
Copyright

by

Jung Woo Ha

2009

The Dissertation Committee for Jung Woo Ha
certifies that this is the approved version of the following dissertation:

Scaling Managed Runtime Systems

for Future Multicore Hardware

Committee:

Kathryn S. McKinley, Supervisor

Matthew Arnold

Stephen M. Blackburn

Stephen W. Keckler

Emmett Witchel

Scaling Managed Runtime Systems

for Future Multicore Hardware

by

Jung Woo Ha, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2009

Dedicated to my wife Songhee.

Acknowledgments

I would like to express my deepest appreciation for my advisor Kathryn

McKinley. Kathryn not only provided me with technical expertise and positive

feedback, but she also motivated, inspired, and made the research exciting.

Kathryn not only helped me produce a good research output, but she also

focused on improving my research skills, and she spent more of her time than

was necessary. Kathryn always showed more by example than words. For

example, I learned to make the best use of my time and to balance both

research and raising kids. I feel very fortunate to be her student.

Steve Blackburn and Matthew Arnold have been enthusiastic support-

ers, providing lots of good ideas, advice, and helped with writing. They were

always available for meetings and discussions, and encouraged me to improve

the quality of my research. I am especially grateful to Steve for attending

meetings at an inconvenient time in his time zone.

Emmett Witchel advised me in a new research area, and his support

was always helpful. Part of my recent research was motivated and influenced

from our earlier collaborations. Steve Keckler gave helpful feedback and spent

a lot of time reading my thesis and attending talks.

I would also like to thank the graduate students at UT: Mike Bond,

Justin Brickell, Katherine Coons, Jason Davis, Maria Jump, Byeongcheol Lee,

v

Bert Maher, Don Porter, Dimitris Prountzos, Christopher Rossbach, Hany Ra-

madan, Indrajit Roy, Jennifer Sartor, and Suriya Subramaniam. I am grateful

for many discussions with them, and that they spent a tremendous amount of

time helping to improve my papers and talks.

I would like to thank my wife Songhee for her selfless support. She was

tolerant and sacrificed herself by taking care of the family. I could not have

completed this work without her excellent support.

vi

Scaling Managed Runtime Systems

for Future Multicore Hardware

Publication No.

Jung Woo Ha, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Kathryn S. McKinley

The exponential improvement in single processor performance has re-

cently come to an end, mainly because clock frequency has reached its limit

due to power constraints. Thus, processor manufacturers are choosing to en-

hance computing capabilities by placing multiple cores into a single chip, which

can improve performance given parallel software. This paradigm shift to chip

multiprocessors (also called multicore) requires scalable parallel applications

that execute tasks on each core, otherwise the additional cores are worthless.

Making an application scalable requires more than simply paralleliz-

ing the application code itself. Modern applications are written in managed

languages, which require automatic memory management, type and memory

abstractions, dynamic analysis and just-in-time (JIT) compilation. These

managed runtime systems monitor and interact frequently with the execut-

ing application. Hence, the managed runtime itself must be scalable, and the

vii

instrumentation that monitors the application should not perturb its scalabil-

ity.

While multicore hardware forces a redesign of managed runtimes for

scalability, it also provides opportunities when applications do not fully utilize

all of the cores. Using available cores for concurrent helper threads that en-

hance the software, with debugging, security, and software support will make

the runtime itself more capable and more scalable.

This dissertation presents two novel techniques that improve the scala-

bility of managed runtimes by utilizing unused cores. The first technique is a

concurrent dynamic analysis framework that provides a low-overhead buffering

mechanism called Cache-friendly Asymmetric Buffering (CAB) that quickly

offloads data from the application to helper threads that perform specific dy-

namic analyses. Our framework minimizes application instrumentation over-

head, prevents microarchitectural side-effects, and supports a variety of dy-

namic analysis clients, ranging from call graph and path profiling to cache

simulation. The use of this framework ensures that helper threads perturb the

performance of application as little as possible.

Our second technique is concurrent trace-based just-in-time compila-

tion, which exploits available cores for the JavaScript runtime. The JavaScript

language limits applications to a single-thread, so extra cores are worthless un-

less they are used by the runtime components. We redesigned a production

trace-based JIT compiler to run concurrently with the interpreter, and our

technique is the first to improve both responsiveness and throughput in a

viii

trace-based JIT compiler.

This thesis presents the design and implementation of both techniques

and shows that they improve scalability and core utilization when running ap-

plications in managed runtimes. Industry is already adopting our approaches,

which demonstrates the urgency of the scalable runtime problem and the util-

ity of these techniques.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Improving Managed Runtime Systems on Multicore Processors 4

1.1.1 Utilizing Extra Cycles with Helper Threads 4

1.1.2 Improving Concurrency of Emerging Runtime Systems . 6

1.2 Meaning and Impact . 7

Chapter 2. A Concurrent Dynamic Analysis Framework for Mul-
ticore Processors 9

2.1 Related Work . 13

2.2 Concurrent Dynamic Analysis Framework 17

2.2.1 CAB: Cache-friendly Asymmetric Buffering 19

2.2.1.1 Lock-free Synchronization 20

2.2.1.2 Queue Operations 21

2.2.1.3 Optimizing CAB For Multicore Processors . . . 25

2.2.2 Sampling . 28

2.2.3 Interaction with the Garbage Collector 32

2.3 A Model For Analysis Overhead 32

2.4 Threading Model Impact on Design and Implementation . . . 38

2.4.1 N:M threading model with per-processor CAB 38

2.4.2 Native threading model with per-thread CAB 39

2.4.3 Native threading model with per-processor CAB 40

x

2.5 Implementation . 43

2.5.1 Platform-Specific Implementation Details 43

2.5.2 Dynamic Analyses . 50

2.6 Evaluation . 53

2.6.1 CAB versus Other Buffering Mechanisms 56

2.6.2 Exhaustive Mode Overhead 58

2.6.3 Buffer Size Scalability 64

2.6.4 Sampling Mode Accuracy vs Overhead 66

2.6.5 Shared cache and fine-grained parallelism 68

2.7 Additional Results . 69

2.8 Conclusion and Interpretation 70

Chapter 3. A Concurrent Trace-based JIT Compiler for JavaScript 76

3.1 Related Work . 79

3.2 Background . 81

3.2.1 Dynamic Typing in JavaScript 81

3.2.2 Trace-based JIT Compilation 82

3.2.3 Tamarin and TraceMonkey 84

3.3 Design . 84

3.3.1 Phase Transitions in TamarinTracing 84

3.3.2 Parallelism to Exploit 88

3.3.3 Compiled State Variable 89

3.3.4 Dynamic Trace Stitching 91

3.4 Implementation . 93

3.5 Evaluation . 95

3.5.1 Experiments Setup . 95

3.5.2 SunSpider Benchmarks Characterization 96

3.5.3 Responsiveness . 97

3.5.4 Throughput . 100

3.5.5 Multicore Impact on Performance 101

3.6 Conclusion and Interpretation 104

xi

Chapter 4. Conclusion 105

4.1 Future Work . 106

Bibliography 108

Vita 119

xii

List of Tables

3.1 Value of Compiled State Variable(CSV) at a loop header. . . . 91

3.2 Workload characterization of SunSpider benchmarks with se-
quential Tamarin JIT. 95

xiii

List of Figures

2.1 Generic sequential dynamic analysis versus concurrent dynamic
analysis. 10

2.2 Cache-friendly Asymmetric Buffering (CAB) in a concurrent
dynamic analysis framework. 18

2.3 Enqueueing and dequeueing pseudo-code. 21

2.4 Experimental processors data cache structure. Instruction or
trace cache is omitted. Application and analyzer’s mapping to
the cores is idealized, and it is not a requirement. 26

2.5 Sampling mode. The application does not block and the profiler
may use bursty sampling. 30

2.6 Enqueueing and dequeueing pseudo-code for per-processor buffer-
ing on native threading model. 41

2.7 x86 assembly code for CAB enqueueing operations. The esi
register is used as a base register for the Processor object in
Jikes RVM, and eax is a register allocated by the compiler. . . 47

2.8 Performance of N-way buffering and FastForward relative to
CAB. We use N:M threading on an Intel Core 2 Quad. The
Y-axis is normalized to CAB’s execution time. 56

2.9 Exhaustive mode overhead with performance break-down, av-
eraged over all benchmarks (N:M threading model). 59

2.10 Exhaustive mode overhead, average over all benchmarks (native
threading model with per-thread CAB). 62

2.11 Call graph profiling overhead on native threading model with
per-processor CAB. 63

2.12 Performance as buffer size varies for path profiling on DaCapo
hsqldb (using N:M threading on an Intel Core 2 Quad). . . . 64

2.13 Sampling overhead and error rate for call graph and path pro-
filing (N:M threading on an Intel Core 2 Quad). 66

2.14 The importance of shared caches. Path profiling overhead with
and without sharing between analyzer and application threads.
Note that y-axis is the factor of overhead, and not a percentage. 68

2.15 Per-benchmark exhaustive mode overhead on Core i7 (N:M thread-
ing) . 71

xiv

2.16 Per-benchmark exhaustive mode overhead on Core 2 (N:M thread-
ing). 72

2.17 Per-benchmark exhaustive mode overhead on Pentium 4 (N:M
threading model) . 73

2.18 Per-benchmark exhaustive mode overhead (native threading). 74

2.19 Performance as buffer size varies for each of the DaCapo bench-
marks. Results are for path profiling using N:M threading on
an Intel Core 2 Quad. 75

3.1 Byte code and native code transition in the trace-based JIT.
Initially, the interpreter interprets on the byte code. First de-
tected hot path (thick path) is traced forming a trunk trace.
Following hot paths guarded and installed in a side-exit. The
compiler attach the branch trace, which begins from the hot
side-exit to the loop header, to the trunk trace. 82

3.2 Phase transitions in Tamarin. 85

3.3 Example of sequential vs concurrent JIT execution flow. . . . 88

3.4 The interpreter state transition at a loop header. 89

3.5 Average time break down in compilation, native code, and in-
terpretation. 98

3.6 Pause time ratios of concurrent vs. sequential JITs. 99

3.7 Execution time improvement with concurrent JIT. 101

3.8 Performance impact on various core configurations. 101

3.9 Pause time impact on various core configurations. 102

xv

Chapter 1

Introduction

Recent trends in modern software towards managed and virtualized

programming systems, and trends in hardware towards chip multiprocessor

(also known as multicore) have created an immediate and urgent need for

(1) parallel applications and (2) runtime systems that are themselves parallel

and that can reason about and optimize parallel applications on multicore

hardware.

Multicore Hardware Era. Exponential improvements in computer hard-

ware performance over the past few decades have created an ecosystem of ever

more capable software that has revolutionized science, communication, enter-

tainment, business, and government. Hardware performance improvements

have been mostly the result of scaling up the clock frequency of single proces-

sors combined with a sequential and portable software programming model.

Sequential programs execute one task at a time. Portable software operates

on multiple generations of different hardware platforms. Unfortunately, fre-

quency scaling has reached its limit due to power, wire, and other technology

constraints. As a result, hardware vendors are instead seeking to improve per-

formance by putting multiple cores on a single chip. This type of hardware

1

is referred to as chip multiprocessors or multicore. Multicore processors are

already available in the mainstream market and are found in a wide range of

computing environments including servers, desktops, mobile, and embedded

computers.

Modern Applications Use Managed Runtime Systems. The rapid im-

provements in processor speed have resulted in programmers more frequently

choosing high-level managed sequential languages and programming environ-

ments to help them create large, correct, capable, and sequential applications.

Managed languages such as Java, JavaScript, Ruby, and C# encourage a mod-

ular object-oriented programming style, enforce rich static or dynamic type

system, and provide automatic memory management. A managed runtime

then performs dynamic analysis, dynamic just-in-time (JIT) compilation, op-

timization, scheduling, and automatic memory management together with the

running application. Managed runtime systems also include dynamic binary

translators and hypervisors. Although there are various types of managed run-

time systems, they all generally provide applications with rich features such

as dynamic optimization [3, 35], dynamic analysis [14], profiling [4], memory

management, enhanced debugging, and improved security [47]. Many modern

applications run inside a managed runtime system to obtain these benefits.

Challenges and Opportunities of Multicores for Managed Runtime

Systems The performance promise of multicore can only be fulfilled when

2

software executes in parallel, and software scalability is now the most impor-

tant performance concern. It is not possible to improve software performance

by increasing the number of cores without application scalability. For man-

aged applications, the whole system, including both the applications and the

managed runtime, must be scalable. Parallelizing both the application and

each managed runtime component is thus necessary. In particular, communi-

cation between the application and the runtime components must be carefully

orchestrated to achieve overall scalability. The managed runtime typically

interacts with applications through instrumented code, which pauses the ap-

plication and performs runtime system-level tasks such as dynamic analysis,

dynamic compilation, and garbage collection. Many of these components are

either fully or partially sequential, because until now, parallel hardware was

not widespread, and short frequent communication was sufficiently efficient

and exploited memory locality. In the multicore era, redesign of the managed

runtime is critical to reduce the pause time incurred by instrumented code and

improve application and runtime scalability.

Although multicore hardware presents a scalability challenge to man-

aged runtimes, it also provides new opportunities. When a single application

does not fully utilize all available cores, moving or adding managed runtime

functionality to concurrent helper threads will hide their overhead. This func-

tionality includes dynamic analysis for performance optimization, debugging,

security, and software support. These analyses can collect the necessary data

from the application and process it on a separate core perturbing the applica-

3

tion less. Such fine-grained helper threads were not practical when processors

shared data only through high latency off-chip memory, but multicore proces-

sors significantly reduce memory latency by on-chip communication. However,

extra cores are not free and the performance of the runtime system is related

to microarchitectural factors such as cache configuration and sharing, which

require careful design for successful deployment.

In summary, performance on multicore processors require application

scalability, which in turn requires scalable managed runtime components. Mul-

ticore processors also present new opportunities in the runtime layer. The

runtime can enhance existing services and add new ones by using extra cycles

with concurrent helper threads.

1.1 Improving Managed Runtime Systems on Multicore
Processors

We present two novel techniques for enhancing scalability and reducing

application overhead using concurrent threads to improve managed runtime

systems on multicore processors: (1) a concurrent dynamic analysis framework

and (2) a concurrent trace-based JIT compiler.

1.1.1 Utilizing Extra Cycles with Helper Threads

Managed runtime system components perform various dynamic anal-

yses. For example, JIT compilers collect call graph or edge profiling data at

runtime, and many data race detectors collect the happens-before relationships

4

of loads and stores. Most of these dynamic analyses are sequential, (i.e., they

pause the application thread to perform the analysis) and generally perform

sampling to reduce the overhead. However, depending on the analysis, sam-

pling is not always feasible [28], and the sequential part of dynamic analysis

reduces the scalability of the application. Our research explores the possi-

bility of executing the analysis concurrently to exploit under-utilized cores

and improve scalability. Designing a concurrent analysis scheme is challenging

because micro-architectural side-effects and the synchronization between the

application and the analysis thread can incur more overhead than sequential

analysis.

We introduce a novel concurrent dynamic analysis framework to facil-

itate the implementation of low-overhead concurrent dynamic analysis [25].

The key to our framework is a novel and general producer, consumer com-

munication mechanism, we call Cache-friendly Asymmetric Buffering (CAB).

CAB provides a communication channel between the application and the anal-

ysis thread so that the application can quickly transfer analysis data off the

critical path with minimal overhead. CAB transfers data between the applica-

tion and analysis thread in a way that proactively prevents micro-architectural

side-effects. With our framework, dynamic analysis writers can easily achieve

scalability by utilizing extra cycles without having to consider low-level micro-

architectural optimization. We show that the CAB communication mechanism

is sufficiently general and efficient on a variety of multicore hardware platforms

for a wide variety of dynamic analysis problems, from light-weight call graph

5

profiling to path profiling and cache simulation. Our results demonstrate the

success of our design as well as the need for careful concurrent communication

design.

1.1.2 Improving Concurrency of Emerging Runtime Systems

Industry recently embraced JIT compilation to improve the perfor-

mance of scripting languages such as JavaScript and ActionScript. Devel-

opers are increasingly implementing sophisticated web applications in AJAX

(shorthand for asynchronous JavaScript and XML), which uses these script-

ing languages heavily, and interpretation cannot keep up with the increasing

demand for performance. Nonetheless, naively applying traditional method-

based JIT compilation by evolving Java virtual machine technology has not

worked, because these languages are dynamically typed. Because the type of

an object is determined at run-time, the compiler must either generate ma-

chine code for all combinations of types or perform type specialization, neither

of which has proven effective.

Recent work has introduced trace-based JIT compilation as an alter-

native method of type specialization for dynamic languages [18]. Instead of

compiling the whole method, trace-based JIT focuses on compiling a hot path

within a loop. The interpreter performs loop back-edge profiling, and traces

the sequence of instructions on the hot loop path. It only compiles the traced

instructions later when they become hot. Naturally, the type of an object

is specialized during tracing, which makes the code efficient. Firefox, one of

6

the most popular web browsers, uses this technique, which has proved to be

practical.

While trace-based JIT has led to huge performance improvements in

JavaScript applications, the performance does not scale on multicore proces-

sors because current JavaScript runtimes are all sequential. Because the Java-

Script language is sequential – it executes only in one thread, more than one

core is useless, unless the managed runtime exploits them. While running a

compiler concurrently is trivial for a method-based JIT, previous attempts to

make trace-based JIT concurrent have not been successful [17] because of the

complex tracing and update states it requires.

We introduce a novel concurrent trace-based JIT compiler that executes

concurrently with the application on a separate core [27]. Our technique im-

proves application responsiveness because it reduces synchronization with the

application to the bare minimum, a single compare and swap. Moreover, the

compiler improves the overall throughput because it delivers native code more

quickly. While current sequential trace compilers perform a minimal amount

of optimization to keep the compilation pause time small, our technique pro-

vides an opportunity to reduce the time and improve the code quality without

slowing down the application.

1.2 Meaning and Impact

Our concurrent dynamic analysis framework provides the basis for low

overhead communication between applications and other managed runtime

7

components, which decouples any micro-architectural optimization from the

development of the managed runtime service. Any managed runtime service

developer can use our framework to collect data from other cores to design a

concurrent service. This framework is not limited to dynamic analyses, but

can be applied to any system component that requires offloading data from

application instrumented code, such as binary translators and hypervisors.

Furthermore, our CAB mechanism is generally applicable to any parallel pro-

ducer, consumer algorithm that seeks to maximize the performance of the

producer.

