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Programmers increasingly rely on managed languages (e.g. Java and

C#) to develop applications faster and with fewer bugs. Managed languages

encourage allocating objects in the heap and rely on automatic memory man-

agement (garbage collection) to reclaim objects the program can no longer

access. With more objects in the heap, the heap encodes more program state

than ever before and offers new opportunities for optimization and analysis.

This dissertation shows how to efficiently leverage the managed runtime

to perform dynamic heap analysis. Previous heap analysis approaches signif-

icantly slow down programs, require special hardware, and/or increase mem-

ory consumption by 75% or more. We presents two synergistic techniques—

dynamic object sampling (DOS ) and heap summarization (HSG)—that mine

program state embedded in the heap efficiently enough to use in production

and effectively enough to improve performance, find bugs, and increase pro-

gram understanding. We use these techniques to address three problems:

(1) Performance of managed language. Because some objects live for
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a long time, they incur disproportionate collection costs. We optimize these

costs with dynamic pretenuring. Dynamic pretenuring uses DOS to accurately

predict allocation site survival rates and uses these predictions to improve

performance. (2) Finding bugs. Memory leaks in managed languages occur

when a program inadvertently maintains references to objects that it no longer

needs. Along with degrading performance and resulting in program crashes,

memory leaks cause systematic heap growth. We introduce Cork which uses

the simplest type of HSG , a class points-from summary graph (CPFG), to de-

tect systematic heap growth. Cork quickly identifies growing data structures

observed in three popular benchmarks (fop, jess, and jbb2000) while adding

an average of only 2.3% to total time. Additionally, we use Cork to debug a

reported memory leak in Eclipse. (3) Program understanding. For a long

time, static analysis has sought to statically summarize the shape of dynamic

data structures to aid in program verification and understanding. Unfortu-

nately, it only works on small programs. We introduce ShapeUp which instead

characterizes recursive data structures dynamically by discovering data struc-

ture shape and degree invariants at runtime. ShapeUp uses DOS and a class

field-wise summary graph (CFSG) to track in- and out-degree invariants of

data structure nodes. We show how ShapeUp automatically identifies recur-

sive data structures and likely shape invariants. Finally, we monitor discovered

shape invariants to detect when a data structure becomes malformed.

In summary, this dissertation is the first to leverage the managed run-

time to perform dynamic heap analysis both accurately and efficiently. Our

results show that the heap contains an enormous amount of program state and

that there is much potential for dynamically mining heap characteristics for

optimization, debugging, and program understanding.
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Chapter 1

Introduction

As the demands on computer systems and software increase, so do their

sophistication and complexity. Increasingly, programmers rely on managed

languages that provide software engineering benefits to manage this growing

complexity. A managed language provides (1) memory and type safety, (2)

automatic memory management, (3) dynamic code execution, and (4) well-

defined boundaries between type-safe and unsafe code [33]. The Tiobe Pro-

gramming Community Index shows that managed languages (e.g., C#, Java,

Ruby, and Python) continue to gain in popularity dominating unmanaged

languages like C and C++ [177]. These object-oriented languages focus on

data (or objects) rather than processes emphasizing discrete units of program-

ming logic and code reuse. As a result, large groups of programmers can

develop large systems faster and with fewer bugs. In this scenario, individual

or small groups of programmers work only on small portions of a larger sys-

tem using well-defined interfaces to interact with collaborators, libraries, and

frameworks. The software-engineering benefits of this programming paradigm

are well-documented, but it means that few programmers, if any, understand

the entire system and how each part interacts with another making semantic,

memory, and concurrency bugs harder than ever to find.

As a side-effect of object-orientedness and modularity, the size of ob-

jects has become smaller, while the number of objects has grown significantly
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larger. Programmers use regular structures such as arrays and recursive data

structures to manage the growing number of objects. Managed languages

encourage allocating the majority of these objects in the heap and rely on

automatic memory management (garbage collection) to reclaim objects that

the program can no longer access. The heap encodes more program state than

ever before, making it unsurprising that many semantic, memory, and con-

currency bugs manifest there as well. Heap analysis must therefore become a

necessary part of program analysis; we believe that it offers new opportunities

for mining program state that can be used to aid in program understanding,

bug detection, and program optimization.

1.1 The Problem

Previous approaches for heap analysis significantly slow down pro-

grams, require special hardware, and/or increase memory consumption by 75%

or more making them inappropriate for use after deployment [44, 62, 63, 74, 86,

88, 92, 126, 129, 140, 148, 159, 160, 173, 174, 189]. Consequently they are appro-

priate during development and/or testing.

In development, static analysis discovers properties of an application

both for debugging and optimization. Most static analysis treats the heap

as an amorphous blob to keep costs tractable. The exception to this rule

is shape analysis which tries to discover the shape of data structures using

heap approximation and then tries to identify program statements that can

potentially cause the heap to enter an erroneous state [80, 155, 156]. Unfor-

tunately, existing static shape analyses are too expensive for even modestly

sized programs.

Testing often consists of profiling an application through various offline
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and online executions. In offline profiling, an application is profiled ahead

of time. The results of profile runs are analyzed and then used to guide

optimization in future runs. There are several problems with this methodology:

(1) it is inconsistent with dynamic code execution; (2) profile data is only as

good as the input since many program states depend on the program’s input;

and (3) offline summaries obscure phase changes in the program. All of these

problems can be addressed by profiling online—during a actual run of the

application. Depending on the characteristics being profiled, this approach can

be very effective. Unfortunately, detailed profiling of every object is expensive

and thus is only done during testing. While software testing improves software

quality by exercising a wide range of program functionality, exhaustive testing

is infeasible due to the size of the testing space. The result is that software

often ships with bugs.

1.2 The Solution

When focusing on production runs, profiling techniques must be effi-

cient enough that users are unaware that their executions of the program are

also performing dynamic heap analysis. The presence of a managed runtime

provides an opportunity to perform dynamic heap analysis efficiently. In this

dissertation, we introduce such two techniques: heap summarization (HSG)

and dynamic object sampling (DOS ).

Heap summarization (HSG) compactly summarizes the heap during

program execution using the object’s class and/or data structure that con-

taining each object. By exploiting the underlying runtime and piggybacking

on the object scan performed during garbage collection, building HSGs add

less than 1% to total memory allocation and less than 4% to total time on
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average. The HSG is a family of graphs which summarize the dynamic nature

of the heap: the objects that comprise the heap and the relations between

them. For example, by capturing points-to relations in the edges, we show

ownership properties. The lack of an expected ownership relation is evidence

of potential semantic errors. Points-from relations in the edges allow us to

identify liveness for a particular class of objects. Heap summaries are most

cheaply generated using class, and we show that class-summarization efficiently

identifies two classes of heap anomalies: systematic heap growth and dynamic

invariant violations.

Summarization by context or data structure is more challenging since

managed runtimes do not correlate objects with their context or data struc-

ture. One approach to correlate objects with their context, for example, is

to add space to the objects header resulting in larger objects, more frequent

garbage collections, larger program footprints, and slower runtimes—adding a

single word increases the the space overhead by 5-7% and the time overhead by

8-18% on average. Dynamic object sampling (DOS ) provides a technique for

tagging a subset of objects to reduce overheads. For some applications, select-

ing which objects to tag is obvious (e.g., nodes of a recursive data structure);

for others, it is more challenging. By focusing on fewer objects in the heap,

we can significantly reduce the overheads of tracking objects characteristics.

For example, sampling 6% of objects results in less than 1% space overhead

and less than 3% time overhead.

We show the effectiveness of these techniques for performance improve-

ment, debugging, and program understanding by addressing the following

three problems.
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Dynamic Pretenuring. Because some objects live for a long time, they

incur disproportionate collection costs. Pretenuring is an optimization which

reduces nursery copying costs in a generational garbage collector by allocating

long-lived objects directly into the mature space. Blackburn et al. showed that

allocation site was a good static predictor of lifetime [34]. We show that DOS

can accurately estimate allocation-site lifetime at runtime and that a dynamic

pretenuring mechanism which identifies and pretenures long-lived sites using

dynamic lifetime estimates can improve performance. For a site with sufficient

samples and a high survival rate, the collector modifies the allocation site to

allocate subsequent objects directly into the mature space. To detect lifetime

phase changes, we introduce backsampling which occasionally allocates these

sites into the nursery in order to reexamine their survival rate. We exam-

ine a range of heuristics for the minimum number of samples, pretenuring

thresholds, and backsample thresholds. Backsampling provides robustness to

mistakes as well as adaptivity to phase changes. While many of our bench-

marks showed degradations in performance due to a lack of opportunity, we

show that when opportunity exists dynamic pretenuring can improve perfor-

mance. In javac, we improve performance by 3% on average and by as much

as 9% in a tight heap. These results indicate that heap analysis is useful for

performance optimization.

Dynamic Memory Leak Detection. Managed languages rely on auto-

matic memory management (garbage collection) to reclaim objects that a pro-

gram can no longer access which avoids many memory-related errors found in

other languages. Unfortunately, memory leaks persist in managed languages

when a program retains references to objects the program never uses again.

In the best case, these objects degrade program performance by increasing

5



memory requirements and collector workload. In the worst case, a growing

data structure results in systematic heap growth which causes the program

to run out of memory and crash. Furthermore, the allocation that causes the

failure is almost never related to the source of the leak.

To debug memory leaks, we introduce Cork, an accurate, scalable, and

low-overhead technique for identifying systematic heap growth that uses the

simplest HSG , a class points-from summary graph (CPFG) to summarize,

identify, and report systematic heap growth. We show that the CPFG pro-

vides both efficiency and precision. The nodes of the CPFG represent the

volume of live objects of each class. The edges represent the points-from rela-

tionship between classes weighted by volume. At the end of the each collection,

the CPFG completely summarizes the live-object points-from relationships in

the heap. Comparing the CPFGs over time produces a dynamic slice which

identifies the classes contributing most significantly to the systematic heap

growth. By following the points-from edges, the CPFG identifies the grow-

ing data structure. We show that Cork efficiently provides us with enough

information to detect systematic heap growth. Cork successfully identifies

the only systematic heap growth in three of 14 benchmarks, including iden-

tifying the cause of a well-known but previously undiagnosed memory leak

in SPECjbb2000. Cork also positively identified the cause of a documented

memory leak in Eclipse allowing for a correction to be submitted back to the

community. Corks accuracy, scalability, and efficiency make it the first system

of its kind with overheads low enough to use in deployment showing dynamic

heap analysis can identify bugs.
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Dynamic Shape Analysis. In order to manage the growing number of ob-

jects in the heap, programs use typically regular structures, such as arrays

and recursive data structures. Static shape analysis seeks to summarize the

shape of dynamic data structures and identify the program locations which

could potentially cause the heap to enter an erroneous state. Unfortunately,

the cost of static analysis limits its usefulness to small programs. We introduce

ShapeUp which improves programming understanding by performing dynamic

shape analysis on the heap, by discovering invariants of recursive data struc-

tures, and by detecting data structure anomalies when these invariants are vi-

olated. ShapeUp uses a more complex HSG , a class field-wise summary graph

(CFSG), which separates field data and stores both points-from and points-to

relations. ShapeUp identifies recursive data structures and calculates degree

invariants for the set of objects (or nodes) that make up the recursive backbone

of the data structure. The recursive backbone is defined as the set of objects

(e.g. instances of Node) linked by references in a regular pattern such that

each smaller data structure is composed of a smaller or simpler instance of

the same data structure. By focusing on the backbone, ShapeUp efficiently

detects and reports errors that occur in data structures such as singly- and

doubly-linked lists, binary trees, and hashmaps. For example, we show that

ShapeUp discovers invariants during correct runs and then finds inserted errors

on microbenchmarks. These results demonstrate that heap analysis is useful

for generating heap assertions, finding flaws, and improving general program

understanding.
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1.3 Contributions

Heap analysis is a necessary part of program analysis. This dissertation

is the first to leverage the managed runtime to perform dynamic heap analysis

both accurately and efficiently. Its contributions include:

1. Dynamic object sampling (DOS ), a mechanism for tagging individual ob-

jects, reduces the cost of adding information to objects by allowing client

analyses to focus on a useful subset. DOS is useful for mining individual

object characteristics for performance optimization and debugging.

2. Heap summarization graphs (HSG) which compactly summarize the

heap during program execution. We demonstrate two different forms

of the graph: a class points-from summary graph (CPFG) and a class

field-wise summary graph (CFSG). Both summarize the heap by user-

defined class. We piggyback building HSGs on the garbage collector

which adds an average of less than 1% to total memory and less than 4%

to total time. We show that HSGs are useful for program understanding

and debugging.

3. We show how dynamic pretenuring uses DOS to optimize a generational

garbage collector. We use DOS to dynamically determine allocation-site

lifetime. With sufficient samples and high survival rates, the compiler

dynamically pretenures long-lived sites, reducing collection costs.

4. We introduce Cork, a dynamic memory leak detector that improves soft-

ware quality by accurately pinpointing parts of the heap that are growing

without bound using the HSG . We show that Cork is accurate, scalable,

and efficient enough to use after deployment.

8



5. We introduce ShapeUp, a dynamic shape analysis tool that improves pro-

gram understanding and software quality by identifying recursive data

structures and their degree invariants. We show that ShapeUp can de-

tect errors introduced into several classes of data structures, including

singly- and doubly-linked lists, binary trees, and hashmaps.

1.4 Summary

With the increased number of objects allocated in the heap, heap anal-

ysis is becoming a necessary part of program analysis. Until now, techniques

for mining program state in the heap have been prohibitively expensive. This

dissertation is the first to show that the managed runtime can be leveraged to

efficiently and effectively perform dynamic heap analysis.
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Chapter 2

Evaluation Methodology

We use the system and methodology described in this chapter for all

the results in this dissertation. We describe our Java Virtual Machine in

Section 2.1. Section 2.2 describes garbage collection and the different collectors

we use. Section 2.3 describes our benchmarks and experimental methodology.

2.1 Jikes RVM

We implement our techniques in Jikes RVM (formerly Jalapeño), an

open-source, high-performance Java virtual machine written almost entirely

in a slightly extended Java [4]. Jikes RVM does not have an bytecode inter-

preter. Instead, a fast template-driven baseline compiler produces machine

code when the VM first encounters each Java method. The adaptive compi-

lation system then optimizes the frequently executed methods [3]. Using a

timer-based approach, it schedules periodic interrupts. At each interrupt, the

adaptive system records the currently executing method. Using a threshold,

the optimizing compiler selects and optimizes frequently executing methods at

increasing levels of optimization. Since the interrupts are not deterministic,

the level of compiler activity and final code quality are non-deterministic.

For our results, we only use configurations that turn off assertion check-

ing and that precompile as much as possible including key libraries and the op-
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timizing compiler (the Fast build-time configuration). Jikes RVM uses MMTk,

an efficient and composable memory management toolkit that implements a

wide variety of high-performance garbage collectors using shared components

[26, 27]. MMTk manages large objects (8K or larger) separately in a non-copy

space, and puts the compiler and a few other system pieces in the boot image,

an immortal space; otherwise, Jikes RVM objects share the heap with the

application.

