tion. Whereas xalan’s total bandwidth is mostly due to reads as evidenced by the
large gap between the upper and lower lines, the total bandwidth of jython is mostly
generated by write operations since write-back bandwidth is almost half of total
bandwidth. Furthermore, each write miss on this architecture first requires a fetch
and we see this correlation in jython and other benchmarks (omitted due to space

limitations).

Comparing Figures 2.2(a) and 2.2(b), and Figures 2.3(a) and 2.3(b) shows
that HotSpot has much higher bandwidth needs than Jikes RVM. This result is ex-
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Figure 2.2: Measured write-back and total full cache line FSB transactions for
Jython on Sun HotSpot and Jikes RVM.
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Figure 2.3: Measured write-back and total full cache line FSB transactions for
Xalan on Sun HotSpot and Jikes RVM.
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pected when the application runs faster since the application’s work is condensed
in time and thus could have higher bandwidth spikes, as shown above on the x-axis
for xalan. However, bandwidth JVM trends hold even when JikesRVM executes
slightly faster, such as in the benchmark jython. We hypothesize that HotSpot’s
large nursery sizes could be part of the cause of this excess bandwidth. We use
Jikes RVM for our work, but the impact of our optimizations may likely be higher

on HotSpot.
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Chapter 3

Heap Data Compression

This section describes a limit study that examines the sources and types of
memory inefficiencies in the heap for a set of Java benchmarks. We generalized
and quantitatively compare many previously-proposed heap data compression tech-
niques for the first time. Here we focus on array compression, which we found
most fruitful, but our ISMM paper has complete results including object compres-
sion [63]. Our limit study shows that substantial memory reductions are possible:
removing zero-bytes from arrays reduces the applications memory footprint by 41%
for our benchmarks. When we combine many array compression techniques on the
same data in new ways, we achieve an application heap reduction of 52% on aver-

age. First, we present some related work on previous compression techniques.

3.1 Related Work

High-level languages abstract memory management and object layout to improve
programmer productivity, usability, and security, but abstraction usually costs. Here
we describe related work on characterizing heap data and investigating specific

compression techniques.

Modeling and characterization. Mitchell and Sevitsky categorize fields by the
role they play in an object (header, pointer, null, primitive), and objects by the
role they play in a data structure (head, array, entry, contained) [54]. They stud-

ied bloat, or spurious memory consumption, and found that a large amount of the
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heap is bloat. These measures together with scaling formulas predict the heap data
reductions of manual program changes. Whereas Mitchell and Sevitsky focus on
providing human heap understanding, we focus on heap compression that can be

performed in the JVM.

Dieckmann and Holzle study object lifetimes, size, type, and reference den-
sity for the SPECjvm98 benchmarks [28]. In addition to these measures, Blackburn
et al. study time varying heap, allocation, and lifetime behaviors of the SPECjvm98,
SPECjbb2000, and DaCapo benchmarks [13]. They show that DaCapo is signifi-
cantly richer in code and data resource utilization than SPEC, which is why we
use DaCapo here. While these studies provide general insights on heap memory

composition, we measure specific limits of heap data compression.

Heap data compression. The following research implements specific heap data
compression techniques. Appel and Gongalves use generational garbage collec-
tion for deep-equal acyclic object sharing [6]. Objects are deep-equal if they have
the same type and equivalent data, making sure reference data points to equiva-
lent objects as well. Ananian and Rinard use offline profiling and an ahead-of-time
compiler to implement a variety of techniques, including bit-width reduction [5].
Bit-width reduction compresses by storing only bits that are needed to hold partic-
ular data values, instead of the larger, standard bit-size for a type. Chen et al. use
compacting garbage collection for zero-based object compression and speculative
trailing zero array trimming [21]. For zero-based compression, Chen et al. elides
zero bytes, storing a map, each bit indicating whether an original byte was zero and
elided, or non-zero and stored. Zilles uses speculative narrow allocation for charac-
ter array bit-width reduction [78]. Instead of using all 16 bits per character, Zilles

recognized it is common for most character arrays to hold only English characters
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and thus be able to be reduced to 8 bits per element. All these techniques trade
time for space, incurring time overheads to reduce space consumption in embedded

systems.

Whereas the above research overcomes some real-world challenges of heap
data compression, the others propose optimizations without evaluating full imple-
mentations. Shaham et al. hand-optimize benchmarks with object-level lifetime
optimizations [66]. Marinov and O’Callahan hand-optimize benchmarks with deep-
equal object sharing [53]. We explore the limits of compression techniques, and go
a step further by empirically comparing a wide variety and combinations of tech-
niques. Z-rays, our discontiguous array design, offer a much better building block

for compression and future array optimization needs.

3.2 Heap Data Compressibility Analysis

Figure 3.1 shows our analysis steps for measuring the potential of heap compres-
sion. When gathering heap data for our limit study, we ignore fragmentation and
only consider live objects in our analysis because we assume the garbage collector

reclaims dead objects rather than compressing them.

2YDE
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Program run  Heap dump Analysis E—Ew Limit savings
series representation ~ Model n

Figure 3.1: Heap data compressibility analysis.

Since a program’s heap changes over time, its memory efficiency is also a

function of time. A perfectly accurate heap analysis would compute savings on all
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live objects after every write and object allocation, but this analysis is prohibitively
expensive. Instead, our analysis takes periodic heap snapshots during program ex-
ecution (“Heap dump series” in Figure 3.1). It therefore over-approximates heap
compression because, for example, a field value may be zero at every heap snap-
shot, but take on non-zero values between snapshots. We modify the garbage col-
lector to print out a heap snapshot during live object traversal. In addition to its
usual work, during a heap dump the garbage collector also prints object data (ex-
cluding bookkeeping information from the header) as it visits each live object on

every collection.

Since heap snapshots require a lot of I/O, they take a lot of storage and time to gen-
erate. More heap snapshots yield more accurate compression measurements, but
require more time and space. We empirically selected 25 as our target number of
heap snapshots per execution of an application. We execute the benchmarks with
two times their minimum heap size using a mark-sweep collector, and print around
25 heap snapshots at regularly-spaced intervals during normal full heap collections.
Our benchmarks perform between four and three hundred garbage collections at
this heap size. For those benchmarks with fewer than 25 collections, we force more
frequent collections to obtain the desired number of heap snapshots. Because we
use Jikes RVM for our experiments, we differentiate between JVM and applica-
tion object allocations by adding a small amount of instrumentation (see [63] for

details).

Given a series of heap snapshots, a post-processing step applies analytical
models that compute potential compression opportunities. The post-processor iter-
ates over the heap snapshot, entering each object instance’s data into a large hash
table (“Analysis representation” in Figure 3.1). We then apply a variety of com-

pression models to compute potential compression opportunities. Each model cal-
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culates the memory savings from a particular heap compression technique (“Limit
savings” in Figure 3.1). Section 3.3 describes and presents formulas for all con-
sidered techniques. We calculate potential memory savings for each unique class
at a particular point in time, i.e., based on a particular heap snapshot taken during
a garbage collection, thus including all live objects. For the snapshot, we count
the number of object and application instances and bytes seen in order to calculate

savings percentages.

Helper functions. Many of our savings models require helper functions. Func-
tion sizeof (T) returns the size of a primitive type in bytes. Some compression
techniques require a hash table at runtime, for example, to find equivalent objects.
Their models subtract the size of the hash table from the raw savings. Function
hashTableSize(n,entrySize) estimates the size of a hash table with n entries of size
entrySize each. We assume a hash table with open addressing, since they have no
memory overheads for boxes or pointer chains for overflowing elements. We also
assume that % of the hash table is occupied. This assumption is conservative. For
example, the Java library writers use a load factor of % before doubling their size,
although they use chaining instead of open-addressing. The helper function works

as follows, where arrayHeaderSize is 12 bytes and keySize is 4 bytes:

hashTableSize(numberOfEntries, entrySize) =
arrayHeaderSize + (% -numberOfEntries - (entrySize + keyS izeﬂ

3.3 Memory Compression Models

A compression model is a formula that computes how many bytes of heap data

that technique can save at an instance in time. Table 3.1 overviews all the models
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Compression technique Granularity ‘ Reference ‘

Lempel-Ziv compression Whole Heap

Trailing zero array trimming Instance [21]
Bit-width reduction Instance [5, 69, 78]
Zero-based array compression | Instance [21]
Strictly-equal array sharing Type

Deep-equal array sharing Type [6, 53]
Value set indirection Type [26, 71]
Value set caching Type

Table 3.1: Compression techniques modeled.

considered in this thesis, listing the granularity they are performed at (per array in-
stance or type), and listing references to prior work for that compression technique.
To obtain the total savings of a model, we compute the savings for each instance

and then sum them up over all types.
3.3.1 Holistic heap data size and information content
Models in this section quantify the size of all the data in the heap. Because the

heap contains redundancies and bookkeeping data, the actual information content

is smaller than its conventional representation.

Total heap size

We measure the total heap size by summing all objects, fields, object headers, and
array elements in the heap, assuming a conventional representation, and excluding

fragmentation, static objects, and the stack. The below models compute savings

from this baseline.

Lempel-Ziv compression

We first consider the memory savings achieved by simply zipping the contents of

all heap objects to illustrate the potential for heap reduction. The size given by
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“bzip2” is a rough estimate of the true “information content” of the heap. We
expect this savings to be larger than for any of the more realistic models below. Like
the other models, Lempel-Ziv compression is non-lossy, in other words, the original
data can be fully recovered by decompression. Unlike the data representations for
most of the other models, Lempel-Ziv compressed data does not permit random
access, let alone in-place update. To compute this model as accurately as possible,
we perform online compression on the actual heap dump in the JVM at garbage
collection time. We apply Lempel-Ziv compression and report the compressed size
as a percentage of the uncompressed size [63]. Total heap compression is fairly
consistent, reducing the heap between 73 and 83%, on average for our benchmarks
75%. For only application objects we see larger compression opportunity, up to
99% for fop and pseudojbb, on average 90%. Though this shows that there are
excessive amounts of redundancy in the heap that can be reduced, we do not expect

this much compression in practice.

3.3.2 Array Instance Compression

This section presents compression techniques that operate on individual array in-
stances.

Trailing zero array trimming

Programs often over-provision the capacity of arrays used as buffers, leading to
unused trailing zeros [21]. These can be trimmed, provided that the trimmed array

remembers the nominal and true length. Assuming it takes an additional 4 bytes to

store both lengths, the savings for array type 7’| are:

Z (trailingZeros(a) - sizeof (T ) — 4)
a€T|]
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Array bit-width reduction

If all elements of an array instance have small values, then they can all be repre-
sented with a smaller bit-width [69]. Bit-width reduction saves memory by allotting
fewer bytes for each array element than the type requires. Array bit-width reduction

sums up savings per instance to compute the total savings.

In general, if all values need at most B bits, compression can optimistically

represent an array of type T[] as a B-bit array. The total byte savings is:

y Ls-sizeof(T) —B .a,length

a€T|]AonlyUsesBits(a,B) 8

Bit-width reduction works for many types of arrays, such as int, short, or
long. In the past, boolean and char arrays have been a focus because compres-
sion can yield large savings due to Java’s language specifications [78]. By default,
though booleans only need one bit of memory, Java virtual machines use a byte
to represent a boolean because for bookkeeping it is easier to have memory byte-

aligned. Compressing each boolean array could save (%)’hs

of the space taken by
each array. Similarly, Java represents characters using a 16-bit encoding for uni-
code, but English-language applications tend to use mostly characters that require
only the lower 8 bits. The accordion arrays bit-width compression optimization rep-
resents each array that consists entirely of 8-bit characters using a byte array [78],

thus cutting the size of each char array in half.

Zero-based array compression

Zero-based array compression reduces array size by removing bytes that are zero.
We assume an implementation that uses a per-array bit-map to indicate which bytes

in the original array are entirely zero [21]. The compressed array representation
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consists of the header, the bit map, and the values of all non-zero bytes. The size of
the bit map is the number of non-header bytes in the original array. The bit-map for
array a occupies [totalBytes(a)/8] bytes. The savings for all arrays in the heap are

therefore:

y (ZemByws@ - [%D

acArrays

Note that this compression scheme can be applied to both primitive and reference
arrays. We compute memory savings per instance, and then add them up for each

array type.

3.3.3 Array Type Compression

This section presents compression techniques that operate across all arrays of a

particular type.

Strictly and deep-equal array sharing

Two arrays are strictly-equal if they have the same type, length, and data. Equality
is strict because even pointer fields must be identical [53]. When arrays are strictly
equal, they can share all their memory. The JVM may allocate only one instance and
then point all references of strictly-equal arrays to the same instance. In principle,
two arrays can not be shared if they are used for pointer comparison or as an identity
hash code in the future. In addition, the period of time for sharing may be limited if
the program modifies a strictly-equal array later. Our analysis ignores these cases
for the purpose of this limit study, but our z-ray implementation handles this case

correctly.

Deep-equal compression offers additional space saving opportunities. If two

reference arrays have internal pointers that point to different objects (and are thus
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not strictly-equal) but the objects to which they point are equivalent, those reference
arrays can be shared via deep equality [6, 53]. Every strictly-equal array pair is also

deep-equal, thus there are more deep-equal array pairs than strictly-equal ones.

Since different length arrays have different sizes, we iterate over all arrays
to add up their sizes before compression, construct the hash table, and then iterate
over all D distinct arrays to find the unique size. The model must also subtract the
memory used for the hash table itself. The resulting savings model for array type

T[] for both strictly and deep-equal is:

Z sizeof (a) — hashTableSize(D, pointerSize)
a€T[|NagD

Since fewer distinct arrays are deep-equal as compared with strict equal
because the former exposes more sharing opportunities, the D in the equation is

smaller.

Array value set indirection

Array value set indirection saves memory by holding a “dictionary” of values for el-
ements separately from array instances, enabling instance elements to hold a smaller
index into the dictionary. In our limit study, compression requires that all elements
of all arrays of a given type are drawn from a small set of distinct values, so the
dictionary is for the whole type. Compression is performed per array instance, and
replaces each element with a small index into the dictionary that stores the actual
values. For example, if all instances of an array type T[] contain at most K < 256
different values, array elements can store an 8-bit index into a K-entry table of

values of type T. The memory savings are:
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Z a.length- (sizeof (T) — 1) — arrayHeaderSize — K - sizeof (T')
a€T|]
This optimization makes no assumptions about the element type. It applies equally
well for int, float, pointer, etc. Where bit-width reduction requires all field val-
ues to be small, value set indirection only makes requirements on the number of
field values. This model does reduce element size, but because it is more generally
applicable than array bit-width reduction, it incurs the overhead of storing the dic-
tionary. In general, the dictionary of values could be taken from all array elements
of a particular type (possibly selecting the 256 most common values), and only the
instances of that type that have all of their elements contained in the dictionary

could be compressed.

Array value set caching

Array value set indirection can be generalized to the case where there are more
values than fit in the dictionary. Caching puts the 255 most common values in
a dictionary, like indirection, but also reserves one dictionary index (of 256) to
indicate additional, aberrant values. Value set caching stores the rarer values into a
secondary hash table. We use a combination of the original array’s object ID and
the index of the array element for the secondary hash table’s key. An array access

a[i] in this case is as follows:

if a[i] == aberrant_indicator:
return secondary_hash.get (a, 1)
else:

return dictionaryl[al[i]]

32



Let A be the total number of aberrant array elements in all arrays of type T'[]. Then

the savings are:

Z a.length - (sizeof (T) — 1) — arrayHeaderSize — K - sizeof (T)
a€T|]
— hashTableSize' (A, sizeof (T))

The hashTableSize' function assumes that keys are 8 bytes, because the key repre-

sents both an array and an index.

3.3.4 Hybrids

Hybrids combine multiple compression techniques to obtain more savings than one

technique alone.

Maximal hybrid

The maximal hybrid chooses the compression technique that saves the maximum
amount of memory for each piece of data. For arrays, the maximal hybrid starts by

choosing the maximal array instance compression techniques:

maxArraylSavings(T[]) =  max Z savings(T[],i,0)
o€ArraylOpts ieT]]
The set of array instance optimizations, ArraylOpts, contains trailing zero trim-
ming, bit-width reduction, and zero-based compression. Next, the maximal hybrid
picks the best optimizations for each array type 7'[], picking the maximum savings
between the best instance technique and the savings that could be achieved from

the whole-type techniques:
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maxArrayTSavings = ) max {maxArrayISavings(T[]), max savings(T[],o)}
T[|€Arrays o€ArrayTOpts

The set of array type optimizations ArrayTOpts contains strictly-equal array shar-
ing, value set indirection, and value set caching!. The overall maximum hybrid

savings is therefore the sum of the best technique over all types of arrays.

Combined hybrid

In some cases, after applying an optimization o; to a piece of data, it is possible
to apply 0> as well on the same data to obtain additional savings. For example,
let 01= “trailing zero array trimming” and o,="array bit-width reduction”, then we

may achieve more savings with the hybrid 01 o 0, than either 01 or 0,.

We calculate combined-hybrid heap compression by applying multiple mod-
els in sequence. For the maximum potential savings per array instance, we apply
the optimizations from ArraylOpts in the following order: (1) trailing zero trim-
ming, (2) bit-width reduction, and (3) zero-based compression. Throughout these
calculations, we keep track of changes to the array length, array size, element size,
and number of zero entries to feed into later optimizations. We follow the instance
optimizations by type optimizations in ArrayTOpts to explore further compression.
Even if instance optimizations have been performed to reduce the array footprint,
strictly-equal array sharing, array value set indirection, and caching could realize
further savings. However, we do not need to recalculate the array sharing hash ta-
ble, as instance optimizations only elide zeros and do not change element values.
After we calculate combined savings for each array type, we add them to compute

the total combinedArrayTSavings.

'Due to implementation limitations, we exclude deep-equal array sharing from this hybrid cal-
culation.
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3.4 Limit Study Results

This section evaluates and compares the compression models.

3.4.1 Methodology

We added heap data compressibility analysis to Jikes RVM [4] version 2.9.1. We
used the “FastAdaptiveMarkSweep” configuration, which optimizes the boot image
(“Fast”) and uses a mark-sweep GC. We disabled the optimizing compiler during
the application run to reduce compiler objects in the heap. Since Jikes RVM itself
is written in Java, it allocates JVM objects in the Java heap alongside application
objects; we show both total and application-only results. Our benchmark suite con-
sists of the DaCapo benchmarks [13] version “dacapo-2006-10-MR1”, and of pseu-
dojbb, a variant of SPECjbb2000 (see www . spec.org/osg/jbb2000/). We
used Ubuntu Linux 2.6.20.3.

Benchmark || GC| # Types Size [KB]| Size [Instances]
Cls‘ Arr Total‘ Arr‘ App Total‘ Arr‘ App
antlr 14| 529| 69| 49,811|70%| 5%| 785,561(33%|0.5%
bloat 122 593| 79| 56,724|67%|16%| 967,360|32% | 17%
chart 23| 675| 85| 56,616(68%| 8% | 970,070\33%| 3%
eclipse 441,136 |175| 87,799|68% |25%|1,534,580(35% | 18%
fop 22| 784| 73| 52,184|70%| 4%| 830,111(34% 0.6%
hsqldb 13| 538| 78|201,375|43%|76% 7,231,418 |21% | 89%
jython 218| 892| 78| 63,706|67%| 9% |1,067,359|33%| 6%
luindex 11| 533| 70| 50,185|70% | 7%| 794,633(33%| 2%
lusearch 26| 536| 73| 70,994|78% |34%| 850,828(33%| 8%
pmd 71| 644 72| 59,220167%| 9%| 992,510(34%| 6%
xalan 125 711| 88| 71,148|76%|27%| 940,201|36%| 9%
pseudojbb || 18| 495| 72| 74,180|73%|35%| 1062,901(36% | 25%

Table 3.2: Benchmark and heap dump characterization.