Both of our techniques have immediate practical impact because they

can be deployed now to improve managed runtime scalability. For example,

Mozilla, Adobe, and Intel are considering incorporating our concurrent trace-

based JIT design principles into their products. ISI East is considering using

our concurrent dynamic analysis framework for their mission-critical software.

Software scalability is growing in importance as the number of cores

in a processor increases. Use of these techniques and others, such as more

scalable and memory efficient garbage collection, are essential to provide a

basis for application scalability.

8

Chapter 2

A Concurrent Dynamic Analysis Framework

for Multicore Processors

Dynamic analysis is a base technology for performance optimization [1,

12, 45], debugging [29, 39, 44], software support [28, 56], and security [36, 40].

Binary rewriting systems and Just-In-Time (JIT) compilers in managed run-

times need dynamic information about the program to optimize it. They

often employ techniques for reducing the overhead, such as sampling, that

trade accuracy for performance. However, dynamic analyses used for debug-

ging, software support, and security often require fully accurate analysis. The

overhead of more expensive analyses limit their use.

Multicore architectures offer an opportunity to improve the design and

performance of dynamic analysis. As the number of cores on commodity hard-

ware continues to increase and application developers are struggling to par-

allelize application tasks, exploiting unused processors to perform dynamic

analysis in parallel with the application becomes an increasingly appealing

option.

This chapter explores the design and implementation of a dynamic

analysis framework that exploits under-utilized cores by executing analysis

9

Collect!
Event!

Analyze!
Event!

Sequential Dynamic Analysis! Concurrent Dynamic Analysis!

Application!

Application!

Collect!
Event!

Enqueue!

Application!

Application!
Analyze!
Event!

Dequeue!

Application Thread! Application Thread! Analysis Thread!

Figure 2.1: Generic sequential dynamic analysis versus concurrent dynamic
analysis.

concurrently with the application. In the framework, an application produces

events, such as paths executed or memory operations performed, and a sep-

arate concurrent analysis thread consumes and analyzes them. Figure 2.1

compares sequential and concurrent dynamic analysis. Whereas traditional

dynamic analysis is performed sequentially when the application produces one

or a group of events, in our framework, the application queues events in a

buffer, and a concurrent analysis thread dequeues and analyzes them.

The ability to communicate data efficiently from one core to another is

critical to the success of a concurrent dynamic analysis implementation. Un-

10

fortunately, the complexity and variety of multicore architectures and memory

hierarchies pose substantial challenges to the design of an efficient communica-

tion mechanism. We found that a number of variables influence performance,

such as hardware variation, communication costs, bandwidth between cores,

false sharing between caches, coherence traffic, and synchronization between

the producer and consumer threads.

Our main contribution is a new buffering design that we call Cache-

friendly Asymmetric Buffering (CAB), which provides an efficient mechanism

for communicating event data from application threads to analyzer threads on

multicore hardware. CAB is asymmetric because we bias the implementation

to minimize impact on the application; the application rarely synchronizes

with the analysis thread. The design is cache friendly because it exploits

shared caches, carefully limits synchronization, and avoids coherence traffic

and contention on shared state between private caches.

We present the design and implementation of a concurrent dynamic

analysis framework that uses CAB as its communication mechanism between

the application and analysis. We implement the framework in Jikes RVM [1],

a high performance research Java Virtual Machine and perform experiments

on three Intel processors with very different cache organizations: Pentium 4,

Core 2 Quad, and Core i7. We show that compared to two highly optimized

state-of-the-art alternative buffering mechanisms: N-way buffering [57] and

FastForward concurrent lock-free queues [22], that CAB reduces overhead for

path profiling on average by 8 and 41% respectively.

11

To evaluate the framework, we implement a variety of popular dynamic

analyses: method counting, call graph profiling, call tree profiling, path profil-

ing, and cache simulation. We build and compare sequential and concurrent

versions of these analyses.

We demonstrate the framework in an exhaustive mode, for analyses

that require fully accurate event records, and in a sampling mode for analyses

that can trade accuracy for overhead via sampling. Experimental results for

exhaustive mode demonstrate that this framework provides performance im-

provements for dynamic analysis when the analysis work is greater than the

buffering overhead, such as for call graph, call tree, and path profiling. For ex-

ample, compared to sequential profiling, we reduce the overhead of exhaustive

call tree and path profiling between 10 to 70%, depending on the architecture.

In sampling mode, the framework reduces overhead even further. For

example, sampling achieves greater than 97% accuracy at a 5% sampling rate,

while reducing the overhead by more than half for call graph and path profiling

with hsqldb benchmark.

In summary, the contributions of this chapter are as follows.

• The design, implementation, and evaluation of CAB, a novel efficient

communication mechanism that is easily tuned for various multicore pro-

cessors.

• The design, implementation, and evaluation of a novel framework for

concurrent dynamic analysis using CAB for exhaustive and sampling

12

analyses. The framework is analysis-neutral and it is easy to add analy-

ses.

• A demonstration of the framework with a range of analyses: method

counting, call graph profiling, call tree profiling, path profiling, and cache

simulation.

• A demonstration of the framework with a range of threading model: N:M

threading, and native threading.

• A cost model that characterizes dynamic analyses amenable to concur-

rent implementation and that guides the performance analysis.

We believe that the design issues addressed here transcend the framework as

these same issues and solutions are applicable more generally to software design

for multicore hardware. The CAB design, which carefully manages communi-

cation, coherency traffic, false sharing, and cache residency, offers a building

block to future software designers tasked with parallelizing managed runtime

services and applications with modest to large communication requirements.

2.1 Related Work

We focus here on differences with the most closely related research

on dynamic analysis, which exploits parallelism to reduce dynamic analysis

overhead.

13

PiPA (Pipelined Profiling and Analysis) describes a technique for par-

allelizing dynamic analysis on multicore systems and uses multiple profiling

threads per application thread [57]. PiPA is implemented in a dynamic binary

translator and collects execution profiles to drive a parallel cache simulator.

PiPA uses symmetric N-way buffering and locks to exchange buffers between

producers and consumers. Their buffering overhead grows with respect to

the size of the buffer, and a small buffer size, e.g., 16KB, achieves the lowest

overhead. However, some of their profiling clients require larger buffers for

high frequency events. As we show in the results section, CAB is on average

8% faster and up to 16% faster than this organization, and the overhead is

consistently low with a large buffer. In our work, the analysis is concurrent

(runs in parallel with the application) and parallel (multiple analysis threads

run at the same time), but is different from PiPA in that we currently support

at most one analysis thread per application thread. This configuration is just

for our current implementation, and is not a fundamental limitation of CAB.

Our work focuses on efficiently transferring data between cores, and we believe

that PiPA would benefit from using CAB.

FastForward is a software-only concurrent lock-free queue implemen-

tation for multicore hardware [22]. It uses a sentinel value (NULL) to avoid

concurrent access of the queue head and tail indices, and forces a delay be-

tween the consumer and producer to avoid cache line thrashing. While their

design is reasonable for a general purpose queue, CAB is more suitable for use

in concurrent dynamic analysis for two reasons. First, CAB’s enqueueing code

14

is more efficient for handling a large number of events, such as those produced

by dynamic instrumentation. Second, CAB’s dequeueing operation spins only

at the beginning of each chunk while FastForward dequeueing operates at a

finer granularity, spinning on single events (i.e., one memory location). It

thus synchronizes with the producer much more frequently than is necessary

with CAB. We compare CAB to FastForward queueing and show that CAB

improves performance by 41% on average, and up to 117%.

Shadow Profiling and SuperPin are profiling techniques that fork a

shadow process, which runs concurrently with original application process [43,

52]. The shadow process executes instrumented code, while the original ap-

plication runs uninstrumented. Currently, these approaches are limited to

single-threaded applications, because implementations of fork on most thread

libraries only fork from the current thread. Unlike our framework, the shadow

processes cannot cover the whole program execution, because events around

fork and unsafe operations may be lost.

Aftersight decouples profiling at the virtual machine layer using record

and replay technology [14]. During one execution of the application, Aftersight

uses VM recording to replay execution and then performs profiling on subse-

quent replayed executions. The profiling executions can be performed concur-

rently with the recording run, or offline at a later time. In our framework, the

application and analysis are decoupled, but the application is executed only

once and dynamic analysis is performed online.

Continuous profiling was the first to reduce the profiling overhead due

15

to micro-architectural side-effects such as cache misses [2]. Continuous profil-

ing collects sampled profile events using hardware performance monitors and

interrupts. On every 64k events, the processor raises the interrupt and collects

the sample. By using per-processor hash-table, they significantly reduce both

synchronization overhead and cache miss penalty, which allows profiling on

deployed systems. Most recent processors, support this hardware event-based

sampling, and top-notch system event profiling tools such as Intel VTune [15]

uses similar event-based sampling. However, this technique is limited to sam-

pling events that are supported by the hardware. Our framework supports

both sampling and exhaustive collection, and events need not be determined

by the hardware.

Recent work suggests hardware support for low-overhead dynamic anal-

ysis. For example, HeapMon uses an extra helper thread to decouple memory

bug monitoring [48]. The idea of offloading the data to another thread is

similar to our framework. However, HeapMon achieves low-overhead because

of hardware buffering and instrumentation support. The hardware support

is specifically for heap memory bugs. We achieve performance without any

special hardware support, and we assume less about the type of analysis.

iWatcher leverages hardware assisted thread-level speculation to reduce

the overhead of monitoring program locations [58]. The platform offers gen-

eral debugging analysis, but low-overhead is only guaranteed with hardware

support. Current multicore processors do not support thread-level speculation.

Our dynamic analysis framework supports both exhaustive and sam-

16

pling analysis of events. Prior work presented designs for low-overhead sam-

pling of instrumentation [4, 5, 10, 31], where sampling logic is executed in the

application thread to determine when a sample should be taken. These ap-

proaches are orthogonal and complimentary to our work; our framework could

perform sampling in the application thread to reduce the amount of data sent

to another core. However, our framework also enables a new methodology for

sampling, where data is written into a buffer exhaustively and is then option-

ally consumed (sampled) by the analyzer thread(s). By enabling concurrent

execution of the analyzer and the application thread, our technique is likely

to outperform traditional sampling techniques when a higher sample rate is

used and time in the analyzer increases. However, even with low sample rates

this new approach can be beneficial because it moves the sampling logic off

the fast path (out of the application thread) and into the analyzer thread.

Thus, this new approach is likely to be beneficial if a profiler’s communication

cost between cores is less than the cost of the sampling logic. CAB reduces

communication costs, making this form of sampling more viable.

2.2 Concurrent Dynamic Analysis Framework

Figure 2.2 shows our software architecture how it is intended to map to

modern multicore hardware. Our dynamic analysis system includes an event

producer (the instrumented application), an event consumer (an analyzer),

and an event handling mechanism, which links the first two. The application

and analyzer may be folded together to execute within the same thread, or

17

Shared Cache

L1 L1

Core A Core B
A

pp
lic

at
io

n A
nalyzer

In
st

ru
m

en
te

d
to

 p
ro

du
ce

 e
ve

nt
s

C
onsum

es events

C
A

B
 e

ve
nt

 e
nq

ue
ui

ng
C

A
B

 event dequeing

...

...
Figure 2.2: Cache-friendly Asymmetric Buffering (CAB) in a concurrent dy-
namic analysis framework.

they may be distinct, executing concurrently in separate threads as shown in

Figure 2.1. We focus on the design and implementation of a generic event

handling mechanism that supports concurrent dynamic analysis on multicore

platforms. The goal of this framework is to exploit underutilized computa-

tional resources and fast on-chip communications to minimize the observed

overhead of dynamic analysis.

Figure 2.2 also shows the CAB event handling mechanism. An ap-

plication thread and a dynamic analyzer thread execute on separate cores.

The application produces analysis events at injected instrumentation points,

and CAB transfers the events to the analysis thread. Since CAB is generic

and yet cache-friendly, the analysis writer is: a) freed from low-level micro-

18

architectural optimization concerns when offloading the event, and b) can im-

plement the analysis logic independently of the application instrumentation.

By constructing a framework, many analyses may reuse the highly

tuned mechanisms. The framework is flexible and general. It supports an

exhaustive mode that collects and analyzes all events, and a sampling mode,

in which the analysis samples a subset of the events.

2.2.1 CAB: Cache-friendly Asymmetric Buffering

CAB provides a communication channel between application and analy-

sis threads. Two objectives guide the design of CAB: 1) minimizing application

instrumentation overhead, and 2) minimizing producer-consumer communica-

tion overhead. We use three tactics to address these goals: a) we bias the de-

sign toward very low overhead enqueueing, b) we use lock-free synchronization,

and c) we partition access to the ring buffer to avoid costly micro-architectural

overheads due to cache contention.

At the center of CAB is a single-producer, single-consumer lock-free

ring buffer, in which an application thread produces events and an analysis

thread consumes them. Since each CAB has only one producer and consumer

pair, we can optimize for fast, lock-free access to this shared buffer. Our

approach is asymmetric. The application views the buffer as a continuous ring

into which it enqueues individual events. By contrast, the analyzer views the

buffer as a partitioned ring of fixed sized chunks, and each dequeue operation

yields an entire chunk.

19

Although producer-consumer algorithms are well studied [22, 37, 41, 42],

none of these approaches exploit asymmetry, nor do they consider memory

system impact on algorithms. As we show, these CAB features are key to

scalable performance on multicore.

2.2.1.1 Lock-free Synchronization

The special case where a communication buffer is shared by just a sin-

gle producer and a single consumer has the distinct advantage of avoiding

intra-producer and intra-consumer coordination, and is well-studied for gen-

eral purpose concurrent queue implementations [21, 22, 37]. Specifically, the

common case enqueue and dequeue operations can be implemented without

locks, as wait-free operations [30]. Of course, the operations are not actu-

ally wait-free if the desired semantics require that the producer block on a

full buffer and the consumer block on an empty buffer. However for dynamic

analysis, the common case is high frequency enqueueing and dequeueing, so

blocking is exceptional with a reasonably sized buffer. Although requiring

CAB to be single producer, single consumer is restrictive, the simplicity and

performance of the lock-free implementation it yields is attractive given the

importance of minimizing perturbation of the application. However, this does

not preclude building a multiple producer or consumer system on top of the

lock-free CAB, as discussed in Section 2.4.

20

1 while (* bufptr != CLEAR) {
2 if (* bufptr == MAGIC)
3 bufptr = &buffer; // wrap back to start

4 if (* bufptr != CLEAR)
5 block (); // busy , back off

6 }
7 *bufptr ++ = data; // enqueue data

(a) Enqueueing events in application code

1 block () {
2 spin_wait ();
3 pollptr = SKIP(bufptr , CHUNK_SIZE * 2);
4 while (* pollptr != CLEAR) {
5 if (isInvokedGC ())
6 thread_yield (); // must cooperate

7 else
8 sleep(n);
9 }

10 }

(b) Blocking the application

1 while (isApplicationRunning ()) {
2 /* keep distance of 2 chunks from producer */

3 index = ((chunk_num + 2) * chunk_size)
4 % buffer_size;
5 while (buffer[index] == CLEAR)
6 spin_or_sleep ();
7 /* consume & clear entire chunk */

8 consume_chunk(chunk_num);
9 chunk_num = next(chunk_num)

10 }

(c) Dequeueing events in analysis code

Figure 2.3: Enqueueing and dequeueing pseudo-code.

2.2.1.2 Queue Operations

CAB can be used for both exhaustive and sampled event collection.

We start by describing queuing operations for exhaustive mode. In exhaustive

21

mode, every event is enqueued, dequeued, and analyzed.

Enqueueing The detailed design of CAB’s enqueueing operation is guided

by three goals: 1) the design should minimally perturb the application; 2)

it needs to accommodate dynamically allocated and dynamically sized event

buffers; and 3) if an enqueue operation causes an application thread to block,

it must cooperate with the garbage collector and any other scheduling require-

ments to prevent deadlock.

To minimize perturbation of the application thread, the common case

for enqueueing must be fast, and the injection of enqueueing operations should

minimally inflate the total code size. Figure 2.3(a) shows the pseudocode for

the enqueueing operation. The common case for enqueueing consists of just

two lines (1 and 7). When there is space in the buffer, the test at line 1

evaluates to false and execution falls directly through to line 7. The exceptional

case may occur either because the end of the buffer has been reached or because

the buffer is full. These cases are dealt with by lines 3 and 5 respectively. If

the buffer is full, the blocking code in Figure 2.3(b) is executed via a call.

Note that all of this code is lock-free, and in the common case, just a single

conditional branch is executed (line 1 of Figure 2.3(a)). As shown later in

Figure 2.7(a) and Figure 2.7(b), the compiler or binary translator can push

lines 2–6 out of the hot code block, keeping the code small and the length of

the critical path short.

The control flow in the enqueueing operation depends only on *bufptr

22

and two constants: CLEAR and MAGIC (lines 1, 2 and 4 of Figure 2.3(a)). This

design is very efficient while also supporting variable sized, dynamically allo-

cated buffers. Dynamic allocation is essential since the number of buffers is

established at run-time, and dynamic sizing is valuable since the system may

respond to the particular requirements and resource constraints of a given

application.

The idea is that the producer will only ever write into buffer fields

which have been cleared by the consumer: the producer guards in line 1 of

Figure 2.3(a), and the consumer sets the sentinel CLEAR when it consumes the

chunk in line 8 of Figure 2.3(c). By using a special sentinel value (MAGIC) to

mark the end of the ring buffer, a single test for CLEAR in line 1 will guard

against both the end of the buffer being reached (line 2) and a full buffer (line

4). When the end of the buffer is reached, bufptr is reset to point to the start

of the buffer, &buffer (line 3). The buffer address is only required in line 3,

and is held in a variable. Furthermore, the code path has no explicit test

against the buffer size or end of buffer, which is implicitly identified via the

MAGIC marker. We can therefore dynamically allocate and size the buffer. This

design requires that CLEAR and MAGIC are illegal values for analysis events. In

practice, it is easy to choose CLEAR and MAGIC suitably to avoid imposing on the

needs of the analyzer.

The exceptional case where the producer thread must block because the

buffer is full (line 5) is handled out of line (Figure 2.3(b)). In general, when the

producer thread blocks, it must remain preemptible, otherwise it could lead to

23

deadlock. Specifically, if the consumer invoked a garbage collection while the

producer thread was blocked, and the producer thread were unpreemptible,

deadlock would ensue. For this reason, the producer thread spins briefly (line

2 of Figure 2.3(b)) before re-testing whether the buffer is full (line 4) and

yielding to GC (line 6) or sleeping (line 8). Note that the code checks the

contents of pollptr, a point two chunks ahead of bufptr (pollptr is set in line

2). By doing this, we effectively back off the producer, giving the consumer

time to work and ensuring that upon return there will be at least two chunks

of free space available in the buffer.

