
PACER: Proportional Detection of Data Races ∗

Michael D. Bond Katherine E. Coons Kathryn S. McKinley
Department of Computer Science, The University of Texas at Austin

{mikebond,coonske,mckinley}@cs.utexas.edu

Abstract
Data races indicate serious concurrency bugs such as order, atom-
icity, and sequential consistency violations. Races are difficult to
find and fix, often manifesting only after deployment. The fre-
quency and unpredictability of these bugs will only increase as
software adds parallelism to exploit multicore hardware. Unfortu-
nately, sound and precise race detectors slow programs by factors
of eight or more and do not scale to large numbers of threads.

This paper presents a precise, low-overhead sampling-based
data race detector called PACER. PACER makes a proportionality
guarantee: it detects any race at a rate equal to the sampling rate,
by finding races whose first access occurs during a global sam-
pling period. During sampling, PACER tracks all accesses using
the dynamically sound and precise FASTTRACK algorithm. In non-
sampling periods, PACER discards sampled access information that
cannot be part of a reported race, and PACER simplifies tracking
of the happens-before relationship, yielding near-constant, instead
of linear, overheads. Experimental results confirm our theoretical
guarantees. PACER reports races in proportion to the sampling rate.
Its time and space overheads scale with the sampling rate, and
sampling rates of 1-3% yield overheads low enough to consider
in production software. The resulting system provides a “get what
you pay for” approach that is suitable for identifying real, hard-to-
reproduce races in deployed systems.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Debuggers, Run-time environments; D.2.5
[Software Engineering]: Testing and Debugging—Debugging aids,
Testing tools

General Terms Reliability, Performance, Experimentation

Keywords Concurrency, Data Races, Bugs, Sampling

1. Introduction
Software must become more parallel to exploit hardware trends,
which are increasing the number of processors on each chip. Unfor-
tunately, correct and scalable multithreaded programming is quite

∗ This work is supported by NSF SHF-0910818, NSF CSR-0917191, NSF
CCF-0811524, NSF CNS-0719966, a Microsoft Research Ph.D. Fellow-
ship, Intel, and Google. Any opinions, findings, and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

challenging. It is notoriously difficult to specify program synchro-
nization, i.e., the ways in which threads may interleave operations
on shared data. Too much synchronization degrades performance
and causes deadlock, while missing synchronization causes unin-
tended interleavings. A data race occurs when two accesses to the
same variable, one of which is a write, do not correctly synchro-
nize. While data races are not necessarily errors in and of them-
selves, they indicate a variety of serious concurrency errors that are
difficult to reproduce and debug such as atomicity violations [25],
order violations [24], and sequential consistency violations [26].
Because some races occur only under certain inputs, environments,
or thread schedules, deployed low-overhead race detection is nec-
essary to achieve highly robust deployed software.

Static techniques for detecting races scale to large programs and
try to limit false positives, typically by being unsound in a few lim-
ited ways [29; 33; 38]. Precision (no false positives) is important
because both false and true data race reports take lots of devel-
oper time to understand, and thus developers are not embracing
approaches that report false positives. Dynamic analysis typically
uses either lockset or vector clock algorithms. Lockset algorithms
reveal errors in locking disciplines, but are imprecise. Vector clock
algorithms are precise and now achieve about the same perfor-
mance as lockset algorithms [14].

Vector clock-based race detection is precise because it tracks the
happens-before relationship. Recently FASTTRACK reduced most
vector clock-based analysis time from O(n) to O(1), where n is
the number of threads. FASTTRACK exploits the observation that
some reads and all writes are totally ordered in race-free programs,
but it still slows programs down by a factor of eight on average.
LITERACE reduces overhead by sampling [27]. While LITERACE
finds many races handily, it uses heuristics that provide no guaran-
tees, incurs O(n) overhead at synchronization operations, and has
high online space overhead.

This paper presents a new approach for detecting data races
based on sampling called PACER. PACER makes a proportional-
ity guarantee: it detects each race with a probability equal to the
sampling rate, and in practice it adds time and space proportional
to the sampling rate. PACER builds on the FASTTRACK algorithm
but reduces overhead through sampling. FASTTRACK finds short-
est races. Two racy accesses A and B are a shortest race if there
is no intervening access that races with B. PACER reports sampled,
shortest races. Two racy accessesA andB are sampled ifA occurs
in a sampling period. B may occur any time later—in any subse-
quent sampling or non-sampling period. The key insights we use to
reduce overhead are as follows. (1) During non-sampling periods,
once PACER determines a sampled access cannot be part of a short-
est race, it discards the metadata to save time and space. (2) Dur-
ing non-sampling periods, we observe that because PACER must
only determine if the sampled accesses happen before the current
time, it is not necessary to increment vector clocks. Without incre-
ments, vector clock values converge due to redundant synchroniza-
tion, which PACER exploits to reduce almost analysis from O(n)

to O(1) time during non-sampling periods. The appendices prove
PACER’s completeness and statistical soundness.

PACER provides a qualitative improvement over most prior
work. Its scalable performance makes it suitable for all-the-time
use in production. For sampling rates of 1 to 3%, PACER adds over-
heads between 52 and 86%, which we believe could be lower with
additional implementation effort and may already be low enough
for many deployed settings. We show that PACER avoids nearly
all O(n) operations during non-sampling periods. Both sampling
and the observer effect complicate race detection evaluation be-
cause they change the reported races. However, our evaluation
(which currently evaluates only frequently occurring races due to
experimental resource limitations) suggests that PACER achieves
its theoretical guarantees, finding each dynamic data race with a
probability equal to the sampling rate.

A given data race may occur extremely infrequently or never
in testing and in some deployed environments, but occur period-
ically in other deployed environments. Widely deploying PACER
gives coverage across many environments, with reasonable odds of
finding any given race that occurs periodically. We note that po-
tentially harmful data races occur quite frequently without causing
errors in the same execution. Thus, sampling may be attractive even
in safety-critical software, to identify data races before they lead to
errors. In less critical software such as web browsers, PACER is at-
tractive for identifying data races that frequently lead to errors; its
reports can help developers detect, diagnose, and fix the root cause
of previously undiagnosed nondeterministic crashes.

PACER is a “get what you pay for” approach that provides
scalable performance and scalable odds of finding any race. PACER
provides a qualitative improvement over prior approaches because
it is suitable for all-the-time use in deployed systems, where it can
help developers eliminate rare, tough-to-reproduce errors.

2. Background, Motivation, and Requirements
This section describes dynamic race detection algorithms that pre-
cisely track the happens-before relationship using vector clocks.
It first reviews the happens-before relationship and a GENERIC
O(n) (time and space) vector clock algorithm. We describe how
the FASTTRACK algorithm replaces most O(n) analysis, where n
is the number of threads, with O(1) analysis without losing accu-
racy. Section 2.3 motivates sampling to reduce overhead, but argues
that prior heuristics are unsatisfactory because they may miss races,
and have unscalable time and memory overheads.

2.1 Race Detection Using Vector Clocks
The happens-before relationship computes a partial order over dy-
namic program statements [21]. Statement A happens before B
(A HB−−→ B) if any of the following is true:

• A executes before B in the same thread.
• A and B are operations on the same synchronization variable

such that the semantics imply a happens-before edge (e.g., A
releases a lock, and B subsequently acquires the same lock).
• A HB−−→ C and C HB−−→ B. Happens before is transitive.

Two statementsA andB are concurrent ifA 6HB−−→B andB 6HB−−→A,
i.e., they are not ordered by the happens-before relationship. A
data race occurs when there are two concurrent accesses to a vari-
able and at least one is a write. We follow prior work by consid-
ering happens-before data races because their absence guarantees
sequential consistency.

Accesses to synchronization objects are always ordered and
never race. Synchronization objects in Java are: threads, locks,
and volatile variables. (We focus on threads and locks to simplify

Algorithm 1 Acquire [GENERIC]: thread t acquires lock m

Ct ← Ct t Cm

Algorithm 2 Release [GENERIC]: thread t releases lock m

Cm ← Ct
Ct[t]← Ct[t] + 1

Algorithm 3 Fork [GENERIC]: thread t forks thread u

Cu ← Ct
Cu[u]← Cu[u] + 1
Ct[t]← Ct[t] + 1

Algorithm 4 Thread join [GENERIC]: thread t joins thread u

Ct ← Cu t Ct
Cu[u]← Cu[u] + 1

Algorithm 5 Read [GENERIC]: thread t reads variable f

check Wf v Ct {Check race with prior writes}
Rf [t]← Ct[t]

Algorithm 6 Write [GENERIC]: thread t writes variable f

check Wf v Ct {Check race with prior writes and reads}

check Rf v Ct
Wf [t]← Ct[t]

this presentation. Appendix C explains the differences for volatile
variables.) All other program accesses may race, if the program
synchronization does not order them. Potentially racing accesses
include object fields, static fields, and array element accesses in
Java. We follow the literature: all these accesses are on variables,
and synchronization operations are on synchronization objects.

Vector clock race detection algorithms soundly and precisely
track the happens-before relationship [21; 28]. These algorithms
perform dynamic analysis on all synchronization, read, and write
operations. They detect concurrent variable accesses, and if one is
a write, they report a data race.

Synchronization operations. The simplest vector clock race de-
tection algorithm stores a vector clock for each synchronization ob-
ject, each variable read, and each variable write. A vector clock is
indexed by thread identifier: C[1..n]. For each synchronization ob-
ject o, the analysis maintains a vector clock Co that maps every
thread t to a clock value c.