2.2 Garbage Collection

Automatic memory management, or garbage collection, is a technique

for automatically reclaiming unreachable program data. It benefits program-

mers by freeing them of the responsibility of explicit memory management

and removes four common sources of memory-related programming errors:

(1) dereferencing a pointer to memory that the program has previously freed

(dangling pointers); (2) losing a pointer to an object that the program ne-

glects to free (lost pointers); (3) freeing a pointer to memory that has been

previously freed (double-frees); and (4) calling the incorrect version of free (al-

loc/dealloc mismatch). Good collector performance is essential for good overall

performance. In this work, we modify several garbage collectors including two

whole-heap collectors and two generational collectors implemented in MMTk.

2.2.1 Whole-Heap Collectors

SemiSpace. The semi-space algorithm is a whole-heap collector that divides

the heap into two equal-sized copy spaces [46]. It contiguously allocates into

one and reserves the other (copy reserve) for copying into requiring more fre-

quent collections. When the heap is full, the collector traces and copies live
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objects into the other space and then swaps them. Collection time is propor-

tional to the number of survivors. Throughput performance suffers because it

repeatedly copies objects that survive for a long time, and its responsiveness

suffers because it collects the entire heap every time.

MarkSweep. Mark-sweep is a whole-heap collection scheme that uses a

segregated-fits free-list with lazy freeing and a tracing collector [134]. The

allocator divides memory into blocks of same-size segregated chunks and al-

locates objects into the smallest size block in which they fit. The collection

traces and marks the live objects using bitmaps. Tracing is exactly the same

as for SemiSpace except that instead of copying, it marks a bit in a live-object

bitmap. Tracing is proportional to the number of live objects and reclama-

tion is incremental and proportional to allocation. MarkSweep’s maximum

pause time is poor and its performance also suffers from heap fragmentation

and repeatedly tracing objects that repeatedly survive many collections. Like

SemiSpace, it’s responsiveness suffers because it collects the entire heap every

time.

2.2.2 Generational Collectors

Generational organizations separate young objects from old and col-

lect the younger objects more frequently [179]. The younger space (nursery)

uses contiguous allocation which provides a performance benefit because it

results in cheaper allocation and locality for contemporaneously allocated ob-

jects. Generational collectors perform well because they focus on collecting

the nursery where young objects reside, thereby taking advantage of the weak

generational hypothesis which states that younger objects die more quickly
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and at a higher rate than older ones [127, 179].

For generational collectors, we use a well-performing 4 MB bounded

bump-pointer nursery [26]. In MMTk, the bounded nursery takes a command

line parameter as the initial nursery size and collects when the nursery is

full. It reduces the nursery below the bound when the mature space becomes

too full for the heap to accommodate a nursery full of survivors. When the

nursery size falls below a lower bound (we use 256KB), it triggers a mature

space collection.

GenCopy. This classic generational garbage collector divides the heap into

a nursery space and a mature space [113]. The nursery space uses a bump-

pointer allocator and a copying collector. When the nursery is full, it collects

and promotes survivors into a copying mature space (SemiSpace). It collects

the entire heap only when the mature space is full. By collecting the nursery

more frequently and compacting survivors into the mature space, GenCopy can

improve mutator locality. However, it repeatedly copies objects that survive

a long time and requires a copy reserve.

GenMS. This hybrid collector uses a copying nursery combined with a mark-

sweep mature space [113].

2.3 Architecture, Benchmarks, and Measurements

We perform all of our experiments on a 3.2 GHz Intel Pentium 4

with hyper-threading enabled, an 8KB 4-way set associative L1 data cache, a

12Kµops L1 instruction trace cache, a 512KB unified 8-way set associative L2

on-chip cache, and 1GB of main memory, running Linux 2.6.20.3.
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We evaluate our techniques using microbenchmarks (described in de-

tail in Section 6.3.1), the SPECjvm benchmarks, the DaCapo benchmarks,

SPECjbb2000, and pseudojbb, a variant of SPECjbb2000 that executes a fixed

number of transactions to perform comparisons under a fixed garbage collec-

tion load. Table 2.1 gives a description of each benchmarks.

We explore the time-space trade-off by executing each program on five

heap sizes, ranging from the smallest one possible for the execution of the

program to three or six times that size. We report total application and col-

lector performance. As noted by Eeckhout et al., adaptive compilation in Jikes

RVM obscures application behavior in performance measurements [71]. For

our overhead measurements, we factor out nondeterminism and compilation

using replay compilation [105]. Replay compilation deterministically applies

the optimizing compiler to frequently executed methods chosen by the adap-

tive compiler in previous (offline) runs. We factor out the adaptive compiler

by running each benchmark multiple times. The first run uses replay compi-

lation to give a realistic mixture of optimized and unoptimized code. Then

we turn off compilation and flush all compiler objects from the heap. During

the second run, we measure and report application performance. We per-

form separate statistics-gathering runs that accumulate overall and individual

collection statistics.

Table 2.2 shows key characteristics using replay compilation and an

infinite heap with a 4MB bounded nursery. The total alloc column in Table 2.2

indicates the total number of megabytes allocated. We list the ratio of total

allocation to the live size and % nrs srv rate indicating the percentage of

objects that survive a nursery collection in order to quantify garbage collection

load. Finally we indicate the number of classes loaded.
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SPECjvm

compress Implements file compression and uncompression in 5 iterations over the
same five tar files. In every cycle, it allocates two large byte arrays,
one for input and one for output

jess An expert system which reads a list of facts about several word games
from an input file and attempts to solve the riddles. It has many short-
lived objects

raytrace Raytraces a picture
db Simulates a simple database management system with a file of per-

sistent records and a list of transactions as inputs. It first builds the
database by parsing the records file and then applies transactions to
this set

javac A Java compiler iterates four times over the same Java code
mtrt Raytraces a picture by dividing the input file into sections and starting

a working thread for every section. The problem size is small and only
two work threads are created

jack A commercial parser generator performs 16 iterations of building up a
live heap structure and collapsing it again. No data survives between
iterations

SPECjbb

SPECjbb2000 Models a wholesale company. Warehouses process customer-generated
requests based on a probability distribution.

pseudojbb SPECjbb2000 modified to execute a fixed number of transactions for
comparisons under a fixed GC load

DaCapo

antlr Parses and generates parser and lexical analyzer for grammar files
bloat Performs a number of optimizations and analysis on Java bytecode files
chart Uses JFreeChart to plot several line graphs and renders them as PDF

eclipse Executes some (non-gui) jdt performance tests for the Eclipse IDE
fop Translates an XSL-FO file into PDF file format

hsqldb Executes a JDBC-like in-memory benchmark, executing a number of
transactions against a model of a banking application

jython Interprets a series of Python programs
luindex Uses lucene to index a set of documents; the works of Shakespeare and

the King James Bible
lusearch Uses lucene to do a text search of keywords over a corpus of data

comprising the works of the Shakespeare and the King James Bible
pmd Analyses a set of Java classes for a range of source code problems

ps Reads and interprets a PostScript file
xalan Transforms XML documents into HTML

Table 2.1: Benchmark Descriptions
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total
alloc alloc/ % nrs classes

Benchmark (MB) live srv loaded +VM
SPECjvm

compress 105.4 16.8 6.6 157 1,749
jess 262.0 221.3 1.1 293 1,885

raytrace 133.5 35.1 3.6 177 1,769
db 74.6 8.8 14.6 149 1,732

mpegaudio 0.7 1.1 50.5 200 1,792
javac 178.3 24.8 25.8 302 1,894
mtrt 140.5 19.5 6.6 178 1,770
jack 270.7 292.7 2.8 202 1,794

SPECjbb2000

pseudojbb 207.1 9.8 31.3 238 1,830
DaCapo

antlr 237.9 248.8 8.2 307 1,899
bloat 1,222.5 195.6 6.0 471 2,063
chart 742.8 77.9 6.3 706 2,298

eclipse 5,582.0 186.0 23.8 1,023 2,615
fop 100.3 14.5 14.2 865 2,457

jython 1,183.4 8,104.0 1.6 886 2,478
hsqldb 142.7 2.0 63.4 355 1,947
luindex 201.4 201.7 23.7 309 1,901

lusearch 1,780.8 162.8 1.1 295 1,887
pmd 779.7 56.8 14.0 619 2,211

xalan 60,235.6 2,364.0 3.8 552 2,144

Table 2.2: Benchmark Characteristics

2.4 Summary

This chapter described the system and methodology we use to imple-

ment and evaluate our techniques for dynamic heap analysis. In the next

chapters, we will detail those techniques and discuss their overheads.
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Chapter 3

Dynamic Heap Analysis

This chapter shows how we exploit the managed runtime to efficiently

and effectively gather fine-grained object-level statistics and summarize them

in new and compact ways. We start by describing the opportunity presented

by the managed runtime and then detail two techniques for leveraging it:

dynamic object sampling (DOS ) and heap summarization.

3.1 The Garbage Collection Opportunity

Garbage collection provides an opportunity to examine the heap that

does not exist in non-managed languages. For example, Huang et al. improve

performance by reordering objects during garbage collection to improve local-

ity in the mature space [105]. In this work, we exploit the garbage collection’s

scan of live objects to dynamically aggregate statistics about live objects. Dur-

ing object scanning, the garbage collector detects all live objects by starting

at program roots (statics, stacks, and registers) and performing a transitive

closure through all the live object references in the heap. At the end of a

full-heap collection, every live object in the heap will be scanned exactly once

and aggregated statistics can present a complete view of the current state of

the heap.
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3.2 Dynamic Object Sampling

One approach to learn object properties is to add space to object head-

ers. However, this results in larger objects, more frequent garbage collections,

larger program footprints, and slower runtimes. For example, adding a single

word increases the space overhead by 5-7% and the time overhead by 8-18%

on average in our Java benchmarks.

By default, aggregated statistics are limited by object knowledge. Ob-

ject knowledge are those characteristics that are inherent to an instance and

include things like size, user-defined class, number of data fields, and number

of outgoing references. For example, to aggregate statistics for an allocation

site or data structure, the system would need to know which allocated site

allocated each instance and/or to which data structure they belong.

We introduce dynamic object sampling as a method for increasing ob-

ject knowledge for a subset of objects. Dynamic object sampling tags a subset

of objects with a sample tag during allocation (or during copying) encoding

otherwise unknown object characteristics (e.g., allocation site). Piggyback-

ing on the garbage collector, we can now aggregate learned characteristics of

tagged objects.

3.2.1 Tagging Samples

Bump-pointer allocators use monotonically increasing addresses within

a contiguous region of memory by repeatedly incrementing (bumping) a pointer.

This fast path of the allocation sequence uses only a few instructions including

a test to check whether the allocation exceeds some boundary. Figure 3.1(a)

illustrates this code sequence and Figure 3.1(b) shows an allocation block with

some objects allocated into it. When the allocator exceeds the boundary, it
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1 VM_Address alloc (int bytes ) {

2 VM_Address oldCursor = cursor ;

3 VM_Address newCursor = oldCursor .add (bytes );

4 if ( newCursor .GT(limit )) // need more memory ?

5 return allocSlow (bytes );

6 cursor = newCursor ;

7 return oldCursor ;

8 }

(a) Original bump pointer allocation

(b) Allocation block without samples

Figure 3.1: Bump Pointer Allocation

calls the slow path which determines, for example, whether the allocator needs

to request more memory or if it should trigger a collection. A sufficiently large

allocation region makes the fast path the common case, and executes the more

expensive slow path infrequently.

Figure 3.2 illustrates dynamic object sampling by sampling in time. In

this example, we show the effects of different sampling rates by selecting a

random sampling of all objects allocated in the heap. Figure 3.2(a) reflects

the changes in the code sequence and Figure 3.2(b) the changes in the allo-

cation block where sampled objects are shaded. Notice that sampling adds

no instructions to the most frequently executed fast path (compare lines 1-8

in Figures 3.1(a) & 3.2(a)). It does, however, introduce an intermediate path

whose test succeeds every SAMPLE PERIOD bytes of allocation. The allocator

sets a bit in the object’s header to indicate the sampled object and records a

sample tag to the object. The sample tag encodes a characteristic otherwise

unknown to the object. For example, to aggregate statistics based on calling

context, the sample tag could encode a context identifier.
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1 VM_Address alloc (int bytes , int siteID ) {

2 VM_Address oldCursor = cursor ;

3 VM_Address newCursor = oldCursor .add (bytes );

4 if ( newCursor .GT(sampleLimit )) // need to sample ?

5 return sample (bytes , siteID );

6 cursor = newCursor ;

7 return oldCursor ;

8 }

9 VM_Address sample (int bytes , int siteID ) {

10 VM_Address rtn ;

11 int required = bytes + SAMPLE_BYTES ;

12 VM_Address newCursor = cursor .add ( required );

13 if ( newCursor .GT(limit )) { // need more memory ?

14 rtn = allocSlow (required , siteID );

15 if ( rtn .isZero ()) return rtn ; // we need to GC

16 } else {

17 rtn = cursor ;

18 cursor = newCursor ;

19 sampleLimit = roundUp (cursor , SAMPLE_PERIOD );

20 }

21 recordSample (rtn , bytes , siteID ); // record sample

22 return rtn .add ( SAMPLE_BYTES ); // skip object tag

23 }

(a) Sampling bump pointer allocation

(b) Allocation block with samples

Figure 3.2: Bump Pointer Allocation with Dynamic Object Sampling

3.2.2 Sampling Overhead

Next, we present sampling time and space overheads. Figure 3.3 shows

the time overhead with sampling normalized to no sampling for a range of heap

sizes using the geometric mean of our benchmarks. Bars show the variations for

sampling every 512, 256, and 64 bytes, as well as all objects (representing 6%,

12%, 50% and 100% of objects respectively). The direct overhead of sampling

has two components: the spatial overhead of a four byte site identifier and the

computational overhead of periodically executing sample() (Figure 3.2(a),

lines 10-25).
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Figure 3.3: Sampling Overhead for Replay Compilation.
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In this example, we add a four-byte site identifier to each sampled ob-

ject. It increases space requirements by at most 0.8% for a 512 byte sample

rate, and 1.6% for 256. The impact of this spatial overhead on garbage col-

lection time is subtle, as shown in Figure 3.3(a). One would assume that the

dominant cost would always be the additional work associated with collecting

the nursery more frequently, but more subtle effects of perturbing collection

trigger points can dominate. Changing when a collection occurs can have cas-

cading positive and negative effects on promotion results and locality. For

example, if the program is about to allocate some medium lifetime objects, an

earlier collection gives them a chance to die and could avoid copying them in

the next collection. Any change in the amount of allocation results in these

effects [34]. Only when every allocation is sampled is the average collection

time overhead significant (5% to 10%). For 256 and 512 byte sample rates the

average collection overhead is negligible and is dominated by perturbations,

which can produce up to 15% degradation and 10% improvement.

The mutator time overheads are very low averaging between 0.5% and

2% of mutator time for sample rates of 256 and 512. Figure 3.3(b) shows

mutator time overhead and 3.3(c) shows the total time overhead. The bars

show the worst case overheads and a few tiny improvements. For sampling at

256 and 512 bytes, these overheads range from -0.5% to 3.5%, and are slightly

lower with the optimizing compiler. This mutator overhead includes the ad-

ditional instructions required to sample, but also includes the effects of data

and instruction locality, which presumably account for the tiny performance

improvements. The overhead is still low on average (4% to 5%) for 64 bytes.