We pick one representative heap dump mid-way through the gathered snap-

shots (around 25) to calculate the majority of the space savings. Section 3.4.3 vali-
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dates the generalizability of one heap snapshot for all benchmarks, comparing sav-
ings over many snapshots. Table 3.2 characterizes our benchmark suite, including
the GC number mid-way through the run, the number of class and array types rep-
resented in the measured heap dump, and the size of the measured heap dump. For
all benchmarks, arrays occupy more bytes but have fewer instances than classes.
The application occupies between 4% and 76% of the amount of bytes occupied by
Jikes RVM. All tables and figures represent total memory savings as a percentage of
total KB, and represent application memory savings as a percentage of application

KB.

3.4.2 Array Compression

Figure 3.2 shows bar graphs of the average savings over all benchmarks per com-
pression model. Figure 3.2(a) shows the total heap while Figure 3.2(b) shows the
application heap. Comparing the two graphs, we see that on average we can save
more space with our techniques in the application heap. The individual technique
that can save the most heap space is zero-byte compression by far, saving 17 and
41% of the total and application heaps. Bit-width reduction, trimming trailing ze-
ros, and array equality compression are fairly effective at reducing the heap as well,
saving 8, 9 and 13% of the application heap respectively. The graphs also show that
our hybrid techniques achieve the highest savings by performing many compression
techniques on each piece of data, with maximal hybrid saving 45% and combined

saving 52% of the application heap.

Tables 3.3 and 3.4 shows memory savings from the array compression tech-
niques, which are overall more effective than object techniques, for total heap and
application, respectively. Many benchmarks have a significant amount of arrays

allocated with padding that can benefit from trailing zero trimming. Xalan, with a
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Benchmark Total

Trl| Bitwidth| Zero| Equal | Value set Hybrid

Zro| Ch| GC|Compr|Str|Deep|Indr| Cch|Max|Comb
antlr 3] 4 8 14| 4 5| 03] 5| 16 20
bloat 31 5 8 14| 8 8 05| 6| 17 21
chart 3| 4 8 13| 4 5/ 03] 5| 16 19
eclipse 2| 6 9 14| 4 41 02| 6| 17 22
fop 6| 4 7 16| 4 5| 05| 5| 18 22
hsqldb 1/0.9 2 12 3 3] 0.1 1| 12 13
jython 2| 5 8 13| 6 71 04| 6] 16 21
luindex 5| 4 8 15] 5 5| 03| 5| 17 21
lusearch 2| 5 7 32| 4 41 02| 5| 34 39
pmd 31 5 9 14 7 71 05| 6] 16 22
xalan 18| 4 10 2921 22| 2| 7| 33 38
pseudojbb 3| 14 18 20| 4 51 04| 14| 24 37
average 4| 5 9 17] 6 71 04| 6] 20 25

Table 3.3: Percent total memory savings from array compression including hybrids.

large part of its heap being arrays, can save 18% by trimming zeros. For just appli-
cation arrays, this model helps most for chart, luindex, and xalan. Our benchmarks
spend very little space on boolean arrays, hence we do not show a separate column
for bit-width compressing them; the numbers were all zero. However, many charac-
ter arrays benefit from bit-width reduction — up to 14% with pseudojbb. Eclipse and
pseudojbb application character arrays are prime candidates for savings. Although
application savings vary per benchmark, similar to Zilles’ results which were com-
puted with a different methodology, we see up to 32% compression possibility [78].
Interestingly, arrays of types other than character can also benefit significantly from
bitwidth reduction, with savings between 2 and 18%. Value set indirection helps
little for arrays, because it is too strict: at least some array types have more values
than the allotted dictionary. However, using the dictionary as a cache and placing
aberrant values in a secondary hash increases the opportunities significantly, and so

value set caching saves more memory. In particular, pseudojbb can compress the
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Benchmark Application

Trl| Bitwidth| Zero| Equal | Value set| Hybrid

Zro| Ch| GC|Compr |Str|Deep |Indr| Cch| Max | Comb
antlr 31 2 2 481121 12| 2| 0| 48 50
bloat 31 9] 10 25| 6 71 10 0 28 38
chart 11 2 4 41| 2 2 0| 2| 43 46
eclipse 09] 13| 13 25| 2 21 0.1 13] 28 41
fop 0.1/0.1| 04 57114 15| 05| 0| 58 60
hsqldb 04| 0] 03 11| 3 31 0] 0.3 12 12
jython 2| 3 4 28| 8| 10| 0.2 5| 30 35
luindex 25(0.9 1 58|27 27| 09| 02| 61 66
lusearch 09| 5 6 72| 4 5| 6] 0 73 80
pmd 8| 5 6 331 9 9] 5 1| 34 37
xalan 49| 6| 17 66|58 59| 13| 24| 78 84
pseudojbb 41321 34 33| 4 41 321 0] 42 74
average 91 7 8 41| 12| 13| 6| 4| 45 52

Table 3.4: Percent application memory savings from array compression including
hybrids.

heap by 14% with value-set caching.

As expected, deep-equal sharing results in more savings than strictly-equal
sharing. Because most arrays are primitive, strict equality does very well for arrays,
and deep-equality saves only a percent more on average. Xalan in particular bene-
fits greatly from deep-equal array sharing, saving 22% of the total heap and 59% of
the application heap. Zero-based compression gets some good savings for the total
heap, ranging from 12 to 32% for arrays. Application-specific zero-based compres-
sion savings greatly depend on the benchmark. Overall zero-based compression
achieves the highest individual savings: on average 17% for the whole heap and for
just the application 41%. Zero compression comes at the cost of having to decom-

press individual object instances before use.

The savings from the maximal hybrid exceed the savings of any individual
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optimization, because it picks the best compression technique for each individual
piece of data. The savings from the combined hybrid exceed those from the max-
imal hybrid, because each piece of data may be optimized by multiple techniques.
Maximal compression added an additional 4% savings over our best individual tech-
nique (zero-compression), whereas combined compression on the same data added
11% over the best individual technique. Using models presented in this paper, we
see that the combined hybrid for arrays is able to compress the total heap by up
to 39%, and the application heap by up to 84%, on average 25 and 52%. In gen-
eral, application numbers vary more widely than total numbers, showing that the
JVM is fairly consistent. Overall, zero-based object compression for arrays yields
the largest amount of savings, but value set compression, bit-width reduction, and
equal array sharing are all competitive and contribute reasonable heap savings as

well.

3.4.3 Compressibility over time

Most of the results in this section are for one mid-run heap dump only. We investi-
gated whether one heap dump can be representative for the entire run by plotting a
compressibility time series for all benchmarks in Figures 3.3, 3.4, 3.5, and 3.6%.
We show series graphs for both total heap and application heap with the x-axis as
time, and the y-axis as the percent memory savings. The lines are mostly horizontal,
validating that compressibility changes little from heap dump to heap dump. More
variation is seen at startup and shutdown as expected, but the middle of the run
is fairly stable. This shows our per collection savings for arrays at a middle heap
dump should be representative. We see more variation across the run for application

data compression, especially with bloat and pmd. Perhaps these benchmarks have

These graphs include both object and array compression
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a heap that changes over time as the code goes through phases. Looking at fop’s
application graph, for example, we do not know if the number of objects in the heap
is decreasing or if the number of compressible objects is decreasing. When imple-
menting compression techniques in a JVM, we will need to take care to recover in

case compression is no longer possible.

In a separate run with one benchmark, fop, we forced frequent heap dumps
every 5S12KB of allocation, collecting 148 heap dumps. We calculated model sav-
ings over all heap dumps and plotted a series graph, as above. We found that it had
a very similar shape to the series graph plotting only 20 heap dumps. We believe
this shows that there is little bias in when we gather our heap snapshots during the

program run.

3.5 Compression Conclusion

For our benchmarks, 43 to 78% of the heap is taken up by arrays, and our models
show the greatest potential compression with arrays (versus objects) [63]. Remov-
ing bytes that are zero is particularly effective, saving on average 41% of the ap-
plication heap and up to 72%. Although previous researchers have analyzed many
compression techniques, we are the first to apply many models successively to each
piece of data in the heap. Our maximal array hybrid compression yielded a 45%
reduction in the application’s heap size on average while our superior combined
hybrid yielded 52%. Our hybrid analysis shows great potential to reduce the heap
bloat causing Java memory inefficiency. Overall, our limit study comparing various
heap data compression techniques and novel hybrids shows that there is a lot of
bloat and redundancy in arrays that can be alleviated. Reducing space usage in the
heap can make memory more efficient, enticing more constrained and varied appli-

cations and systems to use high-level languages. Programmers could then obtain

41



time and space efficiency in combination with faster development time and fewer

€Irors.

Although the compression techniques we evaluated cannot reach the 90%
average compression that bzip can achieve, they can achieve over half of that sav-
ings by compressing arrays, while being able to access and update individual el-
ements. However, there are many real-world implementation challenges for com-
pression. For example, relying on offline profiling and static analysis reduces ap-
plicability to languages such as Java with dynamic class loading, reflection, and
native code, and limits opportunity for dynamic compression. Java’s abstract mem-
ory model allows for more flexible compression schemes that adapt to application
phases. Some previous techniques target only specialized domains, such as in-
terpreters, English-language characters, or acyclic data. Speculative optimizations
require a back-out mechanism when compressed data properties are violated and
this mechanism must be thread-safe. These challenges and runtime overheads ex-
pose space-time tradeoffs that are particular to applications running in a managed
language setting. However, our limit study of techniques are a start in the direction
of determining the most effective compression schemes that could be performed on-
line per data item with low overhead. We explore some of the space-time tradeoff
of the particular dynamic compression techniques we studied in our discontiguous

z-ray work, and leave a more detailed analysis to future work.
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Figure 3.3: Compressibility over time for antlr, bloat, chart
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Figure 3.5: Compressibility over time for jython, luindex, lusearch
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Chapter 4

Z-rays: Efficient Discontiguous Arrays

The limit study in the previous chapter motivates optimizing arrays and their
memory layout. Since large contiguous arrays cause many problems for memory
management, such as fragmentation and large mutator pauses for memory manage-
ment, researchers have proposed discontiguous array implementations [7, 21]. In
the space-time tradeoff, discontiguous arrays sacrifice time for better space usage,
and are more amenable to compression opportunities. Previous designs have opti-
mized for space or real-time predictability, but incur large overheads on all array
accesses, making discontiguous arrays a bad choice for widespread JVM incorpo-
ration. We first detail previous related work in this area. Then this section describes
how we efficiently divide arrays up using our flexible z-ray design [62]. We de-
scribe first a naive design with a spine and arraylets. We then present our optimized
z-ray design of discontiguous arrays and our five optimizations. We show that these
optimizations yield similar space benefits as prior work, but with a fraction of their

overhead.

4.1 Related Work

This section surveys work on implementations of discontiguous arrays, and de-
scribes work on optimizing read and write barriers, which are necessary and key to

performance for discontiguous layouts.
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Implementing discontiguous arrays. File systems pioneered the idea of pairing
a contiguous abstraction (the file) with a discontiguous implementation [58]. Unix
performs this organization on indexed files, which use indirection pointers to fixed
size blocks for laying out large files on disk. Indexed files optimize for fast ac-
cess to small files, and limit disk fragmentation due to large files. Furthermore,
they provide constant access time for random and contiguous access patterns. Re-
searchers use discontiguous arrays for similar purposes: improving predictability

of reclamation and reducing space consumption for embedded systems.

Siebert’s tree representation for arrays limits fragmentation in a non-moving
garbage collector for a real-time virtual machine [3, 67]. Both Siebert’s and our
work break arrays into parts, but Siebert requires a loop for each array access,

whereas we require at most one indirection.

Even though Cheng and Blelloch represent arrays contiguously, they syn-
chronize and copy them one chunk at a time [24]. This design gives some of the
benefits of discontiguous arrays (bounded pause times), but not all benefits (no

fragmentation control or compression).

Discontiguous arrays provide a foundation for achieving real-time guaran-
tees in the Metronome garbage collector [7, 8, 9]. Metronome uses a two-level
layout, where a spine contains indirection pointers to fixed-size arraylets and in-
lined remainder elements. The authors state that Metronome arraylets are “not yet
highly optimized” [8]. Metronome is used in IBM’s WebSphere Real Time prod-
uct [40] to quantize the garbage collector’s work to meet real-time deadlines. Our
performance optimizations are immediately and directly applicable to their system.
Similar to the Metronome collector, Fiji VM [31, 57] also uses arraylets to meet
real-time system demands, but require immutable spines to achieve space bounds.

Because their layout still requires a lot of indirection, their implementation has high
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throughput overhead.

The use of discontiguous arrays in many production Java virtual machines
establishes that arraylets are required in real-time Java systems to bound pause-
times and fragmentation [3, 31, 40]. Applications that use these JVMs include
control systems and high frequency stock trading. To provide real-time guaran-
tees, these VMs sacrifice throughput. Z-rays provide the same benefits, but greatly

reduce the sacrifice.

Chen et al. use discontiguous arrays for compression in embedded systems,
independently from Metronome developing a spine-with-arraylets design [21]. If
the system exhausts memory, their collector compresses arraylets into non-uniform
sizes by eliding zero bytes and storing a separate bit-map to indicate the elided
bytes. They also perform lazy allocation of arraylets. In contrast to our work,
their implementation does not support multi-threading, and is not optimized for
efficiency. They require object handles, which introduce space overhead as well as

time overhead due to the indirection on every object access.

Read and write barriers. A key element of our design is efficient read and
write barriers. Read and write barriers are actions performed upon every load
or store. Hosking et al. were the first to empirically compare the performance
of write barriers [36]. Optimizations and hardware features such as instruction
level parallelism and out-of-order processors have reduced barrier overheads over
the years [15, 16, 32]. If needed, special hardware can further reduce their over-
heads [25, 35]. We borrow Blackburn and McKinley’s fast path barrier inlining
optimization and Blackburn and Hosking’s evaluation methodology. Section 4.3
discusses the potential added performance benefit of compiler optimizations such

as strip-mining in barriers. We exploit recent progress in barrier optimization to

49



make z-rays efficient.

To summarize, discontiguous array representations have proven useful in
embedded systems, but previously have been too costly for commodity use. Our
contribution is to demonstrate that discontiguous arrays can be very efficient, as

well as providing opportunities for compression and real-time quantization.
4.2 Z-rays

This section first describes a basic discontiguous array design with a spine and ar-
raylets. The basic design heavily uses indirection and performs poorly, but it does
address fragmentation, responsiveness, and space efficiency [7, 21]. Next, this sec-
tion presents the z-ray memory management strategy and the five z-ray optimiza-

tions.

4.2.1 Simple Discontiguous Arrays Using Arraylets

Similar to previous work, we divide each array into exactly one spine and zero or
more fixed-size arraylets, as shown in Figure 4.1(a). The spine has three parts. (1) It
encapsulates the object’s identity through its header, including the array’s type, the
length, its collector state, lock, and dispatch table. (2) It includes indirection point-
ers to arraylets which store actual elements of the array. (3) It may include inlined
data elements. Spines are variable-sized, depending on the number of arraylet in-
direction pointers and the number of inlined data elements. Arraylets themselves
have no header, contain only data elements, and are fixed-sized. Because arrays
may not fit into an exact number of arraylets, there may, in general, be a remainder.
Similar to Metronome [7], we inline the remainder into the spine directly after indi-
rection pointers (see Figure 4.1(a)), which avoids managing variable-sized arraylets

or wasting any arraylet space. We include an indirection pointer to the remainder
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Figure 4.1: Discontiguous reference arrays divided into a spine pointing to arraylets
for prior work and optimized Z-rays.

in the spine, which ensures elements are uniformly accessed via one level of indi-
rection, as in Metronome. We found that the remainder indirection is cheaper than
adding special case code to the barrier. For an array access in this design, the com-
piler generates a load of the appropriate indirection pointer from the spine based on
the arraylet size, and then loads the array element at the proper arraylet offset (or
the remainder offset), as shown in lines 5-10 of Figure 4.3(b). The arraylet size is a

global constant, and we explore different values in Section 4.4.

4.2.2 Memory Management of Z-rays

Because all arraylets have the same size, we manage them with a special-purpose
memory manager that is simple and efficient. Figure 4.1(b) shows the arraylet

space. The arraylet space uses a non-copying collector with fixed-sized blocks

equal to the arraylet size. The liveness of each arraylet is strictly determined by
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its parent spine. The collector requires one liveness bit per arraylet that we main-
tain in a side data structure. The arraylet allocator simply inspects liveness bits
to find free blocks as needed. The arraylets associated with a given z-ray may be
distributed across the arraylet space and interleaved with those from other z-rays
according to where space is available at the time each arraylet is allocated. When
the arraylet size is an integer multiple of the page size, OS virtual memory policies
avoid fragmentation of physical memory. For arraylet sizes less than the page size,
the live arraylets may fragment physical memory if they sparsely occupy pages.
For more discussion, see Section 5.2.2. In principle the arraylet space can easily
be defragmented since all arraylets are the same size (see Metronome’s size-class

defragmentation [7]), but we did not implemented this optimization.

Z-rays help us side-step a standard problem faced when managing large
objects within a copying garbage collector. While on the one hand it is preferable to
avoid copying large objects, on the other hand it is convenient to define age in terms
of object location. Historically, generational copying collectors either: (a) allocate
large objects into the nursery and live with the overhead of copying them if they
happen to be long-lived, (b) pretenure all large objects into a non-moving space and
live with the memory overhead of untimely reclamation if they happen to be short-
lived, or (c) separate the header and the payload of large arrays, via an indirection
on every access, and use the header to reflect the array’s age [36]. Jikes RVM
currently adopts the first policy, and in the past has adopted the second. We adopt
a modified version of the third approach for z-rays, avoiding untimely reclamation
and expensive copying. We allocate spines into the nursery and arraylets into their
own non-moving space. Nursery collections trace and promote spines to the old
space if they survive, just like any other object. If a spine dies, its corresponding

arraylets’ liveness bits are cleared and the arraylets are immediately available for
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reuse. This approach limits the memory cost of short-lived and sparsely-populated

arrays.

4.2.3 First-N Optimization

The basic arraylet design above does not perform well. While trying to optimize
arraylets, we speculated that array access patterns may tend to be biased toward low

indices and that this bias may provide an opportunity for optimization.