Algorithms 1, 2, 3, and 4 show GENERIC vector clock algo-
rithms at lock acquires and releases, and thread forks and joins.
Following Flanagan and Freund [14], gray shading indicates that
operations take O(n) time, where n is the number of threads. The
vector clock join operator t takes two vector clocks and returns
the maximum of each element. For example, if thread t acquires
lockm, GENERIC stores the join of t andm’s vector clocks into t’s
vector clock by computing Ct ← CttCm, which updates each el-
ement Ct[i] to max(Ct[i], Cm[i]). When a thread t releases a lock
m, the analysis copies the contents of t’s vector clock tom’s vector
clock. It then increments the t entry in t’s vector clock.

Variable reads and writes. GENERIC tracks, for each variable,
the logical time at which every thread last read and wrote it:

R[1..n] Read vector

W [1..n] Write vector

Algorithms 5 and 6 show GENERIC analysis for reads and writes.
At reads, the analysis checks that prior writes happen before the
current thread’s vector clock, and then updates the read vector’s
component for the current thread. At writes, the analysis checks for
races with prior reads and writes, and updates the write vector.

2.2 FASTTRACK

FASTTRACK is a dynamically sound and complete race detection
algorithm [14]. It is nearly an order of magnitude faster than prior
techniques because instead of O(n) time and space analysis, it
replaces all write and many read vector clocks with a scalar and
almost always performs O(1)-time analysis on them. FASTTRACK
exploits the following insights. (1) In a race-free program, writes
to a variable are totally ordered. (2) In a race-free program, upon
a write, all previous reads must happen before the write. (3) The
analysis must distinguish between multiple concurrent reads since
they all potentially race with a subsequent write. For each variable,
FASTTRACK replaces the write vector clock with an epoch c@t,
which records the thread t and its clock value c that last wrote the
variable. This optimization reduces nearly all analysis at reads and
writes from O(n) to O(1) time and space. When reads are ordered
by the happens-before relation, FASTTRACK uses an epoch for the
last read. Otherwise, it uses a vector clock for reads. The function
epoch(t) is shorthand for c@t where c = Ct[t].

For clarity of exposition, we generalize the read epoch and
vector clock into a read map. A read map R maps zero or more
threads t to clock values c. A read map with one entry is an epoch.
A read map with zero entries is the initial-state epoch 0@0.

R Read map: t→ c

W Write epoch: c@t
FASTTRACK uses the same analysis at synchronization operations
as GENERIC (Algorithms 1, 2, 3, and 4). Algorithms 7 and 8 show
FASTTRACK’s analysis at reads and writes.

At a read, if FASTTRACK discovers that the read map is a single-
entry epoch equal to the current thread’s time, epoch(t), it does
nothing. Otherwise, it checks whether the prior write races with
the current read. Finally, it either replaces the read map with an
epoch (if the read map is an epoch already, and it happens before
the current read) or updates the read map’s t entry.

At a write, if FASTTRACK discovers the variable’s write epoch
is the same as the thread’s epoch, it does nothing. Otherwise, it
checks whether the current write races with the prior write. Finally,
it checks for races with prior reads and clears the read map. The
check takes O(|Rf |) time and thus O(n) at most, although it is
amortized over the prior |Rf | analysis steps that take O(1) time
each. When Rf is an epoch, the original FASTTRACK algorithm
does not clearRf . ClearingRf is sound since the current write will
race with any future access that will also race with the discarded
read. We modify FASTTRACK to clear Rf to correspond more
directly with PACER, which clears read maps and write epochs to
reduce space and time overheads during non-sampling periods.

Discussion. FASTTRACK performs significantly faster than prior
vector clock-based race detection [14]. Notably, it performs about
the same as imprecise lockset-based race detection, but it still slows
programs by 8X on average and adds 3X space overhead, which is
too inefficient for most deployed applications. (While the original
FASTTRACK implementation executes in pure Java, we estimate
that an efficient implementation inside a JVM would still slow pro-
grams by 3-4X. Our PACER implementation at a 100% sampling
rate, while implemented in a JVM and functionally equivalent to
FASTTRACK, incurs a 12X slowdown primarily because it is op-
timized for the non-sampling case at the expense of the sampling
case; Section 5.4.) FASTTRACK’s analysis for nearly all read and
write operations takesO(1) time; however, its analysis for synchro-

Algorithm 7 Read [FASTTRACK]: thread t reads variable f

if Rf 6= epoch(t) then {If same epoch, no action}
check Wf v Ct
if |Rf | = 1 ∧Rf v Ct then
Rf ← epoch(t) {Overwrite read map}

else
Rf [t]← Ct[t] {Update read map}

end if
end if

Algorithm 8 Write [FASTTRACK]: thread t writes variable f

if Wf 6= epoch(t) then {If same epoch, no action}
check Wf v Ct
if |Rf | ≤ 1 then

check Rf v Ct
Rf ← empty {New: clear read map here}

else
check Rf v Ct {O(1) amortized time}
Rf ← empty

end if
Wf ← epoch(t) {Update write epoch}

end if

nization operations takesO(n) time. Although synchronization op-
erations account for only about 3% of analyzed operations, as the
number of threads increases, they present a scalability bottleneck.

2.3 Sampling
A potential strategy for reducing overhead is to sample race detec-
tion analysis, i.e., execute only a fraction of the analysis. On first
glance, sampling has two serious problems. First, sampling syn-
chronization operations will miss happens-before edges and thus
will report false positive races. Second, because a race involves two
accesses, sampling a proportion r of all reads and writes will report
only r2 of races (e.g., 0.09% for r = 3%).

LITERACE solves some of these problems [27]. To avoid miss-
ing happens-before edges, LITERACE fully instruments all syn-
chronization operations. It then samples read and write operations
with a heuristic. It applies the cold-region hypothesis: bugs occur
disproportionately in cold code [10]. LITERACE samples at a rate
inversely proportional to execution frequency, down to a minimum.
LITERACE thus cannot make claims on proportionality, since with
its minimum rate of 0.1%, a race in hot code will only be reported
0.1%2 = 0.0001%, i.e., one out of a million times.

The LITERACE paper uses offline race detection by recording
synchronization, read, and write operations to a log file [27]. Of-
fline analysis performs checks for races in the log when, for exam-
ple, an execution fails. Offline race detection is impractical in many
cases, such as long-running programs. An online implementation of
LITERACE requires O(n) analysis for synchronization operations.
Furthermore, since it samples code, rather than data, space over-
head is proportional to the data, not the sampling rate.

2.4 Requirements
While recent work offers significant advances in dynamic, pre-
cise race detection, serious drawbacks limit its applicability: anal-
ysis that requires O(n) time and space, and sampling heuristics
that consistently miss some races. We believe the following re-
quirements are key for deployable race detection. First, like the
approaches just described, race detection needs to be precise to
avoid alienating developers with false positives. Second, the time
and space impact must be low enough to be acceptable for produc-
tion software, and must scale with the number of threads. Third, the

Thread
 t1
 t2
 t3

Sampling
 Rx

Wy

rel(m)

Non-sampling
 acq(m)

Wx

Wx

Sampling

Non-sampling
 Ry

Figure 1: PACER reports the race on y, but not the race on
x because the shortest race’s first access is not sampled.

t1! clockt1! vert1! t2! clockt2! vert2! t3! clockt3! vert3!

Sampling!

Non-sampling!

 acq(m)!
 clockm!

 acq(l)!
 clockl!

<9,0,0>!

<9,6,8>!

<10,0,0>!

<11,15,0>!

 acq(m)!
 clockm!
 rel(m)!
 clockm!

 acq(l)!
 clockl!
 rel(l)!
 clockl!

<6,6,5>!

<6,6,8>!

<10,14,12>!

<10,15,14>!

 rel(m)!
 clockm!

 rel(l)!
 clockl!

<4,5,8>! <4,11,14>!

Happens-before edge!
Shared vector clock!
Vector clock join!

Figure 2: PACER exploits redundant communication in non-sampling
periods to eliminate vector clock updates and to share vector clocks.

approach should find any race in proportion to how frequently the
race occurs in an execution.

3. PACER
This section presents the PACER sampling-based race detection al-
gorithm. PACER (1) guarantees a detection rate for each race equal
to the sampling rate and (2) achieves time and space overheads
proportional to the sampling rate. While some of these overheads
are also proportional to the number of threads n, decreasing the
sampling rate reduces overall overhead. PACER requires a fairly
low sampling rate (≤3%) to keep overhead low enough to con-
sider deploying. Since the chance of finding a race in a given ex-
ecution is fairly low (≤3%), we envision developers using PACER
on many deployed instances, as in distributed debugging frame-
works [22; 23]. This section presents the PACER algorithms, which
Appendices A and B formalize and prove correct.

3.1 Sampling
PACER samples race detection analysis to reduce time and space
overheads. PACER divides program execution into global sampling
periods and non-sampling periods, periodically enabling and dis-
abling sampling for all threads. Given randomly chosen sampling
periods, PACER samples a proportion r of dynamic operations. It
finds any dynamic race with a probability r by guaranteeing to
report sampled, shortest races, defined as follows. Given two ac-
cesses A and B, PACER reports the race if A is in a sampling pe-
riod and A is the last access that races with B. B can occur inside
or outside a sampling period. The write-read race on y in Figure 1
shows a simple example. The write at t2 occurs inside the sampling
period and races with the read at t3, which is outside the sampling
period. PACER reports this race.