Sampling every object or sampling every 64 bytes represents approxi-

mately every two objects, since the average object size is about 32 bytes when
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including Jikes RVM’s 8-byte header [67]. When sampling every 32 bytes or all

objects, overheads grow substantially, up to 18% worst case, but 7% to 9% on

average. However, sampling rates of 256 and 512 (representing approximately

12% and 6% of all objects) are much more reasonable. Total time overheads

range from 6% to less than -1% (noise). The average rate is between 1% and

3%, and is slightly higher using the optimizing compiler. By focusing our

sampling on 6-12% of objects, we can collect significant object knowledge.

3.3 Heap Summarization Graphs

In addition to individual object characteristics, the heap also encodes

relations between objects encoded in the references between objects in the

heap. This section introduces heap summarization as a technique to aggregate

object statistics and relation statistics in a compact summary graph (HSG).

The HSG represents a family of graphs in which nodes of the graph sum-

marize some object characteristic and edges summarize references either as

points-from relations, points-to relations or both. For clarity of exposition,

we describe building a class points-from graph (CPFG) in the context of a

full-heap collector.

3.3.1 Building the Class Points-From Graphs

A class points-from graph (CPFG) consists of class nodes and reference

edges. The class node represents all objects of class c. The reference edges are

directed edges from class node c to class node c′ and represent all of the objects

of class c′ that are referred to by an object of class c. Class c and class c′ are not

necessarily distinct. For example, figure 3.4(a) shows a heap consisting of an

object points-to graph, i.e., objects and their pointer relationships, for objects
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(a) Heap graph (b) Class points-from graph

Figure 3.4: Heap summarization

1 void scanObject ( TraceLocal trace ,

2 ObjectReference object ) {

3 MMType type = ObjectModel . getObjectType ( object );

4 type . incVolumeTraced (object ); // added

5 if (! type . isDelegated ()) {

6 int references = type . getReferences (object );

7 for ( int i = 0; i < references ; i++) {

8 Address slot = type .getSlot (object , i);

9 type .pointsTo (object , slot ); // added

10 trace . traceObjectLocation (slot );

11 }

12 } else

13 Scanning . scanObject (trace , object );

14 }

Figure 3.5: Object scanning with additions on lines 4 and 9

of classes A, B, C, D, and E. Each vertex represents a different instance in

the heap and each arrow represents a reference from one instance to another

instance. Figure 3.4(b) shows the corresponding class points-from graph.

We collect summarization information by piggybacking on the live-

object scan that occurs as a regular part of a tracing garbage collector. Fig-

ure 3.5 shows the modified scanning code from MMTk [26, 27]. Assume

scanObject is processing an object of class A that refers to an object of class

D from Figure 3.4(a). Building the CPFG requires two simple additions that

appear at lines 4 and 9. It takes a reference to the tracing routine and the

object as parameters, and finds the object class. Line 4 increments the node
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for the class of instance D. Since the collector scans (detects liveness of) an

object only once, each object instance increments the class node of this class

only once. Next, scanObject determines if each referent of the object has al-

ready been scanned. As it iterates through the fields (slots), the added line 9

resolves the referent class of each outgoing reference (A→ D) and increments

the appropriate edge (A← D) in the graph. Thus, this step counts the number

of edges for all references to an object, not just the first one encountered in the

scan. Because this step adds an additional class look up for each reference, it

also introduces the most overhead. Finally, scanObject enqueues those objects

that have not yet been scanned in line 10. The additional work of the garbage

collector depends on whether it is moving objects or not, and is orthogonal to

building the CPFG .

At the end of scanning, the CPFG completely summarizes the live

objects in the heap. Figure 3.4(b) shows the CPFG for our example. Notice

that the reference edges in the CPFG point in the opposite direction of the

references in the heap. Also notice that, in the heap, objects of class D are

referenced by A, B, and C represented by the outgoing reference edges of D

in the CPFG .

3.3.2 Implementation Efficiency and Scalability

We implement several optimizations to make implementation of HSGs

scalable and efficient in both time and space. First, we limit the number

of CPFGs stored, depending on the client. For example, many clients only

require two HSGs: one representing the heap at the current collection and one

aggregating statistics across multiple collections. Additionally, we piggybacks

summary graph nodes on the VM’s global type information block (TIB). This
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Figure 3.6: Modified Type Information Block (TIB)

structure or an equivalent is required for a correct implementation of dynamic

dispatch and garbage collection in managed languages such as Java or C#.

Figure 3.6 shows how HSGs modified the TIB from Jikes RVM. Notice that

every live object of a class (objectL) points to the TIB corresponding to its

class. The TIB consists of three different parts. The first is the method table

which stores pointers to code for method dispatch for objects of this class. The

method table points to a corresponding VM Type which stores field offsets and

type information used by the VM for efficient type checking and is used by the

compiler to generate correct code. Finally, VM Type points to a corresponding

MMType used by the memory management system to perform allocation and

to identify references during garbage collection. Recall from Figure 3.5 that

object scanning resolves the MMType of each object (line 3). The CPFG class

node data for each CPFG in the corresponding MMType adds a single word per

each stored CPFG . We show in Chapters 5 and 6 how limiting the number of

CPFGs to two is sufficient to aggregate statistics, such as volume, for a class.

These class nodes scale with the type system of the VM.

While the number of reference edges in a CPFG are quadratic in theory,

one class does not generally reference all other classes. Programs implement a

much simpler class hierarchy and we find reference edges are linear with respect
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# of # edges # edges
classes per class per CPFG

Benchmark avg max avg max avg max
eclipse 667 775 2 203 4090 7585
fop 423 435 3 406 1559 2623
pmd 360 415 3 121 967 1297
ps 314 317 2 93 813 824
javac 347 378 3 99 1118 2126
jython 351 368 2 114 928 940
jess 318 319 2 89 844 861
antlr 320 356 2 123 860 1398
bloat 345 347 2 101 892 1329
jbb2000 318 319 2 110 904 1122
jack 309 318 2 107 838 878
mtrt 307 307 2 91 820 1047
raytrace 305 306 2 91 814 1074
compress 286 288 2 89 763 898
db 289 289 2 91 773 787
Geomean 342 357 2 116 1000 1303

Table 3.1: Class Points-From Statistics.

to the class nodes. This observation motivates a simple edge implementation

consisting of a pool of available edges. New edges are allocated only when the

edge pool is empty. When a CPFG expires, we return the edges to the pool

for reuse. New edges are added to the CPFG by removing them from the edge

pool and adding them to the list of reference edges kept with node data. We

encode a pointer to the edge list with the node data which eliminates the need

for adding any extra words to the MMType structure.

3.3.3 Space Overhead

The heuristics we introduced in Section 3.3.2 help keep the CFSG space

efficient. Table 3.1 reports CPFG space overhead statistics. Columns one and

two (# of classes) report the average and maximum number of classes with

instances in the heap during any particular garbage collection. We notice that
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TIB TIB+CPFG
Benchmark MB %H MB %H Diff
eclipse 0.53 0.011 0.70 0.015 0.167
fop 0.36 0.160 0.55 0.655 0.495
pmd 0.30 0.031 0.44 0.186 0.155
ps 0.28 0.029 0.39 0.082 0.053
javac 0.28 0.071 0.43 0.222 0.151
jython 0.28 0.041 0.39 0.112 0.071
jess 0.27 0.049 0.38 0.143 0.094
antlr 0.27 0.016 0.39 0.282 0.266
bloat 0.26 0.017 0.38 0.064 0.047
jbb2000 0.26 ** 0.38 ** **
jack 0.26 0.042 0.37 0.131 0.089
mtrt 0.26 0.081 0.37 0.258 0.177
raytrace 0.26 0.085 0.37 0.272 0.187
compress 0.25 0.105 0.36 0.336 0.231
db 0.25 0.160 0.35 0.467 0.307
Geomean 0.29 0.048 0.41 0.168 0.145

Table 3.2: Class Points-From Space Overhead. **Volumes for SPECjbb2000

depend on how long the warehouse runs.

an average of 44% of all classes used by programs are present in the heap at a

time.

Table 3.1 shows the average (column three) and maximum (column

four) number of reference edges per class node in the CPFG . We find that

most class nodes have a very small number of outgoing reference edges (two

on average). The more prolific a class is in the heap, the greater the number of

reference edges in its node (up to 406). We measure the average and maximum

number of reference edges in any CPFG (columns five and six). These results

demonstrate that the number of references edges is linear in the number of

class nodes in practice.

Table 3.2 shows the space requirements for the type information block

before (TIB) and the overhead added by the CPFG . While the CPFG adds

significantly to the TIB information, it adds only modestly to the overall heap
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(0.145% on average and never more than 0.5% as shown in column 5). For

the longest-running and largest program, eclipse, the CPFG has a tiny space

overhead (0.004%).

3.3.4 Performance Overhead Results

The CPFG ’s time overhead comes from constructing the CPFG during

scanning and from differencing between CPFGs to find growth at the end of

each collection phase. Figures 3.7 and 3.8 graphs the normalized geometric

mean over all benchmarks to show overhead in scan time, collector (GC) time,

and total time. In each graph, the y-axis represents time normalized to the

unmodified Jikes RVM using the same collector, and the x-axis graphs heap

size relative to the minimum size each benchmark can run in a mark-sweep

collector. Each x represents one program.

For mark-sweep (MarkSweep) and copying (SemiSpace) whole-heap col-

lectors, Figure 3.7 shows that the scan time overhead is 80.8% to 85.5% and

76.1% to 78.8%; collector time is 75.4% to 82.9%; and total time is 10.3% to

25.8% respectively. These overheads represents the worst case since the entire

CPFG is constructed every collection. Whole-heap collector overheads can

be reduced by analyzing the heap every nth collection. Including the HSG

in a high-performing generation collector with many less full-heap collections

significantly reduces these overheads. Figure 3.8 shows the CPFG ’s average

overhead in a generational collector to be 11.1% to 13.2% for scan time; 12.3%

to 14.9% for collector time; and 1.9% to 4.0% for total time. Individual over-

head results range higher, but the CPFG ’s average overhead is low enough to

consider using it online in production systems.
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Figure 3.7: Geometric Mean Overhead Graphs over all benchmarks for whole-
heap collector
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Figure 3.8: Geometric Mean Overhead Graphs over all benchmarks for gener-
ational collector

31



3.4 Summary

This chapter has introduced two synergistic techniques for perform-

ing dynamic heap analysis. These techniques are the first that are efficient

enough to consider using after deployment. In the chapters that follow, we ap-

ply these two synergistic techniques to three problems: program optimization

(Chapter 4), bug finding (Chapter 5), and program understanding (Chapter 6).
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Chapter 4

Dynamic Pretenuring

Many state-of-the-art garbage collectors are generational, collecting the

young nursery objects more frequently than old objects. These collectors per-

form well because young objects tend to die at a higher rate than old ones.

However, long-lived objects incur a disproportionate collection cost since they

always have to be copied out of the nursery. Pretenuring decreases nursery

collection work by allocating new, long-lived objects directly into the mature

space. This chapter shows how DOS can be used to mine the heap for allo-

cation site lifetime. We examine some of the policies for exploiting lifetime

information to dynamic pretenuring. While many of our benchmarks show

degradations in performance due to the lack of opportunity, we show that

when opportunity exists dynamic pretenuring can improve performance. In

javac, we improve performance by 3% on average and as much as 9% in a

tight heap. Further, we show that the allocation-site lifetimes calculated are

both accurate (94% on average) and efficient (with overhead of 1% to 3% on

average).

We start by presenting related work in Section 4.1 before describing how

dynamic object sampling estimates allocation-site lifetimes in Section 4.2. We

then use the dynamic lifetimes to develop heuristics for dynamic pretenuring

detailed in Section 4.3.
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4.1 Related Work

Much work has been done in determining object lifetime classification

offline [21, 34, 48, 90, 158, 163, 180, 181]. In this work, a static profiler finds

allocation sites for long-lived objects in a generational collector and recompiles

the program to allocate these directly to mature generations [34, 48, 180, 181].

An offline, profile-driven approach is problematic for a just-in-time compiler

due to dynamic class loading.

To determine and exploit lifetimes dynamically, previous work uses

write barriers and weak pointers. Domani et al. and Qian and Hendren use

write barriers to trap and differentiate global and local heap pointers [70, 146].

They then collect the local heaps independently. Qian and Hendren further

redirect sites that allocate global variables into the global heap. Both of these

techniques can add significantly to the execution time of the program, whereas

our mechanism adds negligible overhead.

Agesen and Garthwaite sample objects by inserting weak pointers that

identify the object allocation sites [2]. Their approach is most similar in spirit

to ours. After a collection, they must trace both the dead and surviving sam-

pled objects through the weak pointers to gather statistics. They do not report

overhead separately, but as part of dynamic pretenuring. Total performance

improves and degrades on average by 1% to 2%, but raytrace from SPECjvm98

degrades by 15%. We instead mark samples by their respective memory ad-

dresses. During collection, we need only track survivors. At the end of a

collection, the allocation and survivor statistics completely specify lifetimes.

These mechanisms reduce our space and collector time overheads compared to

weak pointers. Both mechanisms require specialized allocation and collection

support. Our object sampling is more general since it does not depend on
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language support for weak pointers.

Harris uses Agesen and Garthwaite’s sampling mechanism to make

dynamic pretenuring decisions for Java programs in the context of a two-

generation collector [91]. When the system detects a long-lived allocation site,

it begins allocating into a mature generation. Harris’ system samples in the

higher generation to determine whether or not to reverse a decision, but the

infrequency of higher generation collections reduces the accuracy of these life-

time samples. We instead allocate the occasional pretenured site back into the

nursery. Harris notes that these objects will always survive if they are con-

nected to another pretenured object, and in this case our mechanism would not

yield useful samples. We find that this case does not occur frequently, and thus

we can react more quickly to phase changes. Harris uses separate thresholds

for pretenuring and reversal. He uses backpatching to change the allocation

site, rather than a load to determine the allocation region. Neither technique

recompiles the method. Harris uniquely identifies the allocation site without

any call chain information. Because our JIT performs aggressive inlining, al-

location sites in our system tend to have more context which Harris suggests

should be useful. His dynamic pretenuring results show both improvements

and a few significant degradations but are limited to a single heap size. We

find improvements in a wide range of heap sizes while using a faster collector,

providing a more general mechanism, and incurring lower overhead.

Huang et al. compute per-class rather than per-site allocation and

survival statistics. Per-class is easier to implement since each object header

includes the type already [104]. However, type is not a good predictor of

lifetime. They use Jikes RVM’s baseline compiler which does not produce high

quality code and thus can hide any overhead. We use the adaptive optimizing

35



compiler. Their approach degrades total execution time slightly for the two

of three SPECjvm benchmarks they test—jess and jack—while improving javac

by only 2% to 5%.