Motivation: Array Access Patterns. We instrumented Jikes RVM to gather ar-
ray size and access characteristics. Figure 4.2 shows the cumulative distribution
plots for all array accesses for 12 (DaCapo and pjbb2005) benchmarks (faint) and
the geometric mean (dark). We plot 12 of 19 benchmarks to improve readability;
the remaining 7 from SPECjvm98 have the same trend. Figures 4.2(a) and 4.2(b)
show data for primitive arrays and reference arrays separately. Each curve shows
the cumulative percentage of accesses as a function of access position, expressed
in bytes, since types have different sizes. These statistics show that the majority
of array accesses are to low access positions. Not surprisingly, Java programs tend
to use many small arrays, in part because Java represents strings, which are com-
mon, and multi-dimensional arrays as nested 1-D arrays. Even for large arrays,
many accesses bias towards the beginning due to common patterns such as search,
lexicographic comparison, over-provisioning arrays, and using arrays to implement
priority queues. Figure 4.2(c) shows that nearly 90% of all array accesses occur at
access positions less than 22 bytes (4KB). These results motivate an optimization

that provides fast access to the commonly accessed, leading elements in the array.

To eliminate the indirection overhead on leading elements, the first-N opti-

mization for z-rays inlines the first N bytes of each array into the spine, as shown
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Figure 4.2: Cumulative distribution of array access positions, faint lines show 12
representative benchmarks (of 19) and solid line is overall average.

in Figure 4.1(b). By placing the first N bytes immediately after the header, the

program directly accesses the first £ = elements as if the array were a

N __
elementSize
regular contiguous array. We modify the compiler to generate conditional access
barrier code that performs a single indexed load instruction for the first E elements
and an indirection for the later elements (lines 7 and 9 respectively of Figure 4.3(c)).
Arrays with fewer than E elements are not arrayletized at all. Compared to the basic
discontiguous design, using a 4KB first-N saves an indirection on 90% of all array
accesses. N is a global compile time constant, and Section 4.4 explores varying N.

The first-N optimization significantly reduces z-ray overhead on every benchmark.
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With N = 2!, this optimization reduces the average total overhead by almost half,

from 26.3% to 14.5%, which is discussed further in Section 4.4.1.

4.2.4 Lazy Allocation

A key motivation for discontiguous arrays is that they offer considerable flexibility
over contiguous representations. Others exploit this flexibility to perform space
optimizations. For example, Chen et al. observe that arrays are sometimes over-
provisioned and sparsely populated, so they perform lazy allocation and zero-byte

compression [21]. We borrow and modify these ideas.

Because accesses to arraylets go through a level of indirection, it is rela-
tively straightforward to allocate an arraylet lazily, upon the first attempt to write
it. Unused portions of an over-provisioned or sparsely populated array need never
be backed with arraylets, saving space and time. A more aggressive optimization
is possible in a language like Java that specifies that all objects are zero-initialized.
We create a single immutable global zero arraylet, and all arraylet pointers ini-
tially point to the zero arraylet. Any non-zero arraylets are only instantiated after
the first non-zero write to their index range. The zero arraylet is depicted in Fig-
ure 4.1(b). Lazy allocation introduces a potential race condition when multiple
threads compete to instantiate an arraylet. Whereas Chen et al. do not describe a
thread-safe implementation [21], we implement lazy allocation atomically to ensure
safety. Section 4.4.1 shows that lazy allocation greatly improves space efficiency

for some benchmarks, thereby reducing collector time and improving performance.

4.2.5 Zero Compression

Chen et al. perform aggressive compression of arraylets at the byte granularity,
focusing only on space efficiency [21]. Their collection-time compression and

application-time decompression on demand add considerable overhead, and make
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arraylets variable-sized. We employ a simpler approach to zero compression for
z-rays. When the garbage collector scans an arraylet, if it is entirely zero, the col-
lector frees it and redirects the referent indirection pointer to the zero arraylet. As
with lazy allocation, any subsequent writes cause the allocator to instantiate a new

arraylet.

Whereas standard collectors already scan reference arrays, zero-compression
additionally needs to scan primitive arrays. Scanning for all zeros, however, is
cheap, because it has good spatial locality and because the code sequence for scan-
ning power-of-two aligned data is simple and quickly short-circuited when it hits
the first non-zero byte. Our results show that the extra time the collector spends
scanning primitives is compensated for by the reduction in the live memory foot-
print. Section 4.4.1 shows that this space saving optimization improves overall

garbage collection time and thus total time.

4.2.6 Fast Array Copy

The Java language includes an explicit arraycopy API to support efficient copying
of arrays. The API is general: programs may copy subarrays at arbitrary source and
target offsets. When arrays or copy ranges are non-overlapping, as is common, the
standard implementation of arraycopy uses fast, low-level byte copy instructions.
In other cases, correctness requires that the copy be performed with simple element-
by-element assignments. Furthermore, textjavaarraycopy must notify the garbage
collector when reference arrays are copied since the copy may generate new inter-

space pointers (such as old-to-young) of which the garbage collector must be aware.

Discontiguous arrays complicate the optimization of arraycopy because
copying must respect arraylet boundaries. In practice, fast contiguous copying is

limited by the alignment of the source and destination indices, the arraylet size, and
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the first-N size. Our default arraycopy implementation performs simple element-
by-element assignments using the general form of the arraylet read and write bar-
riers. We also implement a fast arraycopy which strip-mines for both the first-N
(direct access) and for each overlapping portion of source and target arraylets, hoist-
ing the barriers out of the loop and performing bulk copies wherever possible. Since
arraycopy 18 widely used in Java applications, optimizing for z-rays is crucial to

attaining high performance, as we show in Section 4.4.1.

4.27 Copy-on-Write

Z-rays introduce a copy-on-write (COW) optimization for arrays. In the special
case during an arraycopy where the range of both the source and the destination
are aligned to arraylet boundaries, we elide the copy and share the arraylet by set-
ting both indirection pointers to the source arraylet’s address. Figure 4.1(b) shows
the topmost arraylet being shared by three arrays. To indicate sharing, we taint all
shared indirection pointers by setting their lowest bit to 1. When the mutator or
collector reads an array element beyond N, they mask out the lowest bit of the in-
direction pointer. If a write accesses a shared arraylet, our barrier lazily allocates a
copy and atomically installs the new pointer in the spine before modifying the ar-
raylet. COW is a generalization of lazy allocation and zero compression techniques
to non-zero arraylets. We find that COW reduces performance slightly, but reduces

space usage.

4.3 Runtime Implementation
We now describe key details of our z-ray implementation. Our design affects three
key aspects of a runtime implementation: allocation, garbage collection, and array

loads and stores. Static configuration parameters turn on and off our five optimiza-

tions, and set the size of arraylets and first NV bytes.
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Array Allocation. For z-rays, we modify the standard allocation sequence. If
the array size is less than the first-N size, then the allocation sequence allocates a
regular contiguous array. Otherwise, the allocator establishes the size of the spine
and number of arraylets based on array length, arraylet size, and the first-N size.
It allocates the spine into the nursery and initializes the indirection pointers to the
zero arraylet. The allocator points the last indirection pointer to the first remainder
element within the spine. The spine header records the length of the entire array,

not the length of the spine, thus array bounds checks proceed unchanged.

Garbage Collection. We organize the heap into a copying nursery, an arraylet
space, and a standard free-list mature space for all other objects [14]. Spines ini-
tially reside in the copying nursery space. A nursery collection reclaims or promotes
spines just like any other object, copying surviving spines to the mature space. The
only special action for the spine is to update the indirection pointer to the remainder
such that it correctly reflects its new memory location. Recall that the remainder
resides within the spine. The scan of z-rays traces through the indirection pointers,
ignoring pointers to the zero arraylet. The collector performs zero compression, as
discussed in Section 4.2.5. For each non-zero arraylet, the collector marks the live-
ness bit. During lazy allocation, we mark the liveness bit of arraylets whose spines
are mature so that they will not be collected during the next nursery collection. Full
heap collections clear all arraylet mark bits before tracing. Our arraylet space man-
ager avoids an explicit free list and instead lazily sweeps through the arraylet mark

bits at allocation time, reusing unmarked arraylets on demand.

Read and Write Barriers We modify the implementation of array loads and

stores to perform an indirection to an arraylet and remainder when necessary. With
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R I N

void arrayStore (Address array, int index, int value) {

int len = array.length;
if (index >= len)

throw new ArrayBoundsException();
int offset = index » BYTES_IN_INT;
array.store(offset, value);

(a) Array store (contiguous array).

void arrayStore (Address array, int index, int value) {

int len = array.length;
if (index >= len)
throw new ArrayBoundsException();
int offset = index » BYTES_IN_INT;
int arrayletNum = index / INTS_IN_ARRAYLET;
int spineOffset = arrayletNum x BYTES_IN_ADDRESS;
Address arraylet = array.loadAddress (spineOffset);
offset = offset % ARRAYLET_BYTES;
arraylet.store (offset, value);

(b) Array store (conventional arraylet).

void arrayStore (Address array, int index, int value) {

int len = array.length;
if (index >= len)
throw new ArrayBoundsException();
int offset = index » BYTES_IN_INT;
if (offset < FIRST_N_BYTES)
array.store (offset, value);
else
arrayletStore (array, offset, value);

(c) Array store fast path (z-rays)

@NoInline // force this code out of line
void arrayletStore (Address spine,int offset,int value) {

int arrayletNum =

(offset - FIRST_N_BYTES) / BYTES_IN_ARRAYLET;
int spineOffset =

FIRST_N_BYTES + arrayletNum x BYTES_IN_ADDRESS;
Address arraylet = spine.loadAddress (spineOffset);

if (arraylet & SHARING_TAINT_BIT != 0)
. // atomic copy on write
else if (arraylet == ZERO_ARRAYLET)
if (value == 0)
return; // nothing to do
else

c // lazy allocation and atomic update
offset = (offset - FIRST_N_BYTES) % BYTES_IN_ARRAYLET;
arraylet.store (offset, value);

(d) Array store slow path (z-rays)

Figure 4.3: Storing a value to a Java int array.
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the first-V optimization, accesses to byte positions less than or equal to N proceed
unmodified, using a standard indexed load or store (line 7 of Figure 4.3(c)). Other-
wise, basic arithmetic (shown in lines 5-9 of Figure 4.3(b)) identifies the relevant
indirection pointer and offset within the arraylet. Lazy allocation and zero compres-
sion do not affect reads, except that the read barrier returns zero instead of loading
from the zero arraylet. Copy-on-write requires read barriers that traverse indirection
pointers to mask out the lowest bit in case the pointer is tainted. If the write barrier
finds an arraylet indirection pointer tainted by COW, it lazily allocates an arraylet,
copies the original, and atomically installs the indirection pointer in the spine. If
the write barrier intercepts a non-zero write to the zero arraylet, it lazily allocates
an arraylet filled with zeros and installs the indirection pointer atomically. Both
of these write barriers then proceed with the write. Figures 4.3(c) and 4.3(d) show
pseudocode for the fast and slow paths of a z-ray store with the first-N optimization,

lazy allocation, zero compression, and copy-on-write.

Adding complexity to barriers does increase the code size; we found on
average we added 20% extra code space to our benchmarks for our z-ray imple-
mentation. To measure the extra code, we did experiments using Jikes RVM’s com-
pilation replay mechanism to avoid the problem of non-determinism from adaptive
optimization, instead picking a fixed optimization plan per benchmark via profil-

ing [13].

With a generational collector, an object’s age is often defined by the heap
space in which it is currently located. To find mature-to-nursery pointers, a typical
generational write barrier tests the location of the source reference against the loca-
tion of the destination object [15]. Since the source reference in our case could re-
side in the arraylet space, which does not indicate age, our generational array write

barrier instead tests the location of the source spine, which defines the arraylets’
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age, against the destination object.

Further Barrier Optimization. Prior work notes that classic compiler optimiza-
tions have the potential to reduce the overhead of discontiguous arrays [8]. Al-
though they do not implement it, Bacon et al. advocated loop strip-mining, which
hoists loop invariant barrier code when arrays access elements sequentially. Instead
of performing » indirection loads for n sequential arraylet element accesses, where
n is the number of elements in an arraylet, this optimization performs only one
indirection load for n consecutive accesses. Our fast array-copy performs this opti-
mization, and it is very effective for benchmarks that make heavy use of arraycopy
(see Section 4.4.1). Although we do not implement this optimization more gener-
ally in the compiler, we performed a microbenchmark study to determine its poten-
tial benefit. For a simple test application sequentially iterating over a large array,
a custom-coded strip-mining implementation showed zero overhead and actually
ran slightly faster than the original system compared to the implementation with-
out strip-mining, which demonstrated a 37% slowdown on this microbenchmark.
Strip-mining has the potential to reduce the overhead of discontiguous arrays fur-
ther, particularly for programs that perform a large percentage of array accesses

beyond the first-N threshold.

4.3.1 Jikes RVM-Specific Implementation

Our z-ray implementation has a few details specific to Jikes RVM. Jikes RVM is a
Java-in-Java VM, and as a consequence, the VM itself is compiled ahead of time,
and the resulting code and data necessary for bootstrap are stored in a boot image.
At startup, the VM bootstraps itself by mapping the boot image into memory. The
process of allocating and initializing objects in the boot image is entirely different

from application allocation. Since there is no separate arraylet space at boot image
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building time, boot image arraylets are part of the immortal Jikes RVM boot image.
For simplicity we allocate each z-ray by laying out the spine followed by each of the
arraylets (which must be eagerly allocated). Indirection pointers are implemented
just as for regular heap arraylets, so our runtime code can be oblivious as to whether

an arraylet resides in the boot image or the regular heap.

4.3.2 Implementation Lessons

The abstraction of contiguous arrays provided by high-level languages enables the
implementation of discontiguous arrays. Although the language guarantees that
user code will observe these abstractions, unfortunately, under the hood, modern
high performance VMs routinely subvert them in three scenarios. (1) User-provided
native code accesses Java objects via the Java Native Interface. (2) The VM ac-
cesses Java objects via its own high-performance native interfaces, for example, for
performance critical native VM operations such as IO. (3) The VM interacts with
internals of Java objects, for example, the VM may directly access various meta-
data which is ostensibly pure Java. Note that none of these issues are particular
to Jikes RVM; they are issues for all JVMs. Implementing discontiguous arrays is
a substantial engineering challenge because the implementer has to identify every
instance where the VM subverts the contiguous array abstraction and then engineer

an efficient alternative.

We found all explicit calls to native interfaces (scenarios 1 and 2). At each
call, we marshal array data into and out of discontiguous form. In general, mar-
shaling incurs overhead but it is relatively small because VMs already copy such
data out of the regular Java heap to prevent the garbage collector from moving it
while native code is accessing it. Another alternative is excluding certain arrays
from arrayletization entirely, and pinning them in the heap. We chose to arrayletize

all Java arrays.
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A more insidious problem is when the VM subverts the array abstraction by
directly accessing metadata, such as compiled machine code, stacks, and dispatch
tables (3). The problem arises because Jikes RVM accesses this metadata both as
raw bytes of memory and as Java arrays. We establish an invariant that forbids the
implementation from alternating between treating discontiguous arrays as both raw
bytes and Java arrays. Instead, this metadata now is implemented as a magic array
type that is not arrayletizable, so accesses can proceed normally [33]. We thus
exploit strong typing to statically enforce the differentiation of Java arrays from

low-level, non-arrayletized objects, and access each properly.

To debug our discontiguous array implementation, we implemented a tool
based on Valgrind [56] that performs fine-grained memory protection, cooperating
with the VM to find illegal array accesses. Jikes RVM runs on top of Valgrind,
which we modified to protect memory at the byte-granularity. We used Valgrind
to ‘protect’ each array and implement a thread-safe barrier that permits reads and
writes to protected arrays. Accesses to protected arrays that do not go through the
barrier caused an immediate segmentation fault (instead of corrupting the heap and
manifesting much later), and generated an exception that we used to track down
offending array accesses. We plan to make this valuable debugging tool available

with our z-ray implementation.

4.3.3 Benchmarks and Methodology
This section describes our experimental methodology.
Benchmarks. We use the DaCapo benchmark suite, version 2006-10-MR2 [13],

the SPECjvm98 suite, and pjbb2005, which is a variant of SPECjbb2005 [27] that

holds the workload, instead of time, constant. We configure pjbb2005 with 8 ware-
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houses and 10,000 transactions per warehouse. Of these 19 benchmarks, pjbb2005,

hsqgldb, lusearch, xalan, and mtrt are multi-threaded.

Experimental Platforms. Our primary experimental machine is a 2.4 GHz Core
2 Duo with 4 MB of L2 cache and 2 GB of memory. To ensure our approach is
applicable across architectures, we also measure it on a 1.6 GHz Intel Atom two-
way SMT in-order processor with 512 KB of L2 cache and 2 GB of memory. The
Intel Atom is a cheap, low power in-order processor targeted at portable devices,
and so more closely approximates architectures found in embedded processors. All
machines run Ubuntu 8.10 with a 2.6.24 Linux kernel. All experiments were con-

ducted using two processors. We use two hardware threads for the Atom.

JVM Configurations and Experimental Design. We made our z-ray changes to
the 3.0.1 release of the Jikes Research Virtual Machine. All results on z-rays are
presented as a percentage overhead over the vanilla Jikes RVM 3.0.1 that uses a con-
tiguous array implementation. We use the Jikes RVM’s default high-performance
configuration (‘production’), which uses adaptive optimizing compilation and a
generational mark-sweep garbage collector. To maximize performance, we use pro-
filed Jikes RVM builds, where the build system gathers a profile of only the VM,
not the application, and uses it to build a highly-optimized Jikes RVM boot image.
We use a heap size of 2x the minimum required for each individual benchmark as
our default. This heap size reflects moderate heap pressure, providing a reasonable
garbage collector load on most benchmarks. We also perform experiments with

z-rays over a range of heap sizes.

As recommended by Blackburn et al., we use the adaptive experimental

compilation methodology [13]. Our z-ray implementation changes the barriers in
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the application code, and therefore interacts with the adaptive optimizer. We run
each benchmark 20 times to account for non-determinism introduced through adap-
tive optimization, and in each of the 20 executions, we measure the 10th iteration
to sufficiently warm up the JVM. We calculate and plot 95% confidence intervals.
Despite this methodology, some results remain noisy. For total time, only hsqldb is
noisy. Garbage collection time is chaotic because of varying allocation load under
the adaptive methodology, even without z-rays. Many of the garbage collection re-
sults are therefore too noisy to be relied upon for detailed analysis. We gray out
noisy results in Table 4.3 and exclude them from the reported minimums, maxi-

mums, and geometric means.