During sampling periods, PACER fully tracks the happens-
before relationship on all synchronization operations, and variable
reads and writes, using FASTTRACK. In non-sampling periods,
PACER reduces the space and time overheads of race detection
by simplifying analysis on synchronization operations and vari-
able reads and writes. For example, PACER incurs no space over-
head and performs no work for accesses to variables that were not
sampled. Given a sampled access A, PACER stops tracking it and
discards its read and write metadata when a subsequent access B
means thatAwill not be the last access to race with future accesses.

This guarantee is a little subtle because of the last access re-
quirement. Figure 1 shows an example: the sampled read of x, Rx
on t2, and the non-sampled write Wx at t1 both race with non-
sampled write Wx at t3. Since a happens-before edge orders Rx
and Wx at t1, when the write occurs, PACER detects there is no
read-write race with Rx and stops tracking x. Although there is a
race, the happens-before edge indicates thatWx at t1 must also par-
ticipate in any race with Rx and it is the last access before the race.
Since PACER has probability r of sampling any access, it reports
the race between the two writes to x with probability r. That is, if

Wx at t1 had executed in a sampling period, PACER would have
reported the race. Similarly, FASTTRACK only reports the race be-
tween the two writes to x. The next two subsections describe in
more detail how PACER maintains accuracy while reducing work.

3.2 Synchronization Operations
We use the following key insights to reduce vector clock O(n)
analysis in non-sampling periods.

• During non-sampling periods, PACER does not increment
threads’ clocks because it does not need to compare two ac-
cess times from non-sampled periods. The analysis only needs
to test if a sampled access happens before the current time.
• When PACER does not increment time, redundant communica-

tion produces the same vector clock values. By detecting and
exploiting this redundancy, PACER eliminates redundant vector
clock joins and copies, reducing time and space overhead.

Non-sampling periods are “timeless”: the analysis stops increment-
ing thread vector clocks. As a result, it can avoid redundant vector
clock joins and often share vector clock objects. Skipping clock in-
crements is sufficient to track happens-before because during non-
sampling periods, we only compare sampled to non-sampled vec-
tor clocks to find races. Thus, vector clocks will not change when
communication is redundant. PACER detects this redundancy and
avoids O(n)-time vector clock operations.

Consider Figure 2. In timeless periods, only lock acquire, fork,
and join operations change the vector clock values. Therefore,
clockm and clockl can share t3’s vector clock after the release op-
erations. Furthermore, PACER omits unnecessary join operations.
PACER must perform the join when t2 acquires lock m, but the ac-
quire of lock l produces a redundant clock value. PACER detects
this case, performs no join, and shares vector clocks upon release.

To detect redundant communication, we introduce vector clock
versions and version vectors.1 PACER assigns a version number to
every unique vector clock value a thread observes. It starts the
version at zero and increments it every time the thread’s vector
clock changes due to a join or increment. Every thread stores a
version vector that records the latest version number for all threads
it has “received” via a join. It also stores a version epoch v@t for
each lock that stores the last thread t and version v, if any, that
released this lock. When thread t releases a lock, it sets the lock’s
version epoch to v@t where v is thread t’s current version.

In non-sampling periods, PACER performs a shallow copy of the
vector clock to save time and space, since vector clocks will change
infrequently in non-sampling periods. If a subsequent synchroniza-
tion requires an update to a shared vector clock, PACER clones the
vector clock before modifying it. At a lock acquire, PACER com-
pares the lock’s version epoch and thread’s version vector to decide
whether it needs to perform the join.

1 These are not the same as version vectors used in distributed systems [31].

Algorithm 9 Vector clock copy [PACER]: Cm ← Ct

if not sampling then
setShared(clockt, true) {Share the vector clock}
clockm ←shallow clockt

else
clockm ← clockt {Deep, element-by-element copy}

setShared(clockm, false)
end if
vepochm ← vepoch(t) {Update m’s version epoch}

Algorithm 10 Vector clock increment [PACER]: Ct[t]← Ct[t]+1

if sampling then {If not sampling, no action}
if isShared(clockt) then

clockt ← clone(clockt) {First clone clockt, if shared}
setShared(clockt, false)

end if
clockt[t]← clockt[t] + 1
vert[t]← vert[t] + 1 {Update t’s version}

end if

Algorithm 11 Vector clock join [PACER]: Ct ← Ct t Cm

Let v@u = vepoch(m) {Is m’s vector clock newer}
if v@u 6= null ∧ vert[u] < v then {than thread u’s?}

if clockm 6v clockt then {Need to update clockt?}
if isShared(clockt) then

clockt ← clone(clockt)
setShared(clockt, false)

end if
clockt ← clockt t clockm

vert[t]← vert[t] + 1 {Update version with clockt}
end if
vert[u]← v {New version v of thread u’s vector clock}

end if

More formally, PACER uses the following metadata for all syn-
chronization objects (threads, locks, and volatiles):

clocko[1..n] Vector clock.

Each thread has the following additional metadata:

vert[1..n] Version vector. Each element vert[u] is the latest
version received from thread u via joins.

Locks (and volatiles) have the following additional metadata:

vepochm Version epoch v@t. If nonnull, clockm is equal to
version v of thread t’s vector clock.

The function vepoch(o) is defined for any synchronization object
o. For a thread t, vepoch(t) ≡ v@t where v = vert[t]. For
a lock m, vepoch(m) ≡ vepochm. The functions isShared(),
setShared(), and clone() support sharing of one vector clock by
multiple synchronization objects and cloning to eliminate sharing.

PACER performs the same analysis at synchronization opera-
tions as GENERIC and FASTTRACK (Algorithms 1, 2, 3, and 4).
However, it redefines the low-level vector clock operations copy,
increment, and join. Algorithms 9, 10, and 11 show how PACER
redefines these operations.

Algorithm 9 shows how PACER redefines vector clock copy. In a
non-sampling period, the algorithm performs a shallow copy of the
synchronization object, i.e.,m and t share vector clocks (clockm =
clockt). This sharing is worthwhile because the thread’s vector
clock is likely to have the same value for a while. In a sampling
period, sharing is useless because the algorithms increment thread
vector clocks immediately afterward, so PACER performs a deep

Algorithm 12 Read [PACER]: thread t reads variable f

if sampling ∨ (Rf 6= null ∨Wf 6= null) then
if Rf 6= epoch(t) then {If same epoch, no action}

check Wf v clockt
if |Rf | ≤ 1 ∧Rf v clockt then

if sampling then
Rf ← epoch(t) {Update read map}

else
Rf ← null {Discard read map}

end if
else

if sampling then
Rf [t]← clockt[t]

else
Rf [t]← null {Discard Rf [t] only}
if isEmpty(Rf) then
Rf ← null

end if
end if

end if
end if

end if

Algorithm 13 Write [PACER]: thread t writes variable f

if sampling ∨ (Rf 6= null ∨Wf 6= null) then
if Wf 6= epoch(t) then {If same epoch, no action}

check Wf v clockt
if |Rf | ≤ 1 then

check Rf v clockt
else

check Rf v clockt {O(1) amortized time}
end if
if sampling then
Wf ← epoch(t) {Update write epoch}

else
Wf ← null {Discard write epoch}

end if
Rf ← null {Discard read map}

end if
end if

copy (i.e., element-by-element) of clockt to clockm. The vector
clock copy then assigns t’s version epoch to m.

Algorithm 10 redefines vector clock increment. It does nothing
in a non-sampling period. Otherwise, if a prior non-sampling period
introduced a shared vector clock, the increment first clones clockt.
It then increments the vector clock and its version number.

Algorithm 11 shows PACER’s redefined vector clock join. The
right-hand side Cm may be a lock, thread, or volatile vector clock.
The algorithm first avoids the join altogether when t’s version for
u is greater than v (where v@u = vepoch(m)); no work is needed
since we know clockm v clockt. Otherwise, a join may be required.
The algorithm checks whether a join will actually change clockt (if
clockm 6v clockt), to avoid incrementing vert[t] unnecessarily. If
the join is not redundant, the algorithm performs the join. Since the
clock changes, the algorithm clones the clock if it is shared and
increments the version. Algorithm 11 is only appropriate when the
target of the join is a thread vector clock. Appendix C provides the
details of how PACER redefines the join into a volatile’s clock so
that it can often perform a shallow copy.

To correctly detect any race whose first access is in a sampling
period but occurs before any synchronization operations, PACER
increments each thread’s vector clock at the start of a sampling
period, i.e., ∀t Ct[t]← Ct[t] + 1.

Section 5.4 shows that in practice PACER avoids nearly all
O(n) analysis in non-sampling periods by using shallow copies
and versions on joins and copies. We do not currently know the
worst case for an adversarial program.

3.3 Reads and Writes
PACER reports sampled, shortest races: the first access must be
sampled, and the first access must be the most recent that races
with the second access. In sampling periods, PACER mimics the
FASTTRACK algorithm. In non-sampling periods, PACER does not
record read and write accesses, and discards the same read or write
information that FASTTRACK overwrites or discards.

PACER defines the read map and write epoch similarly to FAST-
TRACK, except that they may be null. A null read map or write
epoch is equivalent to the epoch 0@0. Using null values to repre-
sent no read or write information helps save space and enables fast
common-case checks in non-sampling periods.