Dequeueing The design of CAB’s dequeueing operation is guided by two

goals: 1) the design should minimize producer-consumer communication over-

head, and 2) similar to enqueueing, it needs to accommodate dynamically

allocated and sized buffers. We address the second goal by avoiding any static

reference to the buffer address or buffer size, as we described above for en-

queueing. To meet the first goal, the analysis thread synchronizes at a coarse

grain by consuming a large number of events at once (i.e., a chunk). Fur-

thermore, the design does not induce unnecessary cache coherence traffic on

shared or private caches, because CAB never accesses the chunk into which

the producer is writing.

CAB prevents the producer and consumer from accessing the same

cache lines at once by logically partitioning the ring buffer into large fixed-size

chunks, and then ensuring that the consumer remains at least one complete

24

chunk behind the producer (line 5 of Figure 2.3(c)). The size of a chunk is a

dynamically configurable option (chunk_size in Figure 2.3(c)). Recall that the

producer is largely oblivious to this partitioning of the ring buffer; it enqueues

events regardless of chunk boundaries. However, if the buffer becomes full, the

producer waits until there are at least two empty chunks available to it (lines

3 and 4 of Figure 2.3(b)).

In this design, the consumer minimizes overhead and synchronization

by dequeueing and processing one chunk at a time (line 8 of Figure 2.3(c)),

reducing spinning and checking without affecting the fine-grained producer

activity. The analysis happens in the call to consume_chunk() at line 8. If the

analyzer itself is multi-threaded, it may dispatch analysis events to multiple

threads. The analyzer clears the buffer immediately after it processes each

event as part of consume_chunk(). Clearing is essential, since it communicates

to the producer that the buffer is available (line 1 of Figure 2.3(a)). Clearing

immediately after processing each event maximizes temporal locality. In the

special case when the producer terminates, it is usually desirable for the con-

sumer to process the remaining entries. Since the consumer normally may not

read from the same chunk as the producer, we include in our API the facility

for the producer to explicitly flush residual events to the consumer.

2.2.1.3 Optimizing CAB For Multicore Processors

We tune CAB’s chunk-based ring buffer design to reduce microarchi-

tectural side-effects due to producer-consumer contention. However, we make

25

L1

L2

ap
pl
ica

tio
n

an
al
yz
er

8KB

512KB

(a) Pentium 4 with
Hyper-threading

4MB
 4MB

system bus

L1

L2

ap
pl

ica
tio

n

an
al

yz
er

32KB
 32KB

ap
pl

ica
tio

n

an
al

yz
er

32KB
 32KB

(b) Core 2 Quad

8MB

L1

L2

ap
pl
ica

tio
n

an
al
yz
er

32KB

256KB

ap
pl
ica

tio
n

an
al
yz
er

32KB

256KB

ap
pl
ica

tio
n

an
al
yz
er

32KB

256KB

ap
pl
ica

tio
n

an
al
yz
er

32KB

256KB

L3

(c) Core i7

Figure 2.4: Experimental processors data cache structure. Instruction or trace
cache is omitted. Application and analyzer’s mapping to the cores is idealized,
and it is not a requirement.

only minimal assumptions about the multicore architecture. We assume that

the hardware can execute multiple software threads simultaneously on sepa-

rate cores or on the same core. We do not require any specific cache hierarchy.

The design works for both private and shared cache designs, but benefits from

shared lower-level caches. For example, Figure 2.4 shows three Intel hard-

ware generations, which comprise our experimental platforms. (Section 2.6

has more details on each.) These designs are quite different, yet CAB works

well with all of them.

The CAB design ensures that 1) the producer and consumer never

access the same cache line simultaneously, 2) the producer and consumer can

exploit a shared cache, and 3) the producer and consumer exhibit spatial

locality that is amenable to hardware prefetching. The first two design goals

avoid cache thrashing, the second also minimizes memory latency, and the

third seeks to hide cache miss penalties.

26

To avoid cache thrashing when the producer and consumer do not share

an L1 cache, the chunk size should be large enough that by the time the pro-

ducer is writing to chunk n + 2, chunk n has been fully evicted from the

producer’s L1 cache. If we assume a strict LRU cache replacement policy, this

criteria is satisfied with a chunk size that is greater than or equal to the L1

cache size. In practice, cache replacement policies are not always strict LRU.

Thus a larger chunk size is better. Furthermore, since producer-consumer syn-

chronization occur on chunk boundaries, smaller chunks are generally more

expensive. Thus, when the producer and consumer share an L1 cache, the

synchronization overhead of small chunks still outweighs any locality advan-

tage, which is why large chunks are effective on shared L1 caches as well. This

design easily generalizes for more levels of private cache. Our evaluation uses

a chunk size of four times the L1 size.

If the runtime uses native threads, we control producer-consumer affin-

ity via the POSIX sched_setaffinity() API. On the other hand, if the runtime

employs a user-level scheduler, we may require modest changes to the sched-

uler (see Section 2.5.1). We do not require special operating system support

or modifications to the operating system’s scheduler.

By using a ring buffer, the producer and consumer’s memory operations

are almost strictly sequential (except when the ring buffer infrequently wraps

around). It is hard to test directly the hypothesis that CAB addresses our

locality objective, but we measured L1 and L2 miss rates and found that they

were not correlated with buffering overhead when we varied the buffer size

27

on both shared and private L1 cache architectures. We also experimented

with special Intel non-temporal memory operations but found they degraded

performance compared with our straightforward sequential baseline. Worse,

the current Intel implementations of non-temporal store operations bypass the

entire cache hierarchy, forcing the consumer to go to memory rather than the

shared last level cache. CAB would benefit from previously proposed hardware

instructions, such as the evict-me, or some other mechanism that marks cache

lines LRU [38, 53]. CAB could then reduce its cache footprint and thus its

influence on the application, while still benefiting from sharing.

2.2.2 Sampling

If the analysis thread is unable to keep up with the application, the

buffer will eventually fill up and the application thread will block (line 5 of

Figure 2.3(a)). Depending on the analysis, this application slowdown may

be unavoidable. For example, security analyses and cache simulation pro-

filers typically require fully accurate traces. Other analyses, such as those

designed for performance analysis, often tolerate reduced accuracy to gain re-

duced overhead. In such cases, the profilers in CAB may sample to prevent

the application from blocking.

In our sampling framework, the producer still enqueues all the events

and then the consumer samples the buffer, analyzing only a subset of the

recorded data, skipping over the rest. Other sampling designs, such as timer-

based sampling [5], reduce the number of events. However, client analyses that

28

are control-flow-sensitive (e.g., path profiling) and context-sensitive analyses

(e.g., call trees), must still insert pervasive instrumentation and maintain their

state even if the instrumentation does not store the events. In contrast, our

sampling framework eases the burden of implementing these more advanced

forms of sampling because the sample decisions are made in the analysis thread;

the logic is off the fast path of the application thread so it can be written in

a high-level language (rather than inlined into compiled code) and with less

concern over efficiency.

Enqueueing In sampling mode, the producer never checks whether the

buffer is full. If the consumer cannot keep up with the producer, the pro-

ducer simply continues writing to the buffer and data is lost. This design

obviously trades accuracy for performance. Figure 2.5(a) shows pseudocode

for the application thread when in sampling mode, and should be compared to

Figure 2.3(a). The code consists of the minimal instructions required to insert

an element into a CAB buffer.

Dequeueing Figure 2.5(b) shows pseudocode for dequeueing in sampling

mode. Compared to exhaustive mode dequeueing (Figure 2.3(c)), there are

two differences. First, each chunk is sampled, according to the value of

sampling_rate (line 8). Second, only the first element in each chunk is cleared

(line 10), rather than the entire chunk. We now describe these points in more

detail.

29

1 if (* bufptr == MAGIC) // end buffer

2 bufptr = &buffer;
3 *bufptr ++ = data;

(a) Enqueueing pseudo-code for sampling mode.

1 while (isApplicationRunning ()) {
2 /* keep distance of 2 chunks from producer */

3 index = ((chunk_num + 2) * chunk_size)
4 % buffer_size;
5 while (buffer[index] == CLEAR)
6 spin_or_sleep ();
7 /* analyze some fraction of the chunk */

8 sample_chunk(chunk_num , sampling_rate);
9 /* clear only the first entry */

10 buffer[chunk_num*chunk_size] = CLEAR;
11 chunk_num = next(chunk_num)
12 }

(b) Dequeueing pseudo-code for sampling mode.

A
pp

lic
at

io
n

D
ynam

ic A
nalyzer

Application fills chunks Analyzer reads burstss chunks

Shared Cache

1L1L

(c) Bursty Sampling. The analyzer samples a burst from each chunk.

Figure 2.5: Sampling mode. The application does not block and the profiler
may use bursty sampling.

30

Consumers read events in bursts to maximize cache locality, as shown

in Figure 2.5(c). The size of the burst is arbitrary within the scope of a

chunk. However, L1 cache performance is likely to benefit when the burst is

cache line-aligned. Our evaluation shows that sampling accuracy is maximized

when we keep the sample rate sufficiently low such that the consumer keeps

up with the producer, which avoids the producer overwriting data before it

can be sampled.

The consumer does not need to clear every element in the chunk after it

is read (line 10 of Figure 2.5(b)), because the producer is no longer checking for

CLEAR. The first entry of each chunk still needs to be cleared by the consumer

to allow it to observe when a chunk has been refilled, and thereby avoid re-

processing old data.

Note that because the application thread logic no longer checks for a

full buffer, the application thread may catch up and overwrite a chunk that

the analysis is sampling, causing accuracy to drop. An alternate design could

make the producer skip over a chunk if the analyzer is still working on it. We

instead keep the sampling rate low and use simple chunk logic. Our evaluation

shows that we can achieve high accuracy with a very low sampling rate.

To reduce memory bandwidth requirements, even with exhaustive event

recording, a more sophisticated buffer assignment could reuse a chunk when

the consumer is sampling another chunk. It could also bias its choice to a chunk

that is still likely to be resident in cache. This design would pay for the reduced

memory bandwidth with increased producer-consumer synchronization.

31

2.2.3 Interaction with the Garbage Collector

The enqueueing operation in sampling mode is wait-free, i.e., it is guar-

anteed to finish in a finite number of instructions, but exhaustive mode enqueu-

ing may block the application. When the garbage collector is triggered, the

application must yield to the garbage collector thread. Otherwise, deadlock

may happen because analysis thread may have yield to the GC and would not

process the buffer. Therefore, slow path in Figure 2.3(b) checks the garbage

collector state.

To transfer the program control to the garbage collector, it must be a

GC safe point where all the heap objects are stored in memory. However, not

all instrumentation locations are GC safe points, and having a block() call is

unsafe. To prevent unsafe operations, instrumentation at unsafe points include

the sampling mode enqueueing, which must check the buffer space availability

at each prologue and loop backedge yieldpoint. The interval of these yieldpoint

is finite, so it is always possible to keep the buffer from overrunning with the

sampling mode enqueueing in the exhaustive mode.

2.3 A Model For Analysis Overhead

The performance benefit of offloading dynamic analysis work in a sepa-

rate thread depends on a number of factors, such as the amount of time spent

in the application versus the analysis code, and the amount of data the ap-

plication must transfer to another core for processing. If the amount of time

spent transferring data far exceeds the time spent processing that data, the

32

concurrent analysis is unlikely to show significant benefit.

This section describes a basic cost model for overheads in concurrent

and single-threaded dynamic analysis systems. The model provides a detailed

look at which performance characteristics determine the success of a concur-

rent implementation, and thus help identify the types of analysis for which a

concurrent implementation is beneficial.

The model presented below compares a single-threaded scenario, where

the application and analysis execute in the same thread, to a concurrent sce-

nario, where the application and analysis execute in separate threads and

communicate through shared memory. We start with the following definitions:

A Isolated application execution time.
P Isolated analyzer execution time.
Es Execution time with instrumentation and analysis

inline in the same thread as the application.
Ec Execution time with a concurrent analyzer.

and a simple model of overheads:

Ai Application overhead due to instrumentation
to produce events.

Iap Interference overhead due to application
and analyzer (profiler) running in
same thread (when single-threaded).

Aq Application thread overhead due to queueing
(when concurrent).

Pc Analyzer thread overhead due to communication
and dequeueing (when concurrent)

33

The event instrumentation overhead Ai is idealized, since in practice it is hard

to isolate the cost of instrumentation for extracting events from the surround-

ing code which processes those events. In a single threaded system, Iap is the

indirect overhead due to resource contention between the application and the

analyzer sharing common hardware. The effects will depend on the nature of

P and may include memory contention, cache displacement, register pressure,

etc. We define Es, the cost of single-threaded analyzer as:

Es = A + Ai + P + Iap (2.1)

In a concurrent system, the queuing overhead Aq reflects time spent by the

application enqueueing items and blocking on communication to the analyzer,

plus the indirect effect enqueueing has of displacing the application’s cache.

Pc reflects the cost to the analyzer of dequeueing events, which includes the

communication overhead of loading data from a shared cache. Ai, Aq and

Pc are each a function of the event rate: the rate at which the application

generates analysis events. To define the cost of concurrent analysis, Ec, we

start with the cost of each of the two threads, EA
c and EP

c , and consider each

thread separately with the assumption that the given thread is dominant (i.e.

it never waits for the other). When the application dominates:

EA
c = A + Ai + Aq (2.2)

and when the analyzer dominates:

EP
c = P + Pc (2.3)

34

Since the application EA
c and the analyzer EP

c are concurrent, one may dom-

inate the other. For simplicity, we assume that for a given analyzer, either

the application or analyzer will uniformly dominate. In practice, the appli-

cation and analyzer may exhibit phased behavior, but event bursts should be

somewhat smoothed by buffering. In any case, the simplification helps illumi-

nate the nature of the problem. Under these assumptions, execution time for

concurrent analysis can be defined as:

Ec = max(EA
c , EP

c) (2.4)

We now discuss the conditions that make concurrent analysis worthwhile, look-

ing at the two cases separately when either the application or analyzer domi-

nates.

Application Thread Dominates. The application dominates when EA
c ≥

EP
c , i.e., the application takes longer than the analysis:

A + Ai + Aq ≥ P + Pc (2.5)

For concurrent analysis to improve performance in this scenario, it must max-

imize Es − EA
c :

Es − EA
c = P + Iap − Aq ≥ 0 (2.6)

P + Iap ≥ Aq (2.7)

35

Concurrent analysis will improve performance as long as the application queu-

ing costs, Aq, are small relative to analysis costs, P + Iap. As we show in

Section 2.6.2, Aq is typically small. Iap is a function of P , and thus a very

lightweight analyzer, where P + Iap is smaller than Aq, will not benefit from

concurrent analysis. We show this case holds for method counting, but in

all the other cases we tested, which includes the only slightly more expen-

sive call graph construction, the cost of P + Iap is greater than Aq, and

the framework provides performance benefits. However, because the benefit

Es − EA
c = Iap + P − Aq, and from Equation 2.5,

P − Aq ≤ A + Ai − Pc (2.8)

in the case the application dominates, the benefit of concurrent analysis is

limited.

Profiler Thread Dominates. In scenario 2, where EA
c < EP

c , waiting for

the analyzer becomes the bottleneck. For a concurrent analyzer to improve

performance, it must maximize: Es − EP
c :

Es − EP
c = A + Ai + Iap − Pc ≥ 0 (2.9)

A + Ai + Iap ≥ Pc (2.10)

Concurrent analysis will improve performance as long as the communication

cost is small relative to the application thread and associated overhead (A+Ai+

Iap). Note that once the analyzer dominates, the performance improvement,

36

Es − EP
c , is independent of the analyzer’s execution time, P . The speedup

of the concurrent analyzer is determined by the analyzer’s buffering and com-

munication costs Pc; an analyzer with higher cost P does not provide more

incentive for a concurrent implementation.

Extensions and Lessons. We can draw a number of lessons from the anal-

ysis above. When the application thread dominates and EA
c ≥ EP

c , the perfor-

mance improvement from concurrent analysis is limited by the single-threaded

analyzer cost P + Iap. When the analyzer thread dominates, the performance

improvement from concurrent analysis is limited by time spent in the applica-

tion thread and associated overhead (A + Ai + Iap).

In all cases, communication performance (Aq and Pc) is key because it

determines whether the theoretical improvements of concurrent analysis can

be realized in practice. The goal of CAB is to reduce these communication

costs as far as possible, thus allowing concurrent analysis to be effective for a

wider class of analyzers than is possible today.

The model assumes that the analysis executes concurrently with the

application, but is not itself parallelized (subdivided into multiple worker

threads). Once an analysis adopts a concurrent model, parallelizing the anal-

ysis becomes relatively easier and has the potential to significantly improve

performance when analysis time dominates application time. We do not in-

vestigate parallelizing the analyzers themselves here because this process is

highly dependent on the particular analyses. Instead, we focus on minimizing

37

communication overhead as part of a general framework.

2.4 Threading Model Impact on Design and Implemen-
tation

CAB’s lock-free design is predicated on each CAB having a single pro-

ducer and a single consumer. This design allows for fast, low overhead queue-

ing, but has a number of consequences, which we discuss in detail now.

2.4.1 N:M threading model with per-processor CAB

Maintaining the single producer property implies allocating one CAB

for each application thread. When application threads are mapped directly to

kernel threads (“1:1 threading”), we allocate the CAB in thread-local storage.

For some user-level thread models (“N:M threads” also called “green threads”),

true concurrency only exists at the level of underlying kernel threads, so we

allocate one CAB per kernel thread and multiplex it among user threads.

With this model, user threads time-share CABs and may migrate from CAB

to CAB according to the user-level scheduler, but in all cases, there is only one

user thread mapped to a CAB at any given time. With multiplexing, events

from different producer threads will be interleaved. Since some analyses are

context-sensitive, the producer must add special events which communicate

thread switches to the consumer, and the consumer must de-multiplex the

interleaved events to regain the context that would otherwise be lost.

Our design explicitly supports dynamic sizing of CABs, which should

38

be sized according to the rate of event production and the available memory.

Presently we configure CAB sizes via the command line. We leave to future

work extending the framework to adaptively size each CAB based on its usage

characteristics at run-time. The framework could use small buffers for threads

that produce very few events and larger ones for prolific threads. Thus the total

space requirements for all CABs in a system would scale with the total event

production rate in the system, rather than the absolute number of threads.