Allocation Heap Accesses Array Copy

MB/ Array % Composition per write % read % byte %

Benchmark usec all prim. MB % usec fast slow fast slow usec >N
antlr 72 83 80 12 52 157 93 76 735 96 52 23
bloat 77 65 60 18 51 264 10 04 978 08 52 0
chart 23 49 48 18 49 320 53 71 498 37.8 44 76
eclipse 57 75 55 38 57 373 46 14 894 47 30 25
fog 11 34 26 19 47 94 17 01 973 09 5 0
hsqgld 29 38 21 67 31 463 07 03 981 09 5 16
jython 125 77 66 24 51 584 12 03 980 06 132 3
luindex 32 40 36 12 52 186 286 02 707 05 21 0
lusearch 201 87 82 15 57 699 145 05 841 1.0 31 8
pmd 156 33 1 23 45 419 09 101 92 19 7 69
xalan 76 88 52 31 73 342 75 024 915 07 41 0
compress 24 100 100 4 57 191 129 225 253 393 0 0
db 4 64 9 11 56 48 08 89 658 244 15 99

jack 28 32 26 6 51 92 48 02 943 07 49 0
javac 22 49 42 12 41 106 73 04 909 14 6 4
jess 75 47 0 7 54 197 19 02 971 08 66 0
mpegaudio 02 15 6 3 52 669 143 01 855 0.1 35 0
mtrt 30 25 18 9 42 267 43 02 952 03 0 0
pjbb2005 70 63 42 193 64 1109 24 03 95 08 271 0
min 02 15 0 3 3 48 07 01 253 0.1 0 0

max 766 100 100 193 73 1109 286 225 981 393 271 99

mean 47 56 40 - 52 338 64 26 846 64 45 17

Table 4.1: Allocation, heap composition, and array access characteristics of each
benchmark.
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Benchmark Characterization. Table 4.1 characterizes the allocation, heap com-
position, array access, and array copy patterns for each of the benchmarks. This
table shows the intensity of array operations for our benchmarks. Note that array
accesses, and not allocation, primarily determine discontiguous array performance.
The table shows allocation rate (total MB per usec allocated), the percent of allo-
cation due to all arrays and to just primitive (non-reference) arrays. On average,
56% of all allocation in these standard benchmarks is due to arrays, and 40% of
all allocation is primitive arrays, which motivates optimizing arrays. By contrast,
columns five and six measure heap composition by sampling the heap every IMB
of allocation, then averaging over those samples. For example, chart has 18MB live
in the heap on average, of which 49% is arrays. Column 7 shows array access rate,
measured in accesses per usec. For instance, compress is a simple benchmark that
iterates over arrays and might even be considered an array microbenchmark, but it
has a much lower array access rate than many of the more complex benchmarks,
such as pjbb2005. In summary, arrays constitute a large portion of the heap and are

frequently accessed.

Columns 8 through 12 show the distribution of array read and write accesses
over the fast and slow paths of barriers (recall Figures 4.3(c) and 4.3(d)). Fast
path accesses are to elements within first-N, which we set to 2!? bytes. These
statistics show the potential of first-N to reduce overhead. The vast majority of
array accesses (84.6% on average) are reads and only exercise the fast path. There
are a few outliers: chart, compress, and db exercise slow paths frequently and luindex,
lusearch, and compress have a large percentage of write accesses. Note that although
lusearch, mpegaudio, and pjbb2005 are the most array-intensive (699, 669, and 1,109
accesses per usec respectively), they rarely exercise the slow paths. Overall 91%

of all accesses go through the fast path, thereby enabling the first-N optimization
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to greatly reduce overhead by avoiding indirection on each of those accesses. The
last two columns measure arraycopy () : (1) the number of bytes array copied per
unit execution, measured in bytes copied per usec, and (2) the percentage of array
bytes copied that correspond to array indices beyond first-N. Some benchmarks use
array copy intensively, including jython, jess and pjbb2005, but they rarely copy past
first-N. Other benchmarks, such as chart copy a moderate amount and the majority

of bytes are beyond first-N.

4.4 Z-ray Evaluation

This section explores the effect of z-rays with respect to time efficiency and space

consumption.

4.4.1 Efficiency

We first show that z-rays perform well in comparison to previously described opti-
mizations for discontiguous arrays. We break down performance into key contribut-
ing factors. We tease apart the extent to which individual optimizations contribute
to overall performance, showing that first-N is the most effective optimization, and
that first-N improves the effect of other optimizations. We go into detail about cer-
tain outlier results and describe performance models we create to explain them. We
then show that z-ray performance is robust to variation in key configuration param-

eters.

Z-ray Summary Performance Results

This section summarizes the performance overhead of z-rays and compares to pre-
viously published optimizations. Table 4.2 shows the optimizations and key param-
eters used in each of the five systems we compare. The Naive configuration includes
no optimizations and a 2!° byte arraylet size. The Naive A and Naive B configura-

tions are based on Naive, but reflect the configurations and optimizations described
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Overhead
14.5%  12.7%

Table 4.2: Overview of arraylet configurations and their overhead.

by Chen et al. [21] and Bacon et al. [7] respectively. These configurations are not
a direct comparison to prior work, because, for example, we do not implement the
same compression scheme as Chen et al. However, this comparison does allow us
to directly compare the efficacy of previously described optimizations for discon-
tiguous arrays within a single system. The Naive A configuration adds lazy alloca-
tion [21] while Naive B raises the arraylet size [7]. The Z-ray configuration includes
all optimizations. The Perf Z-ray configuration is the best performing configuration,
and differs from the Z-ray configuration only by its omission of the copy-on-write

(COW) optimization.

Table 4.2 summarizes our results in terms of average time overheads relative
to an unmodified Jikes RVM 3.0.1 system. These numbers demonstrate that both Z-
ray and Perf Z-ray comprehensively outperform prior work. The configurations based

on the optimizations used by Chen et al. [21] (Naive A) and Bacon et al. [7] (Naive B)
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have average overheads of 32% and 27% respectively on the Core 2 Duo whereas
Perf Z-ray reduces overhead to 12.7%. Notice that Naive (27%) performs better than
Naive A (Naive with lazy allocation), showing that lazy allocation by itself slows
programs down. Our Z-ray configuration, with all optimizations turned on including
COW, has an average overhead of 14.5%, slightly slower than our best-performing
system, Perf Z-ray at 12.7%.

Per-benchmark Configuration Comparison. Figure 4.4 compares the perfor-
mance of Z-ray and Perf Z-ray against previously published optimizations for all
benchmarks. Perf Z-ray outperforms prior work (Naive A and Naive B) on every
benchmark. The configurations Naive A and Naive B at best have overheads of
7% and 10% respectively, while Perf Z-ray at best improves performance by 5.5%.
While our system sees a worst case overhead of 57% on chart, Naive A and Naive B
slow down chart by 74% and 62%, and suffer worst case slowdowns across all
benchmarks of 107% and 76% respectively. On jython, Naive A and Naive B suf-
fer overheads of 88% and 76% respectively, which we reduce to just 5.7%. In
general, Naive, our system without any optimizations, matches the performance of
Naive B, although it uses a smaller arraylet size. In 17 of 19 benchmarks excluding
antlr and fop, the Z-ray configuration improves over prior work optimizations, but as
mentioned, the copy-on-write optimization, while improving space usage, does add
time overhead as compared with Perf Z-ray. In summary, compared to previously
published optimizations, Perf Z-ray improves every benchmark, some enormously,

and reduces the average total overhead by more than half.

Performance Breakdown and Architecture Variations

We now examine the z-ray overheads in more detail. We break down contributions

to the overhead from the collector, mutator, reference arrays, and primitive arrays.
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Total Overhead (%) C2D Overhead Breakdown (%)

Benchmark C2D Atom Ref. Prim. Mutator GC
antlr  22.0 z82 37.7+123 -3.2 144 17.9
bloat 15.9 120 28.7 iss 43 114 14.2
chart 57.2 z04 54.9 z03 0.2 57.0 61.4 -6.9
eclipse 14.2 112 24.9 173 1.9 10.3 15.7 -28.1
fop 5.1 137 19.0 =90 89 142 4.4
hsqldb 7.5 18 2.2
jython 5.7 11 126 x32 2.6 2.8 5.0
lusearch 22.4 113 24.0 =09 42 239 22.6
luindex 10.1 z09 14.9 +10 1.3 104 9.6 26.8
pmd 6.0 13 7.2 112 5.5 0.8 7.9
xalan -5.5 +13  11.1 127 -4.8 -0.7 2.0 -56.0
compress 20.2 03 51.2 104 0.4 203 21.9
db 3.7 z01  14.0 zo.1 3.4 -0.4 3.8 -4.0
jack 59 +16 7.6 +1.1 0.3 4.7 6.6
javac 8.0 z06 11.5 +12 2.2 59 8.3 4.2
jess 122 +10 17.0 +28 10.3 1.4 12.0
mpegaudio  31.4 t04 441 106 23 144 31.2
mtrt 4.2 117 6.8 <16 14 3.4 4.4 1.7
pjbb2005 3.4 105 5.1 125 -0.1 0.6 3.6 0.6
min -5.5 5.1 -4.8 -0.7 2.0 -56.0
max 57.2 54.9 10.3 57.0 61.4 4.2
geomean 12.7 20.2 22 1041 13.3 -11.3

Table 4.3: Time overhead of Perf Z-ray compared to base system on the Core 2 Duo
and Atom. 95% confidence intervals are in small type. Breakdown of overheads
on Core 2 Duo for reference, primitive, mutator, and garbage collector are shown at
right. Noisy results are in gray and are excluded from min, max, and geomean.

We also assess sensitivity to heap size variation and different micro-architectures.

Throughout the remainder of our performance evaluation, unless otherwise
specified, our primary point of comparison is the best-performing z-ray configura-
tion, Perf Z-ray, which disables copy-on-write. Table 4.3 shows total time overheads
for the Perf Z-ray configuration for the Core 2 Duo and Atom processors relative
to an unmodified Jikes RVM 3.0.1. The table includes 95% confidence intervals
in small type next to each total overhead percentage. The confidence intervals are

calculated using the student’s t-test, and each reflects the interval for which there
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is a 95% probability that the true ‘result’ (the mean performance of the system be-
ing measured) is within that interval. Noisy results, which are those with a 95%
confidence interval greater than 20% of the mean performance (+10%), are grayed
out and excluded from geometric means. The total overhead on the Core 2 Duo is

12.7% on average.

Many benchmarks have low overhead, with xalan as the best, speeding up
execution by 5.5% due to greatly reduced collection time. Despite some high over-
heads, z-rays perform well on xalan, db, mtrt, and pjbb2005. Because eclipse, xalan,
and compress have many arrays larger than first-N, lazy allocation is particularly ef-
fective at reducing space consumption which, in turn, improves garbage collection
time. The benchmarks antlr, chart, lusearch, compress, and mpegaudio use primitive
arrays intensively which is the main source of their overheads. Table 4.3 shows
that benchmark overhead comes primarily from primitive (‘Prim.”) discontiguous
arrays, and we find in particular that byte and char arrays are the main contributors
to overhead, each adding on average over 3%, because they are used extensively for
I/0 and file processing using numerous large arrays. By contrast, when arraylets are
selectively applied only to reference arrays, both average and worst case overheads

are reduced by about a factor of six to just 2.2% and 10.3% respectively.

Mutator Performance. Following standard garbage collection terminology, we
use the terms mutator to refer to application activity, and collector to refer to
garbage collection (GC) activity. The ‘Mutator’ column of Table 4.3 shows that
most of the overhead of the Perf Z-ray configuration is due to the mutator. Mutator
performance is directly affected through the allocation of discontiguous arrays and
the execution of array access barriers. We see that chart—which according to our

earlier analysis performs a large number of array accesses beyond the inlined first N
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bytes—suffers a significant mutator performance hit of 61.4%. On the other hand,

xalan suffers only 2% mutator overhead.

Collector Performance. Z-rays affect the collector performance both directly,
through the cost of processing spines and arraylets during collection, and indirectly,
by changing how often the VM requires garbage collection due to changes in space
efficiency. The ‘GC’ column of Table 4.3 shows that collector performance for our
Perf Z-ray configuration varies significantly. Note that garbage collection exhibits
chaotic performance characteristics because perturbations in the mutator can affect
the volume of data allocated and the timing of collections, inducing large fluctu-
ations in collector performance [13]. Many of the garbage collection results are
consequently noisy. Among the more significant results, xalan improves collection
time by 56% and javac degrades by 4%. Across those benchmarks reporting reliable
garbage collection results, z-rays showed an average reduction in collection time of
11.3%.

Heap Sizes. We evaluated z-rays against a range of heap sizes to measure time-
space trade-offs of garbage collection. Our collector and mutator overheads are
robust across heap sizes, tracking the performance of unmodified Jikes RVM from
very tight to large heaps. Because most program time and overheads are in the
mutator, and collector improvements are modest, this result is not unexpected. Be-
cause the collector dominates at small heap sizes, our total overhead relative to the
base system is lowest in small heaps. These results show that our good overall per-
formance is derived from (1) a modest overall mutator overhead, and (2) an overall

improvement in collector performance.
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Architectural Sensitivity. To assess the architectural sensitivity of our approach,
we performed experiments on two very different Intel x86 architectures: Core 2
Duo and Atom. On the Atom, the Perf Z-ray overhead increases to 20.2% from Core
2 Duo’s 12.7%. In comparison, average overheads for previous designs, Naive A
and Naive B, on Atom increase to 39% and 33% respectively (not shown in the
table). The Atom is an in-order processor, so it is less able to mask overheads with

instruction level parallelism.

In summary, z-ray performance varies significantly across benchmarks; overheads
are overwhelmingly due to the mutator; primitive array types account for almost
all of the z-ray overhead; and arraylet overheads are more exposed on an in-order

Pprocessor.

Efficacy of Individual Optimizations

Figure 4.5 explores the effect of each of the optimizations. In this graph, overheads
are expressed with respect to Z-ray, our configuration with all optimizations enabled.
Arraylet size and the number of inlined first N bytes are held constant. We evaluate
the effect of removing from Z-ray each of: the first-N optimization (Z-ray — FirstN),
lazy arraylet allocation (Z-ray —Lazy), zero compression (Z-ray —Zero), fast array
copy (Z-ray —Fast AC), and copy-on-write (Z-ray—COW = Perf Z-ray). When tak-
ing away an optimization, a slowdown, or positive overhead in Figure 4.5, indicates

the utility of that optimization.

Omitting first-N comes at the most significant performance cost across the
board, as expected, increasing the overhead by up to 71% in the worst case and
10% on average. Inlining the first-N bytes is key to reducing the overhead of dis-

contiguous arrays and central to our approach. For mpegaudio in particular, as well
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as luindex, lusearch, jython, and jess, the first-N optimization significantly reduces
the overhead of discontiguous arrays, particularly for primitive arrays. Further-
more, because first-N moves arraylet accesses off the critical path (Figures 4.3(c)
and 4.3(d)), other optimizations such as lazy allocation that add overhead to each
arraylet access become profitable. As already noted, lazy allocation adds an addi-
tional 4% of overhead to a naive system on average; compare Naive A and Naive in
Figure 4.4. By contrast, lazy allocation adds no overhead to z-rays, on average: see

Z-ray — Lazy, Figure 4.5.

Omitting lazy allocation (Z-ray —Lazy) has slightly more of an impact on ef-
ficiency than omitting zero compression (Z-ray —Zero), but on average both achieve
performance very similar to the Z-ray configuration. Some benchmarks, in particular

xalan, perform significantly better when enabling these optimizations.

Omitting fast array copy degrades performance of z-rays by on average
2.8%. Fast array copy significantly benefits chart, jython and jess, all of which fre-
quently copy arrays. Since our array copy optimization strip-mines both the first-N
test and the arraylet access logic, benchmarks that perform a lot of array copies
benefit even when copying many small arrays. Improvements from strip-mining
the first-N test explain the substantial benefit to jython, which copies a lot, though
only 3% of copied bytes are beyond first-N, as shown in Table 4.1.

Figure 4.5 shows that copy-on-write adds a small amount of overhead, on
average 1.8%, due to extra checks in barriers for tainted arraylet pointers. However,

Section 4.4.2 shows that copy-on-write is effective at reducing space in the heap.

In summary, first-N is by far the most important optimization overall, and a

fast array copy implementation is critical to a number of benchmarks.
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Understanding and Modeling Performance Overhead

We now discuss our use of microbenchmarks and a simple analytical model to fur-

ther understand z-ray performance overheads.

Table 4.3 shows that a small number of benchmarks suffer significant over-
heads, and Figure 4.4 shows that z-rays only improve modestly over prior work
on chart. Since most of our improvement over previous designs comes from first-,
our difficulty in improving chart is unsurprising given the array access statistics seen
in Figure 4.2 and Table 4.1, which show that chart is an outlier, with 80% of array
accesses indexing beyond the first 2!% bytes, and 45% of array accesses taking the
slow path. Figure 4.5 confirms that chart is one of the only benchmarks that does

not significantly benefit from the first-N optimization.

To better understand the nature of this overhead, we construct a simple an-
alytical model using a set of microbenchmarks. We wrote microbenchmarks to
measure the performance of a tight loop of array access operations under controlled

circumstances, generating results across the following dimensions:

fast vs. slow-path access

read vs. write

array element type

random vs. sequential access

By measuring performance for each microbenchmark in both the z-ray-modified
and base VMs, we calculate an approximate overhead in terms of milliseconds
per million array operations for each point in the cross product of the dimensions

above. We then use these overheads to model and estimate the overhead incurred by
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z-rays for each benchmark using access statistics from Table 4.1. We found analyz-
ing the machine code of each simple microbenchmark more tenable than inspecting
all benchmark machine code to explain results. For chart, the model estimates an
overhead of between 51% and 100%, with sequential and random access patterns,
respectively, which explains our measured overhead of 57%. These results confirm
that it would be necessary to leverage additional optimization techniques such as

strip-mining to further reduce the overhead of chart.

Table 4.3 shows that compress suffers an overhead of 20%, which is in part
because 99.9% of array bytes allocated are in arrays that are larger than first-NV.
Similarly, we see in Table 4.1 that compress has a high percentage of both reads and
writes on the slow path, which are to primitive arrays. Even so, Figure 4.4 shows
that z-rays outperform prior work on compress and Figure 4.5 shows that it is lazy
allocation and the first-NV optimization that help z-ray performance on compress.
Section 4.4.2 shows that compress has significant space savings which explains its

modest overhead.

These experiments serve to validate our observed performance overheads
and suggest that strip-mining might be particularly effective in reducing our most

significant overheads.

Sensitivity to Configuration Parameters

We now explore how performance is affected by varying our two key configuration
parameters: the number of first N bytes inlined and the arraylet size.

Figure 4.7 shows the effect of altering the number of bytes inlined with the
first-V optimization across the range 2% to 2!8 with the arraylet size held constant at
210 bytes. While extremely large values of N, such as those greater than 2'2, deliver

slightly better performance on average, such high values for N may be unrealistic,
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especially for real-time. In the case of chart, setting first-N to 2!3 roughly halves
the overhead. For such large values of N, the system approaches a contiguous array
system since very few arrays are large enough to have an arrayletized component,
eroding any utility offered by arraylets, including the ability to bound collection
time and space. Setting N to 2% provides good performance, while also providing
reasonable bounds. It is worth noting that the smaller values for N still deliver con-
figurations with reasonably low performance overheads, and may be good choices

for some system designs.

Figure 4.6 shows the effect of varying arraylet size from 28 to 2!2 bytes,
with the number of inlined first N bytes constant at 2'2. We see that changing the
arraylet size overall does not affect performance much. However, in terms of space,
initial tests show that when the arraylet size is lowered from 2!° to 28, our zero
compression, lazy allocation, and COW optimizations are more effective, reducing

the heap size further (see Section 4.4.2).

These results show that it is possible to significantly vary both the number
of inlined first N bytes and the arraylet size while maintaining overheads at rea-
sonable levels. While the values used in our Z-ray configuration are a good choice
in our setting, language implementers should tune these parameters to satisfy their

particular design criteria.