4.2 Estimating Lifetimes

In order to estimate lifetimes of allocation sites, the most accurate

system would track all allocation sites, but as we showed in Section 3.2, this

approach is too expensive. We instead sample in time. We measure time in the

number of bytes allocated and sample an object every n bytes of allocation. For

efficiency, we define n as a power of 2. The sample tag encodes an allocation

site identifier. We depend on the compiler to create unique identifiers for each

allocation site. At the time of allocation, we tag each sampled object and

increment an allocation counter. This mechanism samples larger objects more

frequently since they disproportionately cross allocation boundaries. Thus

sampling yields more accurate statistics for large objects. As Harris points

out, large objects are important—especially if they are prolific [91].

As the garbage collector traces live objects, we look for the sample bit.

If the sample bit is found, we know that the survivor is a sampled object. We

then decode the sample tag, extract the allocation site identifier, and increment

a survivor counter for that site. At the end of each garbage collection cycle,

we have complete survival information. We use it to calculate the survival rate

(SR) of each allocation site where survival rate is defined as:

SR =
#survivors

#allocated

for surviving objects.
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4.2.1 Lifetime Sampling Accuracy

To evaluate the error introduced by sampling when computing nursery

survival rates, for each allocation site in a program, we establish the actual

survival rate (the number of surviving objects over the total number of ob-

jects allocated) and the survival rate predicted with sampling. Depending on

the particular demographics of the subset of objects at that site which were

sampled, the survival rate can be overestimated or underestimated.

We use a survival threshold to classify sites as either short-lived or long-

lived. For example, one might classify all sites with a survival rate higher than

80% as long-lived, and all others as short-lived. We then measure sampling

accuracy in terms of site misprediction. At each site, we determine for each

sample rate whether the sampled survival rate would cause the site to be

classified differently from the site’s actual survival rate. We then quantify this

misprediction by summing for a given survival threshold the objects and bytes

allocated at mispredicted sites. We repeat this process for a range of survival

thresholds from 0 to 1.

Figure 4.1 plots site mispredictions for jess and javac, which are repre-

sentative and diverse. The x-axis varies the survival threshold and the y-axis

plots the level of misprediction for all sites that are mispredicted at a given

survival threshold. Consider a site with an actual survival rate of 20% and a

predicted survival rate of 80%. For survival thresholds between 0% and 20%,

the site would be correctly classified as ‘long lived’ (both predicted and ac-

tual survival rates are greater than the threshold). However, for thresholds

between 20% and 80%, it would be incorrectly classified as ‘long lived’ (the

predicted survival rate is greater than the threshold, but the actual survival

rate is not). For thresholds above 80% it would be correctly classified as short
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Figure 4.1: Site Mispredictions as a Function of Survival Threshold and Sample
Interval

lived (both predicted and actual survival rates are lower than the threshold).

All objects and bytes allocated at this site would be included in all points on

the site misprediction curve between the 20% and 80% survival thresholds.

A site that was perfectly predicted would never contribute to the site mis-

prediction curve. The figures plot site mispredictions with respect to objects

(Figure 4.1(a) & (c)), and bytes (Figure 4.1(b) & (d)) of allocation associated

with each mispredicted site. For example, sampling is less accurate for sites

that have short-lived objects (survival rates between 5% and 15%) on both

programs, compared with predicting objects with long lifetimes (rates above

60%).
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The figures include one line for each sample rate from 32 bytes through

to 4KB. Figure 4.1(a) shows that the level of misprediction in jess is very low

(< 2%), even at coarse sample rates. As the threshold grows, mispredictions

become even less common. This trend reflects that jess has mostly low survival

sites. Figure 4.1(b) measures site mispredictions in bytes and has almost the

same curve as (a), but with a considerable spike just before the 20% survival

threshold. Note that only the two coarsest sample rates experience this spike.

This spike reflects a site that allocates large objects with a survival rate a little

under 20%.

Figure 4.1(c) shows site misprediction for javac accounts for nearly ten

times as many objects (around 20% of all allocations). The level of mispredic-

tion in javac is almost the same for all sample rates greater than 32, suggesting

that the mispredicted sites are predominately allocating objects < 64 bytes

in size. The flat curve illustrates a 20% misprediction rate between survival

thresholds of 20% to 90%. Figure 4.1(d) shows that as a percentage of bytes,

mispredictions are much lower, only around 6%. Mispredicted sites thus tend

to allocate very small objects. javac has a sensitive spot at around 75% where

the very coarsest sample rates see substantial degradation. This result suggests

a site or sites allocating large objects with around 75% survival rate.

Overall, sample rates between 128 and 1024 bytes have high accuracy,

with typical site misprediction rates in bytes ranging from nearly zero to

around 6%. For these benchmarks with few long-lived objects, their behavior

follows jess; i.e., mispredictions are highest at the lowest thresholds.

This section shows that DOS can accurately predict allocation-site life-

times which can aid programming understanding. Next, we show how we can

exploit this information to optimize a generational garbage collector.
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4.3 Dynamic Pretenuring

Dynamic pretenuring seeks to eliminate the cost of copying long-lived

objects out of the nursery in a generational collector by allocating them directly

into the old space. To select candidates for dynamic pretenuring, we compute

transient and aggregate lifetime statistics using DOS . At the end of each nurs-

ery collection, we compute survival rates for this collection (transient) as well

as aggregate statistics. We only use one collection phase for transient statistics

in our experiments. This separation focuses on those sites that changed in the

last allocation phase (those with non-zero transient entries). For a site with

sufficient samples and survival rate, dynamic pretenuring starts to allocate

objects from that site into the old space after the first garbage collection.

Pretenuring policies can use either transient or aggregate statistics. To

react quickly to phase changes, we use transient statistics to begin pretenuring

any site with a survival rate exceeding a threshold ts. This policy is very

aggressive and introduces some errors but quickly captures newly allocating

sites producing long-lived objects.

4.3.1 Dynamic Allocation Targets

In order to act on pretenuring decisions, we add a dynamic test to the

allocation sequence shown in Figure 4.2. It uses a two instructions, an array

lookup (line 12)1 and a conditional branch (line 3). This implementation is

simple and easily generalizes. When the optimizing compiler inlines the entire

allocation sequence and then optimizes it in context, the overhead of this

additional test is on average 1% to 2%.

1Our implementation uses a special instruction that avoids the array bounds check.
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1 ...

2 case NURSERY_SPACE :

3 region = nursery .alloc ( isScalar , bytes );

4 break ;

5 ...

(a) Original allocation

1 ...

2 case NURSERY_SPACE :

3 if ( DynamicPretenure . nurseryAlloc (site ))

4 region = nursery .alloc ( isScalar , bytes , site );

5 else

6 region = matureAlloc (isScalar , bytes , site );

7 break ;

8 ...

9

10 public final static boolean nurseryAlloc (int site )

11 throws VM_PragmaInline {

12 return pretenureTable [site ] >= 0;

13 }

(b) Allocation with Dynamic Test

Figure 4.2: Dynamic Test Added to the Allocation Sequence

Another approach would be to modify the code by backpatching the al-

location instructions which completely removes allocation time overhead. We

originally implemented this approach, but found that it was a premature op-

timization. The backpatcher was complex and extremely brittle as it had to

parse and manipulate instruction sequences generated by an aggressive op-

timizing compiler, and the nature of those sequences was different between

platforms and subject to change as the code in the allocation sequence and

the compiler evolved. We ultimately chose this simpler approach since it is

very robust, and although the overhead is not zero, it is very low.

4.3.2 Backsampling

Once the system decides to pretenure a site, allocating its objects into

the mature space, the sampler can no longer compute that site’s nursery sur-

vival rate. If the decision was wrong or the application behavior changes,
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the system would never know. To avoid this pathology, we use backsampling.

Backsampling periodically allocates pretenured sites back in the nursery until

the next garbage collection, thereby providing an opportunity to reassess the

site’s survival rate.

We experiment with different policies that vary the frequency of back-

sampling, based on the backsampled transient and total survival rates. We

implement backsampling by initializing the site’s mature counter, called the

backsampling target, to the negative of the total number of allocations used

in making the pretenuring decision. Each time an object is allocated into the

mature space, the mature counter is incremented, and when it reaches zero,

the site allocates into the nursery for one allocation phase. If, at the next

collection, the survival rate is no longer high enough, the system reverses the

pretenuring decision. Otherwise, the system reinforces the pretenuring deci-

sion by changing the backsampling target according to one of the following

heuristics:

• The constant heuristic (cbs) leaves the backsampling target as the num-

ber of allocations used to make the original decision (n).

• The linear heuristic (lbs) makes it harder to backsample the site by

initializing the backsampling interval to a multiple (f ≥ 1) of n where f

grows linearly with each consecutive agreeing decision.

• The exponential (ebs) heuristic, f grows exponentially as a power of 2.

The constant heuristic (cbs) backsamples the most frequently, the linear (lbs)

less than constant (cbs), and the exponential (ebs) backsamples the least fre-

quently. Backsampling is a conservative mechanism. It reduces the effective-
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Parameter Description
Minimum Samples The minimum number of samples required from an allocation

site during an allocation phase for the site to be considered for
pretenuring

Pretenuring Threshold The survival rate above which a site is pretenured
Backsampling Shift The backsampling trigger as a function of the number of ob-

jects used to make the pretenuring decision
Backsampling Policy The backsampling functions include constant (cbs), linear

(lbs), and exponential (ebs)
Decay Shift The amount by which mature statistics should be decayed

Table 4.1: Policy Parameters

Pretenuring Policies

parameter 80 LBS 80 EBS 85 LBS
minimum samples 8 4 10
pretenuring threshold 80% 80% 85%
backsampling policy linear exponential linear
backsampling shift 1 4 1
decay shift 0 0 1

Table 4.2: Configuration Settings for Base Results

ness of good choices, but protects the system from sampling errors and changes

in lifetime phase behavior.

4.3.3 Pretenuring Policies

The dynamic pretenuring heuristic depends on five parameters which

are detailed in Table 4.1. The backsampling shift, backsampling policy, and

decay shift are used to define the backsampling trigger. We explore the space

defined by these parameters to find good configurations and report the three

with the best performance for javac. Table 4.2 shows these configurations.

One feature that we did not vary is the use of transient or aggregate statistics:

these results always use transient statistics. Aggregate statistics are more

conservative and would probably reduce some errors.
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4.3.4 Pretenuring Potential

Before we present pretenuring results, we examine the potential that

dynamic pretenuring has for improving the performance of our benchmarks.

In Table 2.2, the % nrs srv indicates the percentage of objects that survive

a nursery collection. This percentage indicates the potential for dynamic pre-

tenuring to eliminate unnecessary copying. Only three of our programs are

likely to benefit from pretenuring: pseudojbb, javac, and db. In particular with

a 4MB nursery, pseudojbb and javac perform 50 and 53 nursery collections (re-

spectively), whereas db performs 20. However, closer examination of db and

pseudojbb show pretenuring is unlikely to improve them. In pseudojbb, only a

few allocation sites produce the majority of long-lived objects, but these same

sites produce many short-lived objects as well. Thus, these sites never produce

survival rates high enough to benefit from pretenuring without more calling

context than we examine here. In db, all the long-lived objects are allocated in

the first 8MB of allocation. Dynamic pretenuring misses these opportunities

while it is warming up. Thus, only javac has a potential for benefiting from

dynamic pretenuring.

4.3.5 Overheads

Figure 4.3 reports the overhead for sampling and the dynamic alloca-

tion test. We measure these overheads by running dynamic pretenuring in

a configuration which will not actually pretenure by setting the pretenuring

threshold above 100%. Factoring out the compiler and using the optimizing

compiler on the adaptive pretenuring allocation sequence lowers its average

overhead by 2% to 3%, but increases the variation from a range of 8% to -

10%, to a range of 12% to -15%. The compilation differences again reflect that
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Figure 4.3: Average Sampling and Pretenuring Overhead for Replay Compi-
lation for SPECjvm98
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Figure 4.4: Accuracy (a) and Coverage (b) of Pretenuring in Percent of Total
Volume

a fully optimized setting exposes any overhead more completely.

4.3.6 Accuracy and Coverage

We now quantify the accuracy and coverage of pretenuring decisions

in bytes of allocation. Accuracy measures the volume of objects chosen for

pretenuring that were actually long-lived. Coverage measures the volume of

long-lived objects that were chosen for pretenuring. Accuracy can be high

while missing opportunities (low coverage).

Figure 4.4(a) shows accuracy, and 4.4(b) shows coverage for each

benchmark and a range of pretenuring thresholds. We assume an infinite

mature space, thus the nursery is always 4MB. This configuration therefore

examines accuracy without cascading the penalty of mistakes. The other pa-

rameters values are the same as for 80 LBS from Table 4.2.

In Figure 4.4(a) the height of the bars represents the total volume of

pretenured objects. The solid portion shows long-lived objects (e.g. correctly
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pretenured), and the striped portion indicates short lived objects (e.g. incor-

rectly pretenured). Pretenuring accuracy is 80% or better for javac which is

the only benchmark we speed up. The error rate for db is 34%, and even worse

for pseudojbb at just under 50%. We expect errors to grow with a lower thresh-

old because while decisions are per-allocation site, here we measure individual

objects. For example, if a site has an 80% survival rate and is pretenured,

the 20% of objects which are short lived at that site will be incorrectly pre-

tenured. These results barely show this trend, thus the errors are most likely

due to sampling errors (recall that we used a 256 byte sample rate) and from

heterogeneous allocation lifetime phases. Error rates are higher for mtrt, jack,

raytrace, and jess, but the pretenuring volume is extremely low.

Figure 4.4(b) shows coverage; each bar represents the volume of long-

lived objects that are not pretenured under different pretenuring regimes. The

first bar, ‘None’, shows the volume when no pretenuring is performed, and

therefore reflects the total volume of long-lived objects. The remaining bars

vary the pretenuring threshold, although only pseudojbb, javac, db, and mtrt

show any sensitivity to the threshold. The proximity of these bars to the

‘None’ bar shows dramatic under-pretenuring. At best we see 43% coverage

(in javac with 75% pretenuring threshold), but in most cases the coverage

is much lower. Reasons for under-pretenuring include objects missed during

‘warm up’ of the sampling mechanism, objects missed due to the sample rate,

and lack of homogeneity at allocation sites (long-lived objects allocated from

predominantly short-lived sites). Notice less than 5% of allocation is long lived

for the remaining programs.
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Figure 4.5: Garbage Collection Time
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(h) compress

Figure 4.6: Mutator Time
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Figure 4.7: Total Execution Time
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4.3.7 Performance

Finally, we report garbage collection (see Figure 4.5), mutator (see

Figure 4.6, and total (see Figure ??) time results for dynamic pretenuring for

the configurations reported in Table 4.2.

The goal of pretenuring is to reduce garbage collection load. Only

javac shows a systematic reduction in garbage collection, where improvements

are as much as a factor of 2.5. We see some modest improvements in mtrt.

db and jack are not significantly changed by pretenuring, and the remaining

benchmarks all see degradations. In a small heap, erroneously pretenured

objects needlessly occupy the mature space, reducing the bounded nursery size

and triggering expensive full-heap collections. The pretenuring configurations

also show sensitivity to heap size; 85 LBS is particularly bad in a small heap,

but performs in large heaps.