The requirement of a single consumer per CAB does not preclude ei-

ther a single consumer thread from servicing multiple CABs, or the consumer

thread from dispatching analysis work to multiple threads. In a setting with

a low event rate and lightweight analysis, a single analysis thread may be able

to service all CABs, processing them in a round-robin fashion. By contrast, in

a setting where analysis is very heavyweight and the analysis is conducive to

parallelization, multiple threads can perform the analysis. However both sce-

narios observe the requirement that a given CAB is only ever accessed by one

consumer thread, satisfying the precondition of our lock-free implementation.

2.4.2 Native threading model with per-thread CAB

In the N:M threading model, allocating one CAB on each kernel thread

is feasible because the user-level scheduler guarantees that each kernel thread

only runs at most one user thread at a time. However, the native threading

model does not have a user-level scheduler, and the operating systems sched-

uler is solely responsible for the thread scheduling. Without changing the

39

design, CAB would be placed on each thread’s local storage, which makes it

a per-thread buffer, which is the default implementation for native threading

model. However, per-thread buffering does not scale with the hardware when

the number of threads are far greater than the number of cores. We next

provide a solution to this problem.

2.4.3 Native threading model with per-processor CAB

To improve the locality and scalability in memory usage, we introduce

a new design that multiplexes CAB similar to N:M threading model, and

improves the affinity of each buffer to a single core.

Enqueue Figure 2.6(a)–2.6(c) shows the pseudo-code for a per-processor

CAB. We initialize the beginning of each chunk to MAGIC upon buffer cre-

ation. Unlike the above models, the application operates at chunk granularity.

Each application thread requests a chunk from the buffer associated with its

current core. Once an application thread obtains a chunk, it is guaranteed that

it owns the chunk until it is full. The application detects if it fills the chunk

when it reaches MAGIC. When the chunk is filled, the application must notify

the analyzer by putting the chunk into the history queue and then obtain a

new chunk. Explicit synchronization is inevitable on obtaining a chunk. How-

ever, this operation happens in the slow path, which occurs once in the whole

chunk write. Moreover, since the lock is a per-processor lock, synchronization

on obtaining the buffer will not be commonly contended. Upon obtaining

40

1 while (* bufptr != CLEAR) {
2 if (* bufptr == MAGIC)
3 bufptr = obtain_chunk ();
4 }
5 *bufptr ++ = data; // enqueue data

(a) Enqueueing events in application code

1 obtain_chunk () {
2 buffer = buffers[current_cpu]
3 if (buffer.full ()) // deadlock prevention

4 buffer[current_cpu] = realloc(current_size * factor);
5 synchronized {
6 current_cpu.history.put(chunk);
7 chunk = current_cpu.getChunk ();
8 chunk [1] = thread_id;
9 return &chunk [2];

10 }
11 }

(b) Obtaining chunk

1 while (isApplicationRunning ()) {
2 /* keep distance of 2 chunks from producer */

3 foreach CAB in assigned_buffer {
4 chunk = CAB.history.get()
5 consume_chunk(chunk_num);
6 }
7 }

(c) Dequeueing events in analysis code

Figure 2.6: Enqueueing and dequeueing pseudo-code for per-processor buffer-
ing on native threading model.

a new chunk, the application thread writes its thread id next to MAGIC to

communicate its context to the analysis thread for context sensitive analysis.

In this design, positioning the buffer in the hardware caches is difficult,

but our per-processor buffering design keeps the data produced on its core’s

buffer as much as possible by assigning chunks from the current core’s buffer.

41

Furthermore, each application thread will write sequentially until the chunk

is full. Therefore, we expect that spacial locality is enhanced while keeping

temporal locality as same as per-thread buffering, and our evaluation supports

that the amount of overhead is similar or better than per-thread buffering on

native and N:M threading model.

Dequeue Each analysis thread operates one buffer at a time. Each analysis

thread owns a set of buffers to avoid unnecessary synchronization among anal-

ysis threads. Figure 2.6(c) shows the pseudo-code for dequeueing. Since the

application may finish chunks out-of-order, the analysis thread must search a

full chunk. In order to avoid linear scan on the buffers, the analysis thread pro-

cesses chunks from the history queue. Chunks in the history queue are added

by each application thread when its chunk is full. This queue also needs

synchronization, and we choose Lamport’s lock-free single-producer single-

consumer queue [37] for simplicity.

Deadlock Prevention When a thread tries to obtain a chunk, no chunk

may be available if all the chunks in the buffer are assigned to other threads.

Simple approaches, such as migrating the thread to another core or voluntarily

yielding the thread until any chunk is available, do not solve the problem and

deadlock could occur. For example, all other threads may algorithmically

depend on a new thread blocked until the new thread finishes running, while

the new thread cannot proceed because there is no available chunk. To prevent

42

and escape from the deadlock, we dynamically increase the size of the buffer

when there is no chunk available. To simplify checking chunk availability,

we only consider the current core’s buffer. Therefore, even when there are

available chunks on other core’s buffer, the buffer size will still increase if the

local core’s buffer runs out of chunks.

2.5 Implementation

We next discuss implementation details that are specific to our particu-

lar environment, and then we briefly describe each of the five dynamic analyses

that we implemented in our framework.

2.5.1 Platform-Specific Implementation Details

We implemented our framework in Jikes RVM [1]. Jikes RVM is an open

source high performance Java Virtual Machine (VM) written almost entirely

in a slightly extended Java. This setting affected our implementation only in

that we needed to take care to ensure the enqueueing operations avoid locking

out the garbage collector.

We implement our framework using two threading models: N:M and na-

tive. While we were developing this concurrent analysis framework, researchers

changed from N:M threads implemented in Jikes RVM 2.9.2 to native threads

implemented in Jikes RVM 3.1.0. This transition was imposed upon us, but

it serves as an opportunity to demonstrate the generality of CAB with respect

to fundamentally different threading models.

43

Native threads improve average performance over N:M threads in the

base system. Jikes RVM version 3.1.0 however improves over 2.9.2 in many

other ways as well, which makes it difficult to compare their performance di-

rectly. For example, biased locking has reduced thread synchronization over-

head, the Immix garbage collector improves locality and garbage collection

times [9], and the compiler generates better code.

We implemented our framework in Jikes RVM 2.9.2 with N:M threads

and then ported it to native threads in Jikes RVM 3.1.0. Except for the changes

in how we map the analysis thread and the user threads, which we describe

below, our instrumenting and analysis code remained the same. We have not

yet however ported our experimental infrastructure, which teases apart the

different overheads and reports cache behaviors to explain our results. We

thus report overall performance results for all the client analyses for both N:M

and native threading models, but a detailed breakdown analysis is presented

for N:M threads only. The trends are the same for both models.

N:M Threading Version 2.9.2 of Jikes RVM uses an N:M threading model

(also known as “green threads”), which multiplexes N user-level threads onto M

virtual processors via a simple timer-based scheduler that the system triggers

at yield points in the application. The Jikes RVM compilers inject yield points

in method prologues, epilogues, and control-flow back edges. Each of the M

virtual processors maps directly to a single native thread that the operating

system manages. Jikes RVM chooses M to match the number of available

44

hardware threads. Jikes RVM uses a Processor data structure for per-virtual-

processor state.

Since true concurrency only exists among the M virtual processors, we

implemented CABs at this level, associating one CAB with each Processor.

Many user threads may share a given virtual processor, but only one thread

can ever be executing on a virtual processor at any time. The scheduler may

migrate user threads among virtual processors as it schedules them. We mod-

ified Jikes RVM’s scheduler to: a) prescribe the affinity between virtual pro-

cessors and the underlying hardware, b) prevent the migration of application

threads onto analysis virtual processors, and c) record thread scheduling events

in the CAB. We use the first two modifications to schedule producer and con-

sumer threads in pairs on distinct cores with a common last level cache. The

producer uses the third modification to inform the consumer of the changing

affinity between producer threads and CABs.

Native Threads with Per-thread Buffering Version 3.1.0 of Jikes RVM

uses a native threading model, which maps each user and VM thread onto

one operating system thread (also known as a “pthread”). Jikes RVM does

not control the thread scheduling. It instead relies on the operating system

scheduler. Timer-based sampling may still trigger thread yield points, as in

N:M threads. The OS may migrate the user thread to different cores trans-

parently to Jikes RVM. Therefore, this implementation does not control the

affinity between the user and analysis threads.

45

Unlike the N:M implementation, with native threads the framework

takes the number of analysis threads as a parameter. The framework assigns

each user thread a thread-local CAB buffer and an analysis thread. When

the user thread terminates, the framework processes any remaining chunks by

moving them to a pending buffer queue on the associated analysis thread for

processing. We assume that thread creation and termination is infrequent and

thus synchronize accesses to the pending queue.

Native Threads with Per-processor Buffering Similar to per-thread

buffering, we use version 3.1.0 of Jikes RVM. Instead of putting CAB buffers

in thread local memory, we set the number of CAB buffers to the number of

cores, and access them globally. Unlike other implementations, CAB buffer

memory is allocated out-side the VM space, i.e., buffers do not occupy the VM

heap space. By taking the buffer memory out of VM space, the whole heap

space can be used by the application, and the frequency of garbage collection

invocation is less influenced by using our framework. We believe this is a

realistic configuration because production JVMs implement VM components

including dynamic analyses outside the VM space. We currently only have

call graph profiling for this implementation.

Instrumentation and Enqueueing Each dynamic analysis in our imple-

mentation has four parts: 1) program instrumentation that produces an event,

2) enqueueing operations, 3) dequeueing operations, and 4) analysis. Parts 1)

46

1 mov eax $BUFPTR[esi]
2 cmp [eax], CLEAR
3 jne B
4 A: mov [eax], $DATA
5 add eax , 4
6 mov $BUFPTR[esi], eax

(a) Precise Mode (Fast Path).

1 B: cmp [eax], MAGIC
2 jne C
3 mov eax , $BUFADDR[esi]
4 cmp [eax], CLEAR
5 jeq A
6 C: call block ()
7 jmp A

(b) Precise Mode (Slow Path).

1 mov eax $BUFPTR[esi]
2 cmp [eax], MAGIC
3 jne A
4 mov eax , $BUFADDR[esi]
5 A: mov [eax], $DATA
6 add eax , 4
7 mov $BUFPTR[esi], eax

(c) Sampling Mode (Slow path is just line 4).

Figure 2.7: x86 assembly code for CAB enqueueing operations. The esi reg-
ister is used as a base register for the Processor object in Jikes RVM, and eax

is a register allocated by the compiler.

and 4) are analysis-specific and are described below in Section 2.5.2. We use

a straightforward implementation of part 3) from the design section. The

remainder of this section presents further details on our enqueueing imple-

mentation.

Figure 2.7 shows x86 assembly code for enqueueing in both exhaustive

and sampling modes. Note the simplicity of the common case code (Fig-

47

ures 2.7(a) and 2.7(c)). In sampling mode, the slow path comprises just a

single instruction (line 4). The rest of this section describes how we imple-

ment the call to block() (line 6 of Figure 2.7(b)) to avoid locking out other

threads and to avoid introducing unsafe thread switches.

In exhaustive mode, the producer may block while the consumer catches

up. It is essential that this blocking exhibits correct scheduling behavior and

does not: a) lock out other threads, or b) allow garbage collection to occur at

unsafe points.

It is only correct (i.e., safe) to perform garbage collection when the run-

time system can correctly enumerate all the pointer references into the heap.

These references reside in the statics, registers, and stack locations. To reduce

the burden on the compiler, which generates this enumeration, a garbage col-

lection (GC) safe point is typically a subset of all possible instructions in the

program. In Jikes RVM, each method call, method return, loop back edge,

allocation, and potentially exception generating instruction is a GC safe point.

The Jikes RVM compiler guarantees that all compiled code will reach reach a

GC-safe point in a timely manner by injecting conditional yield points on each

loop back edge and method prologue, and producing a map for enumerating

references at each one of these points.

Thus if a producer does not yield to GC when blocked, the garbage

collector will not be able to proceed, and then all application threads will

block waiting for GC the next time they try to allocate a new object, leading

to deadlock. For this reason, our producer, rather than simply spinning, calls

48

the block() method (line 6, Figure 2.7(b)), which explicitly checks whether

a GC yield is necessary (line 5, Figure 2.3(b)). This protocol ensures that a

blocked producer does not lock out other threads.

However, if an analysis requires instrumentation on an instruction that

is not a GC safe point, it may block at a GC unsafe point. For example, cache

simulation requires instrumentation at every load and store, which are not,

in general, GC safe points. We address this problem by using a non-blocking

enqueue (Figure 2.7(c)) for instrumentation at non-GC safe points. We add

checks at each loop back edge and method prologue to ensure there is sufficient

memory in the buffer before the next GC safe point for any potential enqueues.

Our current implementation uses the generous heuristic of ensuring that there

is a full chunk available at each check. While this heuristic works very well in

practice, it cannot guarantee correctness since it does not count the maximum

number of potential enqueues. Although almost certainly straight line code

will produce many fewer analysis events than an entire chunk can hold, an

industrial strength solution would not be particularly difficult to engineer;

the compiler could estimate the number of potential enqueues and compare

with the buffer size, or guarantee a fixed limit by enforcing a maximum on

the length of non-GC-safe paths by injecting occasional safe-points (at the

expense of generating the appropriate GC maps). However, we leave such an

implementation to future work.

49

2.5.2 Dynamic Analyses

To evaluate our concurrent dynamic analysis framework, we prototyped

five popular profiling algorithms taken from the literature: method counting,

call graph profiling, call tree profiling, path profiling, and a cache simulator.

In each case, we instrument the application and implement the event process-

ing logic, and bind the two with our dynamic analysis framework providing

the event handling glue. All instrumentation is performed after inlining, so

inlined method calls are not instrumented. Path profiling produces 64 bit

event records, whereas the other clients produce 32 bit event records. In each

case, we implement a sequential and concurrent version of the analysis for

comparison.

Method counting On entry to each method, the method counting instru-

mentation writes a 32 bit method identifier into the event buffer. The anal-

ysis uses an array of method indexes initialized to zero. For each entry in

the event buffer, the profile thread reads the entry and increments the corre-

sponding method counter. The single-threaded version simply increments the

appropriate element in the array upon each method entry.

Call graph profiling On entry to each method, call graph profiling instru-

mentation produces a 32 bit profile event which includes the current method

and its caller. To identify the caller, the instrumentation must walk up the

stalk, which requires three memory loads in Jikes RVM. We are able to pack

50

both the caller and callee into 32 bits since 16 bits is sufficient to identify

all methods in our programs (as well as many larger ones). Thus, the profile

event rate is exactly the same as for method counting. The analysis reads the

events, computes a hash, and increments the corresponding hash table entry

indexed by the event. The single-threaded implementation performs a hash

table look-up and increment on each method entry.

Call tree profiling Call tree profiling is a dynamic analysis tool to classify a

user program’s behavior for automated support [28]. It summarizes a subtree

of depth two in the dynamic call tree to represent the software execution. To

reduce the overhead of call tree profiling, Ha et al. used a bit vector on the

stack to mark the set of the calls. Unlike their implementation, we construct

the dynamic call tree on the analysis threads using the trace of method calls

sent over the CAB to capture the subtree pattern. The instrumentation is

exactly the same as call graph profiling, which is necessary to construct the

dynamic call tree.

This design is an interesting use of the concurrent dynamic analysis,

because it makes the heavy-weight optimization for the instrumentation unnec-

essary, it simplifies the implementation the analysis code, and yet it achieves

good performance.

Path profiling We inject full path profiling instrumentation into the ap-

plication [6]. Path profiling assigns a unique number to all possible acyclic

51

paths through a method and stores each executed path during execution. We

adapt Bond and McKinley’s basic implementation from the Jikes RVM re-

search archive [10]. This version does not include optimizations that: a) elim-

inate increments to the path register on some edges and b) use arrays instead

of hash tables when methods are small, which is much more efficient. While

a production implementation would include these optimizations, they are not

key to our evaluation.

The application instrumentation for path profiling is the most invasive

of all the clients. On entry to each method, the path profiling instrumentation

clears the path register. On each branch, it increments the path register by

some value. On each back-edge and method exit, the instrumentation stores

the path number in the profile event buffer and resets it to zero. Path profiling

uses a 64 bit record since the path numbers are often larger than 32 bits in

Java [10]. For each path number, the profile thread computes a hash and

increments the corresponding entry in the hash table. The single-threaded

version performs this same work, but on each back-edge and method exit.

Thus, path profiling is more invasive, produces more and larger entries,

and uses a larger hash table to store its entries compared to method counting,

call graph profiling, and call tree profiling. Prior work finds, and our results

confirm, that sequential exhaustive path profiling can add overheads ranging

from 20% to over 100% of execution time.

52

Cache simulation We also implement a set associative cache simulator,

which is similar to dcache implemented in Pin [39]. For each load and store

instruction, the application instrumentation writes the 32 bit address into the

buffer, using the low order bit to indicate whether the operation was load

or store. Because these addresses are already in registers, this instrumenta-

tion, while prolific, is cheap. It does have a very high event rate, and therefore

stresses the communication mechanisms in our framework. The analysis thread

consumes each entry, computing a new state for the cache. It stores cache state

in arrays. For our experiments, the cache simulator models a 32KB 4-way set

associative L1 and a 512KB 8-way set associative L2. The L1 and L2 have a

line size of 64B, are inclusive and have an LRU policy. In the single-threaded

implementation, the analysis code calls out to a routine that updates the cache

state at every load and store. Fully accurate cache simulation is expensive; it

adds overheads ranging from 200 to 4500% to application time.

These five clients thus insert a wide range of types of instrumentation and

perform light to heavy weight analysis.

2.6 Evaluation

This section describes our benchmarks, hardware, operating system,

experimental design, and data analysis methodology. Section 2.6.1 compares

CAB to other buffering mechanisms. Section 2.6.2 presents experimental re-

sults for our five analyses in our concurrent framework and compares them to

53

a sequential implementation that does not write event data to a buffer. Sec-

tion 2.6.3 evaluates buffer size scalability and Section 2.6.4 evaluates sampling

mode. Finally, Section 2.6.5 explores the importance of modern shared cache

architectures to concurrent dynamic analysis.