4.4.2 Flexibility

Previous work has demonstrated the flexibility of discontiguous arrays [7, 21].
While we primarily target improving the running-time performance of a general-
purpose system in our evaluation, we show here how z-ray optimizations improve
space efficiency. Chapter 5 discusses the impact of discontiguous arrays on heap

fragmentation.
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Space Efficiency

%

Total Heap Footprint

Alloc % Savings % Array- %

Benchmark Large Lazy Zero COW letizable Saved
antlr  55.4 26.0 176 105 6.4 3.4
bloat 1.2 172 161 322 4.7 1.6
chart 394 16.1 143 229 71 2.6
eclipse 379 30.7 156 114 6.9 29
fop 6.5 8.9 150 60.1 0.9 1.7
hsqldb  10.0 0.7 4.2 100.0 5.0 0.9
jython 4.2 1.2 132 5.7 3.8 1.0
luindex 1.6 1.9 182 30.7 55 25
lusearch 1.0 01 72 16.8 10.8 0.0
pmd 70.9 241 49 48.6 10.6 4.0
xalan 64.5 75.6 1.4 71 27.0 25.0
compress  99.9 26.2 3.3 0.0 60.4 491
do 875 0.1 12.6 0.2 8.1 4.1
jack 1.5 783 234 0.0 9.4 6.2
javac 1.4 1.9 20.2 0.8 54 29
jess 0.0 20.7 223 0.0 8.1 5.0
mpegaudio 2.7 86 39.2 0.0 1.8 -1.3
mtrt 0.7 51 18.2 0.0 8.7 4.6
pjbb2005 0.3 39.7 35 0.0 1.4 0.6
min 0.0 783 39.2 0.0 0.9 -1.7
max 99.9 0.1 1.4 100.0 60.4 491
mean 25.6 20.1 142 18.2 10.1 5.9

Table 4.4: Effect of space saving optimizations.

One motivation for discontiguous arrays is that they offer additional flexibility for
implementing space saving optimizations such as lazy allocation, zero compres-
sion, and arraylet copy-on-write. Table 4.4 presents space savings statistics gath-
ered using the Z-ray configuration, showing the effect of each of the space saving
optimizations. While Chen et al. [21] explore byte-grained compression, each of

the optimizations we evaluate here operate at the granularity of entire arraylets: 2'°

bytes.

The ‘% Alloc Large’ column in Table 4.4 shows the fraction of allocated

bytes that are due to large arrays, where large is > 2'?. The benchmarks with high
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overhead (antlr, chart, eclipse, and compress), all have a high percentage of large

arrays. For example, 99.9% of compress’s allocated bytes are due to large arrays.

The three ‘% Savings’ columns demonstrate the efficacy of each of the indi-
vidual space savings optimizations: lazy allocation, zero compression, and arraylet
copy-on-write. The ‘Lazy’ column shows that on average, lazy allocation avoids
allocating 20% of the space consumed by large arrays, meaning that 20% of large
array bytes fall within arraylets to which the program never writes. Lazy alloca-
tion saves memory in all benchmarks, and in many cases yields substantial savings,
e.g., 75.6% in xalan. The ‘Zero‘ column gives the proportion of allocated arraylets
that hold only zero values, as measured by taking snapshots of the heap after every
IMB of allocation. These results demonstrate that, on average, zero compression
may reduce the volume of live arraylets in the heap by 14.2%. The ‘COW’ col-
umn shows that by sharing arraylets, copy-on-write avoids actually copying 18.2%
of those bytes beyond first-N that are copied via arraycopy, and is extremely ef-
fective for hsqgldb. Copy-on-write offers a trade-off: it costs around 1-2% in total

performance but saves space.

The final two columns of Table 4.4 show the total reduction in heap foot-
print, also measured by taking heap snapshots after every 1MB of allocation. The
‘9 Arrayletizable’ column shows the percentage of the live heap consumed by
arrayletizable bytes, beyond first-N, when no space saving optimizations are em-
ployed, which is on average 10.1%. The ‘% Saved’ shows the combined effect of
our three optimizations, and is expressed as a percentage of total heap footprint. In
two benchmarks, the optimized system takes up slightly more heap space. However,
xalan and compress save 25% and 49% of the heap, respectively, due to compres-
sion and sharing, which is 92% and 81% of arrayletized bytes. Results for compress

agree with prior work [5]: about 50% of compress’s heap is zero. The rest of the
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benchmarks save space modestly. Overall z-rays save about 6% of the heap, which

as column 6 indicates, is about 60% of arrayletized bytes.

In summary, we find that each of our coarse-grained space saving optimiza-
tions yields savings, and that for some benchmarks, notably xalan and compress,
these savings are substantial. Compression at a finer granularity could realize even

more space savings, as shown in Chapter 3.

4.5 Discontiguous Array Conclusion

We introduce z-rays, a new time-efficient and flexible design of discontiguous ar-
rays. Z-rays use a spine with indirection pointers to fixed-sized arraylets, and five
tunable optimizations: a novel first-N optimization, lazy allocation, zero compres-
sion, fast array copy, and copy-on-write. This paper introduces inlining the first
N bytes of the array into the spine so that they can be directly accessed, greatly
contributing to efficient z-ray performance. We show that fast array copy, lazy
allocation, and zero compression each help reduce discontiguous array overhead
significantly. Our space savings optimizations, including the novel copy-on-write
optimization, reduce the heap size on average by 6%. The experimental results
show that z-rays perform within 12.7% on average compared with contiguous ar-
rays on 19 Java benchmarks. Z-rays decrease the overhead as compared to previous
discontiguous designs by a factor of two to three. We perform a microbenchmark
study that indicates strip-mining and hoisting invariant indirection references out
of loops could reduce overhead further for sequentially accessed arrays. Previous
work uses arraylets to meet space and predictability demands of real-time and em-
bedded systems, but suffers high overheads. Z-rays bridge this performance gap

with an efficient, configurable, and flexible array optimization framework.
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Chapter 5

Fragmentation

Fragmentation is an important consideration for space efficiency because it
helps to define worst-case bounds on space usage, which is critical for real-time
predictability. Fragmentation is defined as memory that will be wasted because it
is not available for arbitrary allocation. Prior work notes that quantifying fragmen-
tation is ‘problematic’ [7], because it is a function not only of live data at a given
point in time, but also of what memory can and will be used next by the application.
Because garbage collection is periodic, there is only a precise measurement of live
data and fragmentation after a whole heap collection, whereas in languages with
explicit memory management, such as C, fragmentation can be measured instan-
taneously on every allocation. Because our overall goal is space efficiency, in this
chapter, we explore how our reorganization of arrays changes heap fragmentation.
First we offer a qualitative discussion of how fragmentation is changed with our
z-ray implementation. Then we present how to measure fragmentation, both at its

worst-case limit and in practice.

5.1 Z-ray’s Qualitative Fragmentation
Discontiguous arrays in general have benefits for fragmentation, which are well
understood in the literature [7, 57]. Fragmentation is in part a function of the

largest object size. With contiguous arrays, the largest object is bounded by size

of the largest array. With discontiguous arrays it is bounded by the largest spine
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or arraylet. By reducing the size of the largest object, discontiguous arrays in-
crease the likelihood of finding a chunk of memory large enough to satisfy an
allocation request, and hence the system is less likely to suffer from fragmenta-
tion and premature out-of-memory errors. The literature also discusses fragmenta-
tion ramifications on generational mark-sweep heaps which we use in our experi-

ments [7, 12, 60].

Our z-ray implementation’s arraylet space and first-N optimization affect

fragmentation differently than previous implementations.

Effect of arraylet space. All arraylets are fixed-size, thus, there is no internal
fragmentation within the arraylet space, because the allocator can fill any open slot
for any arraylet allocation request. The arraylet space eliminates the need for the
‘large object space’ (discussed in Section 2 and 4.2.2), which is otherwise common
in garbage-collected systems. The arraylets may be spread over multiple blocks,
inducing external fragmentation if many arraylets are allocated and then many die.
However, because arraylets are fixed-sized and accessed via indirection, the collec-
tor can compact them if needed. There might be external fragmentation between
different heap spaces, but our page manager prevents this case by returning whole

free pages to a global pool.

Effect of first-N optimization. The first-N optimization increases the maximum
object size compared to naive discontiguous arrays, because the inlined first-N el-
ements increase the spine size. We did not observe any problems caused by the
larger spine size, but if it is a concern, the system can disable the optimization or
reduce N. Our set of optimizations offer flexibility, because the developer can tune

them to trade between overhead and fragmentation bounds.
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To summarize, one of the primary motivations for discontiguous arrays is that they
can help control memory fragmentation by bounding the largest unit of allocation.
Z-rays include these benefits, although the first-N optimization has the effect of

increasing the bound on the largest unit of allocation by N.

5.2 Measuring Fragmentation

To perform a theoretical study of measuring fragmentation for different array lay-
outs, we first have to define terms and set-up specific to our memory organization
in the JVM. In this context, we then describe two types of fragmentation: internal
and external, and equations to measure them in Sections 5.2.2 and 5.2.3. Sec-
tion 5.2.4 explores the theoretical maximal bounds of fragmentation caused by our
base JVM versus our z-ray implementation, showing we improve maximal wasted
space. Because there is usually a large gap between theoretical maximums and
experimentally measured fragmentation, we will describe how we could use the
internal and external equations to measure actual fragmentation in our systems in
Section 5.2.5. We have demonstrated in Section 4.4.2 that our z-rays can save heap
space. We quantitatively measure external fragmentation for our benchmarks with

contiguous arrays versus z-rays, showing a great improvement in practice as well.

5.2.1 JVM-specific Details

We would like to compare maximal fragmentation of both our base JVM with con-
tiguous arrays and our modified JVM with the discontiguous array layout. In order
to precisely compare fragmentation for the purposes of this study, we will modify
our heap organization slightly. Since we only change the layout of large arrays,
array sizes greater than first-N, we will not consider here the previously-studied
fragmentation of the rest of the heap, which includes small arrays and other ob-

jects. To accurately compare just the changed parts of the heap, we have to look
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at the affected heap spaces in both the base and modified systems. In the base sys-
tem, large arrays are put into a large object space (LOS) if they are greater than
a LOS_THRESHOLD, which is 8KB in our system. In our modified system, we
will set N to be equal to LOS.-THRESHOLD so that the definition of “large” is
consistent for comparison. In our discontiguous array implementation, we alleviate
the need for the LOS, instead putting large array spines in the generational spaces
and the arraylet space. For the purposes of apples-to-apples comparison of frag-
mentation, we instead will isolate large arrays in our discontiguous JVM. We will
consider spines as part of the arraylet space so that the only heap spaces that need to
be compared for this study are the LOS and arraylet spaces. This isolation changes
the property that memory is divided into fixed-sized chunks in the arraylet space,
but facilitates direct measurement of differences in fragmentation between the two

systems.

To understand the effect on fragmentation when we change the layout of
arrays, we need to know precisely how arrays are allocated in each system. The
base system’s large array space allocates on the granularity of pages, requesting a
number of contiguous pages that are a multiple of PAGE _BYTES. Our discontigu-
ous array space allocates on the granularity of a block which is BLOCK_BYTES in
size, which is set to the size of an arraylet, or ARRAYLET BYTES I With our new
organization that includes variable-sized spines in the arraylet space, there could
be some block-level fragmentation. We will describe two different kinds of frag-
mentation: internal to the granularity at which we allocate (blocks or pages) and
external, which includes wasted space over all of virtual memory. We will then

discuss the theoretical maximal bounds of both kinds of fragmentation, as well as

'Our arraylet space allocator takes ideas from the Immix allocator that divides space into coarse-
grained blocks and fine-grained lines [18]
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how to measure them in practice.

5.2.2 Internal Fragmentation

The first kind of fragmentation is internal and is based on our heap’s space budget.
Conceptually this fragmentation is the amount of pages or blocks, depending on the
granularity, requested by the memory manager’s allocator versus the actual number
of bytes taken up by live application objects. This fragmentation is internal in that it
emcompasses unusable space inside our allocation granularity not taken up by live

objects?.

To formally define an equation to calculate internal fragmentation, we first
need to define some terms. To abstract the allocation granularity away, let us
say that the allocator allocates chunks of memory of size GRANULAR BYTES.
Therefore, for an allocator requesting contiguous pages, GRANULAR BYTES =
PAGE _BYTES, and for a block allocator, GRANULAR_BYTES = BLOCK _BYTES.
We must also define liveness as Live(obj) = 1 if the object is considered live, O oth-

erwise. We will say Data(obj) is the number of bytes in object obj.
We can now define a quantitative internal fragmentation equation to be

FINTERNAL: Z ((MX GRANULARBYTES) —Data(obj))*Live(obj)
objespace

where M above is the number of allocation-units requested to allocate obj

which satisfies (M x GRANULAR BYTES) > Data(obj).

This practical allocation-unit-level fragmentation measures unusable mem-

ory at the end of allocated objects. If a live object encompasses a whole or an even

2We were inspired by the instantaneous fragmentation equations presented by Bacon et al. for
the Metronome collector [7]
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multiple of an allocation-unit, there is no fragmentation, and if an allocation-unit

has no live objects on it, it can be reused and is not considered fragmented.

Given that Fiy7ernaL 1S measure of instantaneous fragmentation in bytes,
we can measure fragmentation as a percentage by dividing this amount by the total
live allocated memory in the space. We define the total memory in the space as the
sum of bytes on all live allocation-units. First, we define a live allocation unit (m;)

as
Live(m;) = 1 if (3 obj € m; s.t. Live(obj) == 1), 0 otherwise.

We now define the total space memory in bytes to be

TOTALM
space_ bytes= Y ~ GRANULAR BYTES « Live(m;)
i=1

Therefore, the percentage of internal fragmentation in a space is

_ FiNnTERNAL
JINTERNAL = Sy iyres

5.2.3 External Fragmentation

External fragmentation occurs at the granularity of all of virtual memory. External
fragmentation occurs when live, non-moving objects are spread out, pinning down
memory and preventing future allocation. There could be enough space for a par-
ticular allocation, yet allocation fails because there is not a contiguous chunk that
is large enough to satisfy it. This is a problem when virtual memory is constrained,
as often is the case in embedded systems. If we run all applications on a 64-bit
machine, virtual memory is not constrained and there is no need to worry about
this kind of fragmentation. However, since we are studying space efficiency, we
are going to assume the common 32-bit system where external fragmentation does

exist.

Consider an example where we assume the allocator granularity is a page.
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We have 16 contiguous pages of virtual memory. Our largest object size takes 9
pages, and say the smallest object takes a page. If the smallest object is allocated
on the 9th page of our 16-page virtual memory (an 8-page object was allocated
before it and then freed), there are 8 free pages before it, and 7 after. However, if
we then try to allocate one of our largest objects, though we have enough virtual
space for it (847 = 15 free pages), there are not 9 contiguous pages that can satisfy
this allocation. The heap is fragmented and the allocator must either move objects

around or request more virtual memory to satisfy this large object allocation.

External fragmentation is worst when memory is pinned down by small ob-
jects, that prevent allocation of the largest object. Let’s say OBJ_MIN _BYTES
is the minimum size of an object in bytes that can go into a space. Similarly,
OBJ_MAX BYTES is the size of the largest object in bytes. When there is a small
object allocated in virtual memory every OBJ MAX BYTES — GRANULAR -
BYTES bytes, there will be no room for the maximum-sized object to be allocated.
Thus, virtual memory utilization will be OBJ_MIN_BYTES out of every OBJ _-
MAX BYTES — GRANULAR_BYTES + OBJ_MIN_BYTES. Similarly, fragmen-
tation will be the unused amount of memory, OBJ _MAX BYTES — GRANULAR _-
BYTES, in OBJ_MAX BYTES — GRANULAR BYTES + OBJ_MIN_BYTES of
memory. Therefore we define a quantitative external fragmentation equation as

f _ OBJ_MAX_BYTES—GRANULAR BYTES
EXTERNAL — OBJ_MAX BYTES—GRANULAR BYTES+OBJ MIN BYTES

5.2.4 Theoretical Maximum Fragmentation

We would like to understand the effect on the theoretical upper bound of both in-
ternal and external fragmentation when we change the layout of arrays. For the
theoretical worst-case limit of fragmentation, we assume the most adversarial pro-

gram or allocation sequence.
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We see that though our base JVM allocates large arrays at the granularity of
a page and our discontiguous array implementation allocations by blocks, their in-
ternal fragmentations are of the same order. The worst case internal fragmentation
would occur when objects are just larger than a multiple of the allocation-unit. The
most adversarial program would thus waste GRANULAR_BYTES — 1 bytes per al-
located large array. For the arraylet space, an adversarial case would create a spine
for each array allocated that is just one byte over a multiple of the block size, and
each array would have remainder elements, but no fixed-sized arraylets, because
they improve fragmentation. Therefore the theoretical maximal internal fragmenta-
tion for both contiguous and discontiguous arrays is O(k X GRANULAR _BYTES)
where k is the number of large arrays allocated. Although internal fragmentation is
on the same order for both contiguous and discontiguous layouts, in our configura-
tions GRANULAR BYTES are set to different values. Our contiguous layout sets
GRANULAR BYTES to PAGE _BYTES or 4KB, while our Z-ray configuration sets
GRANULAR_BYTES to BLOCK_BYTES or ARRAYLET BYTES which is 1KB.
Since our large object space and arraylet space have the same number of large ar-
rays, k, the contiguous internal fragmentation is O(4k) in comparison with z-rays
O(k). Only a constant factor is different, and thus internal fragmentation, while
expected to be reduced in practice, is on the same order for both array layouts.
We see that overall our dividing up of arrays does not reduce worst-case internal

fragmentation.

External fragmentation depends entirely on the minimum and maximum
object sizes allowed in our spaces. In Java, there is no upper bound on the size
of objects that can be allocated, but based on an adversarial program and our
setup assumptions, the largest object is an array with Integer. MAX _VALUE (23! —
1) elements. We define OBJ_MAX BYTES to be equal to the largest contigu-

90



ous chunk of memory in Java that can be allocated, and OBJ_MIN BYTES to
be the smallest. For Jikes with contiguous arrays, in our system set up to eval-
uate fragmentation, OBJ_MIN BYTES is equal to our LOS_ THRESHOLD, and
OBJ_MAX _BYTES is close to 8GB, assuming 4 byte array elements. As mentioned
above, GRANULAR_BYTES for the large object space is PAGE_BYTES or 4KB.
For discontiguous arrays, the minimum object size stays the same, as we have set
up to study only large arrays in these two contexts. However, OBJ_MAX BYTES
is reduced to the number of bytes required by the spine of the largest possible array
which is around 8MB. Similarly, GRANULAR _BYTES is the size of an arraylet, or

1KB as mentioned above.