The improvements in collection time for mtrt and javac translate to

total time in Figure 4.7. The total time of javac improves by around 3% on

average and by as much as 9% in a tight heap. mtrt improves by around 2% but

degrades significantly in a tight heap. All other benchmarks show degradations

in total time. Interestingly, javac shows a greater degradation in mutator time,

presumably due to locality degradations caused by the disruption of allocation

order that follows from a relatively high pretenuring rate.

4.4 Summary

This chapter introduced dynamic object sampling (DOS ) for lifetime

prediction. It showed that dynamic object sampling can sample and accurately

predict object lifetimes for very low overhead. We explore using predicted
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lifetime to improve the performance of a generational collector with limited

success on one program. We show that the limited success is mainly due

to a lack of potential in the programs tested. We leave open the question of

policies that will make pretenuring more profitable. However, DOS is accurate

and efficient enough to correctly and cheaply track object lifetime and other

properties.
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Chapter 5

Dynamic Memory Leak Detection

Memory-related bugs are a substantial source of errors, and are espe-

cially problematic for languages with explicit memory management. For ex-

ample, C and C++ memory-related errors resulting in leaked memory include

(1) dangling pointers—dereferencing pointers to objects that the program pre-

viously freed, (2) lost pointers—losing all pointers to objects that the program

neglects to free, and (3) unnecessary references—keeping pointers to objects

the program never uses again.

Garbage-collected languages preclude the first two errors, but not the

last. Since garbage collection conservatively approximates liveness, it cannot

detect or reclaim objects referred to by unnecessary references. Thus, a mem-

ory leak in a garbage-collected language occurs when a program maintains

references to objects that it no longer needs, preventing the garbage collec-

tor from reclaiming space. In the best case, unnecessary references degrade

program performance by increasing memory requirements and consequently

collector workload. In the worst case, a leaking, growing data structures cause

the program to run out of memory and crash. Even if a growing data struc-

ture is all still in use and therefore not a true leak, application reliability and

performance can suffer and, thus, is a cause for concern. In long-running ap-

plications, small leaks can take days or weeks to manifest. These bugs are

notoriously difficult to find because the allocation that finally exhausts mem-
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Figure 5.1: Heap-Occupancy Graphs

ory is not necessarily related to the source of the heap growth.

To demonstrate leaks, we illustrate heap composition using heap-occupancy

graphs [28, 96, 168]. A heap-occupancy graph plots the total heap occupancy

on the y-axis over time measured in allocation on the x-axis. Figure 5.1 shows

the heap occupancy graphs for javac from SPECjvm [166] and fop from the

DaCapo suite[29]. A heap-occupancy curve with a consistently positive slope

clearly indicates systematic heap growth. Figure 5.1(a) shows four program

allocation phases for javac that reach the same general peaks and indicate that

javac uses about the same maximum amount of memory in each phase and no

phase leaks memory to the next. On the other hand, Figure 5.1(b) shows

that the memory requirements for fop grow continuously during execution.

Although these graphs reveal potential leaks, they do not indicate the source

of the leak.

Previous approaches for finding leaks use heap diagnosis tools that rely

on a combination of heap differencing [62, 63, 148] and allocation and/or fine-

grain object tracking [38, 44, 52, 92, 147, 159, 160, 173, 174]. These techniques

can degrade performance by a factor of two or more, incur substantial mem-
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ory overheads, rely on multiple executions, and/or offload work to a separate

processor. Additionally, they yield large amounts of low-level details about

individual objects. For example, if a String leaks, they can report individual

Strings numbering in the 10,000s to 100,000s and allocation sites number-

ing in the 100s to 1000s. Sifting through these reports and interpreting them

requires a lot of time and expertise. Thus, prior work lacks precision and

efficiency.

This chapter introduces Cork, an accurate, scalable, online, and low-

overhead memory leak detection tool for typed garbage-collected languages

that uses CPFGs to accurately identify leaking data structures. We first

present related work in Section 5.1, and then present an example memory

leak that we use as a running example through this chapter in Section 5.2. We

describe how Cork uses a CPFG—the simplest type of HSG—to summarize,

identify, and report data structures with systematic heap growth in Section 5.3.

We show that it provides both efficiency and precision in Section 5.4. Finally,

we conclude in Section 5.5.

5.1 Related Work

The problem of detecting memory leaks is well studied. Compile-time

analysis can find double free and missing frees [94] and is complimentary

to our work. Offline diagnostic tools accurately detect leaks using a com-

bination of heap differencing [62, 63, 148] and fined-grained allocation/usage

tracking [44, 92, 159, 160, 173, 174]. These approaches are expensive and often

require multiple executions and/or separate analysis to generate complex re-

ports full of low-level details about individual objects. In contrast, Cork’s

completely online analysis reports summaries of objects by class while con-
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cisely identifying the dynamic data structure containing the growth. Online

diagnostic tools rely on detecting when objects exceed their expected life-

times [147] and/or detecting when an object becomes stale [38, 52]. While

staleness-detection differentiates in-use objects from those not in-use, it is not

always effective. For example, as a HashMap grows, it periodically rehashes

thereby touching all the elements in the map. Finding memory leaks due stal-

eness does not work in this case. We instead detect growing data structures,

a complimentary technique.

Static approaches, for example Heine and Lam [94], rely on compile-

time analysis to detect memory leaks. Here a pointer analysis identifies poten-

tial memory leaks in C and C++ using the object ownership abstraction. They

find double frees and missing frees that occur when the program overwrites the

most recent pointer to an object or data structure without first freeing it. It

does not find growing data structures and thus static approaches are comple-

mentary to our work. The challenge in implementing our approach for C and

C++ is connecting the allocation type to memory, since malloc is untyped.

Their static analysis of ownership types could provide similar information to

explicit types used in Java.

The closest related work is Leakbot which combines offline analysis

with online diagnosis to find data structures with memory leaks [83, 135, 136].

Leakbot uses JVMPI to take heap snapshots that it offloads to another pro-

cessor for analysis. We call this offline analysis since it is not using the same

resources as the program, although it may occur concurrently with program

execution. By offloading the most expensive part of the analysis to another

processor, Leakbot minimizes the impact on the application while maintaining

detailed per-object information. It then relies on an additional processor to
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perform heap differencing across multiple copies of the heap—a memory over-

head potentially 200% or more that is proportional to the heap—and ranking

which parts of the object graph may be leaking. Leakbot produces very de-

tailed object-level statistics which depend on the precision of the heap snap-

shots. Cork, on the other hand, summarizes object instances in a CPFG graph,

thereby preserving only object class information while minimizing the memory

overhead (less than 1%) and allowing it to run continuously and concurrently

with the application.

Several completely online instance-based approaches for finding mem-

ory leaks exist for C/C++ and Java. Qin et al. detect memory leaks in

C/C++ by looking for objects that exceed their expected lifetimes [147]. Us-

ing special hardware to detect and eliminate false positives gives them low

time overhead and greater accuracy, but space overhead grows proportionally

to the number of objects allocated.

Relying only on software, another online technique for detecting mem-

ory leaks identifies stale objects as those that have not been accessed in a long

time. Chilimbi and Hauswirth introduced a technique for C/C++ where they

added per-object bookkeeping information to track stale objects [52]. Per-

object bookkeeping information does not translate well to Java where even

the smallest application creates millions of distinct objects, making per-object

tracking too expensive in both space and time (as shown in Chapter 3). Bond

and McKinley address this expense by significantly reducing the space over-

head of identifying stale objects as likely leaks by introducing a statistical

approach for storing per-object information in a single bit [38]. Using this tech-

nique, combined with an offline processing step, they detect memory leaks by

reporting allocation and last-use sites of stale objects. Although they achieve
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space efficiency, tracking per-object information adds overheads of 45% on av-

erage which they reduce to 14% with sampling losing accuracy. For finding

memory leaks, differentiating in-use objects from those not-in-use adds addi-

tional information and is complimentary to finding heap growth. We show

that heap growth itself is a problem: It indicates (1) bad programming prac-

tices when objects are in use and (2) leaks when objects are stale but never

referenced again. Cork can identify and report the growing data structure

class slice and corresponding allocation sites. Furthermore, this information

is sufficient to fix the leaks.

5.2 An Example Memory Leak

Figure 5.2 shows a simple order processing system that includes a

memory leak which we use as a running example throughout this chapter.

NewOrder inserts new Order into the allOrdersHT hashmap and into the

newOrderQ, as shown in Figure 5.2(a). In Figure 5.2(b), ProcessOrders pro-

cesses the newOrderQ one order at a time. It removes each order from the

newOrderQ and fills it. If the customer is a Company (subtype of Order), it then

issues a bill, putting it on the billingQ, and ships the order to the customer.

In Figure 5.2(c), when the customer sends a payment, ProccessBill removes

the order from the billingQ and the allOrdersHT hashmap. However, if the

customer is a Person (subtype of Order), ProcessOrders calls ProcessPayment

with the customer-provided payment information and ships the order. Pro-

cessOrders should, but does not, remove the order from allOrdersHT which

results in a memory leak. Figure 5.2(d) lists abbreviations and statistics for

these classes. This leak is similar to the one Cork finds in jbb2000.
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1 NewOrder (Order n) {

2 int id = getOrderId ();

3 allOrdersHT .add (id, n); // insert into HashTable

4 newOrderQ .add (n); // insert into NewOrder Queue

5 }

(a) Incoming order

1 ProcessOrders () {

2 while (! newOrderQ . isEmpty ()) {

3 Order n = newOrderQ . getNext ();

4 newOrderQ .remove (n); // removed from NewOrder Q

5 FillOrder (n);

6 if (n. getCustomer () instanceof Company ) {

7 IssueBill (n); // inserts onto Billing Q

8 ShipOrder (n);

9 } else {

10 ProcessPayment (n);

11 ShipOrder (n);

12 // A MEMORY LEAK !! -- not removed from HashTable

13 }

14 }

15 }

(b) Processing orders

1 ProcessBill (int orderId ) {

2 Order n = allOrdersHT .get (orderId );

3 billingQ .remove (n); // remove from Billing Q

4 allOrdersHT .remove ( orderId ); // remove from HashTable

5 }

(c) Process bills

Type Variable Symbol Size

HashTable allOrdersHT H 256
Queue newOrderQ N 256
Queue billingQ B 256
Company n C 64
People n P 32

(d) Object statistics

Figure 5.2: Order Processing System

59



5.3 Finding Leaks with Cork

This section overviews how Cork identifies candidate leaks by exam-

ining the objects in the heap, finding growth, and reporting to the user the

corresponding class for growing objects along with their allocation site and

the data structure which contains them. For clarity of exposition, we describe

Cork in the context of a full-heap collector.

5.3.1 Heap Summary Graphs for Leak Detection

To detect systematic heap growth, we use the simplest type of HSG ,

a class points-from graph (CPFG). For each live, reachable object o, Cork

determines the object’s class co and increments the corresponding class node

by the object’s size. For each reference from object o to object o′ it increments

the reference edge from c′ to c by the size of o′. At the end of the collection,

the CPFG completely summarizes the volumes of all classes Vc and references

(Vc′|c) that are live at the time of the collection. Notice that the reference

edges in the CPFG point in the opposite direction of the references in the

heap. Cork uses volume rather than simple count to detect heap growth in

order to capture not only when the number of instances of a class increase,

but also when the number stays constant but the size of the instances grow

(as can be the case with arrays). Additionally, volume gives a heavier weight

to larger classes which tend to make the heap grow faster than smaller classes.

5.3.2 Finding Heap Growth

At the end of each collection, Cork differences the CPFG for the current

collection with data from a set of previous collections. We define those class

nodes whose volumes have increased across several collections as candidates.
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Figure 5.3: Comparing Class Points-From Graphs to Find Heap Growth

For each candidate, Cork follows growing reference edges through the CPFG

to pinpoint the growth.

For example, Figure 5.3 shows the CPFGs created during three col-

lections of our example program. Figure 5.3(a) represents an initial state of

the system after three orders arrive, but have not yet been processed. Fig-

ure 5.3(b) shows four orders processed: two billed and two completed. Notice

that the program removes orders from individuals (P ) from all the processing

queues (B,N), but not from the hashmap (H) resulting in the memory leak

shown in Figure 5.2(b). Comparing the CPFG from the first two collections

shows both C and P objects are potentially growing (depicted with bold ar-

rows). We need more history to be sure. Figure 5.3(c) represents the state at

the next collection, at which point it becomes clearer that the volume of P

objects is monotonically increasing, whereas the volume of C objects is simply
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fluctuating. In practice, we find that class volume jitters—fluctuates with high

frequency. We say that a class whose volume monotonically increases shows

absolute growth and one whose volume fluctuates but still increases shows po-

tential growth. Cork must not only detect absolute growth but also potential

growth.

Cork differences the CPFG from the current collection with data from

previous collections looking for growing classes and ranks them according to

how likely a particular class is a candidate. Additionally it ranks edges in a

similar fashion. We examine two different methods for ranking candidates:

slope ranking and ratio ranking. Although slope ranking is more principled,

ratio ranking yields better results on our benchmarks.

5.3.2.1 Slope Ranking

Recall the beginning of this Chapter, a positive slope in a heap-occupancy

graph clearly indicates systematic heap growth. The Slope Ranking Technique

(SRT) uses the insight that a growing class must contribute to the overall pos-

itive slope in the heap-occupancy graph. The more it contributes, the higher

the likelihood that it grows without bound. Thus, SRT ranks candidates ac-

cording to the portion of the overall heap growth that each class contributes.

In this configuration, Cork stores multiple CPFGs and calculates the rate of

change, or slope, between the current collection and previous collections. Slope

for class c at collection i is calculated as sci
= δvc/δA, where v is the volume

of class c live in the heap and A is the total volume allocated. A class node is

classified a candidate if it is growing more often than it is shrinking. SRT accu-

mulates the percentage of the overall growth caused by the candidate leaking

class c to calculate rank rci
for collection i such that rci

= rci−1
+ pci

∗ sci
/S,
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where p is the number of phases (or collections) that c has been growing and

S is the rate of change of the total heap (Si = δVi/δA). SRT reports classes

with positives ranks (ri > 0) as candidates.

SRT suffers significantly from jitter. As a slope becomes negative, it

subtracts from the rank. In order to adjust for this, the size of the window

used to perform slope calculations can be increased, but this also increases the

number of CPFGs that must be stored increasing overhead in both time and

space. Additionally, program start-up during which the heap naturally grows

affects the analysis as the window size increases making SRT more susceptible

to false positives.

5.3.2.2 Ratio Ranking

The Ratio Ranking Technique (RRT) ranks class nodes according to the

ratio of volumes Q between two consecutive CPFGs, and reports classes with

ranks above a rank threshold (rc > Rc

thres
) as candidate leaks. Additionally,

RRT uses a decay factor f , where 0 < f < 1 to adjust for jitter and detect

potential growth. RRT considers only those class nodes whose volumes satisfy

VCi
> (1 − f) ∗ VCi−1

on consecutive collections as potential candidates. The

decay factor keeps class nodes that shrink a little in this collection but which

show potential growth. We find that the decay factor is increasingly important

as the size of the leak decreases.