Benchmarks. We use the SPECjvm98 benchmarks [49] and 9 of 11 Da-

Capo Java (v. 2006-10-MR2) benchmarks [7]. The DaCapo suite is a recently

developed suite of substantial real-world open source Java applications. The

characteristics of both are described elsewhere [8]. We focus on the multi-

threaded benchmarks: mtrt in SPECjvm98 and hsqldb, lusearch, and xalan

in DaCapo, but consider all of them. Due to a problem in our cache simula-

tion implementation, we omit xalan on the Core 2, and luindex, lusearch, and

xalan on the P4 in the cache simulation results. We omit chart and eclipse

from DaCapo in all our results because the older version of Jikes RVM we use

does not always run them correctly.

Hardware and Operating System. We evaluated the framework on three

generations of Intel processors depicted in Figure 2.4. The Intel Pentium 4 has

a single core with 2 hardware threads that share an 8KB data cache, and a

12kuops trace cache. The Intel Core 2 Quad has 4 cores on two dies, each core

has 8-way 32KB L1 data and instruction caches. The pair of cores on each

die share a 4MB 16-way L2 cache, for a total of 8MB of L2 cache. The Intel

Core i7 has 4 cores, each of which has 2 simultaneous multi-threading (SMT)

54

threads, a private 32KB L1, and 256KB L2 cache. All of the cores share a

single 8MB L3 cache.

We run a 2.6.24 Linux kernel with Pettersson’s performance counter

patch [46] on all of the processors. We used PAPI for performance counter

measurements [11]. We have 4GB of physical memory in all systems.

Experimental Design and Data Analysis. Jikes RVM’s timer-driven

adaptive optimization system results in non-deterministic compiler and garbage

collection activity. We use Jikes RVM’s replay system to control this non-

determinism (see Blackburn et al. for the detailed methodological justifica-

tion [7]). In order to reflect steady state performance, before running any ex-

periments, we first execute each benchmark fifteen iterations within the same

invocation of the VM, and record a compiler advice file. The file specifies the

optimization level and profile information, e.g., method and edge frequencies,

for each method. We repeated this five times and chose the best performing

run. Later, when the VM is run in replay mode, it immediately optimizes each

method to its final optimization level based on the profile. This both delivers

determinism and short circuits the normal code warm-up. Thus all methods

are optimized to their final level by the end of the first iteration of a bench-

mark. Before starting the second iteration, we perform a full heap garbage

collection. We report timing measurements for the second iteration. For each

experiment, we report the average of 30 runs to eliminate noise. Our default

configuration uses 2MB buffer size and 128KB of chunk size. We set the heap

55

Benchmarks

com
press

jess
raytrace

db javac
m

pegaudio

m
trt

jack
antlr

bloat
fop

hsqldb

jython

luindex

pm
d

GeoM
ean

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
(%

)

−10

0

10

20

30

40

−10

0

10

20

30

40
Call Graph (N−way) Path Profiling (N−way) Call Graph (FastForward) Path Profiling (FastForward)

Figure 2.8: Performance of N-way buffering and FastForward relative to CAB.
We use N:M threading on an Intel Core 2 Quad. The Y-axis is normalized to
CAB’s execution time.

size to 4 times the minimum required for the uninstrumented benchmark.

2.6.1 CAB versus Other Buffering Mechanisms

We start by comparing CAB with conventional N-way buffering and

FastForward’s concurrent lock-free queue [22]. We carefully optimized both

algorithms for a fair comparison. For FastForward, enqueueing and dequeueing

do not split the buffer into chunks, instead they operate on individual event

records, which is equivalent to CAB using a chunk size of one event. We

follow their recommendation and set their dangerous distance parameter to

two cache lines: when the consumer becomes this close to the producer, the

consumer waits. Once there is a safe distance of six cache lines, the consumer

begins processing events again. We use the same algorithm and parameters as

specified in the FastForward paper [22].

Our implementation of N-way buffering improves in two ways over

PiPA [57]. First, we replaced semaphores for buffer switching to lock-free

56

synchronization as in CAB. Second, the buffer size is aligned to a power of

two such that the end of each buffer is evaluated by a modulo operation and

test instruction. For fair comparison with CAB, we do not pin the buffer into

a fixed memory location which would remove a memory load, since a fixed

memory location is incompatible with multi-threaded analysis. Note that a

buffer in N-way buffering is essentially the same as a chunk in CAB, but they

are accessed differently; CAB’s operation is asymmetric while N-way buffering

is symmetric.

Figure 2.8 compares the performance of these buffering mechanisms to

CAB on two representative analyses: call graph and path profiling. Call graph

analysis requires far less communication compared to path profiling; the com-

munication overhead of these clients is discussed in detail in Section 2.6.2. The

performance of N-way buffering and FastForward queue is reported relative to

CAB’s execution time, where higher than zero means worse than CAB. For

dynamic analyses that perform less communication, like call graph profiling,

there is no significant difference between the three buffering designs. However,

for path profiling where the data sharing cost is high, CAB outperforms Fast-

Forward by a significant margin. The FastForward queue is well designed as a

general purpose queue, but the absence of chunks and batch processing causes

significant overhead when used for concurrent dynamic analysis. CAB per-

forms better than heavily optimized N-way buffering by ∼8% on average, and

up to 16%. The performance improvements of CAB are most significant on

benchmarks that produce events more frequently, such as jython and hsqldb.

57

The results show that CAB is more efficient in transferring events from

one thread to another than other buffering designs, especially when there is

significant data communication between the producer and consumer. This

result suggests that existing dynamic analyses that use buffering can achieve

a speed-up transparently by using CAB.

2.6.2 Exhaustive Mode Overhead

We now examine the performance of CAB in more detail, starting with

exhaustive mode. Figure 2.9 shows the exhaustive mode overhead for each con-

current analyzer and processor combination with N:M threading. The results

report the average over all benchmarks. Results for individual benchmarks

are in Section 2.7. All measurements are relative to the application without

any instrumentation or analysis, i.e., the application time A from our model

in Section 2.3. Lower bars are better. We break down the overhead as follows.

In each set of bars, the fourth white bar (“concurrent analyzer”) shows

CAB in exhaustive, concurrent analysis mode. The fifth black bar (“sequen-

tial analyzer”) is the same analysis, but the instrumentation and analysis are

inline in the same thread as the application (Es). The differences between

the fourth bar and the fifth bar show the performance benefit of a concurrent

implementation using CAB compared to sequential analysis. The first to third

bars break down the overhead of the concurrent analysis. The first bar (“in-

strumentation”) is pure instrumentation overhead; the application produces

the event and writes it to a single word in memory, but the analyzer thread is

58

Core−i7

Core−2

Pentium−4

0

100

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

Core−i7

Core−2

Pentium
−4

O
ve

rh
ea

d
(%

)

0

5

10

15

20

25

(a) Method Counting

Core−i7

Core−2

Pentium
−4

0

5

10

15

20

25

30

(b) Call Graph Profiling

Core−i7

Core−2

Pentium
−4

0

10

20

30

40

50

60

70

80

(c) Call Tree Profiling

Core−i7

Core−2

Pentium
−4

0

20

40

60

80

100

120

140

(d) Path Profiling

Core−i7

Core−2

Pentium
−4

0
100
200
300
400
500
600
700
800
900

1000
1100

(e) Cache Simulation

Figure 2.9: Exhaustive mode overhead with performance break-down, aver-
aged over all benchmarks (N:M threading model).

not running. The second bar (“enqueue”) is the enqueueing overhead where

the application enqueues to the buffer, but the analyzer thread is still not

running. The third bar isolates the communication overhead; the application

thread performs full CAB functionality while the analyzer dequeues and writes

to a single word, but does not process the event. Thus, data is transferred

59

through the cache, but not analyzed.

Method counting (Figure 2.9(a)) is very lightweight with minimal anal-

ysis overhead and is thus not a compelling candidate for a concurrent im-

plementation. In spite of its minimal analysis, concurrent method counting

performs nearly as well as sequential method counting. Leveraging reduced

memory latency in recent multicore hardware, the concurrent method count-

ing is only slower by 0.1% and 1.2% on the Core i7 and Core 2 respectively,

while it was 7% slower on the hyper-threaded Pentium 4.

Call graph profiling performs only slightly more analysis computation

than method counting, yet the concurrent call graph performs better than

the sequential version. Concurrent call graph profiling has approximately half

the overhead of the sequential implementation in Core i7 and Core 2. For

call graph profiling, and the other heavier-weight clients, concurrent execution

on the P4 shows benefit, but less than the other architectures, because the

application and analyzer share the core, and thus there is less true concurrency.

Call tree profiling has the same amount of communication as call graph

profiling, but performs more analysis. This analysis time is still less than the

application time, and thus concurrent dynamic analysis improves further over

sequential. For example, concurrent call tree profiling’s overhead is 60% less

than sequential profiling on the Core i7.

Path profiling has more communication overhead than call graph pro-

filing, but the computation required for each record is similar (updating a hash

60

table). This increase results in a higher relative enqueueing cost (second bar)

compared to the other analyzers. On the P4, path profiling time often domi-

nates application time, which limits performance improvements, as our model

predicts, but concurrent analysis still reduces overhead by on average 17%.

On the Core 2 and Core i7, concurrent path profiling decreases the overhead

by about half compared to sequential profiling. These results show that CAB

is efficiently offloading the profile data to the other core.

The cache simulator is an extreme case of heavy-weight analysis. The

analyzer itself is an order of magnitude slower than the application. Thus,

even if all the event data were transferred to the other core with zero overhead,

the benefit of the concurrent cache simulator is limited to a 100% reduction,

i.e., eliminating the application execution time. However, we measured faster

critical path execution because CAB offloads load and store data from the

critical path. CAB thus sometimes reduces the overhead by more than the

application time. Our results show that concurrent cache simulator was faster

by 73% on the Core i7, and 110% on the Core 2, and 193% on the Pentium 4.

Native threading Figure 2.10 presents the average concurrent analysis

overhead using our native thread implementation. These results show sim-

ilar overheads compared to the N:M threading results discussed above. The

native thread implementation is relative to a better baseline; without concur-

rent analysis, native threads and other enhancements improve performance

over the Jikes RVM version with N:M threading by 15 to 20%. Our native

61

Core−i7

Core−2

Pentium
−4

O
ve

rh
ea

d
(%

)

0
2
4
6
8

10
12
14
16
18
20

(a) Method Counting

Core−i7

Core−2

Pentium
−4

0
2
4
6
8

10
12
14
16
18
20

(b) Call Graph Profiling

Core−i7

Core−2

Pentium
−4

0
5

10
15
20
25
30
35
40
45
50

(c) Call Tree Profiling

Core−i7

Core−2

Pentium
−4

0

20

40

60

80

100

120

140

(d) Path Profiling

Core−i7

Core−2

Pentium
−4

0
150
300
450
600
750
900

1050
1200
1350
1500

(e) Cache Simulation

Figure 2.10: Exhaustive mode overhead, average over all benchmarks (native
threading model with per-thread CAB).

thread implementation of concurrent analysis improves over the N:M thread

version for method counting and call graph profiling, and is a bit slower for

path profiling and cache simulation. These results confirm that the threading

model is not central to our results.

62

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−10
−5

0
5

10
15
20
25
30
35
40
45
50

Core i7 Core 2 Quad Pentium 4

Figure 2.11: Call graph profiling overhead on native threading model with
per-processor CAB.

Native threading with per-processor CAB Figure 2.11 presents the

overhead of call graph profiling on native threading with per-processor CAB.

Geometric means for Core i7, Core 2, and Pentium 4 are 6.3%, 5.9%, and

17.9%, respectively, which are less than 1% difference to native threading

with per-thread CAB, i.e., 6.4%, 5.3%, and 17.0%, respectively. These results

prove that our framework successfully maintains scalability in buffer memory

usage. However, we choose the best buffer and chunk size for each benchmark

by hill climbing because the overhead is more sensitive to these parameters

than other implementations. This sensitivity suggests future work to explore

a mechanism that dynamically self-tunes these parameters. We believe that

per-thread CAB is useful in general for simplicity, but that per-processor CAB

are required for memory scalability for applications with many threads.

Exhaustive Mode Summary Our concurrent dynamic analysis framework

improves performance on three generations of hardware, from the Pentium 4

to the Core i7. All of our results, except for cache simulator on Core i7,

63

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Figure 2.12: Performance as buffer size varies for path profiling on DaCapo
hsqldb (using N:M threading on an Intel Core 2 Quad).

show that newer generation multicores yield the largest improvements. This

trend supports our contention that concurrent dynamic analysis will be more

important for future architectures, and that our framework can be the basis

for this and other applications that require offloading work to other cores.

2.6.3 Buffer Size Scalability

One of the strengths of our concurrent dynamic analysis framework

is the scalability of the buffer size in CAB. The particular benchmark and

analysis together determine a minimal buffer size that is sufficient to minimize

the overhead that comes from a variable event rate. If large buffers cause

performance degradations, as reported for PiPA [57], the increased headroom

of the larger buffer will come at the cost of degraded average performance.

64

Figure 2.12 presents buffer size scalability with path profiling and shows

L1 and L2 misses, as well as the cycles blocked on the slow-path of the CAB

enqueueing operation for hsqldb, a representative benchmark. Section 2.7

contains results for six more DaCapo programs. This experiment is performed

on a Core 2 Quad processor because it has the most irregular memory latency

of the three processors we evaluate. Each of the metrics is normalized to the

measurement with no analyzer. Since the application never blocks without an

analyzer, we normalize cycles blocked to the slow-path with a 16KB buffer

size.

L1 misses are high for small buffers because there are more conflict

misses between the application and analyzer threads while the application is

blocked. L1 misses drop near the 128KB and 512KB buffer sizes, and grow

again because a larger buffer size increases the memory footprint of the buffer.

There are few L2 misses on small buffers because they fit into the L2 cache, and

L2 misses grow as the buffer starts to contend with the application memory.

The execution time shows that the overhead is nearly constant given a

sufficiently large buffer size, demonstrating that the overhead is not correlated

to L1 or L2 cache misses and that larger buffers do not degrade performance.

This result supports our hypothesis that the design of CAB allows the hard-

ware prefetcher and cache subsystem to hide latency.

65

Sampling Rate (%)

O
ve

rh
ea

d
(%

)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

−10

−5

0

5

10

15

20

25

30
antlr
bloat
fop
hsqldb
jython
luindex
pmd

Call graph profiling sampling accuracy

E
rr

or
 R

at
e

(%
)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
antlr

bloat

fop

hsqldb

jython

luindex

pmd

(a) Call Graph profiling sampling overhead

Sampling Rate (%)

O
ve

rh
ea

d
(%

)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

10

20

30

40

50

60

70

80
antlr
bloat
fop
hsqldb
jython
luindex
pmd

Path profiling sampling accuracy

E
rr

or
 R

at
e

(%
)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
antlr

bloat

fop

hsqldb

jython

luindex

pmd

(b) Path profiling sampling overhead

Figure 2.13: Sampling overhead and error rate for call graph and path profiling
(N:M threading on an Intel Core 2 Quad).

2.6.4 Sampling Mode Accuracy vs Overhead

Figure 2.13 reports the overhead and error rate of call graph profiling

and path profiling in sampling mode running on a Core 2 Quad. The graphs

on the left show sampling overhead and the graphs on the right show accuracy.

For the overhead graphs, the y-axis shows percent overhead, while the

x-axis shows the sampling rate, expressed as the percent of samples that are

processed by the analyzer thread. All sampling mode data was collected using

a default burst size of 64 bytes, which is equal to the cache line size on each

of the processors we evaluated. A sampling rate of zero means that no sam-

ples were processed by the analyzer thread, and thus represents the minimum

66

overhead possible. Note that a 100% sampling rate is not the same as exhaus-

tive mode. The analyzer does not intentionally discard any samples, but since

the application does not block, it is possible for the application to overwrite

samples before they reach the analyzer.

In the accuracy graphs, the y-axis reports the error rate, which is the

average error rate of each individual metric. Each individual error rate is

defined as follows:

Error Rate =

∣∣∣∣∣Actual Frequency − Sampled Frequency
Sampling Rate

Actual Frequency

∣∣∣∣∣
For example, in call graph profiling, an individual error rate is the error rate

of each caller and callee pair. The error rate on the accuracy graph is the

average accuracy of all the individual error rates. This error rate treats low to

high frequency events equally so that it is not biased.

The overall performance trend is not surprising; overhead increases

linearly as the sample rate is increased. Sample rates ranging from 5% to 20%

offer a significant reduction in overhead versus the same profile collected in

exhaustive mode (from Figure 2.9), yet still produce profiles with extremely

high accuracy. The average overhead reduction relative to the exhaustive

profile was 55% for both call graph and path profiling at 5% sampling rate,

and the error rate is less than 3% (97% accurate). Depending on the use of the

profile data, this sampled profile may be indistinguishable from an exhaustive

mode profile.

For some benchmarks, the error rate begins increasing rapidly when

67

Benchmarks

com
press

jess
raytrace

db javac
m

pegaudio

m
trt

jack
antlr

bloat
fop

hsqldb

jython

luindex

pm
d

Geo−M
ean

O
ve

rh
ea

d

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
concurrent, shared L2 concurrent, no cache sharing sequential

Figure 2.14: The importance of shared caches. Path profiling overhead with
and without sharing between analyzer and application threads. Note that
y-axis is the factor of overhead, and not a percentage.

the number of samples taken increases past a certain point, which is quite

counter intuitive. More samples usually results in a more accurate profile.

This degradation occurs when the analyzer thread cannot keep up with the

application thread and the CAB buffer overflows. At this point, data is lost

in large, non-random bursts, so the accuracy of the sampled profile suffers.

Path profiling is more expensive, so increasing the sample rate leads to buffer

overflow sooner than with call graph profiling. To avoid this degradation, our

algorithm could overflow by periodically sampling the buffer head and tail, and

scale back the sample rate accordingly. We leave this functionality to future

work.

2.6.5 Shared cache and fine-grained parallelism

We now evaluate why concurrent analysis has become feasible with

recent multicore hardware. A concurrent dynamic analysis is fine-grained par-

68

allelism where data sharing happens frequently, thus the performance is sensi-

tive to the latency and the bandwidth of inter-core communication. To show

how much benefit comes from the low-latency communication, we changed

the affinity of the analyzer thread and the application thread to force them

onto different dies on the Intel Core 2 Quad processor. In this configuration,

they are much less likely to be on cores that share a cache at any level. In

this experiment, we use one application and one profiler thread to avoid cache

thrashing among application threads. Figure 2.14 compares the performance

of this new configuration, called “no cache sharing”, to the original shared

L2, and single-threaded configurations. The figure reports overhead as a fac-

tor slowdown, not as percent. Since in this configuration the threads must

communicate through memory instead of the L2, the overhead increases from

an average of ∼ 50% to ∼ 250%, confirming that in our setting, cache-aware

communication is critical to good performance.