Therefore, the worst-case external fragmentation for the base JVM, using
our equation from Section 5.2.3, is O((8GB - 4KB) / (8GB - 4KB + 8KB)) or
(8589930492 / 8589938684 ) which is 0.999999046, about 1. Whereas, our arraylet
space has worst-case external fragmentation on the order of O ((8MB - 1KB) /
(8MB - 1KB + 8KB)) or (8387584 / 8395776) which is around 0.9990242. Al-
though this amount still approaches 1 in the limit, by making large arrays discon-
tiguous we have reduced OBJ_MAX _BYTES by 1000 times and GRANULAR -
BYTES by 4 times, making these two extremes closer together. This reduction
improves the chance that the memory manager can satisfy an allocation request and
lowers the likelihood of premature out-of-bounds errors. Thus, our discontiguous
array layout slightly reduces theoretical maximal external fragmentation. Although
this worst-case bound looks very high, in practice JVMs do not incur this large
amount of fragmentation. Because the memory implementation is abstracted away
from the programmer, the collector can move objects if virtual memory fragmenta-
tion severely degrades performance, whereas native languages cannot move objects

to reduce fragmentation.
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5.2.5 Fragmentation in Practice

The above section investigates what the maximal bounds of fragmentation are given
the most adversarial allocation sequences. Real programs rarely reach fragmenta-
tion equal to their theoretical maximums. Thus, in this section we explore mea-
suring the actual fragmentation at particular points in program execution which we
expect to be much lower. Since external fragmentation has a larger effect on pro-
gram predictability and can cause dire premature out-of-memory errors, we use
these equations to quantify external fragmentation in practice for our benchmarks.
We compare the large-object space layout to our modified arraylet space design,

showing that we reduce practical fragmentation as well as theoretical.

Practical fragmentation is roughly the total amount of memory allocated
over the total memory actually in use by the application at a particular point in
time, measuring the wasted space. There is some question as to when practical
fragmentation in the heap should be measured. Optimally, we could measure frag-
mentation after every object allocation, or after every large array allocation since
this is what we are analyzing here. However, this measurement is not necessar-
ily tractable, thus we propose measuring fragmentation right before and after full
heap garbage collections that trace all large objects. We believe heap fragmentation
could be poor right before a collection, as collection is triggered by an unsatisfiable
allocation. However, our instantaneous fragmentation equations require knowledge
of the exact number of live bytes in the heap, which is known right after a garbage
collection. To calculate object liveness right before a collection, we can take the
previous collection’s live bytes and add all bytes allocated in our spaces in between
the collections, regardless of whether the subsequent collection will count them as
live. We ensure that collections occur at precisely the same time in our base JVM

and our optimized JVM by forcing collections at even intervals. Therefore we can
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measure internal fragmentation at representative program points, before and after

collection, to compare the efficiency of contiguous versus discontiguous arrays.

We can use the equations for internal fragmentation defined in Section 5.2.2
to measure fragmentation in practice for our benchmarks. Notice that Live(obj)
is defined by whether the object is considered live, which will change with our
fragmentation measurements before and after a garbage collection. Although the
order of internal fragmentation for the large object space and arraylet space are the
same, the granularity in our implementation is different and we expect more heap
fragmentation for contiguous arrays. In our discontiguous system, arraylets will
still take up exactly a block and do not cause block-level internal fragmentation.
While spines will create fragmentation, there should in general be fewer spines
than arraylets for large arrays, and we expect spines to be less adversarial than the

worst case.

To measure external fragmentation defined in Section 5.2.3 in practice, we
have to empirically find OBJ_MIN _BYTES and OBJ_MAX BYTES for our bench-
marks. Our contiguous array space in our base Jikes and our z-ray implementation
both already define OBJ_MIN _BYTES statically. What actually determines exter-
nal fragmentation is OBJ_MAX BYTES, or the large object size over the course of
a program run. Below, Table 5.1 shows the byte-size of largest array allocated for
each of our DaCapo benchmarks. These numbers were collected using the same
experimental framework as in Section 4.3.3, using Jikes RVM 3.0.1 with a GenMS
heap. Table 5.1 shows not only the size in bytes for the contiguous representation of
the largest array, but also the corresponding size in bytes for the spine, the largest
contiguous chunk, using a z-ray layout. The chart benchmark has the largest ar-
ray of all benchmarks, 4MB. This 4MB array is broken up with z-rays, the largest
contiguous chunk being the spine which is only about 20KB, a reduction of 205
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Benchmark || Max Contiguous | Max Z-ray | Reduction in External

Bytes Bytes Fragmentation
antlr 296640 5940 50 times
bloat 296640 5940 50 times
chart 4194304 20464 205 times
eclipse 593280 6780 88 times
fop 296640 5940 50 times
hsqldb 296640 5940 50 times
jython 296640 5940 50 times
luindex 296640 5940 50 times
lusearch 296640 5940 50 times
pmd 786428 8168 96 times
xalan 296640 5940 50 times

Table 5.1: Largest allocated array per benchmark, with corresponding size of con-
tiguous Z-ray bytes, and the reduced external fragmentation between them.

times. Hence, although the theoretical worst-case external fragmentation was on
the same order, we see between 50 and 205 times reduction in external fragmenta-
tion in practice for our benchmarks. This great reduction in our discontiguous array

design leads to more efficient space usage.

5.3 Fragmentation Conclusion

We have offered a qualitative discussion of the changes to fragmentation incurred
as we move from a contiguous array layout to our z-ray layout, taking into ac-
count previous work’s research on discontiguous array fragmentation. We then
detailed slight changes to our memory management space organization to quanti-
tatively study apples-to-apples fragmentation of both our base and modified JVMs.
We presented definitions and equations to measure both internal and external frag-
mentation. We have compared the theoretical maximal fragmentation with our two
array layouts, one using the large object space and one dividing up arrays in the

arraylet space. Although internal fragmentation is on the same order for both de-
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signs, we have shown that external fragmentation is reduced by 1000 times because
we reduced the largest object size but still approaches one in the arraylet space. We
have also described how to evaluate actual fragmentation at particular points during
program runs for both the original and our z-ray designs. This quantifies the amount
of wasted heap space with internal fragmentation at various intervals, whereas ex-
ternal fragmentation requires finding the largest chunk of memory allocated over a
whole run. We performed an experiment to measure the reduction in external frag-
mentation, which is a function of the largest object, with our z-ray layout, showing
that in practice we reduce the fragmentation by large orders of magnitude. This the-
sis has thus studied in depth the changes to heap fragmentation as we move arrays
from a contiguous layout to a discontiguous one, making memory not just time, but

also space efficient.
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Chapter 6

Saving Memory Traffic and Bandwidth

This chapter investigates memory inefficiencies at the hardware level, within
the cache memory hierarchy. Chapter 2 showed that 88% of our benchmarks’ write
backs to main memory from the lowest level cache are useless, i.e., the data is never
read again by the program. This problem is partially due to the rapid allocation
of short-lived data in managed languages that pollutes the caches. This chapter
examines how to get rid of this useless traffic in the face of emerging hardware
memory scalability issues to improve performance into the future. This chapter
describes how to harness the abstraction of memory management at the software
level to inform hardware of dead regions of data to optimize traffic, bandwidth, and

application performance.

We take advantage of the heap organization of managed languages to pass
down to hardware a range of memory that is used for rapid allocation and then dies
en masse. We call this range of memory addresses the candidate region. We de-
sign three software-hardware optimizations that exploit this information. 1) The
invalidation optimization invalidates resident cache lines that are in the candidate
region passed down by software. This optimization improves cache replacement
by eagerly evicting dead lines and avoiding write-backs of dead, dirty lines. 2) We
design a uniprocessor version of in-cache zeroing of data at a cache line granular-
ity in the candidate region when it is first accessed and live to avoid fetches from

memory. Finally, 3) we perform priority biasing of lines within the cache set of the
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candidate region, changing their placement so that short-lived data is evicted faster.
This approach attempts to reduce cache pollution, but is not as effective as invali-
dation. Our optimizations require modest hardware support in the form of an extra
byte per cache line and a few control registers. These optimizations tolerate the
rapid allocation of short-lived data by reducing cache displacement and reducing

read and write traffic to main memory, thereby improving application performance.

6.1 Cooperative Invalidation

This section explains the design of cooperative software-hardware invalidation. We
focus on the nursery in a generational collector and assume that the VM uses the
standard contiguous region of memory for the nursery. The software is responsible
for communicating to the hardware the candidate region and when the candidate
region is invalid. To exploit this information, the hardware must keep track of the
upper and lower bound of the region. To eliminate useless write-backs or perform
priority-biasing, the hardware must track cache-resident lines in the region. For
in-cache zeroing, the hardware keeps track of the high-water mark in the candidate
region. Lines below the mark are valid, and lines above the mark are invalid, but
will be initialized to zero in-cache upon initial access. The software communicates
periodically to hardware—at least at the beginning of the program and after collec-
tions that invalidate the range. The hardware modifications operate in response to
the software and on cache accesses. The next sections describe the software and

hardware responsibilities for each optimization in more detail.

6.1.1 Software Responsibilities

The software periodically communicates with the hardware. At the conclusion of
each nursery collection, the garbage collector communicates that the region is in-

valid. We use a stop-the-world generational collector and a synchronous invalida-
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tion operation. With synchronous invalidation, the write-back optimization requires
only a lower and upper region bound. Asynchronous invalidation would reduce la-
tency and is necessary to support concurrent collector, but adds some hardware
complexity. Asynchronous invalidation requires tracking the allocation point in the
region in a third control register. As the program allocates, it writes valid objects
in cache lines. The hardware must track the high-water mark of initializing writes
into the candidate region to keep from invalidating them with asynchronous invali-
dation. The only required JVM changes are an extra call from software to hardware
to communicate the initial candidate region and the invalidation of that region at the

conclusion of each nursery collection.

As discussed in 1.2, our optimization framework, while focused here on the
nursery region, is applicable to broader contexts and other heap organizations. We
can use the same infrastructure to communicate candidate regions that are identified
as dead by full-heap garbage collectors or region allocators. Instead of passing one
large address range to hardware, we could identify several discontiguous regions
of dead data, more similar to the design in ESKIMO [42], discussed below in re-
lated work in Section 6.3. Furthermore, to pass information about mature data to
hardware right when it dies so it is more likely to be in cache and be invalidated,
we could use a generational heap with a reference-counted mature space. Because
reference counted heap spaces identify data as dead more immediately than traced
spaces, we could retain the benefits of frequent invalidation and cache-resident dead

data to reduce traffic effectively.

6.1.2 Hardware Modifications

This section details the hardware modifications that are necessary for our software-
hardware cooperative optimizations, shown in Figure 6.1. There are five main hard-

ware modifications. First, we require two extra control registers, the invalidation
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Valid Dirty - Tag Data

Hardware Cache

Figure 6.1: Software heap layout collaborating with hardware caches including
hardware modifications.

address region lower bound (IARLB) and the invalidation address region upper
bound (IARUB). Second, we add a byte to each cache line called the candidate
byte. If the candidate byte is non-zero it indicates that this line is within a candi-
date region. When the byte is non-zero, it identifies the process owning the line.
The byte is zero by default. Third, we require logic which sets this byte when a
new cache line is installed if the memory access address is between the IARLB and
IARUB. Fourth, we add an extra candidate byte to each miss status holding register
or MSHR, to indicate whether the missed cache line holds data within the candidate
region. Lastly, when we receive the invalidation signal from software, we modify

the invalidation logic to zero each cache line’s valid bit if its candidate byte is set
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for this process.

The software will first communicate the candidate region, so that hardware
can set the IARLB to the nursery starting address, and the IARUB to the ending

address.

Comparison logic is responsible for checking whether each cache line holds
the data from within the candidate region when the line is instantiated. Although
the candidate region is contiguous in virtual address space, it might not be the case
in the physical address space. We choose to compare the access address with the
IARLB and IARUB within the virtual address space to simplify the comparison.
The comparison is done in parallel with the TLB access to generate the candidate
byte which stores the process identification. If the access hits the L1 cache, the
candidate byte will be discarded. On the other hand, if the access misses L1, the
candidate byte will be attached to corresponding MSHR entry. If the cache line is
in another level of cache, when the data is fetched back, the candidate byte value
within MSHR entry will be put into the L1 cache line. If the access misses the
whole cache hierarchy, when the data comes back from main memory, the candidate
byte of the corresponding cache line at each cache level needs to be updated with
the candidate byte stored in the MSHR entry at each level. This design limits the
number of processes that can simultaneously use the invalidation optimization to
256. This design also requires that the candidate region upper and lower bounds
be cache line aligned. Both are reasonable requirements; the latter is common in
modern JVMs. Because the operating system maintains a limited list of handles
that are given out to processes, we can use this list and disable our optimization if

the process has not acquired one of these handles.

The lower half of Figure 6.1 shows modifications to the cache memory hi-

erarchy including the control registers we add. We also show the added candidate
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byte per cache line as the darkened box in Figure 6.1.

We estimate that this hardware support adds less than 1.5% to the area of
the last level cache. It uses three control registers, one byte per cache line, and logic
to compare virtual addresses to control registers. The most area-intensive part is the
byte per cache line. The logic of invalidating many candidate cache lines when we
receive the software signal can be done efficiently in parallel by hardware, compar-
ing the invalidation process’ ID with the candidate byte. Although the operation
is expensive, it is only called once per garbage collection and its cost is minute
compared to a garbage collection cycle. As we show below, these minimal changes

allow us to save a lot of memory bandwidth.

read hit

invalidate
&& Candidate

Valid Clean

read miss

DISCARD

write| hit validate

%& Candidate

write miss

Write back

Figure 6.2: Diagram of cache line states.
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6.1.3 Eliminating useless write-backs with invalidation

The software for this optimization first communicates the candidate region, which is
initially invalid. The application then executes as usual. Figure 6.2 shows a diagram
of the cache line states during program execution. When the hardware processes a
read or write cache miss during application execution, it sets the candidate byte if
the virtual address is between the lower and upper bound. If the miss is a read,
the line is clean and valid. If it is a write, it is dirty and valid. We assume that
the entire line is fetched on a write miss, i.e., a write allocate policy [45]. At the
conclusion of a garbage collection, the software makes the invalidate region down
call, indicating all objects and data on the cache lines in the region are dead. The
hardware invalidates all cache lines with the matching candidate byte in parallel,
shown as the transition to the “Invalid” state in Figure 6.2. On subsequent misses,
the cache replaces invalid lines first, without writing back their contents, as usual
for invalid cache lines. Figure 6.2’s transition from the “Invalid” state to the “DIS-
CARD?” state shows lines that we evict with our optimization. Invalidation wins

twice—it improves cache replacement and it eliminates useless write-backs.

6.1.4 In-cache zeroing

Current hardware and prior research use special cache-line zero instructions to
avoid line fetches [42, 45, 49, 68]. For example, the PowerPC data cache block
zero (dcbz) instruction was created such that software can efficiently zero a full
cache line without reading it from memory [68]. In-cache zeroing differs from
these approaches because it also eliminates the zeroing instructions, zeroing logic,

and their cache effects from the software.

Java semantics and many other programming languages require zero ini-

tialization of all fresh allocation. Implementations of these semantics can choose
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between zeroing at the point of object allocation or eager zeroing allocation regions
en masse. Although zeroing at allocation time is better for locality since the ap-
plication is about to use this memory anyway, it adds complexity to the hot path
of allocation. Because this code is inserted at every allocation point, it bloats the
application code. Because of this bloat and the complexity of zeroing variable sized
objects, no production or research VMs of which we are aware use this approach.
Instead, they all choose to perform en masse zeroing. For example, Jikes RVM
zeros 32 KB chunks of the nursery at a time as it acquires chunks from a global re-
source pool. Jikes RVM uses a highly optimized zeroing sequence that works well
with hardware prefetching. Although this approach performs better than allocation-
time zeroing, it does touch all 32 KB of data quickly. This zeroing marches through
the lowest level cache, and these lines are unlikely to remain resident. In-cache

zeroing eliminates these instructions altogether from the JVM.

Here we explain the design of in-cache zeroing in a uniprocessor setting.
We have not yet fully designed an efficient in-cache zeroing optimization for the
multiprocessor setting. To implement in-cache zeroing, the JVM requires the same
changes as cooperative invalidation—it must communicate the candidate region to
the hardware and this region must be initially invalid. The cache hardware requires
a extra control register to track the invalidation address region high-water mark
(IARHW). The high-water mark is the upper bound of valid data in the candidate
region. Initially, the hardware sets the IARHW to the lower bound of the invalida-
tion region (IARLB) when the JVM sets the candidate region. The cache hardware
then tracks all writes to the region. If the virtual address of a write is in the range
and it exceeds the current high-water mark, in-cache zeroing initializes all cache
lines between the current mark and the write virtual address. It then sets the high-

water mark to this address. It thus instantiates these lines in cache just prior to their
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use. This optimization eliminates all writes, reads, and fetches for zero initializa-
tion. It furthermore eliminates all the software instructions that perform them and

their cache effects.

6.1.5 Priority biasing

We explore a priority biasing approach, which is a less invasive approach than
invalidation, but also less powerful. Priority biasing targets only cache replace-
ment decisions in the candidate region. This approach seeks to minimize the cache
displacement effect of the nursery by evicting this data sooner than usual. For ad-
dresses in the candidate range, priority biasing separately modifies the initial miss
placement bias and the hit placement bias in the recency queue that implements the
least-recently-used set-associativity replacement algorithm. We experiment with
fractional bias values based on the size of the recency queue, i.e., k in a k-way
set-associative cache. The default miss and hit placement bias is one, the MRU po-
sition. For example, a bias of 1/2, sets the recency to k/2, the middle of the queue.
We experiment with a variety of bias values to find if biasing nursery lines closer
to the LRU position will evict them faster and reduce the nursery’s cache displace-
ment effect. This approach only requires two control registers. Only policies that
changes placement bias on cache hit requires additional cache line bits. However,
the results show that priority biasing is not consistently effective and is much less

effective than invalidation.

6.1.6 Invalidation Design Options

The design of a software-hardware cooperative invalidation optimization can be
performed at many different granularities, which tradeoff the invalidation work be-

tween software and hardware. The design presented in Section 6.1.3 has software

104



invalidating at the granularity of regions, putting more work on hardware to main-
tain information about what can be invalidated. This section offers alternative de-
signs for invalidation, describing a spectrum of granularities and how they trade off

work in the system. We sketch possible designs, but do not build implementations.

Our current software-hardware cooperative design invalidates regions of
memory at a time. This design leverages software’s memory organization including
software’s short-lived nursery that is frequently identified as dead. Software com-
municates once every time a collection identifies a dead region. This design puts the
burden on hardware to know which cache-resident lines are in this region and can
be invalidated. Because the region passed down is a virtual address range, we re-
quire the candidate byte per cache line to do atomic invalidation in parallel cheaply
in physically-indexed low-level caches. Hardware modifications are necessary in
order to do invalidation in parallel; however, new hardware support is not required
with options that loop over the invalidation region to check which addresses are

resident in cache, as we shall see.

We can also invalidate at the granularity of a cache line, the cache hier-
archy’s organization unit. For example, the PowerPC architecture has a cache line
invalidate instruction (c/i) [39] that invalidates a line in cache so that the next access
requires fetching from main memory. Because cli is a privileged instruction, we re-
quire operating system (OS) support to use it for invalidation. The JVM could pass
one large dead region down to the OS with a system call, and the kernel could loop
over the virtual address range, calling the c/i instruction once per aligned cache line
in the region. This software approach puts the burden on the OS to loop over ad-
dresses to perform invalidation, requiring no hardware modifications when the ISA
contains this instruction. Cache line invalidation, however, does introduce more

displacement in the instruction cache (i-cache) and cannot efficiently invalidate in
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parallel as hardware can. We believe this cache-line granularity invalidation design
would not displace the i-cache much. If desired, this design could move the loop
over dead addresses to hardware to achieve atomicity with a simple state machine,
reducing the i-cache effects. It is not clear that the hardware modifications justify
the modest gains. This approach lifts the burden of invalidation up to software, and
may still realize all the benefit of saving traffic and improving application perfor-

mance.