To rank class nodes, RRT first calculates the phase growth factor (g)

of each class node as gci
= pci

∗ (Q − 1), where p is the number of phases (or

collections) that c has been potentially growing and Q is the ratio of volumes of

this phase and the previous phase such that Q > 1. Since Q > 1, g > 0. Each

class node’s rank rc is calculated by accumulating phase growth factors g over
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Figure 5.4: The class summary graph

several collections such that absolute growth is rewarded (rci
= rci−1

+gci
) and

decay is penalized (rci
= rci−1

−gci
). Higher ranks represent a higher likelihood

that the corresponding volume of the class grows without bound. RRT reports

candidates that show potential growth for at least two (2) phases and never

reports a class the first time it appears in the graph.

Cork reports candidate leaks and their ranks back to the user. Next,

we describe how Cork correlates the candidate leaks back to the data structure

that contains them and the allocation sites that allocated them.
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(a) Total connections to candidates (b) Slice Diagram

Figure 5.5: Pruning the summary graph

5.3.3 Correlating to Data Structures and Allocation Sites

Reporting a low-level class such as String as a potential candidate

is not very useful. To demonstrate the complexity of the CPFG , Figure 5.4

shows one instance of the CPFG of Eclipse from DaCapo. In the CPFG , a node

exists for each class in the heap and an edge exists between any two classes

if a corresponding reference exists in the heap. Notice how big and complex

the CPFG is. Focusing on identified candidates and nodes at depth one, we

still see a fair amount of complexity (shown in Figure 5.5(a)). Cork further

prunes the graph and isolates the growing data structure by constructing a slice

through the CPFG . We define a slice through the CPFG to be the set of all

paths originating from class node c0 such that the rank of each reference edge

rck→ck+1
on the path is positive. Thus, a slice defines the growth originating at
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a growing class node c0 following a sequence of class nodes {c0, c1, . . . , cn} and

a sequence of growing reference edges (ck, ck+1) where class node ck points to

ck+1 in the CPFG . Figure 5.5(b) shows the reported graph for Eclipse and will

be discussed in further detail in Section 5.4.2.4. The slice contains candidates

and the dynamic data structure containing them.

Additionally, Cork reports class allocation sites. However, unlike some

more expensive techniques, it does not find the specific allocation site(s) re-

sponsible for the growth. Instead, it reports all allocation sites for each can-

didate class. If more precision were needed, we could use DOS to identify

complicit allocation sites.

5.3.4 Cork in Other Collectors

Since Cork’s implementation piggybacks on live-heap scanning during

garbage collection, it is compatible with any mark-sweep or copying collector,

i.e., a tracing collector. In the configurations below, Cork performs the analysis

only during full-heap collections. To find leaks in our benchmarks, Cork needed

approximately six full heap collections during which heap growth occurs. An

incremental collector that never collects the entire heap may add Cork by

defining intervals and combining statistics from multiple collections until the

collector has considered the entire heap (i.e., an interval). Cork would then

compute difference statistics between intervals to detect leaks.

5.3.5 Cork in Other Languages

Cork’s heap summarization, the CPFG , relies on the garbage collec-

tor’s ability to determine the class of an object. We exploit the object model

of managed languages, such as Java and C#, by piggybacking on their re-
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quired global class information to keep space overheads to a minimum. There

are, however, other implementation options. For managed languages that lack

user-defined class information, such as Standard ML, other mechanisms may

be able to provide equivalent information. Previous work provides some sug-

gestions for functional languages that tag objects [149, 150, 152]. For example,

type-specific tags could index into a hashmap to store class nodes. Alterna-

tively, objects could be tagged with allocation and context information allow-

ing Cork to summarize the heap in an allocation-site points-from graph. These

techniques, however, would come at higher space and time overheads.

5.4 Results

This section presents overhead and qualitative results for Cork. We

show that ratio ranking has few false positives and higher accuracy that slope

ranking, and that furthermore, a variety of reasonable values for the decay

factor and the rank threshold give similarly accurate results. Applying Cork

to 14 commonly used benchmarks, Cork finds heap growth in three bench-

mark (fop, jess, and SPECjbb2000) and the data structure reports enabled us

to fix them very quickly, even though we were not previously familiar with

these applications. Finally we use Cork to debug a reported memory leak in

Eclipse bug #115789.

5.4.1 Achieving Accuracy

Cork’s accuracy depends on its ability to rank and report growing

classes. Table 5.1 shows the number of candidates that are reported using

slope ratio (SRT). While SRT accurately identifies growth in fop, jess, jbb2000,

and Eclipse bug #115789, it also falsely identifies heap growth in javac and
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Benchmark SRT
Eclipse bug #115789 6
fop 2
pmd 0
ps 0
javac 2
jython 0
jess 2
antlr 0
bloat 3
jbb2000 1
jack 0
mtrt 0
raytrace 0
compress 0
db 0

Table 5.1: Number of classes reported in at least 25% of garbage collection
reports using the Slope Ranking Technique.

bloat, programs that do not display systematic heap growth. This result is

mainly due to very erratic growth patterns in both programs. Ratio rank-

ing (RRT) offers a more robust heuristics for ranking classes. By increasing

the rank when the class grows and decreasing it when it shrinks, RRT more

accurately captures growth across many collections without depending upon

window size.

For the RRT, we experiment with different sensitivities for both the

decay factor f and the rank threshold Rthres. Table 5.2 shows how changing

the decay factor changes the number of reported classes. We find that the

detection of growing classes is not sensitive to changes in the decay factor

ranging from 5 to 20%. We choose a moderate decay factor (f = 15%) for

which Cork accurately identifies the only growing data structures in our bench-

marks without any false positives. Table 5.3 shows how increasing the rank

threshold eliminates false positives from our reports. Additionally, we experi-
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Benchmark 0% 5% 10% 15% 20% 25%
Eclipse bug #115789 0 6 6 6 6 6
fop 2 2 2 2 2 2
pmd 0 0 0 0 0 0
ps 0 0 0 0 0 0
javac 0 0 0 0 0 0
jython 0 0 0 0 0 1
jess 0 1 1 1 1 2
antlr 0 0 0 0 0 0
bloat 0 0 0 0 0 0
jbb2000 0 4 4 4 4 4
jack 0 0 0 0 0 0
mtrt 0 0 0 0 0 0
raytrace 0 0 0 0 0 0
compress 0 0 0 0 0 0
db 0 0 0 0 0 0

Table 5.2: Number of classes reported in at least 25% of garbage collection
reports while varying the decay factor from Ratio Ranking Technique (Rt

thres
=

100). We choose a decay factor f = 15%.

Benchmark 0 50 100 200
Eclipse bug #115789 12 6 6 6
fop 35 2 2 1
pmd 11 2 0 0
ps 3 0 0 0
javac 71 2 0 0
jython 3 0 0 0
jess 9 1 1 1
antlr 9 0 0 0
bloat 33 0 0 0
jbb2000 10 6 4 4
jack 9 0 0 0
mtrt 3 2 0 0
raytrace 4 0 0 0
compress 4 0 0 0
db 2 0 0 0

Table 5.3: Number of classes reported in at least 25% of garbage collection
reports while varying the rank threshold from Ratio Ranking Technique (f =
15%). We choose rank threshold Rt

thres
= 100.
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ment with different rank thresholds and find that a moderate rank threshold

(Rthres = 100) is sufficient to eliminate any false positives. We discuss the

differences in the number of reported classes between SRT and RRT as we

discuss each benchmark in the next section

5.4.2 Finding and Fixing Leaks

Cork identifies heap growth in three of our benchmarks: SPECjbb2000,

fop, and jess. Additionally, we use Cork to debug a reported memory leak

in Eclipse bug #115789. Each section first describes the benchmark or pro-

gram, demonstrates how Cork found the growing class and data structure, and

concludes with an analysis of the growth.

5.4.2.1 fop

The program fop (Formatting Objects Processor) is part of the DaCapo

benchmark suite. It uses the standard XSL-FO file format as input, lays the

contents out into pages, and then renders it to PDF. Converting a 352KB XSL-

FO file into a 128KB PDF generates the heap occupancy graph in Figure 5.6,

which clearly demonstrates an overall monotonic heap growth.

Cork analyzes fop and Figure 5.6(a) shows the RRT reports. Both

SRT and RRT report ArrayList and Object[] as candidates for growth.

Since ArrayList is implemented as Object[], we focus just on ArrayList for

our analysis. We begin our exploration by examining the slices of the CPFG

to determine what is keeping the ArrayList alive. Figure 5.6(a) shows part

of the slice for ArrayList. It shows that ArrayLists are nested in a data

structure which stores the content of the document being converted. Finally,

Cork lists the allocation sites for all the class giving the user a starting point
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for debugging. Because the allocation sites are numerous, it is not useful

to explore ArrayList. We go to secondary allocations sites: WordArea and

LineArea.

Next we explore fop’s implementation. fop performs two passes over a

single complex data structure built with ArrayList: the first pass builds the

formatting object tree where ArrayList contains different formatting object

which themselves can contain one or more ArrayList. Once fop encounters

an end of page sequence, it begins rendering during a second pass over the

data structure it built during parsing. Thus, rendering uses the entire data

structure. While our analysis accurately pinpoints the source of unbounded

heap growth, fop does not have a memory leak because the entire heap is live.

The developers of fop agree with this analysis, that the heap growth that fop

experiences is partly inherent to the formatting process and partly caused by

poor implementation choices [6].

5.4.2.2 jess

From the SPECjvm benchmark suite, jess is a Java Expert Shell System

based on NASA’s CLIPS [139]. It grows 45KB every 64MB. In an expert

system, the input is a set of facts and a set of rules. Each fact represents

an existing relationship and each rule a legal way of manipulating facts. The

expert system then reasons by using rules to assert new facts and retrace

existing facts. As each part of a rule matches existing facts, the rule fires,

creating new facts and removing the rule from the set of activated rules. The

system continues until the set of activated rules becomes empty.

RRT reports Value as the overwhelmingly growing class. The slice of

the CPFG is diagrammed in Figure 5.7(a) where the square node represents
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the reported class. Correlating it to the implementation, jess compiles all the

rules into a single set of nodes. Fact assertion or retraction is then turned into

a token, which is fed to the input nodes of the network. Then the nodes may

pass the token on to its children or filter it out. As tokens are propagated

through the network, rules create new facts. Each new fact is stored in a

Value in a ValueVector implemented as Value[]. ValueVector is stored in

a ValueVector[] in a Token. A global TokenVector implemented as Token[],

stores the tokens in the system. SRT reports two of these classes, both of which

are in the slice reported by RRT: Value and Value[]. These facts are part of

the input.

Examining the input for jess, we find that the benchmark iterates over

the same problem several times. The developer made it artificially more com-

plex by introducing distinct facts in the input file representing the same in-

formation for each iteration. Thus, with each iteration, the number of facts

to test increases which triggers more allocation, but some of the facts are re-

dundant. This complexity is documented in the input file. In order to remove

the memory leak, we eliminated the artificial complexity from the input file.

Figure 5.7(b) shows both the original heap occupancy graph and the resulting

heap occupancy graph. The heap growth, and thus the memory leak, is gone.

5.4.2.3 SPECjbb2000

The SPECjbb2000 benchmark models a wholesale company with several

warehouses (or districts). Each warehouse has one terminal where customers

can generate requests: e.g., place new orders or request the status of an exist-

ing order. The warehouse executes operations in sequence, with each operation

selected from the list of operations using a probability distribution. It imple-

74



longBTree longStaticBTree

longBTreeNode

Object[ ]

OrderLine

Date

Order

NewOrder

SOURCE

(a) Slice Diagram

0 200 400 600 800 1000

Time (MB of allocation)

0

10

20

30

40

H
ea

p 
oc

cu
pa

nc
y 

(M
B

)

Before
After

(b) Heap occupancy graph

Figure 5.8: Fixing SPECjbb2000

75



ments this system entirely in software using Java classes for database tables

and Java objects for data records (roughly 25MB of data). The objects are

stored in memory using BTree and other data structures.

RRT analysis reports four candidates: Order, Date, NewOrder, and

OrderLine. The rank of the four corresponding class nodes oscillates between

collections making it difficult to determine their relative importance. Exam-

ining the slices of the four reported class nodes reveals the reason. There is an

interrelationship between all of the candidates and if one is leaking then the

rest are as well. The top of Figure 5.8(a) shows the Cork slice report where the

shaded nodes are growing. Notice that because of the prolific use of Object[]

in SPECjbb2000, its class node volume jitters to such a degree that it never

shows sufficient growth to be reported as leaking. Since the slice includes all

class nodes with rt > Rt

thres
and reference edges with re > 0, the slice sees

beyond the Object[] to the containing data structures.

We correlate Cork’s results with SPECjbb2000’s implementation. We

find that orders are placed in an orderTable, implemented as a BTree, when

they are created. When they are completed during a DeliveryTransaction, they

are not properly removed from the orderTable. By adding code to remove

the orders from the orderTable, we eliminate this memory leak. Figure 5.8(b)

shows the heap occupancy, before and after the bug fix, running SPECjbb2000

with one warehouse for one hour. It took us only a day to find and fix this

bug in this large program that we had never studied previously.

5.4.2.4 Eclipse bug #115789

Eclipse is a widely-used, open-source integrated development environ-

ment (IDE) written in Java [176]. Eclipse is big and complex. Eclipse bug #115789doc-
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uments an unresolved memory leak in the Eclipse bug repository from Septem-

ber 2005. We repeat this bug by manually comparing the contents of two direc-

tory structures multiple times to trigger the leak at a high rate. This approach

accentuates this bug compared to other potential bugs. Both RRT and SRT

reported six candidates: File, Folder, Path, ArrayList, Object[], and

ResourceCompareInput$FilteredBufferedResourceNode. Figure 5.9(a) shows

the growth slice for the candidates, the close interrelationship between them,

and several possible roots of the heap growth.

Correlating Cork’s results with the Eclipse implementation showed that

upon completion, the differences between the two directory structures are dis-

played in the CompareEditorInput which is a dialog that is added to the

NavigationHistory. Further scrutiny showed that the NavigationHistoryEntry

managed by a reference counting mechanism was to blame. When a dialog was

closed, the NavigationHistoryEntry reference count was not decremented

correctly resulting in the dialog never being removed from the NavigationHistory.

The CompareEditorInput stores the differences of the two directory structures

in a linked list of ResourceCompareInput%MyDiffNode. Figure 5.9(b) shows

the heap occupancy graphs before and after fixing the memory leak. This bug

took us about three and a half days to fix, the longest of any of our bench-

marks, due to the size and complexity of Eclipse and our lack of expertise on

the implementation details.

5.5 Summary

This chapter presented using a CPFG to summarize the heap to identify

objects contained in data structures and allocation sites that cause systematic

heap growth. We implement this approach in Cork, a tool that identifies
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growth in the Java heap and reports slices of a summarizing CPFG . We show

that Cork precisely identifies data structures with unbounded heap growth

in three popular benchmarks: fop, jess, and jbb2000. Additionally we ana-

lyzed Eclipse. These four programs contained hard-to-diagnose leaks that had

eluded developers. Each heap growth represented poor program design or a

semantic bug. The CFSG effectively summarized heap behavior to reveal the

objects, data structure slice, and allocation sites that exhibited anomalous

heap growth. Furthermore, this information is precise enough to pinpoint the

semantic errors to a person that was previously unfamiliar with the applica-

tion. We show that Cork is highly-accurate, low-overhead, scalable, and is the

first tool to find memory leaks with low enough overhead to consider using in

production VM deployments. These results indicate that heap summarization

is a valuable tool for finding the heap-growth anomaly.
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Chapter 6

Dynamic Shape Analysis

For a long time, static analysis has helped programmers find bugs and

understand their programs by correlating behavior with program locations.