Algorithms 12 and 13 show PACER’s analysis for read and
write operations. In both sampling and non-sampling periods, the
analysis first checks if PACER is in a non-sampling period and
both Rf and Wf are null. If so, the analysis performs no action.
Otherwise, both analyses check if the current access is in the same
epoch. If not, both analyses check for races with prior accesses. The
next behavior depends on whether PACER is in a sampling period.
If sampling, PACER updates the read map and write epoch exactly
the same way as FASTTRACK. If not, it discards the read and write
accesses that FASTTRACK replaces or discards. In particular, the
analysis for a read discards zero or one prior read accesses. If the
read map becomes empty, PACER assigns null to it. The analysis
for a write always nulls the read map and write epoch.

4. Implementation
We implemented PACER in Jikes RVM 3.1.0, a high-performance
Java-in-Java virtual machine [3]. Jikes RVM’s performance is com-
petitive with commercial VMs as of November 2009.2 PACER is
publicly available on the Jikes RVM Research Archive.3

Metadata. Our implementation adds two words to the header of
every object. The first word points to a hash table that maps field
(variable) offsets to field read/write metadata. This hash table only
uses space for metadata that PACER has sampled and has not dis-
carded. When an object has no per-field metadata, instrumentation
sets the header word to null. The second header word points to syn-
chronization metadata. Although Java programs may synchronize
on any object, many objects are never synchronized [5]. We thus
only instantiate this pointer if the program locks the object. We use
two words per object to simplify our implementation task. A one-
word implementation is possible and would use less space [5].

Similarly, the implementation adds a word per static field for
read/write metadata, which is reset to null if PACER discards the
field’s metadata. It adds a word per (object or static) volatile field
for synchronization metadata.

Instrumentation. Jikes RVM uses two dynamic compilers to
transform Java bytecode into native code. The baseline compiler
initially compiles each method when it first executes. When a
method becomes hot, the optimizing compiler recompiles it at suc-
cessively higher optimization levels. Our implementation adds in-
strumentation to both compilers. In the optimizing compiler, the
new PACER compiler pass uses Jikes RVM’s static escape analy-
sis to identify accesses to provably local data, which it does not
instrument. The PACER optimizing compiler inserts the following
instrumentation at reads and writes:
2 http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html
3 http://www.jikesrvm.org/Research+Archive

Program rrr = 1% rrr = 3% rrr = 5% rrr = 10% rrr = 25%

eclipse 1.0±0.2 3.0±0.4 4.8±0.6 9.5±0.7 24.1±1.0
hsqldb 0.5±0.6 2.8±1.3 5.1±1.4 10.8±1.1 26.5±1.8
xalan 1.0±0.0 3.0±0.1 5.0±0.2 10.1±0.4 24.9±0.7
pseudojbb 0.8±0.4 3.0±0.4 5.0±0.5 10.1±0.7 25.5±1.4

Table 1: Effective sampling rates (± one standard deviation) for
specified PACER sampling rates.

// instrumentation
if (sampling || o.metadata != null) {

slowPath(o, offset_of_f, siteID);
}
// original field read (similarly for write)
... = o.f;

The global variable sampling is true only during a sampling pe-
riod. The variable o.metadata is the object’s first header word,
which is null if all the object’s field read/write metadata has been
discarded, or has never been sampled. Our implementation uses
low-level synchronization (compare-and-swap) to properly syn-
chronize accesses to synchronization and read/write metadata. Sec-
tion 5.4 shows the overhead of this check alone is about 18%.

Reporting Races. PACER records the program location (site) cor-
responding to each write epoch and read map entry. When it detects
a race, this site is the first access. The second access is simply the
current program location.

Sampling. The implementation turns sampling on and off at the
end of garbage collections, which is convenient because GC stops
all threads, but other points are possible. Turning sampling on
and off without stopping all threads would likely be correct if
the implementation propagates the sampling flag along happens-
before edges, but we have not proved it.

We use the default generational mark-region collector [7]. Nurs-
ery collections occur frequently, every 32 MB of allocation. At
the end of a collection, we turn on sampling with probability of r
via pseudo-random number generation. At first glance, this mech-
anism should sample a random fraction r of program reads and
writes. However, since race detection allocates lots of metadata,
collections occur more frequently and less program work occurs
between two collections during sampling. We instead measure pro-
gram work in terms of synchronization operations, which are in-
dependent of sampling. We compute the number performed dur-
ing sampling and non-sampling periods, and adjust the probability
of entering a sampling period accordingly. Table 1 shows that this
mechanism achieves actual, effective sampling rates (plus or minus
one standard deviation) very close to various specified target sam-
pling rates. The effective rate is sometimes lower, e.g., hsqldb for
a 1% target sampling rate, because the correction mechanism does
not have enough opportunity to observe and correct for bias.

5. Results
This section evaluates the accuracy and performance of PACER. It
first presents the experimental platform, benchmarks, and races. We
evaluate accuracy and overhead at various sampling rates and com-
pare accuracy to LITERACE [27]. We experimentally confirm our
theoretical results: PACER accurately reports races in proportion to
the sampling rate, with overhead proportional to the sampling rate.

5.1 Methodology
Platform. We execute all experiments on a Core 2 Quad 2.4 GHz
system with 2 GB of main memory running Linux 2.6.20.3. Each
of two cores has two processors, a 64-byte L1 and L2 cache line
size, and an 8-way 32-KB L1 data/instruction cache; and each pair
of cores shares a 4-MB 16-way L2 on-chip cache.

Races at rrr = 100% Races ∀r∀r∀r
Threads (50 trials) (1,234 trials)

Program Total Max live ≥ 1 ≥ 5 ≥ 25 ≥ 1 ≥ 5

eclipse 16 8 55 44 27 77 50
hsqldb 403 102 23 23 23 28 28
xalan 9 9 70 34 19 73 38
pseudojbb 37 9 14 14 11 14 14

Table 2: Thread counts and race counts.

Benchmarks. We use the multithreaded DaCapo benchmarks [6]
(eclipse, hsqldb, and xalan; version 2006-10-MR1) and pseudojbb, a
fixed-workload version of SPECjbb2000 [35]. The DaCapo bench-
mark lusearch is multithreaded, but Jikes RVM 3.1.0 does not run it
correctly with or without PACER.

Threads. Columns 2 and 3 of Table 2 show the number of threads
in each benchmark. Total is the total number of threads started.
Max live is the maximum number of live threads at any time.
Compared to the LITERACE and FASTTRACK experiments, our
benchmarks have many more threads and races. Our prototype
implementation does not reuse thread identifiers, so vector clock
sizes are proportional to Total. A production implementation could
use accordion clocks to reuse thread identifiers soundly [12].

Races and trials. Dynamically detecting races is challenging be-
cause some races occur infrequently. Another challenge is that the
observer effect may introduce heisenbugs [16]; changing thread
timing may increase or decrease the likelihood of a race. Sampling
decreases the probability of observing a race. Even when a race
occurs, ideal sampling detects the race with probability r, the sam-
pling rate. We thus need many trials to evaluate accuracy.

To report each race with reasonably high probability, we execute
between 50 and 500 trials at each sampling rate, according to the
following formula.

numTrialsr = min(max(d1000%

r
e, 50), 500)

For example, we perform 500 trials at a 1% sampling rate, 334 trials
at a 3% sampling rate, and 50 trials at a 100% sampling rate.

Columns 4-8 of Table 2 count distinct races reported by PACER,
i.e., it counts each reported static pair of program references, even
if the race occurs multiple times in an execution or in multiple
executions. Columns 4-6 (r = 100%) report races from the 50 trials
executed at a 100% sampling rate. These columns report races that
occur in at least 1, 5, and 25 trials, respectively. Columns 7 and
8 (∀r) report the races observed in either the 50 fully accurate
executions (r = 100%) or in any of over 1,000 executions at r =
1-25%. Column 7 reports races that occurred in at least 1 trial, and
column 8 reports races that occurred in at least 5 trials. Comparing
columns 4 and 5 with 6, and column 7 with 8, shows these programs
have some rare races.

While PACER can find rare races, the probability is the product
of the sampling rate times the occurrence rate. For example, with
a sampling rate r = 1% and an occurrence rate o = 2% (1 in 50),
we would need 5,000 trials to expect the race to be reported in one
trial—and many more trials to report the race with high probability.
Even a frequent race with o = 100% and r = 1% requires 100 trials
for the expected number of times it will be reported to be 1. To
bound experimentation time, we evaluate the accuracy of PACER
on the races that appear in at least half of our 50 fully sampled
executions (column 6, in bold). About a third of races from the 50
fully accurate trials appear in 25 trials of xalan (19 races); about
half appear in eclipse (27), most in pseudojbb (11), and all 23 races
appear in all 50 trials of hsqldb (23). These are our evaluation races.

While we evaluate only frequent races due to time and resource
limits, future work should evaluate PACER on infrequent races. One
open question is whether the observer effect is more significant
for infrequent races than for frequent ones, which would make the
evaluation more challenging.

Theoretical accuracy and performance. The following table
summarizes the effect FASTTRACK and PACER have on (1) the
detection rate for any race and (2) program performance for sam-
pling rate r and data race occurrence rate o.

Det. rate Slowdown

FASTTRACK o crw + csyncn
PACER o× r csampling(crw + csyncn)r + cnonsampling

Constant crw is the slowdown due to analysis at reads and writes,
and csyncn is the linear slowdown in the number of threads n
due to analysis at synchronization operations. PACER essentially
scales FASTTRACK’s overhead by r, as well as a small constant
factor csampling due to PACER’s additional complexity (e.g., indirect
metadata lookups). PACER adds a slowdown cnonsampling during non-
sampling periods, which is small and near-constant in practice.