Another possible cooperative invalidation design is at the page granularity.
Instead of invalidating regions or cache lines, a middle ground is to invalidate a
page at a time. This granularity matches the address translation and protection
granularities that exist both in the TLB in hardware, and in the OS. One benefit of
this approach is that it requires less frequent software communication than the cache
line design, thereby polluting the i-cache less. Another benefit of this approach is
that it does not require additional cache line bits since all lines within a page have
the same virtual-to-physical address mapping. However, the burden of knowing

which lines are candidates for invalidation falls back to the hardware.

There are three ways hardware could keep track of cache lines to invalidate:
1) As mentioned above for the cache line design, hardware could walk through the
cache, looping over invalid addresses to check if lines are resident using a finite state
machine. 2) Hardware could maintain a bitmap for each page that identifies which
lines are in cache. This option is not an obvious option for the region approach, but
is facilitated here because all lines within a page have the same virtual-to-physical
mapping. 3) Finally, hardware could use content addressable memory (CAM) that
keeps a map from pages to cache lines. This option allows efficient parallel cache
invalidation by comparing the page identification bits of cache tags to the invalid

page passed down by software.
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When comparing the three options, the first option takes many cycles upon
receiving the software invalidation, the second requires more space overhead, and
the third requires that specific expensive hardware already be present. The second
option, keeping a bitmap per page, requires 8 bytes per page for a 4KB page size,
which adds 8 bytes to each TLB entry. If 4MB superpages are used instead, each
TLB entry would require an extra 8KB of storage, which would be hard to justify.
In addition to the extra storage, option 2) requires logic to invalidate lines marked
as resident. In the absence of hardware with CAM, option 1) seems the most feasi-
ble. Although the page-granularity invalidation design offers an appealing middle-
ground, it still requires hardware support. However, the hardware additions are
more modest than the current design and more in-line with the existing cache and

TLB organization, and could also reduce traffic to memory extensively.

In summary, many invalidation designs are possible that work at the region,
page and cache line granularities. These designs offer a spectrum of alternatives,
varying the amount of work that the language runtime, the operating system, and the
memory subsystem have to perform. All of our invalidation designs, while offering
implementation flexibility, achieve our objective of software-hardware cooperation

to reduce program traffic and bandwidth.

6.2 Evaluation

This section explores the effects of our proposed software-hardware optimizations
on the cache hierarchy and application performance. We show that we can eliminate
almost half of all write-backs to memory with our useless write-back optimization.
This drastic reduction in write-backs translates to less traffic, and improved appli-
cation performance. We present experiments varying both the L2 size and nursery
size, showing the effect on cache miss rates and write-backs. We present initial

results of improvements to L2 references and misses in Valgrind for our in-cache
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zero optimization designed for a uniprocessor system. We present results on our
priority biasing experiments on Valgrind, showing that it is difficult to improve the

miss rate solely by more eagerly evicting short-lived data.

6.2.1 Methodology

Benchmarks. We perform experiments on the DaCapo benchmark suite, version
2006-10-MR2 [13]. We exclude chart due to its dependence on external libraries
that would not work with our simulation setup. For our cycle-accurate simulator,
we could only get 7 of the remaining 10 benchmarks successfully running to com-

pletion. Benchmarks hsqldb, lusearch, xalan are multi-threaded.

JVM configurations and experimental design. We modified the 3.1.0 release of
the Jikes Research Virtual Machine. We use Jikes RVM’s best performing garbage
collector: a generational heap with an immix mature space [18]. We use a heap size
of 2x the minimum required for each individual benchmark, reflecting moderate
heap pressure. We use Jikes RVM’s boundedNursery configuration to set the max-
imum nursery size in our experiments. The JVM can shrink the nursery size when

the mature space is too limited to accommodate all nursery survivors.

As recommended by previous research, we eliminate the non-determinism
of the adaptive compiler during the measured application run [34]. The just-in-time
compiler performs replay compilation, applying a fixed compilation plan when it
first compiles each method [38]. This fixed plan is calculated offline by having
the adaptive compiler record the set of sampling and optimization decisions per
method in a set of runs that result in the best performance. We run each application
twice using the replay compilation technique, measuring the second run to reduce

non-determinism and measure steady-state behavior.
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Experimental platforms. We use Valgrind 3.5.0 [56], configuring the L1 and
L2 cache sizes. Valgrind is a binary re-writer and an instrumentation framework
which we modified to evaluate our optimizations. We did most of our implemen-
tation modifications to the CacheGrind tool, which models and profiles the cache

hierarchy and behavior. We added functionality to receive the software downcall.

For our Valgrind experiments, we compare an unmodified system with our
optimized one. Side-by-side with an unmodified cache hierarchy, we simulate in
a matching cache hierarchy the effect of the invalidation, in-cache zeroing plus
invalidation, and moving candidate lines into the LRU positions. Valgrind does not
simulate a “valid” bit per cache line, so moving them to the LRU position has the
effect of forcing lines to be evicted next. We count the number of total write-backs
that the invalidation optimization eliminates, and the number of misses or fetches
we can save with in-cache zeroing. We perform side-by-side comparison instead of

comparing cache performance with separate runs to gather more accurate results.

We also include experimental results with the cycle-accurate PTLsim [76]
simulator. The default PTLsim supports a write-though cache, does not accurately
model the memory controller structure, and has no bandwidth limits. We use ver-
sion 2009-03-14 svn rev 229 of PTLsim. We briefly detail additions to

PTLsim to enable our optimizations and to allow for meaningful evaluation.

We modified the simulator to support a write-back cache. In order to ex-
ploit the performance impact with variable bandwidth settings, we model a simple
memory controller, which consists of a first-come-first-served queue. Both read
and write request transactions are pushed into the queue in order, and are served

in-order from the top of the queue.

PTLsim relies on a load-fill request queue to hold information about out-

standing loads which miss in the cache. It also tracks all outstanding cache line
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Total Size | Line Size | Associativity
L1 Data 32KB | 64 bytes 8-way
L1 Instruction 32KB | 64 bytes 8-way
L2 4MB | 64 bytes 16-way

Table 6.1: Cache configurations we model.

Generous | Moderate | Constrained
Bandwidth || 1400MB/s | 100MB/s 50MB/s

Table 6.2: Evaluated bandwidth settings.

misses in a missing buffer. We add the candidate byte to each entry of the two
structures to indicate that the missed cache line consists of data whose virtual ad-
dress falls into the candidate region. When a load instruction is issued or a store
instruction is committed, we add logic that compares the address to update the can-
didate byte in the load-fill request queue or the missing buffer, respectively. When
hardware serves the request and the data comes back from main memory, the cache

updates the line’s candidate byte.

Cache and memory configuration. We model our cache hierarchy after the ma-
chines used in recent related work, both of which use two Intel Xeon Clovertown
four-core processors [61, 77]. Although the two previous papers differ on the
Clovertown models they use, we chose to model the cache configuration of the
E5320. We simulate write-back, allocate caches. Because PTLSim does not simu-
late hardware parallelism, we simulate using the cache sizes of one core. As shown
in Table 6.1, we use a 32KB L1 data cache and a 32KB L1 instruction cache, both
with a line size of 64 bytes and 8-way set associativity. Our baseline experimen-
tal setup uses a combined 4MB L2 cache with 64-byte line size and 16-way set

associativity, however, we vary the L2 capacity in experiments below.
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We make a number of changes in light of the inability of our simulation
infrastructure to simulate multiple cores. First, we experiment with smaller L2
sizes to compensate for the fact that our L2 is never shared, unlike the L2 cache
of the hardware we model. Second, much of the memory bandwidth bottleneck
comes from the scaling of cores without commensurate scaling of memory band-
width [61, 77], so we experiment with memory bandwidth settings ranging from
limited to fairly unconstrained. The exploration of constrained bandwidth settings
is important since current research shows that this is a problem that will continue
to get worse with parallel applications running on CMPs [61, 77]. In some exper-
iments, we throttle bandwidth by reducing the length of the memory queue that
models latency and bandwidth. For our benchmarks, we found appropriate gener-
ous, moderate, and constrained bandwidth settings for PTLsim, which are listed in

Table 6.2.

6.2.2 Useless Write Backs Eliminated

Figure 6.3 shows for each of our DaCapo benchmarks, the percentage of cache
line write-backs that we eliminate due to our useless write-back invalidation opti-
mization. This figure presents results for a 4MB nursery in the JVM and a 4MB
L2 cache. Because we model the normal cache side-by-side with the optimized
cache in Valgrind, we can break these saved write-backs down into two categories
in Figure 6.3(a). The optimized cache has fewer write-backs because, first, it ea-
gerly evicts all dead data, not just dirty data, reducing overall cache pollution and
improving cache replacement. Secondly, we count the lines in our optimized cache
that are evicted and dirty and would have resulted in a write-back, but do not be-
cause they are dead. For our cycle-accurate simulator, we include total write-back
savings without the break-down, for our “Constrained” bandwidth setting in Fig-

ure 6.3(b). For PTLsim, write-back savings is fairly consistent across bandwidth
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Figure 6.3: Per benchmark percentage of write-backs that we can save for both
Valgrind and PTLsim using a 4MB nursery and L2 cache. For Valgrind we are
able to divide savings into reducing the cache pollution and not writing back dirty
dead data. For PTLsim, we show total reduction in write-backs for our constrained
bandwidth setting.

settings. Overall with Valgrind, we can eliminate on average 22% of dirty write-

backs, and reduce cache pollution with on average 24% of write-backs, giving us a
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total savings of 46% of all write-backs. For PTLsim, we achieve similar savings, on
average almost half of all write-backs are eliminated. Results for our 2MB nursery
and L2 cache follow similar trends, but are on average 9-10% less than for the 4MB

configuration.

From the essential versus useless study at the word-granularity in Section 2.1,
we saw that benchmarks hsqgldb and xalan have a larger percentage of mature write-
backs, and do not have as much opportunity to benefit from our nursery-focused
optimization. Figure 6.3 matches this expectation, showing that hsgldb and xalan
can only save 8% and 6% of write-backs for Valgrind and 29% and 37% on PTL-
sim, respectively. We surmise some of the reason for this difference is the dif-
ference in bookkeeping in the two simulators. For example, Valgrind counts only
one write-back per cache miss that results in the eviction of dirty data, instead of
a write-back per dirty cache line evicted. However, the other benchmarks all save
significantly, with jython saving the largest percentage: 85% on Valgrind and 82%
on PTLsim. Most of jython’s savings comes from reduced cache pollution. How-
ever, all other benchmark savings are either divided evenly between reduced cache
pollution and eliminated dirty write-backs, or are due to slightly more eliminated
write-backs. Four benchmarks, antlr, bloat, jython, and lusearch, particularly bene-
fit from our software-hardware cooperation, all eliminating 59% or more of write
backs to memory, significantly reducing traffic. On average, passing the short-lived
dead data range can save almost half of write-backs between L2 cache and main

memory.

6.2.3 Traffic and Cycle Savings

Figures 6.4 and 6.5 shows for both 2MB and 4MB nursery-L2 size pairings, the
improvement in traffic and performance that our invalidation optimization achieves

on PTLsim over the unmodified system. For each of our DaCapo benchmarks, we
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Figure 6.4: Per benchmark savings in read and write traffic for PTLsim. We show
improvement for both a 2MB and 4MB nursery and L2 pairings at three bandwidth
settings.

show the savings at our three bandwidth settings: generous, moderate, and con-
strained. Overall, we see larger speedups as we throttle bandwidth more, but traf-
fic reductions are more stable across bandwidth settings. This result is expected

because constrained bandwidth limits performance, and write-back savings has a
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Figure 6.5: Per benchmark savings in execution cycles for PTLsim. We show im-
provement for both a 2MB and 4MB nursery and L2 pairings at three bandwidth

larger cycle-count impact in a bandwidth-limited environment. We achieve on av-
erage 16 and 18% improvements in traffic at a constrained bandwidth for 2MB and
4MB sizes, respectively, as compared with 15 and 17% traffic reduction at a gener-

ous bandwidth, as shown in Figures 6.4(a) and 6.4(b). For execution cycles, only
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xalan with the generous bandwidth setting degrades performance slightly by 4.6%.
Otherwise, we very modestly improve performance at generous bandwidth settings,
but in constrained settings improve performance on average 12-13% as shown in
Figures 6.5(a) and 6.5(b). Across the board, jython seems to save the most traffic and
execution time, saving 38% and 21% of traffic at 2MB and 4MB at our constrained
bandwidth setting, respectively, and improving the number of cycles by 44% and
25% at 2MB and 4MB, respectively. As related work discusses, the memory wall
will only worsen as modern applications and CMPs grow more sophisticated, mak-
ing our invalidation optimization more effective and necessary as bandwidth grows

more limited.

6.2.4 Varying L2 size
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Figure 6.6: Varying L2 sizes with nursery sizes, showing misses and write-backs as
a percentage of L2 references for both unmodified and optimized cache.

This section explores miss and write-back behavior at various L2 and nurs-
ery sizes, as measured with our Valgrind simulator. While the Clovertown machine

we are modeling has a 4M L2 per die, many of our benchmarks are not multi-
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threaded and they do not accurately reflect the bandwidth pressure of many pro-
cesses running on a CMP. To simulate more constrained and realistic settings, we
perform experiments reducing the L2 size to model reduced capacity due to other
threads. We experiment with 1M, 2M, and 4M L2 caches, while holding the L1 size
constant at 32KB.

Misses and write-backs Figure 6.6 shows the misses and write-backs on average
for our benchmarks using various nursery sizes from half to two-times each of the
three L2 sizes listed above. The graph presents misses and write-backs as a percent-
age of total L2 references in both our baseline system, and in our optimized system
that invalidates and eagerly evicts cache lines. The write-backs for our optimized
system include reductions due to both types of savings mentioned above. The ex-
act number of misses and write-backs is less important than trends as we vary the
nursery size in relation to the L2 size. In general for our smallest nurseries, those
that are half the size of the L2, a larger amount of the L2 is taken up by long-lived
mature data. We expect less cache displacement from our rapidly allocating appli-
cations, and thus fewer misses and write-backs in this case. As we increase the size
of the nursery above the L2 size, we expect a high percentage of misses and write

backs as the nursery data touches and evicts the entire L2 cache.

As expected, keeping the nursery size constant and increasing the L2 cache
size reduces misses and write-backs. Figure 6.6 shows this trend with the 2M and
3M nursery sizes. Our experimental data shows a trend that the largest number of
misses and write-backs for our benchmarks with unmodified caches occurs when
the nursery size is close to the L2 size. Smaller nurseries lead to fewer misses and
therefore write-backs, and nursery sizes larger than the L2 reach a plateau since they

can at most displace the entire L2. We see write back trends match miss trends, but
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overall they are fewer in number, which is expected since only misses that evict

dirty cache lines result in write-backs.

We compare trends for the unoptimized cache configuration versus our opti-
mized configuration in Figure 6.6. Our cache with invalidation reduces or matches
the miss rate at all cache-nursery size pairings, and always reduces, sometimes by a
large amount, the percentage of write-backs. The invalidation configuration moves
the peak misses or write-backs from being at a nursery size equal to the L2 size, to a
nursery size greater than the L2. At nursery sizes that match the L2 size, particularly
for 2M and 4M L2 sizes, we see largely reduced miss and write-back percentages.
With both the L2 and nursery at 2M, we see a 2.4% drop in the miss rate, whereas
with 4M, we see at 3.5% drop. Similarly, at the 2M pairing, our optimizations re-
duce write backs from 11 to 6%, and at 4M, we reduce write-backs from 10.5 to
5%. As we increase the nursery size, the invalidation configuration also has more
misses and write-backs, reaching the same miss rate plateau. The optimization re-
duces write-backs because of reduced cache pollution, even at large nursery sizes.
Because we are evicting programmatically dead data eagerly, we are virtually in-
creasing the capacity of our L2 and saving a lot of L2 misses and bandwidth which

translates into improved performance, as shown above.

Write-backs savings Figure 6.7 shows the percentage of write-backs that can be
eliminated averaged over all benchmarks, similar to Figure 6.3, but at many L2 and
nursery size pairings, as in Figure 6.6. We break write-back savings due to our
optimization into two categories, as in Section 6.2.2. We have those that are due to
reducing cache pollution and improving cache replacement by eagerly evicting dead
data, and we have those lines that are both dead and dirty and are saved write-backs

by our optimization.
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Figure 6.7: Varying L2 sizes with nursery sizes, showing write-back savings divided
into those that reduce the cache pollution and those dirty dead lines that are not
written back.

As expected, the number of write-backs we can eliminate with our useless
invalidation optimization is highest when the nursery size matches the L2 size. We
can save a total of 35% of write-backs with a 2M nursery and L2 cache. With a
4M L2 and either a 3M or 4M nursery, we save our largest average percentage of

write-backs at 46%, as shown in Figure 6.3.

In general, as nursery sizes grow with respect to the L2 size, we eliminate
fewer write-backs. Because the nursery size grows, collection and thus invalidation
is less frequent, and we are less able to reduce the cache pressure of the nursery
that overruns the entire L2 cache. Also, not all nursery data can fit into the 1.2
cache, and therefore older parts of the nursery are naturally evicted as newer parts
are allocated and accessed. Therefore, there is a reduced number of write-backs
we can avoid. At small nursery sizes, the total savings due to our optimization is
lower because there is less nursery cache pollution in general, and more mature data

resident in cache. The nursery fits entirely in the L2 cache, so our invalidation can
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remove large percentages of dirty write-backs of dead data. Looking at the smallest
nursery size with 2M and 4M L2 caches, we see that our optimized cache writes
back more data, unable to improve cache replacement with fewer write-backs. We
cannot reduce the cache pressure when the nursery entirely fits in the L2 cache, and
we eagerly invalidate it. In the unoptimized system, this data would remain in cache
and never get evicted or invalidated, so our optimization is not as helpful in this
case. However, as we have pointed out, most production JVMs use larger nursery
sizes. In general we find the write-back savings due to reducing cache pollution are
very dependent on the nursery size, whereas the number of write-backs that we can

eliminate because they contain dead data is more stable across nursery sizes.

We surmise that the high percentage of write-backs saved when using a
very small 512KB nursery with a 1M L2 size has to do with the large number of
L2 misses, as seen in Figure 6.6. The small nursery size means that objects are
not given as long a chance to die, and are promoted to the mature space sometimes
prematurely. The very small L2 size means that we have a large number of misses
because most application footprints cannot fit in the reduced space. At this data
point, we save a large percentage of write-backs because the whole of the nursery
is resident in the L2 cache. Our optimization can still save some cache pollution;
however, we surmise that if we went to even smaller (unrealistic) nursery sizes, the
percentage of write-backs saved would drop again, similar to the 2M and 4M L2

trends.

This elimination of a large percentage of write-backs corresponds to a great
reduction in traffic and bandwidth between lower levels of cache and memory, and

improved application performance as we have shown in Section 6.2.3.
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Figure 6.8: Per benchmark percentage of misses that we can save with in-cache
zeroing using a 4MB nursery and L2 cache. We divide savings into reducing cache
pollution and avoiding misses that result in fetches of data that we instead in-cache
zero.