Static analysis applied to the heap, shape analysis, seeks to characterize the

regular structures (arrays and recursive data structures) used by programs to

manage the large number of objects in the heap. Unfortunately, static shape

analysis remains prohibitively expensive. In this chapter, we analyze heap

regularity to assist debugging and program understanding in a tool called

ShapeUp.

ShapeUp finds and characterizes recursive data structures and their

dynamic invariants (likely invariants observed at runtime). We show how

ShapeUp uses this analysis to assist in finding bugs and understanding data

structures. We start by describing related work in Section 6.1 and continue

by defining the data structures that we analyze in Section 6.2. Section 6.3

describes the benchmarks, the dynamic shape and invariants discovered by

ShapeUp. We examine how ShapeUp detects errors injected in recursive data

structures in microbenchmarks in Section 6.4. Finally, we conclude in Sec-

tion 6.5.
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6.1 Related Work

Related work includes static shape analysis, dynamic invariants based

on program-counter locations, error detection and correction using invariant

specifications, and C heap analysis.

Static shape analysis seeks to understand heap structure by analyzing

code to identify recursive data structures [80, 155, 156], Unfortunately, it is

not widely used because it is so expensive and necessarily conservative. Our

analysis efficiently gives the same information but is specific to one or more

program executions since it observes the state of the heap rather than proving

all possible heap states. Dynamic shape analysis, like static shape analysis, can

be used to generate specifications and tests. The ownership type declaration is

a proposed language construct that can enforce the property that a particular

type may only ever have one pointer to it [40, 56]. Our work identifies candi-

dates for ownership types and can help programmers to use ownership type

declarations, if they become available.

More recently, dynamic analyses have discovered likely invariants by

mining dynamic program behavior, correlating it with program locations, and

then identifying anomalous executions [74, 86, 88, 126, 129, 140, 189]. For ex-

ample, Hangal and Lam showed that crashes are often preceded by anomalous

behavior, i.e., the program violates one or more dynamic invariants that were

established either on previous executions or earlier in the current execution.

They show that recording variable and condition values, and reporting unseen

values aids debugging. We show that this hypothesis applies to the heap as

well, i.e., the heap object graph encodes semantics and unusual heap relation-

ships that reveal software flaws.
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Recent work on data structure repair has shown how to detect and cor-

rect data structure errors with user-defined predicate routines [39, 72]. This

approach requires a user specification of the predicate and then uses model

checking and partial evaluation to fix errors as they occur in the wild. User-

defined predicates can encode valuable additional information, such as which

value encodes the number of nodes that should be in the data structure, which

ShapeUp will not discover. The advantage of ShapeUp is that it is fully au-

tomated and does not need a predicate routine. It detects similar errors by

automatically discovering many of the same properties that user predicates

contain. Developers can use the results of our approach to help them write

their predicates for complex recursive data structures.

HeapMD examines simple heap properties in C programs such as the

percentage of objects in the heap with a given degree, i.e., the number of

incoming and outgoing pointers [51]. This work shows that these simple met-

rics are useful for C programs. For example, many C heaps contain a stable

fraction of objects with an in- or out-degree of 0, 1, or 2. Our work shows

that the more complex relationships in the object graph for Java programs

rarely provide stable whole heap invariants. Differentiating the heap by class

and connectivity, however, reveals recursive data structures that do have many

stable degree invariants. Furthermore, our approach detects violations of these

invariants with high accuracy.

Pheng and Verbrugge visualize dynamic data structure evolution from

program traces, showing how memory usage and drag varies over time [144].

They analyze complete program traces, whereas we show how to efficiently

compute summaries by piggybacking on the garbage collector. Their analysis

identifies lists, trees, and directed acyclic graphs, whereas ShapeUp discovers
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invariants and measures variance over complex data structures. We show

how to use this information to find bugs and characterize the heap of large

programs.

6.2 Data Structure Analysis

To manage large amounts of data, programs written in modern lan-

guages use recursive data structures. Developers implicitly and explicitly

maintain invariants over data structures and in the code that allocates and

manipulates them. A recursive data structure (RDS ) contains a set of objects

linked by references (pointers) in a regular pattern such that it is composed of

smaller or simpler instances of the same data structure. For example, a subset

of a singly-linked list is also a singly-linked list. We refine this definition to

include object class. The simplest recursive data structures have objects of a

single class that reference only other objects of the same user-defined class.

For instance, a tree is composed of smaller trees (sub-trees) where the smallest

tree is a single node. A given class definition of a tree contains a Node with

some number of references to other Nodes. While the definition of the data

structure is unbounded, the size of any particular RDS in the heap is bounded.

Figure 6.1 shows the composition of the heap in terms of recursive data

structures for the SPECjvm and DaCapo benchmarks based on the above defini-

tions. We measured recursive data structures by their implementation. Data

structures implemented in the Java class libraries (library data structures)

were measured separately from those implemented by the program (home-

brewed data structures). The results reflect the ubiquitous use of recursive

data structures in our benchmarks. The compress and mpegaudio benchmarks

rely strictly on arrays for handling their data. In other benchmarks, 91% of all
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Figure 6.1: Data structure makeup of the heap (objects)

objects are part of a RDS and 33% of objects are contained in a home-brewed

data structure.

6.2.1 Heap Summaries for RDS Analysis

The state of a program’s heap can be expressed as a directed graph

G = {V, E}, where V is the set of all heap-allocated objects and E is the set

of references between objects in the heap. That is, if an object o has a reference

to object o′, then the edge (o, o′) exists in the graph G. The in-degree of an

object o′ is the number of other objects o in the heap that reference o′. The

out-degree of an object o′ is the number of objects o to which o′ refers. The

roots of the heap-graph, those vertices that have an in-degree equal to 0, are

referenced by objects outside the heap. For our analysis of RDS , we only count

in-degree resulting from those edges where objects o and o′ belong to the same

class c and aggregate the degree statistics by user-defined class in the nodes

of a class field-wise summary graph (CFSG). In field edges, we capture all the

points-to relationships by counting all references between any two classes in the

field edges. At the end of each collection, the CFSG completely summarizes

the number of objects of each class including their degree distribution and the
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number of field-edges that are live at the time of the collection.

6.2.2 Analysis and Degree invariant Detection

At the end of each collection, we iterate over the CFSG incorporating

the current CFSG into a cumulative CFSG which tracks the accumulated

statistics for in- and out-degree across all collections. We aggregate the average

percent of objects with each degree metric (e.g., in=0, in=1, in=2, and in>2).

If two or fewer objects exhibit the degree metric, we call the metric a quirk.

For example in a singly-linked list, there is exactly one node with in=0, the

head (root) of the list, and thus the root is a quirk. Otherwise, we measure the

range of the metric as a percentage of objects observed by ShapeUp during one

or more executions. We find that quirk metrics are very sensitive to violation

when anomalies are introduced while ranges are more tolerant.

6.3 Benchmarks

To evaluate ShapeUp, we examine recursive data structures in isolation

in microbenchmarks for singly-linked and doubly-linked lists, binary trees, and

linked hashmaps. We also evaluate the data structures in the SPECjvm and

DaCapo benchmarks and divide them into library implementations and home-

brewed data structures.

6.3.1 Microbenchmarks

To study individual recursive data structures, we implement each in a

microbenchmark. Tables 6.1-6.3 show implementations, sample heap graphs,

and the corresponding CFSG for our microbenchmark data structures. These
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Table 6.1: Microbenchmark list data structures showing implementation, heap graphs, and corresponding
HSG .

Implementation Objects Graph Heap Summary Graph (HSG)

Singly-Linked List

1 class SinglyLinkedList {

2 Node head ;

3

4 static class Node {

5 Object data ;

6 Node next ;

7 }

8 ...

9 }

SLL$ Node
SLL$

Node* SLL$ Node

next
next

data data data

SLL

head

SLL$ Node

SLL

head:1

next: *

data:*

in=0 : 1     out=0 : 1

in=1 : *     out=1 : *

in=2 : 0     out=2 : 0

in>2 : 0     out>2 : 0

Doubly-Linked List

1 class DoublyLinkedList {

2 Node head ;

3 Node tail ;

4

5 static class Node {

6 Object data ;

7 Node next ;

8 Node prev ;

9 }

10 ...

11 }
�� � ��� �� �� � ��� ��
*

�� � ��� ��next next

data data data

�� �
head

prev prev

tail

DLL$ 

Node

DLL

head:1

next: *

data:*

in=0 : 0     out=0 : 0

in=1 : 2     out=1 : 2

in=2 : *     out=2 : *

in>2 : 0     out>2 : 0

prev: *

tail:1
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Table 6.2: Microbenchmark tree data structures showing implementation, sample heap graphs, and corre-
sponding HSG .

Implementation Objects Graph Heap Summary Graph (HSG)

Binary Tree

1 class BinaryTree {

2 Node root ;

3

4 static class Node {

5 Object data ;

6 Node left ;

7 Node right ;

8 }

9 ...

10 }

�� 	 
� �
data

��

root�� 	 
� �
*�� 	 
� � �� 	 
� � �� 	 
� �

data data

right

right

left

left

BT$ Node

BT

root:1

left:*

data:*

in=0 : 1     out=0 : 1

in=1 : *     out=1 : *

in=2 : 0     out=2 : *

in>2 : 0     out>2 : 0

right:*

Binary Tree with Parent

1 class BinaryTreeParent {

2 Node root ;

3

4 static class Node {

5 Object data ;

6 Node left ;

7 Node right ;

8 Node parent ;

9 }

10 ...

11 }

BTP$ 

Node

data

BTP

root

BTP$ 

Node*

BTP$ 

Node

BTP$ 

Node

BTP$ 

Node

data data

right

left

left

parent parent

parentparent

right

BTP$ 

Node

BTP

root:1

left:*

data:*

in=0 : 0     out=0 : 0

in=1 : 1     out=1 : *

in=2 : *     out=2 : *

in>2 : *     out>2 : *

right:*

parent:*
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Table 6.3: Microbenchmark linked hashmap data structure showing implementation, sample heap graphs,
and corresponding HSG .

Implementation Objects Graph Heap Summary Graph (HSG)

HashMap (simplified)

1 class LinkedHashMap {

2 Entry root ;

3

4 class LinkedHashEntry {

5 HashEntry [] entries ;

6 LinkedHashEntry nextGrp ;

7 }

8

9 class HashEntry {

10 Object key ;

11 Object data ;

12

13 Entry next ;

14 }

15 ...

16 }

Linked 

HashMap

Linked 

Hash 

Entry[ ]

HashEntry

HashEntry

HashEntry

HashEntry

HashEntry

HashEntry

next

next next

nextnext

next

nextGrp

nextGrp

Linked 

Hash 

Entry[ ]

HashEntry

Linked 

Hash Map

in=0 : 0     out=0 : 1

in=1 : *     out=1 : *

in=2 : 0     out=2 : 0

in>2 : 0     out>2 : 0

next:*

Linked

Hash

Entry[ ]

nextGrp:*
in=0 : 0     out=0 : 1

in=1 : *     out=1 : *

in=2 : 0     out=2 : 0

in>2 : 0    out>2 : 0
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include a singly-linked and doubly-linked list in Table 6.1, a binary tree and

a binary tree with parent pointer in Table 6.2, and the more complex linked

hashmap in Table 6.3. Hashmaps account for more than 50% of the recursive

data structures in 8 of the 16 benchmarks we tested. For each data structure,

the first column shows the definition of a Node class that implements the re-

cursive backbone of the data structure. The second column shows an example

object graph where nodes marked with the asterisk could be repeated many

times. The last column shows the corresponding CFSG for each data structure.

Notice that a backbone of a recursive data structure is easily distinguished by

its self-loop in the CFSG .

6.3.2 Dynamic Shape and Invariant Characterization

This section presents the in- and out-degree invariants in the microbench-

marks, SPECjvm, and DaCapo benchmark suites. ShapeUp discovered invari-

ants not only when a data structure is used in isolation, but also when it is

used in a more complex application. These results show that class can summa-

rize large complex heaps, as well as individual data structures. We examine

all recursive data structures equally, regardless of whether they are library-

implemented or home-brewed. Section 6.4 shows how we use these invariants

to detect errors in these structures.

Table 6.4 lists the variations of the microbenchmark data structures

that we tested. We performed 1000 trials on correct executions consisting of

a random number between 100 and 100,000 of nodes in the RDS . At each

garbage collection measurement point, ShapeUp calculates the degree metric

and compares it to previous correct runs. If the metric is a quirk (e.g., it is

the root of the data structure), ShapeUp indicates the quirk value for future
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Table 6.4: ShapeUp finds degree invariants on correct data structures. Data structures that refer back to
their parents are marked: w/PP.

Data Structure = 0 = 1 = 2 > 2

Singly-linked list in 1 [99.21, 99.99] 0 0
out 1 [99.21, 99.99] 0 0

Doubly-linked list in 0 2 [99.06, 99.99] 0
out 0 2 [99.06, 99.99] 0

Complete binary tree in 1 [99.63, 99.99] 0 0
out [50.00, 50.18] [0, 0.37] [49.63, 49.99] 0

Full binary tree in 1 [99.00, 99.99] 0 0
out [50.00, 50.49] 0 [49.50, 49.99] 0

Random binary tree in 1 [99.61, 99.99] 0 0
out [35.97, 38.05] [23.94, 28.26] [35.77, 38.00] 0

Complete binary tree w/PP in 0 [50.00, 50.31] [0.00, 1.35] [48.65, 50.00]
out 0 [50.00, 50.31] [0.00, 1.35] [48.65, 50.00]

Full binary tree w/PP in 0 [50.00, 50.51] 1 [48.48, 50.00]
out 0 [50.00, 50.50] 1 [48.48, 50.00]

Random binary tree w/PP in 0 [35.95, 38.55] [23.11, 28.61] [35.44, 38.34]
out 0 [35.95, 38.55] [23.11, 28.61] [35.44, 38.34]

LinkedHashMap (HashEntry) in 0 0 [60.34, 63.47] [37.44, 38.34]
out 0 0 0 1
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comparison. If the metric is a quirk, ShapeUp determines the percentage

of objects with that metric and determines ranges for each metric from the

correct runs.

In the table, each microbenchmark has two rows of data for the single

recursive data structure existing in the heap: the top representing the in-

degree invariants and the bottom representing the out-degree invariants. Each

entry presents either a single integer or a pair [min, max] . If the metric is a

quirk, the entry shows the value of the quirk. For example, in > 2 is a quirk

for the singly-linked list because no objects ever have in-degree greater than

2 (in > 2) in a correct implementation of a singly-linked list. However, the

root node of a data structure will represent a quirk (in = 0). Some objects

have in-degree of zero (in = 0). If many objects have the same degree, we

present a range of the percentage of objects with that degree ([min, max]). In

the singly-linked list, out-degree equals one (out = 1) for at least 99.21% of

all objects and at most 99.99% for all our trials. In this example, the root is

a quirk as is the tail. As a result, the percentages vary only as a function of

the object graph size.