2.7 Additional Results

Exhaustive Mode Overhead Figures 2.15 and 2.16 and 2.17 report the

per-benchmark breakdown of CAB’s exhaustive mode overhead with N:M

threading executing on the Core i7, Core 2, and Pentium 4, respectively. Fig-

ure 2.9 in Section 2.6.2 summarizes this data for all architectures.

Figure 2.16 reports the per-benchmark breakdown of CAB’s exhaustive

mode overhead with N:M threading executing on the Core 2 Quad processor.

Please refer to [26] for complete results on the other architectures (Core i7

69

and Pentium 4). Figure 2.9 in Section 2.6.2 summarizes this data for all

architectures.

Similarly, Figure 2.18 reports the per-benchmark exhaustive mode over-

heads for the native threading model. Figure 2.10 in Section 2.6.2 summarizes

this data.

Buffer Size Scalability Figure 2.19 reports performance as buffer size in-

creases when performing path profiling, for each of the remaining DaCapo

benchmarks. Figure 2.12 of Section 2.6.3 presented this data for the hsqldb

benchmark.

2.8 Conclusion and Interpretation

Managed languages have succeeded in part because the run up in single

processor speeds from Moore’s law more than compensated for the cost of ab-

stractions, such as managed runtimes and dynamic analyses. To continue to

give programmers current and future generations of powerful abstractions, we

will need to construct efficient mechanisms that more carefully minimize their

costs. This chapter addresses the cost of dynamic analysis. We introduce a

framework that uses CAB, a new highly-optimized cache-friendly asymmetric

buffering mechanism, that outperforms the prior state of the art, sometimes

significantly. For extremely light weight analysis (i.e., few events and little

processing) our framework is not beneficial, but for a wide class of dynamic

analysis, we show that our framework improves performance. Our work on

70

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−10
−5

0
5

10
15
20
25
30

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(a) Method Counting Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−10
−5

0
5

10
15
20
25
30
35
40
45
50

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(b) Call-Graph Profiling Overhead Percentage

Benchmarks

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

G
eoM

ean

O
v
e

rh
e

a
d

 (
%

)

!20
0

20
40
60
80

100
120
140
160
180
200
220
240
260

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(c) Call-Tree Profiling Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−20
0

20
40
60
80

100
120
140
160

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(d) Path Profiling Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(e) Cache Simulation Overhead Percentage

Figure 2.15: Per-benchmark exhaustive mode overhead on Core i7 (N:M
threading)

71

!"#$%&''

(&''
%)*+%)!&

,- ().)!
#$&/)0,1"

#+%+
()!2

)3+4%
-4")+

5"$ 6'74,-
(*+6"3

4013,&8

40'&)%!6

$#,
8)4)3

9&":&)3

;
.&
%6
&)
,<
=>
?

!"#
!$
#
$
"#
"$
%#
%$
&#

13'+%0#&3+)+1"3 &370&0& &370&0&@,&70&0& !"3!0%%&3+<=AB:? '&70&3+1)4

(a) Method Counting Overhead Percentage

!"#$%&''

(&''
%)*+%)!&

,- ().)!
#$&/)0,1"

#+%+
()!2

)3+4%
-4")+

5"$ 6'74,-
(*+6"3

4013,&8

40'&)%!6

$#,
8)4)3

9&":&)3

;
.&
%6
&)
,<
=>
?

!"#
!$
#
$
"#
"$
%#
%$
&#
&$
'#

13'+%0#&3+)+1"3 &370&0& &370&0&@,&70&0& !"3!0%%&3+<=AB:? '&70&3+1)4

(b) Call Graph Profiling Overhead Percentage

!"#$%&''

(&''
%)*+%)!&

,- ().)!
#$&/)0,1"

#+%+
()!2

)3+4%
-4")+

5"$ 6'74,-
(*+6"3

4013,&8

40'&)%!6

$#,
8)4)3

9&":&)3

;
.&
%6
&)
,<
=>
?

!"#
#
"#
$#
%#
&#
'##
'"#
'$#
'%#
'&#
"##
""#

13'+%0#&3+)+1"3 &370&0& &370&0&@,&70&0& !"3!0%%&3+<=AB:? '&70&3+1)4

(c) Call Tree Profiling Overhead Percentage

!"#$%&''

(&''
%)*+%)!&

,- ().)!
#$&/)0,1"

#+%+
()!2

)3+4%
-4")+

5"$ 6'74,-
(*+6"3

4013,&8

40'&)%!6

$#,
8)4)3

9&":&)3

;
.&
%6
&)
,<
=>
?

!"#
#
"#
$#
%#
&#
'##
'"#
'$#
'%#

13'+%0#&3+)+1"3 &370&0& &370&0&@,&70&0& !"3!0%%&3+<=AB:? '&70&3+1)4

(d) Path Profiling Overhead Percentage

!"#$%&''

(&''
%)*+%)!&

,- ().)!
#$&/)0,1"

#+%+
()!2

)3+4%
-4")+

5"$ 6'74,-
(*+6"3

4013,&8

40'&)%!6

$#,
9&":&)3

;
.&
%6
&)
,<
=>
?

@
A@@
B@@
C@@
DE@@
DF@@
DG@@
ED@@
EH@@
EI@@
A@@@

13'+%0#&3+)+1"3 &370&0& &370&0&J,&70&0& !"3!0%%&3+<=KL:? '&70&3+1)4

(e) Cache Simulation Overhead Percentage

Figure 2.16: Per-benchmark exhaustive mode overhead on Core 2 (N:M thread-
ing).

72

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−10
−5

0
5

10
15
20
25
30
35
40
45
50

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(a) Method Counting Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−10
−5

0
5

10
15
20
25
30
35
40
45
50

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(b) Call-Graph Profiling Overhead Percentage

Benchmarks

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−20
0

20
40
60
80

100
120
140
160
180
200
220

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(c) Call-Tree Profiling Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

0
40
80

120
160
200
240
280
320
360
400

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(d) Path Profiling Overhead Percentage

Benchmarks

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

pmd
GeoMean

O
ve

rh
ea

d
(%

)

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

instrumentation enqueue enqueue+dequeue concurrent (N:M) sequential

(e) Cache Simulation Overhead Percentage

Figure 2.17: Per-benchmark exhaustive mode overhead on Pentium 4 (N:M
threading model)

73

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−5
0
5

10
15
20
25
30
35
40
45
50

Core i7 Core 2 Pentium 4

(a) Method Counting Overhead Percentage

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−5
0
5

10
15
20
25
30
35
40
45
50

Core i7 Core 2 Pentium 4

(b) Call Graph Profiling Overhead Percentage

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

−20
0

20
40
60
80

100
120
140
160
180
200

Core i7 Core 2 Pentium 4

(c) Call Tree Profiling Overhead Percentage

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

0
30
60
90

120
150
180
210
240
270
300

Core i7 Core 2 Pentium 4

(d) Path Profiling Overhead Percentage

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

antlr
bloat

fop hsqldb
jython

luindex

lusearch

pmd
xalan

GeoMean

O
ve

rh
ea

d
(%

)

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000

Core i7 Core 2 Pentium 4

(e) Cache Simulation Overhead Percentage

Figure 2.18: Per-benchmark exhaustive mode overhead (native threading).

74

Jython

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Antlr

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Bloat

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Fop

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
N

or
m

al
iz

ed
 O

ve
rh

ea
d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Luindex

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0
1
2
3
4
5
6
7
8
9

10
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Pmd

Buffer Size

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0

1

2

3

4

5

6

7
Execution time L1 data cache miss L2 miss Cycles blocked in slow−path

Figure 2.19: Performance as buffer size varies for each of the DaCapo bench-
marks. Results are for path profiling using N:M threading on an Intel Core 2
Quad.

this chapter takes an important step towards reducing abstraction costs for

dynamic analyses by utilizing otherwise idle cores in multicore systems. We

believe that our optimization lessons are broadly applicable, and can help opti-

mize more generic parallel programs with heavy inter-thread communication.

75

Chapter 3

A Concurrent Trace-based JIT Compiler for

JavaScript

JavaScript is emerging as the scripting language of choice for client-side

web browsers [23], and the number of such application is exploding. Client-side

JavaScript applications initially performed simple HTML web page manipu-

lations to aid server-side web applications, but they have since evolved to use

asynchronous and XML features to perform sophisticated, interactive dynamic

content manipulation on the client-side. This style of JavaScript programming

is called AJAX (for Asynchronous JavaScript and XML). Companies, such as

Google and Yahoo, are using it to implement interactive desktop applications

such as mail, messaging, and collaborative spreadsheets, word processors, and

calendars. Because Internet usage on mobile platforms is growing rapidly, the

performance of JavaScript has become critical for both desktops and embed-

ded mobile devices. To speed up the processing of JavaScript applications,

many web browsers are adopting Just-In-Time (JIT) compilation, including

Firefox TraceMonkey [19], Google V8 [24], and WebKit SFE [54].

Generating efficient machine code for dynamic languages, such as Java-

Script, is more difficult than for statically typed languages. For dynamic lan-

76

guages, the compiler must generate code that correctly executes all possible

runtime types. Gal et al. recently introduced a trace-based JIT compilation

for dynamic languages to address this problem and to provide responsiveness

(i.e., low compiler pause times and memory requirements) [18]. Responsive-

ness is critical, because JavaScript runs on client-side web browsers. Pause

times induced by the JIT must be short enough not to disturb the end-user

experience. Therefore, Gal et al.’s system interprets until it detects a hot

path in a loop. The interpreter then traces, recording instructions and vari-

able types along a hot path. The JIT then specializes the trace by type and

translates it into native code in linear time. The JIT sacrifices code quality for

linear compile times, rather than applying heavy weight optimizations. This

trace-based JIT provides fast, light-weight compilation with a small memory

footprint, which make it suitable for resource-constrained devices.

On the hardware side, multicore processors are prevailing from embed-

ded to general purpose systems. The JavaScript language however lacks a

thread model, and thus all JavaScript applications are single-threaded. This

limitation provides the opportunity to perform the JIT and other VM ser-

vices concurrently on another core, transparently to the application, since the

application is guaranteed not to be using it. Unfortunately, state-of-the-art

trace-based JIT compilers are sequential [18, 19, 51], and have not exploited

concurrency to improve responsiveness. In fact, previous attempts failed to

produce a concurrent system because of the complex state space in trace-based

JIT compilation [17].

77

In this chapter, we present the design and implementation of a concur-

rent trace-based JIT compiler for JavaScript that combines responsiveness and

throughput for JavaScript applications. We address the synchronization prob-

lem specific to the trace-based JIT compiler, and present novel lock-free syn-

chronization mechanisms for wait-free communication between the interpreter

and the compiler. Hence, the compiler runs concurrently with the interpreter

and reduces pause times to nearly zero.

Our mechanism piggybacks a single word, we call the compiled state

variable (CSV), on each trace. Comparing with CSV synchronizes all of the

compilation actions, including checking for native code, preventing duplicate

traces, and allowing the interpreter to proceed, without using a lock.

We introduce lock-free dynamic trace stitching in which the compiler

patches new native code to the existing code. Dynamic trace stitching prevents

the compiler from waiting for trace stitching while the interpreter is executing

the native code, and reduces the potential overhead of returning from native

code to the interpreter.

We implement our design in the open source TamarinTracing VM,

and evaluate our implementation using the SunSpider JavaScript benchmark

suite [55] on three different hardware platforms. The experiments show that

our concurrent trace-based JIT implementation reduces the total pause time

by 88%, the maximum pause time by 93%, and the average pause time by

97% on Linux. Moreover, the design improves the throughput by an average

of 2–7%, with improvements up to 36%.

78

Our concurrent trace-based JIT virtually eliminates compiler pause

times and increases application throughput. Because tracing overlaps with

compilation, the interpreter prepares the trace earlier for subsequent compila-

tion, thus the JIT delivers the native code more quickly. This approach also

opens up the possibility of increasing the code quality with compiler optimiza-

tions without sacrificing the application pause time.

3.1 Related Work

Sequential trace-based JIT has been proposed for Java [20] and Java-

Script [18]. Gal et al. proposed splitting trace tree compilation steps into

multiple pipeline stages to exploit parallelism [17]. This is the only work we

can find seeking parallelism in the trace-based compilation. There are a total

of 19 compilation pipeline stages, and each pipeline stage runs on a separate

thread. Because of data dependency between each stage and the synchro-

nization overhead, the authors failed to achieve any speedup in compilation

time. We show having a parallel compiler thread operating on an independent

trace provides more benefit than pipelining compilation stages. With proper

synchronization mechanisms, our work successfully exploits parallelism in the

trace-based JIT by using tracing concurrently with the compilation, even when

using only one compiler thread.

Related work on adaptive compilation, includes the SELF-93 VM, which

introduced adaptive compilation strategies for minimizing application pause

time [33]. When a method is invoked for the first time, the VM compiles it

79

without optimizations using a light weight compiler. If the number of times

a method is invoked exceeds a threshold, the VM recompiles it with a more

heavy weight optimizing compiler. While the SELF-93 VM provided reason-

able responsiveness, it still must pause the application thread for compilation.

Krintz et al. implemented profile-driven background compilation in the

Jalapeño Virtual Machine (now called Jikes RVM) [3, 34]. In multiprocessor

systems, a background compiler thread overlaps with application execution,

which reduces compilation pause times. They also applied lazy compilation,

where the JIT only compiles the method on demand within a class instead of

compiling every method in a class. When the method is invoked for the first

time before the optimized code is ready, the VM pauses the application and

run the baseline compiler.

Kulkarni et al. explored maximizing throughput of background com-

pilation by adjusting the CPU utilization level of the compiler thread [35].

This technique is useful when the number of application threads exceeds the

number of physical processors and the compiler thread cannot fully utilize a

processor resource. They conducted their evaluation on method-based compi-

lation, though the same technique can be applied to trace-based compilation.

However, because JavaScript is single-threaded, it is less likely that all the

cores are fully utilized in today’s multicore hardware. Hence, the effect of

adjusting CPU usage levels will not be as significant as it is in multi-threaded

Java programs.

These novel techniques have made adaptive compilation practical in

80

Java Virtual Machines, such as Sun HotSpot [45], IBM J9 [50], and Jikes

RVM [3]. VMs without an interpreter still introduce compiler induced pause

times when first executing a method. This initial compiler pause time is not an

issue for most desktop and server environments, and hence has been neglected

by the research community. As computing environments evolve to resource

constrained devices, JIT compilation will be used for interactive applications,

where start-up pause times hurt responsiveness. Our concurrent JIT technique

is complementary to the prior work and shows how to use the interpreter and

a concurrent compiler to limit pause times. We explore issues specific to the

concurrent tracing JIT, which has not been evaluated by any previous work.

3.2 Background

3.2.1 Dynamic Typing in JavaScript

JavaScript is a dynamically typed language. The type of every variable

is inferred from its content dynamically. Furthermore, the type of JavaScript

variables can change over time as the script executes. For example, a vari-

able may hold an integer object at one time and later hold a string object.

A consequence of dynamic typing is that operations need to be dispatched

dynamically. While the degree of type stability in JavaScript is the subject of

current studies, our experiences and empirical results indicate that JavaScript

variables are type stable in most cases. This observation suggests that type-

based specialization techniques pioneered in Smalltalk [16] and later used in

Self [32] and Sun HotSpot [45] have the potential for tremendously improving

81

trunk trace

branch trace

guard

side exit

trunk trace

branch trace

trunk
trace

guard side
exit

byte code native code

after trunk trace
compilation

after branch trace
compilation

Figure 3.1: Byte code and native code transition in the trace-based JIT. Ini-
tially, the interpreter interprets on the byte code. First detected hot path
(thick path) is traced forming a trunk trace. Following hot paths guarded and
installed in a side-exit. The compiler attach the branch trace, which begins
from the hot side-exit to the loop header, to the trunk trace.

JavaScript performance.

3.2.2 Trace-based JIT Compilation

Hotpath VM is the first trace-based JIT compilation introduced for

Java applications in a resource-constrained environment [20]. The authors

later explored trace-based JIT for dynamic languages, such as JavaScript [18].

The trace-based JIT compiles only frequently executed paths in a loop.

Figure 3.1 shows an example of how the interpreter identifies a hot path,

and expands it. Initially, the interpreter executes the byte code instructions,

and identifies the hot loop with backward branch profiling as follows. When

the execution reaches the backward branch, the interpreter assumes it a loop

82

backedge and increments the counter associated with the branch target ad-

dress. When the counter reaches a threshold, the interpreter enables tracing,

and records each byte code instruction to a trace buffer upon execution. When

the control reaches back to the address where the tracing started, the inter-

preter stops tracing and the compiler compiles the trace to native code. As

the interpreter is not doing an exact path profile, the traced path may or may

not be the real hot path. The first trace in a loop is called a trunk trace.

Instructions are guarded if they potentially diverge from the recorded

path. If a guard is triggered, the native code takes a side-exit back to the

interpreter, and begins interpreting from the branch that caused the side-exit.

The interpreter counts each side-exit to identify frequent side-exits. When

a side-exit is taken beyond a threshold, it means the loop contains another

hot path, and the interpreter enables tracing from the side-exit point until it

reaches the address of the trunk trace. This trace is called a branch trace. A

branch trace is compiled and the code is stitched to the trunk trace at the

side-exit instruction. As the interpreter finds more hot paths, the number of

branch traces grows forming a trace tree.

Since the compilation granularity is a trace, which is smaller than a

method, the total memory footprint of the JIT is smaller than that of method-

based JITs. And because no control flow analysis is required, start-up com-

pilation time is less than that of the method-based compilers. However, as

optimization opportunities are limited, the final code quality is not likely to

be as good as code generated by method-based compilation. Therefore, trace

83

compilation is suitable for embedded environments where resources are limited,

or the initial JIT cost is far more important than steady state performance.

3.2.3 Tamarin and TraceMonkey

Tamarin [51] conforms to the international ECMAScript language stan-

dard. JavaScript, Adobe ActionScript, and Microsoft JScript are all dialects

of the ECMAScript language. There are two branches of Tamarin VM. One

is called TamarinCentral, which originally included a method-based JIT com-

piler. Tamarin Central is the ActionScript execution engine of Flash Player

10. The other one is called TamarinTracing, which includes a tracing JIT to

enable type-specialized optimizations.

The tracing backend compiler of TamarinTracing is called NanoJIT.