6.2.5 In-Cache Zeroing

We perform experiments in Valgrind to test the potential of our design of in-cache
zeroing to reduce cache pollution, and read and write traffic to memory. We ex-
periment with a 4M nursery and 4M L2 cache. Figure 6.8 shows the misses saved
using only the in-cache zero optimization as a percentage of the baseline with no
optimizations. We divide up the misses saved into two categories: those saved
by avoiding the cache displacement of software’s zeroing instructions that eagerly
zero ahead of data use (“Improved Cache Pollution”), and those that could be
eliminated by not fetching data when we lazily zero, but instead zeroing in-cache
(“Misses/Fetches Saved”). Together, these two ways to reduce cache misses collec-
tively save on average 55% of misses. For all benchmarks but lusearch, the majority
of savings comes from not having to fetch the invalid data from memory when we

lazily zero it, with jython having the most savings at 89%. The lusearch benchmark,
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Figure 6.9: Using a 4MB nursery and L2 cache, for each benchmark we show the
percentage of savings over the baseline of misses with only invalidation, with only
in-cache zeroing, and with both optimizations enabled.

however, saves 77% of misses just by eliminating the software’s zeroing instruc-
tions and not displacing the cache by eager zeroing. The general benchmark savings
trends roughly match the write-back savings we can achieve with our invalidation
optimization. These results suggest that avoiding the fetch of invalid data is very
effective at reducing traffic, while the cache effects of eager zeroing are less impos-
ing. Our in-cache zero optimization is able to save on average 11% of references
to the L2 cache (not shown in graphical form) solely by eliminating software’s ze-
roing instructions. By having hardware automatically maintain a high-water mark
and zeroing new memory in cache without fetching from memory, we can save over

half of L2 cache misses.

We compare the savings in L2 misses and write-backs for each of our op-
timization configurations and combinations. Figures 6.9 and 6.10 shos for the 4M
nursery and L2 cache setting, the percentage savings of both misses and write-
backs over the baseline. We show savings per benchmark with only the invalida-
tion optimization, only the in-cache zero optimization, and both enabled together.

In general, the in-cache zeroing targets reducing the miss rate, which corresponds
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Figure 6.10: Using a 4MB nursery and L2 cache, for each benchmark we show the
percentage of savings over the baseline of write-backs with only invalidation, with
only in-cache zeroing, and with both optimizations enabled.

to the number of fetches from main memory, while the invalidation optimization
targets reducing the number of write-backs. In Figure 6.9, we see this trend: in-
validation saves fewer misses than in-cache zeroing, but when combined we can
save the largest percentage of L2 misses at over 50%. For write-backs, Figure 6.10
shows that in-cache zeroing can save modestly by reducing the cache pollution be-
cause it does not include software’s zeroing instructions, nor does it have to write
back eagerly zeroed data before it is used. Invalidation saves more write-backs to
main memory, but together the optimizations can save close to 60% of write-backs.
The two outliers in this trend are lusearch and xalan that save a larger percentage
of write-backs with in-cache zeroing than invalidation. Figure 6.8 shows that these
benchmarks both have a high percentage of misses saved with in-cache zeroing due
to reduced cache pollution. It is possible these benchmarks are more sensitive to
cache pollution from software’s zeroing instructions that eagerly zero data. Their
usage patterns could access mature data after software’s eager zeroing, thus causing
a lot of unnecessary write-backs of zero nursery data. Lazy hardware zeroing then

avoids many write-backs of this displacing data. Overall, we see on average that
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in-cache zeroing raises the miss savings to 55% from invalidation’s 20%. Hardware
zeroing can save on average 19% of write-backs, but invalidation is more effective
at saving write-backs at 46%. Together, our optimizations can save 56% of L2
misses and 57% of write-backs on average, leading to improved cache efficiency,

and a large reduction in both read and write traffic to main memory.

6.2.6 Priority Biasing

1
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0.4
0.2

0

Misses Write-backs Mature write-backs

% Normalized to No Priority Bias

None B Both LRU 1/2 ® Both LRU 1/4 ®Both LRU " Miss: MRU, Hit: max(current, LRU 1/2)

Figure 6.11: Comparing cache statistics for various set priority biasing techniques,
using a 4MB nursery and L2.

We performed detailed experiments to test the hypothesis that rapidly allo-
cated, short-lived objects that are cache-displacing could benefit from being more
eagerly evicted from the cache. Upon a cache access, either for a line that is newly
installed or that hits in the cache, the line is usually put in the most-recently-used
position of its set. For our priority biasing experiments, we modify this position for
addresses in the short-lived address range, placing them closer to the LRU position.
We experiment with four different priority biasing policies: a) Both upon installa-
tion and hit, the line is put half way between MRU and LRU (“Both LRU 1/2”);
b) Both upon installation and hit, the line is put half way between the middle set
position and LRU (“Both LRU 1/4”); c) Both upon installation and hit, the line is
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put at the LRU position and is very eagerly evicted (“Both LRU”); and finally d)
Upon installation, the line is put in the MRU position as normal, and upon hit, the
line is placed at the maximum (closest to MRU) between its current set position and
the middle set position (“Miss: MRU, Hit: max(current, LRU 1/2)”). This final pol-
icy assumes the line will be reused most right after it is brought into cache, hence
placing it in the MRU position. We then prefer not to demote the cache line if it is
hit, instead having it remain in its position if it is between MRU and the mid-point,
or boosting the cache line to the mid-point if it is closer to LRU. This technique
harnesses data’s temporal locality, letting the data naturally degrade its set position,
more closely matching the default MRU policy. We compare each of these four
early-eviction policies to no priority biasing, which places all cache accesses in the

MRU position (“None”).

It should be noted that actual hardware is not as precise with cache set or-
dering as knowing the exact index of each line between MRU and LRU. Many
processors use the pseudo-LRU or tree-LRU organization of cache sets to roughly
approximate the most to least-recently-used spectrum [1]. However, for our exper-
iments, we wanted an accurate study of priority biasing techniques, and are able to

simulate full precision in Valgrind.

Figure 6.11 shows how cache behavior changes on average across bench-
marks as we vary line placement using a 4MB nursery and L2 size. We compare
misses and write-backs for a cache enabled with only the priority biasing optimiza-
tion, not including the invalidation optimization. All percentages are normalized to
the cache with no priority biasing enabled. Lower bars show that priority biasing is
effective in reducing the number of misses or write-backs. When comparing miss
percentages with a 16-way set associative L2, the priority bias technique “Miss:

MRU, Hit: max(current, LRU 1/2)” slightly lowers the cache miss rate by about
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5%, while all other techniques raise the number of misses. We see a similar pattern
for write-backs, as the same technique saves 2% and other priority biasing policies
generate more writes to memory. All four priority biasing techniques reduce ma-
ture write-backs. This reduction is expected because as we eagerly evict nursery
data, we expect more long-lived mature data to be resident in cache and avoid being
written back. The “Both LRU” policy reduces the number of mature write-backs
the most by 28% because it aggressively evicts more nursery data; however, it does
this at the expense of raising the misses by 13% and write-backs by 6%. The better
performing, more conservative policy, “Miss: MRU, Hit: max(current, LRU 1/2)”,

decreases mature write-backs by only 2%.

In summary, we tried many different priority biasing techniques, and found
that on the whole, they too aggressively evict nursery data, leading to increased
miss rates and write-backs. However, these eager-eviction policies are effective at
keeping more long-lived data in cache. Our best performing policy was able to
slightly reduce the percentage of misses and write-backs by more closely matching
the MRU default. The fact that this technique performed well suggests that nurs-
ery data reuse varies within benchmark runs, and lines should not be too eagerly
demoted in the cache set so that they are too quickly evicted. We see evidence of
object streams, finding that nursery data has irregular reuse and although most data

is short-lived, some data has unpredictable lifetimes.
6.3 Related Work
This section surveys research studying the bandwidth and allocation walls for mod-

ern programs running on modern CMP hardware. We detail related work on op-

timizing the caches based on identifying dead cache blocks !. We conclude with

I'A cache block and cache line are synonymous here and in the literature.
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work on changing cache set replacement policies to improve cache behavior.

Motivation. Many researchers have shown that bandwidth is an increasing per-
formance bottleneck as chip multiprocessor machines scale up the number of cores,
both in hardware and software [41, 55, 61, 77]. Rogers et al. showed that the
bandwidth wall between off-chip memory and on-chip cores is a performance bot-
tleneck, and can severely limit core scaling [61]. Molka et al. perform a detailed
study of the memory performance of the Nehalem microarchitecture [55]. They
find that on the four core Intel X5570 17 processor, memory read bandwidth does

not scale beyond two cores, while write bandwidth does not scale beyond one core.

On the software side, Zhao et al. show that allocation intensive Java pro-
grams pose an allocation wall which limits application scaling and performance [77].
Studying “partially scalable” benchmarks, they found a strong correlation between
object allocation rates and memory bus write traffic. As allocation quickly satu-
rates the limited write bandwidth, Java applications’ ability to scale to effectively
use more cores degrades dramatically, running into this problematic wall. Inoue et
al. explore web-based server workloads, and found that the memory manager has
to take into account the bus traffic it creates, or it will limit application scaling as
the number of cores increases [41]. Languages with region allocators and garbage
collection encourage rapid allocation, which degrades performance in the memory
subsystem. Blackburn and McKinley call this rapidly allocated, short-lived data
object streams [17], which displace data in the cache, like traditional streams, but is
different in two key ways: 1) most data has short reuse and some data is long-lived,
and 2) access is irregular. Our work addresses these allocation characteristics in
prolific high-level language applications that interact poorly with hardware mem-

ory.
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Memory latency has always lagged behind processor latency, but recent
research shows that the memory bottleneck is exacerbated by frequently allocat-
ing applications and the increase in cores per chip that has not been accompanied
by commensurate increases in memory bandwidth. More communication between
cores and memory puts pressure on bandwidth, and degrades scalability and there-

fore performance.

Software’s identification of invalid data. The ESKIMO system is most closely
related to our work [42]. ESKIMO passes to hardware the software’s semantic
knowledge about allocated and freed objects for explicitly-managed C programs to
reduce energy and power requirements for DRAM. Like our work, they identify
invalid memory, memory that has been allocated but not initialized by the pro-
gram and memory that has been freed, and communicate this information to the
cache. Their mechanisms operate at the cache line granularity. They perform var-
ious DRAM optimizations, including eliminating write-backs from cache to main
memory if the fine-grained regions identified by software as “inconsequent’” occupy
one or more entire cache lines. To optimize the memory system further, ESKIMO
re-implemented previous work by Lewis et al. [42, 49]. When a cache write miss
occurs to an inconsequent address, the data need not be fetched from main mem-
ory. They add one bit to every cache line to identify inconsequent lines. In their
system, the hardware must store a map of allocations to cache lines. This map
requires fine-grained tracking of objects and their alignment in cache lines. In con-
trast to a map proportional to the number of allocations, our approach adds only
a few registers to hardware. We exploit contiguous region allocators, used exclu-
sively in high performance virtual machines for managed languages and popular
in demanding C programs. For example, Apache uses a region allocator. We ex-

ploit the generational heap organization to cheaply pass down to hardware a large
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region of memory that is dead instead of frequently communicating small regions
after each program call to free. We leverage Java semantics that zero-initialize all
objects to zero cache lines that are being touched for the first time, avoiding reads
to main memory. Both approaches reduce bandwidth. Whereas their approach re-
duces power, and is performance-neutral, our optimizations improve application

performance as well.

Dead cache blocks and prefetching. Many researchers have focused on predict-
ing which blocks in cache can be evicted based on usage patterns, mainly in con-
junction with prefetching [2, 37, 47, 48, 51, 52, 64, 73, 74]. This work uses the
cache hierarchy more efficiently by predicting which data is “dead”, i.e. will not
be used again, in hardware, but does not necessarily eliminate traffic to memory
or bandwidth and in fact often increases it. Lai et al. predict dead cache blocks
based on traces of memory operations, and use this information to predict the next
address to prefetch into the cache after dead block eviction [48]. Other researchers
predict dead blocks using a counter of accesses per L2 cache line, dynamically
learning from the program [47]. Hu et al. and Abella et al. both predict dead blocks
with time-keeping techniques correlated with cache blocks [2, 37]. Hu et al. use
identified dead blocks to improving performance with a victim cache and prefetch-
ing [37]. Abella et al. turns off dead L2 blocks dynamically to save power [2]. Liu
et al. introduce a new technique to identify dead cache blocks by tracking cache
bursts to a particular block, calling a block dead after it leaves the MRU posi-
tion [52]. Scheduled region prefetching tries to tolerate the copious amounts of
time the processor stalls while moving data between memory and the lowest level
cache [51]. All of this work is done at the level of hardware only, which can suffer
mispredictions and lacks higher-level semantic information from software, and thus

must always write modified data to lower levels of the memory hierarchy.
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Wang et al. use a cooperative software-hardware approach to achieve more
effective prefetching, and perform static compiler analysis on programs to identify
data that will not be reused again soon [73, 74]. They pass this information down
to hardware as a hint attached to memory instructions, and modify hardware to
have one extra bit per cache line. The hardware uses this information to optimize
cache evictions as well as to assist hardware prefetching on C and Fortran bench-
marks. Sartor et al. extend this work to give hints to hardware about data that will
be reused again soon and should be kept in cache [64]. While this research focuses
on software-hardware cooperation, the hints are based on static program informa-
tion and do not guarantee that the data that should be evicted is dead or will not be

used again by the program.

Previous work is limited by hardware’s view of memory accesses or by static
program information about reuse, and sometimes increases bandwidth needs due to
mispredictions and prefetching. In comparison, we use the managed runtime’s dy-
namic view of program data that is actually dead to inform the hardware what it can
safely invalidate in cache to avoid traffic to memory. It is possible our techniques
could be combined with hardware prefetchers to reduce cache pollution, however,

we leave this exploration to future work.

Line placement within a cache set. Previous work on cache design motivates our
optimizations that try to limit cache displacement and traffic. Jouppi investigated
many different cache policies and their effect on performance [45]. In particular,
his write-validate policy combines no-fetch-on-write and write-allocate for good
performance. He suggests not going to memory upon a cache write, and storing
sub-block dirty bits to keep track of modified data in cache. His best policy mo-

tivates zeroing cache lines without reading from memory, and limiting write back
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traffic to memory, both of which we target with our optimizations. The PowerPC
instruction set architectures (ISAs) include a data cache block zero (dcbz) instruc-
tion to forego fetching from memory and zero a cache line directly for better cache

performance [68].

Previous hardware policies change the order of replacement of lines within a
cache set to improve performance [46, 59, 75]. Kampe et al.’s Self-Correcting LRU
algorithm is designed to correct LRU replacement techniques, including evicting
dead lines that are not accessed again after they leave the MRU position [46]. Wong
and Baer choose to evict L2 cache lines that did not exhibit temporal locality [75].
Qureshi et al. dynamically place cache lines either in the LRU position to reduce
capacity misses or in the MRU position to account for working set changes [59].
This work is similar to our priority cache set biasing for cache-polluting data, but is

not based on semantic information passed down from software as ours is.

6.4 Useless Write Back Conclusions

We introduce a software-hardware cooperative approach to save memory traffic and
bandwidth. Detailed analysis shows that a surprising 88% majority of write-backs
to memory for the Java DaCapo benchmarks are useless and never used again. Man-
aged programs tend to rapidly allocate short-lived data, marching through the cache
linearly, displacing other usefully cache lines, and increasing bandwidth usage.
This bandwidth is not essential to program execution. Furthermore it aggravates the
memory bottleneck, which CMPs are already exacerbating by adding more cores
without a commensurate amount of memory and memory bandwidth. We show
how software-hardware cooperation alleviates this problem. The VM communi-
cates candidate address ranges of dead data to hardware, and the cache hardware
improves its replacement decisions and eliminates the write-back of dirty, but use-

less data. We show our invalidation optimization reduces write-backs on average by
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48% on a variety of nursery and memory system configurations, leading to a 13%

application performance improvement.

We investigate the affect of cache-line zeroing and show it reduces useless
initializing writes and fetches from memory. With only software zeroing instruc-
tions, VMs typically perform zeroing en masse for performance, much earlier than
strictly required, which negatively affects cache efficiency. Although our optimiza-
tions currently target the nursery region, they are applicable more broadly and can

be incorporated into full-heap garbage collectors and region allocators.

This work shows how to harness the memory management abstraction of
ubiquitous high-level languages to communicate semantics efficiently with hard-
ware, reducing their memory costs, climbing the memory and bandwidth walls.
Such software-hardware cooperation is likely to become more important, especially
for memory system performance, as chip multiprocessors add processors and grow

in complexity.
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Chapter 7

Conclusions

This thesis has analyzed the sources of and solutions to memory inefficien-
cies for managed language applications running on emerging architectures. While
raising the level of abstraction in managed languages has benefited programmers
by easing development, the extra layers of memory management have created in-
efficiencies. Managed language program complexity and object organization have
encouraged over-provisioning and redundancy in heap data structures, in particular
arrays. Our heap data compression study found that over half of the heap can be
compressed to save space. Similarly, rapid allocation of short-lived data made con-
ducive by garbage collectors has created excessive cache-to-memory traffic, much
of which is useless. Our memory subsystem study found that 88% of writes to mem-
ory from cache are never read again by the program. These memory inefficiencies
degrade application performance. This degradation is worsened as the real-time and
embedded domains have become more prevalent, and hardware has transitioned to

chip multiprocessor machines that are bandwidth-limited.

Although these inefficiencies are the costs of using a high-level language,
the managed runtime’s virtualization of memory also offers an opportunity to dy-
namically optimize memory while the program is running without assistance from
the programmer. We take advantage of this abstraction to introduce z-rays, a more
time and space-efficient design of arrays, that makes compression of parts of arrays

tractable and effective. Z-rays’ flexibility bridges the gap between fast contiguous
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array layouts, and space-efficient and space-predictable discontiguous layouts. To
combat useless memory traffic, we introduce a software-hardware cooperative op-
timization to reduce bandwidth in the memory subsystem. We take advantage of
the garbage collector’s identification of ranges of dead data, communicating pro-
gram semantics down to the cache hierarchy to invalidate dead data in order to
help cache displacement, and eliminate reads and writes to memory. We show
software-hardware cooperation reduces traffic to memory by about half, improv-
ing application performance substantially as bandwidth gets more limited in future

architectures.

We show that the memory abstraction of managed languages is not just a
cost to be borne, but an opportunity to overcome the memory wall. Memory effi-
ciency has become a prime concern as hardware hits physical limits and transitions
to chip multiprocessor machines which exacerbate the memory bottleneck. As both
languages and architectures have evolved, further stressing the memory system, we
have developed new dynamic optimizations to accommodate the distinct challenges
that have arisen at many levels. We have not only made heap layout more efficient,
but have advocated a software-hardware cooperative approach for communicating
semantic information to low-level hardware to optimize the memory subsystem’s
bandwidth. This thesis improves memory efficiency and performance of sophisti-
cated modern programs running on current and future architectures, creating a more

cooperative optimization framework.
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