For the less regular data structures, we see fewer quirk metrics in the

dynamic invariants, but good range invariants that can help uncover errors.

For example, the random binary tree has four quirk invariants (in = 0, in =

2, in > 2, and out > 2) and the random binary tree with parent pointers

has two quirk invariants (in = 0 and out = 0). The ranges for both these

data structures are useful as well, for example, incoming pointers must still

essentially be one. Even out = 1 ranging from 23.94 and 28.26 is useful, if there

are systematic errors early in testing. The SPECjvm and DaCapo benchmarks

show very similar characteristics.
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Table 6.5: Dominant recursive data structures for selected SPECjvm and DaCapo benchmarks. L indicates
library implementations and H indicates home-grown implementations.

Benchmark RDS Node L or H? % heap metric = 0 = 1 = 2 > 2

raytrace OctNode H 78.0 in [0] [0, 0.4] [0] [99.3, 99.9]
out [0] [0] [0] [100%]

jack LinkedHashMap$ L 44.2 in [0] [0] [62.7] [37.3]
LinkedHashEntry out [0] [0] [0] [100%]
RuntimeNfaState H 9.4 in [0, 1.4] [53.6, 62.3] [18.8, 31.9] [14.5, 20.3]

out [0] [0] [0] [100%]
antlr Object[] H 76.2 in [0.2, 15.4] [1.33, 33.9] [0] [0]

out [12.9, 46.2] [30.1, 65.5] [8.3, 25.0] [0.2, 8.3]
bloat HashMap$ L 56.6 in [0] [99.0, 100] [0, 0.9] [0]

HashEntry out [0] [0] [75.4, 82.2] [17.8, 24.6]
CallMethodExpr H 3.7 in [0] [0 ] [0 ] [100%]

out [0] [0] [0] [100%]
eclipse LinkedHashmap$ L 59.0 in [0] [0] [61.3, 62.3] [37.7, 38.7]

LinkedHashEntry out [0] [0] [0] [100%]
fop HashMap$ L 51.4 in [0] [100%] [0] [0]

HashEntry out [0] [0] [75.1, 79.1] [20.9, 24.9]
PropertyList H 4.4 in 0 [0, 100] [0, 63.4] [0, 52.2]

out [0] 0] [0] [100]
jython PyFrame H 94.6 in [0] [100%] [0] [0]

out [0] [0] [0] [100%]
luindex LinkedHashMap$ L 99.3 in [0] [0] [67.6] [32.4]

LinkedHashEntry out [0] [0] [0] [100%]
lusearch WeakHashMap$ L 47.5 in [0, 83.6] [16.4, 100] [0, 0.1] [0]

WeakBucket out [0] [0] [75.2, 83.9] [16.1, 24.7]
HitDoc H 2.0 in [0] [0, 100] [0] [0, 100]

out [37.5, 100] [0, 50.0] [0, 15.4] [0, 37.5]
pmd HashMap$ L 51.4 in [0] [100%] [0] [0]

HashEntry out [0] [0] [75.9, 78.6] [21.4, 24.1]
PackageNode H 2.0 in [0] [100%] [0] [0]

out [0] [0] [100%] [0]
xalan ChildIterator H 34.6 in [0] [0] [0, 52.5] [47.5, 100]

out [0] [0] [0] [100%]
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Table 6.5 reports data structures for the SPECjvm and DaCapo Java

programs. First it reports the most dominant data structure and indicates

whether it is library-implemented (L) or home-brewed (H). If the dominant

data structure is library-implemented, the table reports the next most domi-

nant home-brewed data structure. Column two names the recursive class of the

data structure and column three indicates how much of the heap is occupied by

this data structure. Notice that this single piece of information often indicates

what data structure is used. As expected, many major data structures used by

these benchmarks are defined in the libraries. For example, hashmap and its

variants make up the major portion of data structures used in the benchmarks.

Each data structure has two rows of data: the top representing the in-degree

invariants and the bottom representing the out-degree invariants. Notice that

the home-brewed data structures exhibit more variation in degree ranges, and

that many of them have quirk invariants.

Each data structure has different dynamic invariants and these reports

are sufficient for finding many types of errors during development. In par-

ticular, consider the case when a developer intends to create a doubly-linked

list, but forgets to set the back pointer and creates a singly-linked list instead.

The ShapeUp invariant report would clearly indicate that approximately 99%

of nodes showed an in-degree of one rather than the expected value of two.

ShapeUp’s extended reports will indicate this error and show that the data

structure does not have the intended shape without requiring a correct execu-

tion. In Section 6.4, we show how ShapeUp uses its automatically generated

assertions from correct executions to detect errors when errors are inserted

into our microbenchmarks, but first we examine whole heap characteristics for

SPECjvm and DaCapo.
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(b) Out-degree metrics for pmd
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(c) Out-degree metrics for HashMap$HashEntry in pmd

Figure 6.2: Degree Rate of Change.

6.3.3 Whole heap analysis for SPECjvm and DaCapo Benchmarks

In these experiments, we test whether whole heap invariants hold for

SPECjvm and DaCapo. Previous work showed that whole-heap degree metrics

are sufficient for discovering data structure bugs in C programs [51]. We

measure the degree metrics of the whole heap for the benchmarks and present
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sample results in Figure 6.2. Whole-heap degree metrics are not coarse-grained

enough to predict errors in data structure for Java. We ran 18 benchmarks

from SPECjvm and DaCapo and found that while two programs had many

stable metrics – compress (7) and jython (5) (see Figure 6.2(a)). Allocation

rate determines the number of objects in the heap, but not the mutations of

the data structures. Notice that in this case that the out-degree metric shows

a great deal of stability as a function of heap allocation. Four programs tended

to show much fewer stable degree metrics – mpegaudio (2), luindex (2), jack

(1), and antlr (1). The most common case was the total lack of stability across

the entire heap for the remaining 11 programs: jess, raytrace, db, javac, mtrt,

jbb2000, bloat, eclipse, fop, lusearch, and pmd. But even when degree-metrics

were unstable across the whole heap, most data structures maintained stability.

Figure 6.2(b) shows pmd and is more representative of the other programs. The

figure plots the out-degree metrics for pmd, which vary wildly as a function of

allocation time shown here as a whole factor greater scale than the previous

graph. Simply measuring the degree of all the objects in the heap is not

sufficient to understand program behavior. However, as we showed above.

the degree metrics of all objects in a user-defined class are stable across the

entire program execution. Figure 6.2(c) illustrates this stability. It plots the

out-degree metrics for HashMap$HashEntry in pmd, its biggest data structure.

6.4 Automated Error Detection

This section describes how ShapeUp can automate error detection in

many cases. This application of ShapeUp is appropriate for hard-to-find corner

cases and can reveal transient hardware errors that corrupt data structure

integrity. In learning mode, we train ShapeUp on correct program executions.
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ShapeUp determines the likely dynamic invariants as shown in the previous

section. In testing mode, we compare the current execution to our discovered

invariants. On each full-heap garbage collection (measurement), ShapeUp

analyzes the data structures and compares this measurement to the stored

invariants from correct executions. It tests each metric, i.e., in- and out-

degree dynamic invariants. ShapeUp classifies each metric a quirk or as a

probabilistic range, as shown in Table 6.4. Quirk metrics are shown as a single

number and range metrics are shown as a [min, max] pair.

1 if ( metric is constant ) {

2 if ( thisMeasurement != constantMeasurement ) {

3 // violation occured

4 }

5 } else {

6 thisPercent = thisMeasurement / numberOfObjects

7 if ( thisPercent < minPercent || maxPercent < thisPercent ) {

8 // violation occured

9 }}

1 if ( metric is constant ) {

2 if ( thisMeasurement != constantMeasurement ) {

3 // violation occured

4 }

5 } else {

6 thisPercent = thisMeasurement / numberOfObjects

7 if ( thisPercent < minPercent || maxPercent < thisPercent ) {

8 // violation occured

9 }}

Figure 6.3: Violation Pseudocode

If the metric is a quirk and the current measurement is not the same,

ShapeUp reports an error. Otherwise, ShapeUp reports an error if the fraction

of objects with the metric falls below the minimum or above the maximum.

Figure 6.3 shows the decision-making code.

Table 6.6 enumerates the errors we inserted into each of the microbench-

mark data structures. For example in random, we randomly choose an interior

object in the singly-linked list and set the tail object to refer to it, forming a
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Table 6.6: Errors Introduced

Error Description Violation Type Runs

Singly-Linked List
cyclic attaches the tail to head single 10

random attaches the tail to a random object single 100

Doubly-Linked List
cyclic creates cycle from tail to head single 10
cycle creates a random cycle between two ob-

jects
multiple 100

disconnect disconnects random link multiple 100
skip creates a skip in the next or prev pointers multiple 100
error randomly insert errors (cycle, disconnect,

or skip)
multiple 100

binary tree
linkerror creates a connection from a null pointer

to a random object
multiple 100

binary tree with Parent Pointer
disconnect delete a random reference multiple 100
linkerror creates a connection from a null pointer

to a random object
multiple 100

errors randomly insert errors (disconnect or link-
error)

multiple 100

Linked Hashmap
bucketlink randomly connects two buckets in the

hashmap
multiple 100
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cycle. In the binary tree, we delete random references and mutate references to

null to refer to random objects. Our approach won’t detect errors if the error

makes objects unreachable. For example, if the second half of a singly-linked

list is erroneously disconnected, the remaining data structure is still a legal

list. These errors are relatively easy programming task to catch by adding

code that keeps track of the expected number of objects in the data structure.

We, therefore, insert errors in which the objects remain reachable.

We perform tests that insert 1, 2, 3, 4, 5, 10, 50 and 100 errors into

RDS that have 100,000 nodes. Table 6.7 shows the number and type of errors

inserted for each microbenchmark. We report the percentage of errors detected

and whether the metric violated was a quirk and/or a range metric. Only one

entry is not 100%, in this case a doubly-linked list with 100,000 nodes had

100 errors inserted into it and several errors had the affect of cancelling each

other out. We believe this result is due to our methodology of using completely

random error insertion and believe that real errors are less numerous and more

systematic. In all other cases, one error was enough to make one or more of

the metrics fall out of range and thus ShapeUp was able to detect the error(s).

6.5 Summary

ShapeUp finds and characterizes recursive data structures and their dy-

namic invariants to aid program understanding and bug detection. By sum-

marizing the degree characteristics of data structures in a CFSG , ShapeUp

identifies both library-implemented and home-brewed data structures while

adding only an average of 4-8% to total runtime. We show that ShapeUp

can be used to detect errors injected into recursive data structures by training

ShapeUp on correct runs to discover in- and out-degree invariants based on
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Table 6.7: Percentage of runs with detected errors classified as constant and/or
range violations.

Number of errors injected Metric violated
Error 1 2 3 4 5 10 50 100 Constant Range

Singly-Linked List
cyclic 100 n/a yes yes

random 100 n/a yes yes
Doubly-Linked List

cyclic 100 n/a yes yes
cycle 100 100 100 100 100 100 100 100 yes yes

disconnect 100 100 100 100 100 100 100 99 yes yes
skip 100 100 100 100 100 100 100 100 yes yes
error 100 100 100 100 100 100 100 100 yes yes

Complete binary tree
linkerror 100 100 100 100 100 100 100 100 yes yes

Full binary tree
hline linkerror 100 100 100 100 100 100 100 100 yes yes

Random binary tree
linkerror 100 100 100 100 100 100 100 100 yes yes

Complete binary tree with Parent Pointer
disconnect 100 100 100 100 100 100 100 100 yes yes
linkerror 100 100 100 100 100 100 100 100 yes yes

error 100 100 100 100 100 100 100 100 yes yes

Full binary tree with Parent Pointer
disconnect 100 100 100 100 100 100 100 100 yes yes
linkerror 100 100 100 100 100 100 100 100 yes yes

error 100 100 100 100 100 100 100 100 yes yes

Random binary tree with Parent Pointer
disconnect 100 100 100 100 100 100 100 100 yes yes
linkerror 100 100 100 100 100 100 100 100 yes yes

error 100 100 100 100 100 100 100 100 yes yes
Linked Hashmap

bucketlink 100 100 100 100 100 100 100 100 yes yes

user-defined class. It then uses these invariants to find errors in runs where

errors were randomly injected into the same data structures. We found that

ShapeUp successfully finds all errors that we automatically injected and did
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so even when a single error was injected. In summary, dynamic heap analysis

can effectively use class to summarize the objects in the heap and find dy-

namic invariants, mining much of the heap’s regular structure from the object

graph. Furthermore, this information is useful for program understanding and

debugging, and there is likely more information to be mined.
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Chapter 7

Conclusion

Large programs present new challenges for understanding and debug-

ging. With the ubiquitous use of well-defined user interfaces, libraries and

frameworks, it is not surprising that few developers understand every aspect

of the program they help develop. Furthermore, complexity makes it difficult

to fully validate or exhaustively test software prior to deployment making it

probable that software will ship with bugs.

With more objects going into the heap, the heap encodes more program

state than ever before making it more likely than ever that bugs will manifest

there. Discovering heap characteristics after deployment requires dynamic

heap analysis. This dissertation shows how to perform dynamic heap analysis

by leveraging the managed runtime. It argues that dynamic heap analysis is

a necessary part of program analysis and introduces two techniques (dynamic

object sampling and heap summarization) for mining program state efficiently

and effectively. We show how to use these two techniques to mine object

characteristics and aggregate characteristic statistics in new ways.

First, we attack the problem of estimating allocation-site lifetime. We

show how Dynamic Object Sampling (DOS ) can be used to tag a random

sample of objects with allocation site information and then how we accurately

estimate the lifetime of allocation during garbage collection while adding only

3% on average to total time. We explore using dynamic lifetimes to opti-
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mize programs using dynamic objects sampling with mixed results. While we

are the first to improve any SPECjvm benchmark, we show that other bench-

marks lack opportunity and suffer only from the added overhead. Despite

these degradations, we show that the allocation-site lifetimes calculated are

94% accurate and for the first time show that the reason pretenuring fails for

SPECjvm is a lack of opportunity. These results show that dynamic object

sampling is useful for performance optimization.

We implemented Cork which summarizes the size of the heap in a com-

pact way to identify data structures that exhibit systematic heap growth.

Using a CPFG , cork summarizes the volumes of user-defined classes in the

heap and the relations between those classes. We demonstrate that ranking

the nodes in the CPFG positively identifies which classes are increasing in

volume and ranking the edges positively identifies the data structure. These

results show that heap summarization can identify bugs.

We implemented ShapeUp which performs a more complex dynamic

heap analysis discovering degree invariants for recursive data structures. It

measures the in- and out-degree of data structure nodes that make up the

recursive backbone of a recursive data structure. We show how dynamic in-

variants for singly- and doubly-linked lists, binary trees, and hashmaps are

easily discovered and exploited to identify when an anomaly is inserted into

the recursive structure of these data structures. Our results show that dynamic

object sampling and heap summarization work synergistically to improve pro-

gram understanding and detect errors.

In summary, this dissertation is the first to show that dynamic heap

analysis can be performed by leveraging the managed runtime to efficiently

and effectively mine program state from the heap.
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