5.2 Accuracy
This section evaluates PACER’s race detection accuracy and shows
that PACER accurately reports a proportion r of the evaluation races
at various sampling rates r. It shows results that suggest that PACER
can detect each evaluation race at the expected rate. We note that
not all detected races are necessarily bugs, and PACER does not
show how races might lead to errors or how to reproduce races.

Figures 3 and 4 show PACER’s detection rate versus sampling
rate for each benchmark. Figure 3 counts the average number of
dynamic evaluation races per run that PACER detects. A race’s de-
tection rate is the ratio of (1) average dynamic races per run at sam-
pling rate r to (2) average dynamic races per run with r = 100%.
Each point is the unweighted average of all evaluation races’ detec-
tion rates. The plot shows that PACER reports roughly a proportion
r of dynamic races. PACER slightly underreports races in eclipse.
On the other three benchmarks, PACER reports races at a somewhat
better rate than the sampling rate. Factors such as the observer ef-
fect, sampling approach, and statistical error may prevent PACER
from meeting its guarantee exactly.

Figure 4 shows the detection rate for distinct races. If a static
race occurs multiple times in one trial, this plot counts it only once.
The detection rate is higher because PACER’s chances of detecting
a race improve if the race occurs multiple times in a run.

Per-race detection. The four graphs in Figure 5 plot the detection
rate for each distinct evaluation race as a function of r. The x-
axis sorts races by detection rate. We sort races independently
for each sampling rate. Due to statistical error and heisenbugs,
we cannot expect perfect results, i.e., each race’s detection rate
equal to the sampling rate. Nonetheless, the results are compelling.
The only race PACER misses completely occurs in eclipse with
1% sampling. On average, detection rates correspond well with
specified sampling rates.

5.3 Comparison to LITERACE

For comparison, we implemented an online version of LITE-
RACE [27]. LITERACE lowers overhead using a sampling heuristic
that hypothesizes that most races occur in cold code [10]. It adap-
tively samples code in order to observe code at a rate inversely
proportional to its frequency. It uses per-thread sampling rates and
bursty sampling [19].

Our LITERACE implementation adaptively samples, lowering
the sampling rate for each method-thread pair from 100% to 0.1%.

1% 10% 100%

Specified sampling rate

1%

10%

100%

D
et

ec
ti

on
 r

at
e

eclipse
hsqldb
xalan
pseudojbb

5 10 15 20 25
0

0.2%

1%

10%

100%

D
et

ec
ti

on
 r

at
e

5 10 15 20
0

0.2%

1%

10%

100%

D
et

ec
ti

on
 r

at
e

Figure 3: PACER’s accuracy on dynamic races. 27 races in eclipse 23 races in hsqldb

1% 10% 100%

Specified sampling rate

1%

10%

100%

D
et

ec
ti

on
 r

at
e

eclipse
hsqldb
xalan
pseudojbb

5 10 15
0

0.2%

1%

10%

100%

D
et

ec
ti

on
 r

at
e

2 4 6 8 10
0

0.2%

1%

10%

100%

D
et

ec
ti

on
 r

at
e

r = 25%
r = 10%
r = 5%
r = 3%
r = 1%

19 races in xalan 11 races in pseudojbb

Figure 4: PACER’s accuracy on distinct races. Figure 5: PACER’s per-race accuracy (pseudojbb legend applies to all graphs).

5 10 15 20 25
0

0.2%

1%

10%

100%

D
et

ec
ti

on
 r

at
e

Figure 6: LITERACE’s per-race accuracy for eclipse.

Whereas the original LITERACE is deterministic, our implemen-
tation adds randomness when resetting the sampling counter, to
increase the chances of catching additional distinct races across
multiple trials. However, we also experimented with determinis-
tic sampling, and the results were not noticeably different. We ini-
tially used a sampling burst length of 10, but for all benchmarks
except hsqldb, these configurations yielded effective sampling rates
less than 1%, so we switched to burst lengths of 1,000. For hsqldb,
xalan, and pseudojbb, LITERACE’s heuristic is effective: it finds the
evaluation races more frequently than the effective sampling rate.
For eclipse (which achieves a 1.1% effective sampling rate with a
burst length of 1,000), LITERACE misses some races consistently.
Figure 6 shows how well LITERACE detects each evaluation race
in eclipse, across 500 trials. LITERACE finds some races in many
runs, but it never reports four of the evaluation races. For races in-
volving two hot accesses, we can surmise that this detection rate is
approximately 0.1%2 = 0.0001% (since 0.1% is the minimum sam-
pling rate). These results indicate that races do not always follow
the cold region hypothesis and that PACER’s statistical guarantees
provide accuracy improvements over the prior work.

Figure 10 shows that LITERACE’s space overhead, even with
an effective sampling rate of 1%, is almost as high as with 100%
sampling. This result is not surprising because LITERACE samples
code rather than data and does not discard metadata, so it samples
most live memory. Section 5.4 explains the other data in Figure 10.

Our implementation of LITERACE’s sampling mechanism is too
inefficient to report fair time overheads. An efficient, online version
of LITERACE will still incur O(n)-time overheads at synchroniza-
tion operations, so it will not scale to many threads (Section 2.3).

5.4 Performance
Figure 7 presents the time overheads of PACER with sampling rates
of 0%, 1%, and 3%. Each sub-bar is the median of 10 trials. It
breaks down the overheads into the following configurations with
monotonically increasing functionality. OM + sync ops, r = 0%

is the cost of adding object metadata (e.g., two header words for
every object) plus the cost of instrumentation at synchronization
operations. Since it never samples, all vector clock operations use
fast joins and shallow copies. This configuration adds about 15%
overhead. We find that only about 1% comes from header words.
Pacer, r = 0%, adds instrumentation at reads and writes but never
executes the slow path. Its total overhead is 33% on average. Pacer,
r = 1%, samples with r = 1%, adding 19% for a total of 52%. The
last configuration, Pacer, r = 3%, adds 34% for a total of 86%.

These overheads are low enough for some but not all deployed
settings. Lower overheads could be achieved in non-sampling pe-
riods. For example, aggressive compiler optimizations could hoist
and statically simplify much of the instrumentation added to reads
and writes (Section 4). Modest hardware support [2; 17] could
make PACER’s checks virtually free in non-sampling periods.

Performance scalability. Larger sampling rates increase over-
head roughly linearly. Figure 8 graphs slowdown vs. sampling rate
for r = 0–100%; Figure 9 zooms in, showing r = 0–10%. The
results for 0, 1, and 3% sampling rates correspond to Figure 7. The
graphs show that PACER achieves overheads that scale roughly lin-
early with the sampling rate.

At a 100% sampling rate, PACER is functionally equivalent
to FASTTRACK, but PACER slows programs by 12X on aver-
age, compared with 8X in the FASTTRACK paper [14]. There are
two reasons for this difference. First, our implementation is opti-
mized for low sampling rates: it uses hash tables instead of direct
lookup—both for per-field metadata and for read maps—and it in-
lines the non-sampling case, which decreases PACER’s overhead in
non-sampling periods but increases overhead in sampling periods.
Second, we evaluate PACER on different benchmarks with more
threads than Flanagan and Freund used to evaluate FASTTRACK.

Avoiding expensive operations. Table 3 shows the number of
O(n)- vs.O(1)-time vector clock operations, and slow vs. fast path
reads and writes for PACER at r = 3%, averaged over 10 trials. The
top half of the table shows the number of slow and fast joins and
copies, during sampling and non-sampling periods. Note that a few
deep copies occur in sampling periods because our implementation
always performs deep copies for thread forks, since they are rare
and it simplifies the implementation somewhat. Nearly all vector
clock operations in non-sampling periods are fast (fast joins or
shallow copies), i.e., they can be performed in O(1) time.

eclipse
hsqldb

xalan
pseudojbb

geomean

0

20

40

60

80

100

R
un

 t
im

e
ov

er
he

ad
 (

%
)

Pacer, r = 3%
Pacer, r = 1%
Pacer, r = 0%
OM + sync ops, r = 0%

Figure 7: PACER overhead
breakdown for r = 0–3%.

0% 20% 40% 60% 80% 100%

Specified sampling rate

0

5

10

15

20

Sl
ow

do
w

n
fa

ct
or

Figure 8: Performance vs. sam-
pling rate for r = 0–100%.

0% 5% 10%

Specified sampling rate

0

1

2

3

Sl
ow

do
w

n
fa

ct
or

eclipse
hsqldb
xalan
pseudojbb

Figure 9: Performance vs. sam-
pling rate for r = 0–10%.

0.0 0.2 0.4 0.6 0.8 1.0

Time (fraction of run)

0

200

400

600

L
iv

e
m

em
 (

M
B

)

OM only
Base

r = 100%

LiteRace

r = 25%

r = 5%
r = 1%

Figure 10: Total space over nor-
malized time for eclipse.

VC joins
Sampling period Non-sampling period

Program Slow Fast Slow Fast

eclipse 3,456K 656K 2K 149,376K
hsqldb 120K 288K 61K 14,636K
xalan 4,924K 3,255K 36K 275,724K
pseudojbb 2,932K 1,140K 3K 131,423K

VC copies
Deep Shallow Deep Shallow

eclipse 4,053K – 15 147,458K
hsqldb 241K – 363 7,938K
xalan 8,179K – 8 275,760K
pseudojbb 4,072K – 30 131,427K

Reads
Sampling period Non-sampling period

Slow path Slow path Fast path

eclipse 273,611K 14,170K 8,792,182K
hsqldb 13,108K 1,697K 431,167K
xalan 190,502K 118,682K 6,163,120K
pseudojbb 33,311K 51,254K 835,085K

Writes
eclipse 66,704K 52K 2,165,973K
hsqldb 1,696K 19K 50,217K
xalan 30,350K 442K 992,098K
pseudojbb 12,197K 1,064K 330,902K

Table 3: Counts of vector clock joins and copies, and read and write
operations for PACER at a sampling rate of 3%.