Its modular design eases migration to the other ECMAScript dialects. For

example, Mozilla has integrated NanoJIT into its interpreter (SpiderMonkey)

together with some enhancements. This trace-based JavaScript execution en-

gine of Firefox is named TraceMonkey. It delivers a tremendous performance

improvement over the previous release of Firefox, and is the state-of-the-art

JavaScript engine that we improve over.

3.3 Design

3.3.1 Phase Transitions in TamarinTracing

In this section, we explain the phase transitions of the sequential JIT

in TamarinTracing VM. Figure 3.2(a) depicts the phase and its transitions. It

84

I

T

BT

N

BI

has native code

no native code

cold loop

hot loop

hot side-exit

normal exit
or cold side-exit

invalid trace

C
valid traceend of trace

compile

Interpreter loopedge() NanoJIT

(a) Sequential JIT

I

T

BT

N

BI

has native code

no native code

cold loop

hot loop

hot side-exit

normal exit
or cold side-exit

invalid trace

C
valid traceend of trace

compile requested
Interpreter loopedge()

(b) Concurrent JIT

Figure 3.2: Phase transitions in Tamarin.

85

consists of the following six phases: I: normal interpreter, T: tracing enabled,

N: running native code, BI: loop edge without trace, BT: loop edge with trace,

and C: compilation or compile request.

Phase I. Initially, Tamarin starts with a standard interpretation phase I,

where only the interpreter runs without tracing.

Phase T. In this phase, the interpreter is running with tracing enabled.

Traced instructions are stored in a trace buffer in an SSA-based intermedi-

ate representation (IR). Inlining happens naturally since the trace is recorded

beyond a method boundary. In addition to the bytecode instructions, the IR

is instrumented with guard instructions. These guards are created with condi-

tional branches, type checks, function dispatches, and other runtime tests to

validate the preconditions of the trace. These guards guarantee an exit to the

interpreter from the native code whenever the conditions are false. Tracing is

performed at most one loop at a time.

Phase BI. The BI and BT phases are transitional phases between the in-

terpreter and JIT. When program control reaches a loop back-edge, the inter-

preter calls the loop back-edge callback. Phase BI and BT are entered by a

callback from phase I and T respectively. In phase BI, the loop back-edge

counter is incremented, and upon reaching a certain threshold, i.e., hot path,

the phase transitions to T if the loop has never been traced before. If the loop

has been compiled, Tamarin invokes the native code (N).

Phase BT. This phase validates the recorded trace. The trace is valid only

86

if the current loop back-edge is the same as the one that initiated the tracing,

i.e., from phase BI to T . If the trace was initiated by a different loop back-

edge, then Tamarin discards the trace and releases its buffer. If the trace is

valid, then Tamarin invokes NanoJIT (C). Because of the nature of its design,

Tamarin only traces inner loops.

Phase C. NanoJIT optimizes and compiles a complete trace to native code

at this phase. Since the trace is just a linear stream of statically typed SSA-

based IR, it is optimized similarly to conventional compiler backends; e.g.,

NanoJIT performs constant propagation, CSE (common-subexpression elim-

ination), and loop-invariant code-hoisting, and translates to machine code

during linear scan register allocation. Guards are converted to conditional

branches and compensation code to return to the interpreter. Once a trace

has been compiled, it is registered with the loop back-edge address. Right

after the compilation, Tamarin can invoke the machine code (N).

Phase N. In this phase, the compiled native code gets executed. If the trace is

a true hot trace, the compiled code will run often enough to outweigh the cost

of compilation. A guard may occasionally cause a trace to exit, for example,

when a different control-flow path is taken or when a type check or bounds

check fails. This condition is called a side-exit. The interpreter keeps a counter

for each side-exit. When a side-exit is taken frequently, the interpreter starts

tracing from the side-exit point. When the trace is recorded, it gets compiled

and the guard instruction is patched to jump to the compiled side-exit code.

If the native code is executed normally to the end of the loop, or the side-

87

I
 T
 C
 N
 T
I
 C
 N
 T
 C
 N

I
 T

C

N
 T
I
 N
T

C

N
I

C

I

I

I: Interpretation, T: Interpretation w/ tracing,

C: Compilation, N: Native code execution

Compiler thread

Interpreter thread

Interpreter thread

Concurrent JIT

Sequential JIT

Figure 3.3: Example of sequential vs concurrent JIT execution flow.

exit was not hot enough, the interpreter phase transitions to I, i.e., normal

interpretation.

3.3.2 Parallelism to Exploit

To design a proper synchronization mechanism to maximize the con-

currency, we must understand what parallelism can be exploited. Figure 3.3

shows an example execution flow with a sequential and a concurrent JIT. In

the concurrent JIT, as the compilation phase is offloaded to a separate thread,

the interpreter is responsive and making progress while compilation happens,

as is common for generic concurrent JIT compilers. For trace-based JIT, trac-

ing must precede the compilation phase. If tracing can happen concurrently

with compilation, subsequent compilation may start earlier, and deliver the

native code faster. Furthermore, more hot paths can be compiled during the

88

cold loop or

traced hot loop w/o
native code

loop

header

native code
execution

interpreting

without tracing

interpreting

with tracing

has native code

untraced hot loop

back edge

back edge

exit from
native
code

hot side-exit

normal exit or cold side-exit

application starts

Figure 3.4: The interpreter state transition at a loop header.

execution. We can expect to achieve throughput improvements as well as a re-

duction in the pause time. The concurrent JIT also opens the possibility to do

more aggressive optimizations without hurting pause time. The following sec-

tions explain how we designed the synchronization to achieve the parallelism

shown in Figure 3.3.

3.3.3 Compiled State Variable

In this trace-based JIT compiler, the interpreter changes state at loop

entry points. As shown in Figure 3.4, when the control flow reaches a loop entry

point, the interpreter must identify four different states. First, if compiled

native code exists for the loop, the interpreter calls it. The native code executes

until the end of the loop or it takes a side-exit. Second, if the loop has never

been traced and the loop is hot, i.e., it just crossed the frequency threshold,

89

the interpreter enables tracing and executes byte code. Identifying a hot loop

path is explained in Section 3.2 in detail. Third, if tracing is currently enabled

at the loop header, the interpreter disables it and requests compilation. While

compiling the trace, the interpreter continues to execute the program. Fourth,

if the loop is cold, the interpreter increments the associated counter and keeps

on interpreting the byte codes.

Checking all these cases at a loop header requires a synchronization with

the compiler thread. Otherwise, race conditions may cause overhead or incor-

rect execution. For example, the interpreter may make duplicate compilation

requests, or trace the same loop multiple times. The simplest synchronization

method is using a coarse-grained lock around the checking routine. However,

the lock can easily be contended after a compilation request is made, especially

with a short loop body, because the control reaches the loop header frequently.

We could use a fine-grained lock for accessing each loop data structure. How-

ever, this approach is also infeasible because the native code for the loop can

change as the trace tree grows, and holding a lock while executing the native

code would stall the compiler too often.

To overcome these challenges, we design a lock-free synchronization

technique using a compiled state variable (CSV). We use a word size CSV for

each loop, and align it not so as to cross the cache line. Thus, stores to it are

atomic. The value of the CSV is defined as shown in Table 3.1. By following

a simple but efficient protocol for incrementing the CSV value, the interpreter

checks the state at the loop header without any explicit synchronization. The

90

Description Action CSV

Hot loop Enable tracing 0
Cold loop Normal interpretation 0

Trace enabled
Disable tracing

0 to 1
and request compilation

Compilation already requested Normal interpretation 1
Has native code Call native code 2

Table 3.1: Value of Compiled State Variable(CSV) at a loop header.

initial value of CSV is zero. The interpreter traces and interprets in this state.

Only the interpreter increments it from 0 to 1 when requesting a compilation.

As it is a local change, the interpreter sees the value 1 on the subsequent

operations before the compiler sees the value 1. The compiler changes the

value from 1 to 2 to register the native code for the loop. Thus, when the

interpreter reads the value 2, it is guaranteed that the native code is ready

to call. Therefore, the pause time for waiting is almost zero for both the

interpreter and the compiler, maximizing the concurrency.

When the compiler makes a JIT request, the trace buffer is pushed to a

queue before it increments the CSV to 1. We use a simple synchronized FIFO

queue for the JIT requests, because it is normally not contended. However, a

generic, concurrent, lock-free queue for one producer and consumer [22] could

always replace this queue.

3.3.4 Dynamic Trace Stitching

The trace-based JIT specializes types and paths, and injects guard

instructions to verify the assumptions for the type and path of the trace.

91

Guards trigger side-exit code if the assumption is not met, and returns control

back to the interpreter.

If two or more hot paths exist in a loop, the first hot path will be com-

piled normally, but the subsequent hot paths will frequently trigger guards.

As explained in Section 3.2, the interpreter traces from the branch that caused

the side-exit (branch trace), and compiles it. As more hot paths are revealed,

trunk and branch traces form a trace tree. Recompiling the whole trace tree

is good for the code quality, but the compilation time will grow quadratically

if the whole trace tree is recompiled every time a new trace is attached to

the tree. Also, this strategy would keep the trace buffer in memory for future

recompilation, which is infeasible in memory constrained environments. In-

stead of recompiling the whole tree, we use a trace stitching technique. Trace

stitching is a technique that compiles the new branch trace only, and patches

the side-exit to jump to the branch trace native code.

Branch patching modifies code that is produced by more than one trace.

Hence, it is probable that interpreter is executing the native code at the same

time that the compiler wants to patch it. Naive use of a lock around the native

code will incur a significant pause time on both the interpreter and the com-

piler. Waiting becomes a problem if time spent in the native code grows large,

reducing the overall concurrency. The compiler may also make a duplicate

copy of the code instead of patching, or delay the patching until the native

code exits to the interpreter. Either method has inefficiencies, and we propose

lock-free dynamic trace stitching for patching the branch. The key factor of

92

dynamic trace stitching is that a side-exit jump is a safe point where all vari-

ables are synchronized to the memory. We use each side-exit jump instruction

as a placeholder for patching. When the compiler generates the native code

for the branch trace, jumping to the previous side-exit target or jumping to

the branch trace code does not change the program semantics. Therefore, if

the patching is atomic, the compiler can patch the jump instruction directly

without waiting for the interpreter. If the branch target operand is properly

aligned, patching is done by a single store instruction. There is no harmful

data race even without a lock. With these benign data races, the interpreter

and the compiler run concurrently without pausing.

3.4 Implementation

We implemented our design in the open-source TamarinTracing Virtual

Machine [51]. Our design implements TamarinTracing’s sequential trace-based

JIT and targets the 32bit x86 architecture.

Incrementing the Compiled State Variable The compiled state variable

is piggybacked on both trunk and branch traces. We aligned the compiled state

variable at a word granularity, and since the cache line is multiple of word size,

CSV does not cross the cache line boundary. Therefore, it is safe to increment

the variable without synchronization. We simply declared the CSV volatile

to force a memory load.

93

Dynamic Trace Stitching A direct branch instruction(jmp) is 5 bytes in

32bit x86, and the last 4 bytes are the branch target operand. Since Tamar-

inTracing VM’s JIT compiler generates the machine code in reverse order,

padding the branch instruction to align it with the cache line is difficult. Thus,

we used compare-and-swap instruction to replace the branch target operand

of the side-exit jump instruction.

GC Thread-Safety TamarinTracing uses a mark-sweep garbage collector,

called MMGC, to manage application and VM objects. The current MMGC

implementation is not thread-safe. To make the compiler concurrent, we must

either make MMGC thread-safe or eliminate compiler objects from the MMGC

heap. We choose the latter, and use explicit allocation and deallocation in the

compiler, i.e., malloc and free. This change to explicit memory management

improves the throughput by ∼10%. To isolate the improvement caused by

modifying the JIT, we use this sequential JIT with explicit memory manage-

ment as the baseline of our evaluation in Section 2.6. Our concurrent JIT is

implemented on top of this baseline.

Implementation Correctness To validate the correctness of our imple-

mentation, we used Intel Thread Checker to detect harmful race conditions.

We also ran the acceptance test suite used to verify sequential Tamarin VM.

Our implementation passes the same test entries that Tamarin VM passes.

Furthermore, our concurrent JIT runs the same set of SunSpider benchmarks

94

Benchmarks
Bytecode Compiled Compilation Native Interpreter Runtime
(bytes) Traces (%) (%) (%) (ms)

access-binary-trees 697 37 5.4 89.1 5.5 74
access-fannkuch 823 49 2.4 94.2 3.3 117
access-nbody 2,202 27 3.5 91.6 4.9 144
access-nsieve 543 14 1.4 96.8 1.7 56
bitops-3bit-bits-in-byte 414 6 4.0 89.7 6.3 12
bitops-bits-in-byte 385 15 1.5 96.5 2.1 40
bitops-bitwise-and 264 3 0.2 99.4 0.4 179
bitops-nsieve-bits 586 11 1.4 96.6 2.0 50
controlflow-recursive 504 35 8.3 84.5 7.3 28
crypto-aes 7,004 158 11.4 63.2 25.4 150
crypto-md5 5,470 6 24.6 17.4 58.0 120
math-cordic 832 9 1.8 95.0 3.1 32
math-partial-sums 758 11 1.3 93.2 5.5 41
math-spectral-norm 841 35 7.8 78.3 13.9 36
s3d-cube 4,918 188 8.4 41.6 50.0 155
s3d-morph 573 14 1.5 95.9 2.6 81
s3d-raytrace 7,289 147 9.3 68.1 22.6 170
string-fasta 1,426 22 1.9 95.6 2.5 141
string-validate-input 1,511 28 1.4 96.0 2.6 261

Table 3.2: Workload characterization of SunSpider benchmarks with sequential
Tamarin JIT.

correctly as compared to the sequential JIT. Therefore, we believe our imple-

mentation produces the same results as the original Tamarin VM implemen-

tation.

3.5 Evaluation

3.5.1 Experiments Setup

We evaluate our implementation on three different configurations:

• Linux 2.6 and NPTL pthread library running on Intel Core 2 Quad

2.4GHz which has four cores and two 4MB shared L2 cache

• Windows and Win32 thread library running on Intel Core 2 Duo 2.4GHz

which has two cores and 2MB shared L2 cache

95

• Mac OS X Leopard and pthread library on Intel Core 2 Duo 2.8GHz

which has two cores and 4MB shared L2 cache.

Since it is easier to configure Linux to have minimal noise, we ran

50 runs and averaged the results. On other configurations, because of the

inevitable perturbation of the OS services, we picked 10 best runs out of 50

and calculated the average. We present the 95% confidence interval assuming

Student’s t-distribution on all results to validate the statistical significance.

For easy comparisons, all graphs are presented such that lower is better.

3.5.2 SunSpider Benchmarks Characterization

The SunSpider benchmark suite is a set of JavaScript programs in-

tended to test performance [55]. It is widely used to test and compare Java-

Script VMs on web browsers such as Firefox SpiderMonkey, Adobe Action-

Script, and Google V8. Table 3.2 characterizes the benchmarks in the Linux

configuration.

Figure 3.5 breaks down application execution time to compare the se-

quential and concurrent JIT. The first bar is the application with the sequential

JIT, and the second bar isolates the application thread activity in the concur-

rent JIT: interpreter, native code, and the pause time caused by compilation

request. The third bar is the compile time at the compiler thread. The y-axis

value for concurrent JIT is normalized to the sequential JIT total execution

time. Hence, bar 2 less than 100% is the speedup. The compilation time in

bar 2 is the total pause time in concurrent JIT.

96

In most benchmarks, the concurrent JIT implementation improves both

responsiveness and throughput. The pause time with the concurrent JIT

is negligible, and speedups are noticeable in many benchmarks. In many

cases, speedup is due to faster delivery of the native code. For example,

in crypto-aes, the compilation time in both the sequential and concurrent

versions is about the same, and the amount of speedup is mostly from the

compiler being offloaded. The s3d-cube benchmark shows the most speedup,

even though the compilation time in the concurrent JIT is almost twice as

much. The interpreter requests more compilation and the resulting native

code executes much faster. More tracing is performed concurrently with the

compiler. As a result, time spent in the interpreter has reduced significantly,

which accounts for the speedup.

Notice that the larger, more complex benchmarks (crypto-aes, crypto-

-md5, s3d-cube, s3d-raytrace) are influenced most by the concurrent JIT.

This trend indicates as JavaScript programs grow in size and complexity, the

concurrent JIT is likely to provide more benefits due to the need for an increase

in native code execution.

3.5.3 Responsiveness

In this section, we evaluate application responsiveness using total, av-

erage, and maximum pause time. Total pause time for running a benchmark is

a good indicator of how responsive the application is, and the average reflects

the end-user experience. Many small pauses are better than one big pause in

97

Bar 1: Sequential JIT, Bar 2: Concurrent JIT (interpreter thread), Bar 3: Concurrent JIT (compiler thread)

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

crypto−sha1

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

Interpretation

Native Code Execution

Compilation

Figure 3.5: Average time break down in compilation, native code, and inter-
pretation.

terms of responsiveness [13]. We compare maximum pause time, which is the

most noticeable pause to the end-user, and we want it to be as low as possible.

Figure 3.6 demonstrates that our concurrent JIT implementation re-

duces both maximum and total pause time significantly. The y-axis is the

pause time normalized to the pause time in the sequential JIT. A value of 1.0

means that the pause time is the same, and 0.1 means pause time is reduced

by 90%. Tics at the top of each bar shows 95% confidence interval.

Geometric means in the Linux configuration show that we reduced the

total pause time by 89% and 93% for the maximum, showing a huge im-

provement in responsiveness. Furthermore, the average pause is only 97% of

the sequential JIT. Even in the worst case on Mac OS X with the bitopts-

-bits-in-byte benchmark, the total pause time is reduced by 50%. Yet,

the average is reduced by 87%, which shows the implementation successfully

avoided long pauses.

98

Linux 2.6

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

crypto−sha1

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 P
au

se
 T

im
e

0

0.1

0.2

0.3

0.4

0.5
total pause time average pause time maximum pause time

Windows XP

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

crypto−sha1

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 P
au

se
 T

im
e

0

0.1

0.2

0.3

0.4

0.5
total pause time average pause time maximum pause time

Mac OS X 10.5

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

crypto−sha1

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 P
au

se
 T

im
e

0

0.1

0.2

0.3

0.4

0.5
total pause time average pause time maximum pause time

Figure 3.6: Pause time ratios of concurrent vs. sequential JITs.

99

As the compilation time per trace grows, it is likely that the concurrent

JIT will reduce the pause time more. Table 3.2 shows that crypto-md5 has the

highest per trace compilation time-compiling 6 traces for 25% of the execution

time, and achieves the best reduction in pause time: 99% for all three metrics.

3.5.4 Throughput

Improving responsiveness does not necessarily mean improving through-

put. On the other hand, better responsiveness often requires sacrificing through-

put, e.g., concurrent garbage collectors versus stop-the-world garbage collec-

tors. However, we improved throughput as well as the responsiveness because

our implementation executes the interpreter and tracing concurrently with the

compiler.

Figure 3.7 shows the speedup for each configuration. The x-axis is

the SunSpider benchmarks and the y-axis is the speedup normalized to the

execution time with the sequential JIT. The concurrent JIT achieves 5–6%

speedup on all platforms on average, and achieves up to 36% on s3d-cube on

Windows. As explained in Section 3.5.2, the speedup in s3d-cube is due to

increasing the number of compiled traces.

Another noticeable result is that the concurrent JIT is uniform in its

improvement. Only two benchmarks have minor degradations on Mac OS X.

The performance variation of crypto-md5 among the platforms is due to the

fact that it only spends 17% of the time in compiled native code, and only

compiles 6 traces. The remaining 18 programs improve or stay the same on

100

Throughput Improvement

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

crypto−sha1

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

Geo−M
ean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

0

10

20

30

40

50

60

70

80

90

100
Linux Windows XP Mac OS X

Figure 3.7: Execution time improvement with concurrent JIT.

Execution Time Comparison

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(%
)

50

60

70

80

90

100
Shared L2 Separate L2 OS Default

Figure 3.8: Performance impact on various core configurations.

all platforms.

3.5.5 Multicore Impact on Performance

In this section, we present the thread scheduling impact in the context

of the compiler and interpreter threads in multicore systems. A major differ-

ence between multicore and traditional off-chip multiprocessors is the memory

101

Total Pause Time Comparison

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 T
ot

al
 P

au
se

 T
im

e

0

0.1

0.2

0.3

0.4
Shared L2 Separate L2 OS Default

Maximum Pause Time Comparison

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−m
d5

m
ath−cordic

m
ath−partial−sum

s

m
ath−spectral−norm

s3d−cube

s3d−m
orph

s3d−raytrace

string−fasta

string−validate−input

GeoM
ean

N
or

m
al

iz
ed

 M
ax

im
um

 P
au

se
 T

im
e

0

0.1

0.2

0.3

0.4
Shared L2 Separate L2 OS Default

Figure 3.9: Pause time impact on various core configurations.

latency. Especially in shared-cache multicore systems, load and store latency

is significantly less than off-chip multiprocessors. Moreover, shared-cache mul-

ticores add nonuniformity to load/store latency, which makes the performance

less predictable.

Intel Core 2 Quad processor we used for Linux configuration is a shared-

cache multicore where each pair of cores shares L2. Thus, core 0 and 1 commu-

nicate via the L2 cache, but core 0 and 2 go through the interconnect network.

In the concurrent JIT, the compiler thread is a producer whose output would

102

be transferred to the instruction cache in the interpreter thread. Hypotheti-

cally, we can expect that lower communication latency will better improve the

performance.

Figure 3.8 shows how thread assignment influences the performance.

Lack of operating support for hard pinning a thread to a given core, we

could only hint the OS scheduler using pthread setaffinity np provided

by NPTL pthread library. The first bar corresponds to the case where com-

piler and interpreter threads are configured to share L2. The second bar

represents the case where compiler and interpreter do not share caches. The

third bar is measured without any hint to the scheduler. In all benchmarks,

the shared L2 configuration performed the best, though the benefit is small

for most of the benchmarks. However, in a couple of benchmarks, such as

bitops-3bit-bits-in-byte, show a large difference. Performance is slightly

stable in the shared L2 configuration. You can observe that confidence interval

is the narrowest in this configuration. Therefore, it is always good to put both

compiler and interpreter threads on the cores that shares cache.

We also compare total and maximum pause time in Figure 3.9. As in

performance comparison, overall reduction for shared L2 configuration in total

and maximum pause time is modest, and the measurements are slightly more

stable. Even though improvement in overall pause time is infinitesimal, it is

as significant as 5% for some benchmarks.

Our results indicate that the choice of the right pair of cores for the

compiler and interpreter threads can influences performance. The impact may

103

increase in multicore systems with more complex memory hierarchy.

3.6 Conclusion and Interpretation

In this chapter, we showed that even though JavaScript language itself

is currently single-threaded, both its throughput and responsiveness can bene-

fit from multiple cores with our concurrent JIT compiler. This improvement is

achieved by running the JIT compiler concurrently with the interpreter. Our

results show that most of the compile-time pauses can be eliminated, resulting

in a total, average, and maximum reduction in pause time by 88%, 97%, and

93%, respectively. Moreover, the throughput is also increased by an average

of 5%, with a maximum of 36%. Our work on this chapter demonstrates a

way to exploit multicore hardware to improve application performance and

responsiveness by offloading system tasks.

104

Chapter 4

Conclusion

This dissertation concludes with a summary of the work presented and

a discussion of future work.

Scalability of managed runtime systems for managed languages is an

urgent problem in the multicore era. This thesis improves the managed run-

time systems scalability in two ways. First, we presented a concurrent dynamic

analysis framework, which demonstrates how to implement a concurrent anal-

ysis thread with very little perturbation of the application. We introduced

Cache-friendly Asymmetric Buffering (CAB) that effectively offloads analysis

data from the application’s critical path to a separate analysis thread mini-

mizing the microarchitectural side-effects. Second, we design and implement

a concurrent trace-based just-in-time compilation that utilizes extra cores,

which otherwise are not used by the application for the single-threaded Java-

Script language. Our concurrent trace-based JIT achieves both throughput

and responsiveness improvement. These approaches are ready for immediate

adoption in real world managed runtimes.

105

4.1 Future Work

This dissertation contributed to making managed runtimes more scal-

able. However, even with these contributions, managed runtimes are not yet

scalable enough. The community needs to further characterize and redesign

the entire managed runtime systems to attain scalability. This problem is both

an urgent and promising research direction needed to make a solid software

infrastructure for applications executing on multicore hardware.

Achieving parallelism and concurrency algorithmically has been stud-

ied in some areas, such as concurrent garbage collection. As our results in this

dissertation indicate, scalability is prone to microarchitectural side-effects, and

for the most part, researchers have not considered these effects when design-

ing runtime components. Blackburn et al. recently improved stop-the-world

garbage collector by efficiently managing cache lines [9]. Yet, no one has

designed concurrent garbage collectors, not to mention other runtime compo-

nents, that minimize application perturbation due to microarchitectural side-

effects.

Taking advantages of extra cores is another promising direction. Our

concurrent dynamic analysis framework showed how to efficiently offload anal-

ysis data from the application. Further research should explore other clients,

such as debugging, security, and software support, that can build on top of

this framework. We believe that our framework will reduce the overhead and

increase the accuracy for these clients.

106

In particular, future work should pursue improving scalability of ex-

isting managed runtime components, such as garbage collectors and thread

scheduling. We believe if successful, this research would benefit managed lan-

guage developers and users by increasing scalability on future processors, and

this has potential to help this software enter into a new virtuous cycle in the

multicore era.

107

Bibliography

[1] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. Flynn Hummel,

D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,

M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan, and

J. Whaley. The Jalapeño virtual machine. IBM System Journal,

39(1):211–238, February 2000.

[2] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,

Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T.

Vandevoorde, Carl A. Waldspurger, and William E. Weihl. Continuous

profiling: Where have all the cycles gone? ACM Transactions on

Computer Systems, 15(4):357–390, 1997.

[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive

optimization in the Jalapeño JVM. In ACM Conference on

Object–Oriented Programming, Systems, Languages, and Applications,

pages 47–65, Minneapolis, MN, October 2000.

[4] Matthew Arnold and David Grove. Collecting and exploiting

high-accuracy call graph profiles in virtual machines. In ACM/IEEE

International Symposium on Code Generation and Optimization, pages

51–62, San Jose, CA, March 2005.

108

[5] Matthew Arnold and Barbara G. Ryder. A framework for reducing the

cost of instrumented code. In ACM Conference on Programming

Language Design and Implementation, pages 168–179, Snowbird, UT,

June 2001.

[6] Thomas Ball and James R. Larus. Efficient path profiling. In

ACM/IEEE International Symposium on Microarchitecture, pages

46–57, Paris, France, December 1996.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,

M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.

The DaCapo benchmarks: Java benchmarking development and

analysis. In ACM Conference on Object–Oriented Programming,

Systems, Languages, and Applications, pages 83–89, Portland, OR,

October 2006.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,

M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.

The DaCapo Benchmarks: Java benchmarking development and

analysis (extended version). Technical Report TR-CS-06-01, Dept. of

Computer Science, Australian National University, 2006.

109

http://www.dacapobench.org.

[9] S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage

collector with space efficiency, fast collection, and mutator locality. In

ACM Conference on Programming Language Design and

Implementation, pages 22–32, Tuscon, AZ, June 2008.

[10] Michael D. Bond and Kathryn S. McKinley. Continuous path and edge

profiling. In ACM/IEEE International Symposium on

Microarchitecture, pages 130–140, Barcelona, Spain, November 2005.

[11] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A

scalable cross-platform infrastructure for application performance tuning

using hardware counters. In ACM/IEEE Conference on

Supercomputing, pages 1–13, Article 42, Dallas, TX, 2000.

[12] D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[13] Perry Cheng, Robert Harper, and Peter Lee. Generational stack

collection and profile-driven pretenuring. In ACM Conference on

Programming Language Design and Implementation, pages 162–173,

Montreal, Canada, 1998.

[14] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling dynamic

program analysis from execution in virtual environments. In USENIX

Annual Technical Conference, pages 1–14, Boston, MA, 2008.

110

[15] Intel Corporation. Vtune: Visual tuning environment.

http://software.intel.com/en-us/intel-vtune.

[16] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of

the Smalltalk-80 system. In ACM Symposium on Principles of

Programming Languages, pages 297–302, Salt Lake City, UT, 1984.

[17] Andreas Gal, Michael Bebenita, Mason Chang, and Michael Franz.

Making the Compilation “Pipeline” Explicit: Dynamic Compilation

Using Trace Tree Serialization. Technical Report 07-12, University of

California, Irvine, 2007.

[18] Andreas Gal, Brendan Eich, Mike Shaver, Daid Anderson, Blake

Kaplan, Graydon Hoare, David mandelin, Boris Zbarsky, Jason

orendorff, jesse Ruderman, Edwin Smith, Rick Reitmaier,

Mohammad R. Haghighat, Michael Bebenita, Mason Chang, and

Michael Franz. Trace-based just-in-time type specialization for dynamic

languages. In ACM Conference on Programming Language Design and

Implementation, Dublin, Ireland, 2009.

[19] Andreas Gal and Mozilla Foundation. TraceMonkey.

https://wiki.mozilla.org/JavaScript:TraceMonkey.

[20] Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: An

effective JIT compiler for resource-constrained devices. In ACM

International Conference on Virtual Execution Environments, pages

144–153, Ottawa, Canada, 2006.

111

[21] Kourosh Gharachorloo and Phillip B. Gibbons. Detecting violations of

sequential consistency. In ACM Symposium on Parallel Algorithms and

Architectures, pages 316–326, Hilton Head, SC, 1991.

[22] John Giacomoni, Tipp Moseley, and Manish Vachharajani. FastForward

for efficient pipeline parallelism: a cache-optimized concurrent lock-free

queue. In ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 43–52, Salt Lake City, UT, USA, 2008.

[23] Danny Goodman. JavaScript Bible. IDG Books Worldwide, Inc., Foster

City, CA, 3rd, edition, 1998.

[24] Google Inc. V8. http://code.google.com/p/v8.

[25] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S.

McKinley. A concurrent dynamic analysis framework for multicore

hardware. In ACM Conference on Object–Oriented Programming,

Systems, Languages, and Applications, Orlando, FL, 2009.

[26] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S.

McKinley. A concurrent dynamic analysis framework for multicore

hardware. Technical Report TR-09-24, The University of Texas at

Austin, 2009.

[27] Jungwoo Ha, Mohammad Haghighat, Shengnan Cong, and Kathryn S.

McKinley. A concurrent trace-based just-in-time compiler. In

112

Workshop on Parallel Execution of Sequential Programs on Multicore

Architecture, pages 47–54, Austin, TX, 2009.

[28] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit Roy,

Hany E. Ramadan, Donald E. Porter, David L. Chen, and Emmett

Witchel. Improved error reporting for software that uses black-box

components. In ACM Conference on Programming Language Design

and Implementation, pages 101–111, San Diego, CA, 2007.

[29] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs

using automatic anomaly detection. In ACM/IEEE International

Conference on Software Engineering, pages 291–301, Orlando, FL, 2002.

[30] Maurice Herlihy. Wait-free synchronization. ACM Transactions on

Programming Language Systems, 13(1):124–149, 1991.

[31] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for

low-overhead temporal profiling. In ACM Workshop on

Feedback-Directed and Dynamic Optimization, pages 117–126, December

2001.

[32] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls

with run-time type feedback. In ACM Conference on Programming

Language Design and Implementation, pages 326–336, Orlando, FL,

1994.

113

[33] Urs Hölzle and David Ungar. Reconciling responsiveness with

performance in pure object-oriented languages. ACM Transactions on

Programming Languages and Systems, 18(4):355–400, 1996.

[34] Chandra Krintz, David Grove, Derek Lieber, Vivek Sarkar, and Brad

Calder. Reducing the overhead of dynamic compilation. Software:

Practice and Experience, 31:200–1, 2001.

[35] Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynamic

compilation: the benefits of early investing. In ACM International

Conference on Virtual Execution Environments, pages 94–104, San

Diego, CA, 2007.

[36] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley.

Securing web applications with static and dynamic information flow

tracking. In ACM Workshop Partial Evaluation and Semantics-Based

Program Manipulation, pages 3–12, San Francisco, CA, 2008.

[37] Leslie Lamport. Specifying concurrent program modules. ACM

Transactions on Programming Language Systems, 5(2):190–222, 1983.

[38] W. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies

with an integrated memory hierarchy design. In IEEE International

Symposium on High Performance Computer Architecture, pages

302–312, Nuevo Leone, Mexico, January 2001.

114

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In ACM Conference on Programming

Language Design and Implementation, pages 190–200, Chicago, IL, 2005.

[40] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding

application errors and security flaws using PQL: a Program Query

Language. In ACM Conference on Object–Oriented Programming,

Systems, Languages, and Applications, pages 365–383, San Diego, CA,

2005.

[41] H. Massalin and C. Pu. Threads and input/output in the synthesis

kernel. In ACM Symposium on Operating Systems Principles, pages

191–201, Litchfield Park, AZ, 1989.

[42] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using

elimination to implement scalable and lock-free fifo queues. In ACM

Symposium on Parallelism in Algorithms and Architectures, pages

253–262, Las Vegas, NV, 2005.

[43] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and

Ramesh Peri. Shadow Profiling: Hiding instrumentation costs with

parallelism. In ACM/IEEE International Symposium on Code

Generation and Optimization, pages 198–208, Washington, DC, 2007.

115

[44] Nicholas Nethercote and Julian Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In ACM Conference on

Programming Language Design and Implementation, pages 89–100, San

Diego, CA, 2007.

[45] Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot

server compiler. In Java Virtual Machine Research and Technology

Symposium, Monterey, CA, April 2001. Sun Microsystems.

[46] Mikael Pettersson. Linux Intel/x86 performance counters, 2003.

http://user.it.uu.se/mikpe/linux/perfctr/.

[47] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley,

and Emmett Witchel. Laminar: Practical fine-grained decentralized

information flow control. In ACM Conference on Programming

Language Design and Implementation, pages 63–74, Dublin, Ireland,

2009.

[48] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. HeapMon: a

helper-thread approach to programmable, automatic, and low-overhead

memory bug detection. IBM Journal of Research and Development,

50(2/3):261–275, 2006.

[49] Standard Performance Evaluation Corporation. SPECjvm98

Documentation, release 1.03 edition, March 1999.

116

[50] Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley.

Experiences with Multi-threading and Dynamic Class Loading in a Java

Just-In-Time Compiler. In ACM/IEEE International Symposium on

Code Generation and Optimization, pages 87–97, New York, NY, 2006.

[51] Tamarin. Tamarin Project.

http://www.mozilla.org/projects/tamarin/.

[52] Steven Wallace and Kim Hazelwood. SuperPin: Parallelizing dynamic

instrumentation for real-time performance. In ACM/IEEE International

Symposium on Code Generation and Optimization, pages 209–220, San

Jose, CA, 2007.

[53] Z. Wang, K. S. McKinley, A. Rosenberg, and C. C. Weems. Using the

compiler to improve cache replacement decisions. In ACM/IEEE

International Conference on Parallel Architectures and Compilation

Techniques, pages 199–208, Charlottesville, VA, September 2002.

[54] WebKit. SquirrelFish Extreme. http://webkit.org/blog/.

[55] WebKit. SunSpider JavaScript Benchmark.

http://webkit.org/perf/sunspider-0.9/sunspider.html.

[56] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min

Wang, and Wei-Ying Ma. Automated known problem diagnosis with

event traces. In ACM European Conference on Computer Systems,

pages 375–388, Leuven, Belgium, 2006.

117

[57] Qin Zhao, Ioana Cutcutache, and Weng-Fai Wong. PiPA: Pipelined

profiling and analysis on multi-core systems. In ACM/IEEE

International Symposium on Code Generation and Optimization, pages

185–194, Boston, MA, 2008.

[58] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.

iWatcher: Efficient Architectural Support for Software Debugging. In

ACM/IEEE International Symposium on Computer Architecture, pages

224–235, München, Germany, June 2004.

118

Vita

Jungwoo Ha was born in Seoul, Korea on 26 Sep 1976. He is married

to Songhee Lee since 2003, and they have two children, Daniel and Timothy.

He graduated from Seoul Science High School in Seoul, Korea, in 1995. He re-

ceived the degree of Bachelor of Science in Computer Science and Engineering

from Seoul National University in 2002. He entered the Ph.D. program at the

University of Texas at Austin in 2003. Prior to joining the Ph.D. program, he

worked at several startup companies for 5 years as a research staff and a R&D

manager.

And they that be wise shall shine as the brightness of the firmament;and they turn

many to righteousness as the stars for ever and ever. (Daniel 12:3)

Permanent address: 4708 Playfield St.
Annandale, Virginia 22003

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

119