The bottom half of Table 3 presents read and write operations
that occur in sampling and non-sampling periods. Note that many
more reads and writes occur in non-sampling periods, which is
expected at a 3% sampling rate. In a non-sampling period, read
and write instrumentation almost always takes the fast path: it does
nothing if the field has no metadata. Slow path operations in non-
sampling periods correspond well with slow path operations in
sampling periods. Because PACER checks for races with the last
write and/or read to a variable in a sampling period, it inevitably
performs some slow-path work in non-sampling periods.

Space overhead. PACER reduces space overhead when it discards
read and write metadata or shares synchronization metadata during
non-sampling periods. Figure 10 shows the amount of live (reach-
able) memory for eclipse after each full-heap collection with vari-
ous PACER configurations. The measurement includes application,
VM, and PACER memory. We use a single trial of each configu-
ration because averaging over multiple trials might smooth spikes

caused by PACER’s sampling periods. Because PACER takes longer
to run with higher sampling rates, we normalize execution times
over total run length. Base shows the memory used by eclipse run-
ning on unmodified Jikes RVM. Note that memory usage increases
somewhat over time in this program. OM only adds two words per
object and a few percent all-the-time overhead. The other config-
urations (except LITERACE) are PACER at various sampling rates.
The graph shows that PACER’s space overhead scales well with the
sampling rate.

In practice, PACER finds races, performs work, and uses mem-
ory, all in proportion to the sampling rate.

6. Related Work
Section 2 compared PACER to the most closely related work, FAST-
TRACK [14] and LITERACE [27]. This section compares PACER to
other prior work on race detection.

6.1 Language Design and Static Analysis for Race Detection
Safety in types. An alternative to detecting races is to use a
language that cannot have them. Boyapati et al. extend the typing
of an existing programming language with ownership types, so that
well-typed programs are guaranteed to be race-free [9]. Abadi et al.
use type inference and type annotations to detect races soundly [1].

Static analysis. Researchers have developed advanced techniques
for statically detecting data races [29; 33; 38]. These approaches
scale to millions of lines of code, are typically sound except for a
few exceptions, and limit false positives as much as possible. How-
ever, static analysis necessarily reports false positives because it
abstracts control and data flow in order to scale. In contrast, model
checking is precise but does not scale well to large programs [18].

Choi et al. combine static and dynamic analysis to lower the
overhead of dynamic race detection, which can identify read and
write operations that cannot be involved in races [11]. Static ap-
proaches are typically unsound with respect to dynamic language
features such as dynamic class loading and reflection. Our imple-
mentation uses simple, mostly intraprocedural escape analysis to
identify some definitely thread-local objects (Section 4).

6.2 Dynamic Race Detection
Dynamic race detectors are typically based on the imprecise lockset
algorithm or precise vector clock algorithm.

Lockset algorithm. The lockset algorithm checks a locking disci-
pline based on each access to a shared variable holding some com-
mon lock [11; 34]. Because it enforces a particular locking disci-
pline, lockset is imprecise: it reports false positives due to other
synchronization idioms such as fork-join, wait-notify, and custom

synchronization with volatile variables. On the other hand, lockset
can identify true races that do not violate the happens-before race
in the current execution. Recent advances in precise, vector clock-
based race detection (notably FASTTRACK’s order-of-magnitude
improvement) mean that lockset and vector clocks offer about the
same performance [14].

Vector clocks. Prior techniques, including FASTTRACK and
LITERACE, use vector clocks to achieve precise race detection [14;
27]. They both decrease analysis overhead at reads and writes,
but analysis at synchronization operations still takes O(n) time, so
these approaches will not scale to many threads. In contrast, PACER
can scale to many threads by adjusting the sampling rate.

Hybrid techniques. Hybrid techniques combine lockset and vec-
tor clocks to obtain the performance of the former and the accu-
racy of the latter [13; 37; 39]. Goldilocks is sound and precise and
reports overheads low enough to deploy [13]. However, as Flana-
gan and Freund note [14], Goldilocks is compiled into a JVM that
only interprets code, so its overhead would likely be much higher
in a high-performance JVM. Pozniansky and Shuster introduce im-
proved versions of both vector clock and lockset race detection,
and present MultiRace, which is a hybrid of these two improved
detection approaches [32]. FASTTRACK further improves on Mul-
tiRace’s vector clock-based detector (called Djit+) [14].

Classifying races. Recent work identifies harmful races by re-
playing racy accesses and evaluating the range of possible out-
comes under a weak memory model [15; 30].

6.3 Sampling
Thakur et al. use global sampling to capture cross-thread memory
interleavings [36] as predicates for statistical bug isolation [22; 23].
Their approach finds a variety of concurrency bug types without
requiring complex analysis such as tracking synchronization oper-
ations. On the other hand, PACER does not require observable fail-
ures in order to find races, detects races without combining multiple
runs’ results, and uses a global sampling mechanism that does not
require both accesses to be sampled.

Object-centric sampling tracks only a subset of objects, cho-
sen at allocation time [4; 20]. Modifying LITERACE to use object-
centric sampling would reduce its space overhead to be propor-
tional to n, but it would still need O(n)-time analysis at synchro-
nization operations. PACER’s goals are similar in spirit to those of
QVM, which performs as much analysis as possible while staying
within a user-specified overhead budget [4].

7. Conclusions and Future Work
Data races often indicate serious concurrency errors that are easy
to introduce but difficult to reproduce, understand, and fix. Not
even thorough testing finds all races, so deployable race detection
is necessary to achieve highly robust software. Prior approaches
are too heavyweight, or they are only effective at finding a subset
of races. This paper presents data race detection that provides a
detection rate for each race that is equal to the sampling rate, and
adds time and space overheads proportional to the sampling rate.
PACER achieves a qualitative improvement over prior work: its
adjustable performance and accuracy make it suitable for all-the-
time use in a variety of deployed environments.

Future work should evaluate infrequent races (Races and trials
in Section 5.1); consider the worst case for version vectors (Sec-
tion 3.2); and optimize the instrumentation that is always executed
in non-sampling periods (Section 5.4). At a high level, PACER’s
cross-thread sampling approach may be applicable to other concur-
rency bugs.

Acknowledgments
We thank Bert Maher, Ben Wiedermann, Sam Guyer, and Satish
Narayanasamy for helpful discussions; Bert Maher, Jingling Xue,
Cormac Flanagan, Steve Freund, Dimitris Prountzos, and the
anonymous reviewers for helpful feedback on the text; Steve Fre-
und for explaining FASTTRACK details; and Steve Blackburn and
Robin Garner for improving pseudojbb.

A. Formal Semantics
This section formalizes PACER’s algorithm, and the next sec-
tion proves statistical soundness and completeness. We introduce
notation better suited to formalism that closely matches FAST-
TRACK [14]. An extended technical report version of this paper
includes details that we omit in the next two sections [8].

A program consists of a set of concurrently executing threads
t ∈ Tid that perform actions to manipulate a set of data variables
f ∈ Var, a set of locks m ∈ Lock, and a set of volatile vari-
ables x ∈ Volatile. Threads, locks, and volatile variables are syn-
chronization objects, and all other variables are data variables. An
action is one of the following operations:

rd(t, f): thread t reads data variable f .
wr(t, f): thread t writes data variable f .
acq(t,m): thread t acquires lock m.
rel(t,m): thread t releases lock m.
tfork(t, u): thread t forks a new thread, u.
tjoin(t, u): thread t blocks until thread u terminates.
vol rd(t, x): thread t reads volatile variable x.
vol wr(t, x): thread t writes volatile variable x.
sbegin(): the analysis enters a sampling period.
send(): the analysis leaves a sampling period.

The acq, rel, tfork, tjoin, vol rd, and vol wr actions are synchro-
nization actions. The sbegin and send actions are convenient nota-
tion for the start and end of a PACER sampling period. The helper
function tid(a) returns the thread that performs action a.

A trace α captures a sequence of actions. The trace α.b results
when trace α is extended with action b. An action a relates to an
action b in trace α by program order if a is before b in α, and
tid(a) = tid(b). Action a relates to action b in α by synchroniza-
tion order if a and b are both synchronization actions, and a is be-
fore b in α. Action a relates to an action b in α by synchronizes-with
order if they are also related by synchronization order, and:

• a releases a lock m and b is an acquire of m by any thread,
• a writes a volatile variable x and b is a read of x by any thread,
• a is a fork by t of a new thread, u, t 6= u, and tid(b) = u, or
• tid(a) = u, and b is a join that blocks a thread t, t 6= u, until u

terminates.

The happens-before relation is the transitive closure of program
order and synchronizes-with order [26]. If action a relates to action
b in α by the happens-before relation then a happens before b,
a

HB−−→α b. If a 6HB−−→α b and b 6HB−−→α a, then a and b are concurrent
in α. Actions a and b conflict if they read or write the same variable,
and at least one of them is a write. A trace α contains a data race if
it contains conflicting, concurrent actions on data variables.

We restrict our attention to traces that are feasible and that obey
Java’s synchronization operation semantics.

A.1 Vector Clocks, Epochs, and Read Maps
A vector clock Clock : Tid → Nat maps threads to natural
numbers representing logical clock values. The term C[t] ∈ Nat
denotes the clock value to which vector clock C maps thread t.

Vector clocks are pointwise partially ordered; vector clock C1 is
pointwise less-than C2 (C1 v C2) if and only if each element in
C1 is less than or equal to the corresponding element in C2:

C1 v C2 iff ∀t.C1[t] ≤ C2[t]

The minimal vector clock ⊥c ∈ Clock is the vector clock that
maps every thread to 0, ⊥c = λt.0. We define two operations on
vector clocks, increment and join (t):

inct(C) = λu. if u = t then C[u] + 1 else C[u]

C1 t C2 = λt.max(C1[t], C2[t])

An epoch Epoch : Nat × Tid is a pair consisting of a natural
number representing a logical clock value, c, and a thread identifier,
t, written c@t. The term ⊥e denotes the minimal epoch 0@0. The
relation c@t � C holds for an epoch c@t and a vector clock C if
and only if c is less than or equal to the t component in C:

c@t � C iff c ≤ C[t]

A read map ReadMap : Tid → Nat maps any number of threads
to logical clock values. Any thread not explicitly mapped implicitly
maps to the minimal clock value, zero. The magnitude |R| of
read map R is a natural number indicating the number of threads
explicitly mapped by R. An epoch is a special case of a read map
with magnitude one. The relationR v C holds for read mapR and
vector clock C if and only if R is pointwise less than or equal to C
for all values explicitly mapped by R.

A.2 Version Vectors and Version Epochs
PACER associates a version vector with each thread and increments
that version vector whenever the thread’s vector clock changes. A
version vector Version : Tid → Nat maps threads to natural
numbers representing vector clock versions. The term V [t] denotes
the version to which version vector V maps thread t. A minimal
version vector ⊥v ∈ Version maps all threads to 0, ⊥v = λt.0.
We define an increment helper function for a version vector V :

inct(V) = λu. if u = t then V [u] + 1 else V [u]

PACER associates a concise version epoch with each lock and each
volatile variable. A version epoch Vepoch : Nat × Tid is a pair,
written v@t, where t is a thread and v is a version number for t’s
vector clock. The relation v@t � V holds for version epoch v@t
and version vector V if and only if v is less than or equal to the t
component in V :

v@t � V iff v ≤ V [t]

The minimal version epoch ⊥ve is equivalent to 0@0 such that
⊥ve � V is always true. The term>ve ∈ Vepoch denotes a unique
maximal version epoch such that >ve � V is never true.

A.3 Analysis State
The analysis state for PACER, σ = (C, V,E,R,W, s), consists of
the following components:

C : (Tid ∪ Lock ∪ Volatile)→ Clock R : Var → ReadMap

V : Tid→ Version W : Var → Epoch

E : (Lock ∪ Volatile)→ Vepoch s : boolean

C maps synchronization variables to vector clocks. V maps threads
to their version vectors, and E maps locks and volatile variables to
their version epochs. R maps each data variable to its read map,
and W maps each data variable to its write epoch. Finally, s is a
boolean indicating whether or not PACER is in a sampling period.

Subscripts reference mapped values; for example, Ct refers
to the vector clock to which C maps thread t. The abbreviation
epoch(t) ∈ Epoch denotes the current epoch for thread t:

epoch(t) = Ct[t]@t

The abbreviation vepoch(o) ∈ Vepoch denotes the current ver-
sion for o ∈ (Tid ∪ Lock ∪ Volatile):

vepoch(o) =


Vo[o]@o if o ∈ Tid

Eo otherwise

The initial analysis state, σ0, contains the following components:

σ0 = (C0, V0, E0, R0,W0, s0) where (1)

C0 =

8><>:
λt.inct(⊥c)
λm.⊥c
λx.⊥c

V0 = λt.inct(⊥v)

E0 =


λm.⊥ve
λx.⊥ve

R0 = λf.⊥e
W0 = λf.⊥e
s0 = false

PACER increments the initial vector clock and version vector for
each thread and initializes everything else to its minimal value.

An action a transitions PACER from one analysis state to an-
other, σ ⇒a σ′. Tables 4-6 show the analysis state updates for each
action. When multiple rules exist for a single action (e.g. Rules 1-3
in Table 4), the rules appear in order of precedence. Table 4 shows
how PACER updates the analysis state on reads and writes. When
a condition labeled “Race-free” is not satisfied, no rule in Table 4
transitions PACER to a new state, and the analysis becomes stuck:

σ /⇒a . . .

When stuck, PACER reports a data race. (The PACER implementa-
tion continues executing and reporting races.) The term σ ⇒a σ′

therefore indicates no race reported when action a occurs from σ.
Table 5 shows how sbegin and send modify the analysis state

at the start and end of a sampling period. Table 6 shows how
PACER updates the analysis state when synchronization actions
occur, and Table 7 defines the copy, increment, and vector clock
join operations used in Table 6. For example, consider the action
acq(t,m) from state σ. Rule 1 in Table 6 requires vcjoin(t,m),
which corresponds to Rules 4-6 in Table 7. IfEm � Vt, then Rule 4
applies, no updates occur, and the analysis transitions to σ′.

We do not address shallow and deep copies of vector clocks
because we believe that their correctness will be clear to readers.
PACER always creates a deep copy of a shared vector clock prior
to modifying it. Whenever PACER creates a shallow copy, it marks
the vector clock shared. Once a vector clock is shared it remains
shared for the rest of its lifetime.

B. PACER Correctness Proofs
We prove PACER’s completeness and statistical soundness. Be-
cause PACER builds on FASTTRACK, the proofs are similar and
sometimes identical [14]. We highlight key differences here and
expand proofs in the technical report [8]. The key intuition for
PACER’s statistical soundness is that while FASTTRACK’s analysis
state is always strictly well-formed, PACER’s is strictly well-formed
only during sampling periods.

The components of analysis states σ and σ′ are as follows:

σ = (C, V,E,R,W, s)

σ′ = (C′, V ′, E′, R′,W ′, s′)

Similarly, vepoch′(o) is the current version of o in state σ′.
When necessary to avoid ambiguity, σa denotes the state prior

to action a, and σ′a denotes the state after action a: σa ⇒a σ′a. The
components of states σa and σ′a are as follows:

σa = (Ca, V a, Ea, Ra,W a, sa)

σ′a = (Ca′, V a′, Ea′, Ra′,W a′, sa′)

Symbols α, β, and γ denote arbitrary-length sequences of actions.

State updates

Conditions s = true s = false

Read data variable: a = rd(t, f), σ′ = (C, V,E,R′,W, s)
Same epoch
Rf = epoch(t)

None None (1)

Exclusive
|Rf | ≤ 1 ∧Rf v Ct

Race-free
Wf � Ct

Rf
′ = epoch(t) Rf

′ = ⊥e (2)

Shared
|Rf | > 1 ∨Rf 6v Ct

Race-free
Wf � Ct

Rf
′[t] = Ct[t] Rf

′[t] = 0 (3)

Write data variable: a = wr(t, f), σ′ = (C, V,E,R′,W ′, s)

Same epoch
Wf = epoch(t)

None None (4)

Exclusive or Shared
Wf 6= epoch(t)

Race-free
Rf v Ct ∧Wf � Ct

Rf
′ = ⊥e

Wf
′ = epoch(t)

Rf
′ = ⊥e

Wf
′ = ⊥e

(5)

Table 4: Analysis state updates for data reads and writes. Column
1 shows conditions for each rule, and Columns 2 and 3 show state
updates for sampling and non-sampling periods, respectively.

Action a Next state σ′ State updates

sbegin() (C′, V ′, E,R,W, s′)
s′ = true
λt.inc(t)

(1)

send() (C, V,E,R,W, s′) s′ = false (2)

Table 5: Analysis state updates at sampling period start and end.

Action a Next state σ′ State updates

acq(t,m) (C′, V ′, E,R,W, s) vcjoin(t,m) (1)

rel(t,m) (C′, V ′, E′, R,W, s)
copy(m, t)
inc(t)

(2)

tfork(t, u) (C′, V ′, E,R,W, s)
vcjoin(u, t)
inc(t)

(3)

tjoin(t, u) (C′, V ′, E,R,W, s)
vcjoin(t, u)
inc(u)

(4)

vol rd(t, x) (C′, V ′, E,R,W, s) vcjoin(t, x) (5)

vol wr(t, x) (C′, V ′, E′, R,W, s)
vcjoin(x, t)
inc(t)

(6)

Table 6: Analysis state updates for synchronization actions. See
Table 7 for copy, increment, and vector clock join operations.

DEFINITION 1. (Well-formedness). State σ = (C, V,E,R,W, s)
is well-formed if ∀t, u ∈ Tid,m ∈ Lock, f ∈ Var, x ∈ Volatile:

Cu[t] ≤ Ct[t] Rf [t] ≤ Ct[t]
Cm[t] ≤ Ct[t] Wf [t] ≤ Ct[t]
Cx[t] ≤ Ct[t]

LEMMA 1. σ0 is well-formed.

Conditions State updates

copy(o, t), o ∈ (Lock ∪ Volatile), t ∈ Tid

None Co′ = Ct
Eo′ = vepoch(t)

(1)

inc(t), t ∈ Tid
Non-sampling
s = false

None (2)

Sampling
s = true

Ct′ = inct(Ct)
Vt′ = inct(Vt)

(3)

vcjoin(t, o), t ∈ Tid, o ∈ (Tid ∪ Lock ∪ Volatile)
Let v@u = vepoch(o)

Same version epoch
v ≤ Vt[u]

None (4)

Happens-before
Co v Ct

Vt′[u] = v { if v@u 6= >ve } (5)

Concurrent
Co 6v Ct

Ct′ = Ct t Co
Vt′ = inct(Vt)
Vt′[u] = v { if v@u 6= >ve }

(6)

vcjoin(x, t), x ∈ Volatile, t ∈ Tid
Let v@u = vepoch(x)

Same version epoch
s = true ∧ v ≤ Vt[u]

copy(x, t) (7)

Happens-before
s = true ∧ Cx v Ct

copy(x, t) (8)

Concurrent
s = false ∨ Cx 6v Ct

Cx′ = Cx t Ct
Ex′ = >ve

(9)

Table 7: Copy, increment, and vector clock join operations.

LEMMA 2. (Preservation of well-formedness). If σ is well-formed
and σ ⇒a σ′ then σ′ is well-formed.

DEFINITION 2. (Strict well-formedness). State σ is strictly well-
formed if σ is well-formed and ∀t, u ∈ Tid,m ∈ Lock, x ∈
Volatile:

if t 6= u then Cu[t] < Ct[t] Cm[t] < Ct[t]

Cx[t] < Ct[t]

LEMMA 3. (Strict well-formedness at sampling period entry). If
σ is well-formed, σ ⇒a σ′, and a = sbegin(), then σ′ is strictly
well-formed.

LEMMA 4. (Preservation of strict well-formedness within a sam-
pling period). If σ is strictly well-formed, σ ⇒a σ′, and s = true
then σ′ is strictly well-formed.

LEMMA 5. (Sampled vector clocks imply happens-before). Sup-
pose σa is strictly well-formed, sa = true, and σa ⇒a.α σb ⇒b

σ′b. Let t = tid(a) and u = tid(b). If Cat [t] ≤ Cbu[t] then
a

HB−−→a.α.b b.

Proof. Because sa = true, σa is strictly well-formed and the proof
proceeds similarly to the FASTTRACK proof that vector clocks
imply happens-before [14], by induction on the length of α.

DEFINITION 3. (Sampled races). Two conflicting actions a and b
in a trace α participate in a sampled race if a occurs before b in α,
a 6HB−−→α b, and sa = true.

DEFINITION 4. (Shortest races). Two conflicting actions a and b
in a trace α participate in a shortest race if a occurs before b in

α, a 6HB−−→α b, and there does not exist any read or write action d
between a and b such that d conflicts with b and d 6HB−−→α b.

THEOREM 1. (Statistical Soundness). If σ0 ⇒α σ then α con-
tains no sampled, shortest races.

Proof. Suppose that α does contain a sampled, shortest race, and
thus contains conflicting read/write actions a and b such that

a 6HB−−→α b Assume (2)
sa = true ′′ (3)
a and b participate in a shortest race ′′ (4)

Proceed by lexicographic induction on the length of α and the
number of intervening actions between a and b. Without loss of
generality, assume that the segment of α prior to b does not contain
any sampled, shortest races, and that b does not race with any
actions prior to a. Let t = tid(a), and let u = tid(b). If t = u
then a and b do not race by program order so assume t 6= u.

If a = wr(t, f), b = rd(u, f), and Rule 1 in Table 4 applies
for b, then a read d = rd(u, f) must have set Rf = epoch(u).
If d is after a, then a HB−−→α d

HB−−→α b by induction and program
order, contradicting Equation 2. Action d must be within the same
sampling period as a, because otherwise a sbegin action would have
incremented Cu[u] and changed the epoch, thus sd = true. No
intervening fork, release, or volatile write actions by thread u exist
because they would increment Cu[u] and change the epoch. Thus
d and a race and α contains a prior sampled, shortest race.

Similarly, if b = wr(u, f) and Rule 4 in Table 4 applies for b,
then a write d = wr(u, f) must have set Wf = epoch(u), and a
similar argument applies.

Otherwise,

W b
f � Cbu Table 4, Rules 2, 3, and 5 (5)

If an intervening write d occurs between a and b then a HB−−→α

d
HB−−→α b by induction and Equation 4, thus there are no interven-

ing writes. If a is a write then

W a
f
′ = W b

f = Cat [t]@t Equation 3; Table 4, Rules 4-5 (6)
Cat [t] ≤ Cbu[t] Equations 5 and 6 (7)

thus by Lemma 5 a HB−−→α b, contradicting Equation 2. A similar
argument applies for Rf when a is a read and b is a write.

PACER’s completeness proof uses the following abbreviation [14]:

Ka =

(
Ca′ if a is a tjoin or acq operation
Ca otherwise

LEMMA 6. (Happens-before implies vector-clock ordering). Sup-
pose α is well-formed, σ ⇒α σ′, and a, b ∈ α. Let t = tid(a),
and let u = tid(b). If a HB−−→α b, then Ka

t v Kb
u

Proof. By induction on the derivation of a HB−−→α b.

THEOREM 2. (Completeness). If α is race-free then σ0⇒α σ.

Proof. Suppose α is race-free yet contains an action b that is stuck.
Consider the case where b = rd(u, f) or b = wr(u, f) and

W b
f 6� Cbu Table 4, Rules 2, 3, and 5 (8)

Equation 8 requires that a prior write a = wr(t, f) setWf , and that
sa = true or the rule for a was Rule 4 in Table 4. Thus,

W b
f = Cat [t]@t Table 4, Rules 4-5

6� Cbu Equation 8 (9)

Ka
t [t] = Cat [t] 6≤ Cbu[t] = Kb

u[t] Equation 9

By Lemma 6 a 6HB−−→α b, and we have a contradiction. A similar
argument holds if b = wr(u, f) and Rbf 6v Cbu.

C. Handling Volatile Variables
This section details how PACER handles synchronization opera-
tions involving volatile variables. The Java Memory Model states
that each write to a volatile variable happens before subsequent
reads of the same variable [26]. Volatiles are quite similar to
locks—a volatile read is like a lock acquire, and a volatile write
is like a lock release—except that a volatile read need not be fol-
lowed by a volatile write on the same thread.

How GENERIC and FASTTRACK handle volatile variables.
GENERIC and FASTTRACK use the same synchronization meta-
data for each volatile field x that they use for other synchroniza-
tion objects: a vector clock Cx. Algorithms 14 and 15 show how
GENERIC and FASTTRACK handle reads and writes to volatile
variables. The analysis for a volatile read is identical to the anal-
ysis for a lock acquire. The analysis for a volatile write is similar
to the analysis for a lock release, except the volatile write analysis
performs a vector clock join instead of copy. FASTTRACK does not
introduce new analysis for synchronization operations; it uses the
same algorithms as GENERIC for volatile variables.

How PACER handles volatile variables. PACER uses the same
synchronization operations for each volatile variable x as for each
lock: clockx and vepochx. PACER’s vector clock join in Algo-
rithm 11 is only suitable when the target of the join is a thread,
not a volatile variable, because it relies on the target having a ver-
sioned vector clock and a version vector. Thus PACER uses a special
vector clock join for volatile variables, shown in Algorithm 16. In
non-sampling periods, versions indicate if clockx v clockt; if so,
the join simply becomes a shallow copy from clockt to clockx. The
behavior is the same as at a lock release, i.e., the analysis copies the
thread’s clock to the volatile’s clock.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking:

Static Race Detection for Java. ACM Transactions on Programming
Languages and Systems, 28(2):207–255, 2006.

[2] M. Abadi, T. Harris, and M. Mehrara. Transactional Memory with
Strong Atomicity Using Off-the-Shelf Memory Protection Hardware.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 185–196, 2009.

[3] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.
Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Implementing
Jalapeño in Java. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 314–324, Denver,
CO, 1999.

[4] M. Arnold, M. Vechev, and E. Yahav. QVM: An Efficient Runtime
for Detecting Defects in Deployed Systems. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 143–162, 2008.

[5] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin Locks:
Featherweight Synchronization for Java. In ACM Conference on
Programming Language Design and Implementation, pages 258–268,
1998.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 169–190, 2006.

[7] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and Mu-
tator Performance. In ACM Conference on Programming Language
Design and Implementation, pages 22–32, 2008.

Algorithm 14 Read volatile [GENERIC]: thread t reads volatile x

Ct ← Ct t Cx

Algorithm 15 Write volatile [GENERIC]: thread t writes volatile x

Cx ← Cx t Ct
Ct[t]← Ct[t] + 1

Algorithm 16 Vector clock join, volatiles [PACER]:Cx ← CxtCt

Let v@u = vepoch(x)
fastpath← false
if not sampling then

if (v@u 6= null ∧ v ≤ vert[u]) then {Check version}
fastpath← true

else if clockx v clockt then
fastpath← true

end if
end if
if fastpath then

setShared(clockt, true)
clockx ←shallow clockt
vepochx ← vepoch(t)

else
if isShared(clockx) then

clockx ← clone(clockx)
setShared(clockx, false)

end if
clockx ← clockx t clockt

vepochx ← null {Cannot assign vepoch(t)}
end if

[8] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. Extended technical report.

[9] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks. In ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 211–230, 2002.

[10] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling. In ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 156–164, 2004.

[11] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 258–269, 2002.

[12] M. Christiaens and K. D. Bosschere. Accordion Clocks: Logical
Clocks for Data Race Detection. In International European Confer-
ence on Parallel Processing, pages 494–503, 2001.

[13] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In ACM Conference on Program-
ming Language Design and Implementation, pages 245–255, 2007.

[14] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 121–133, 2009.

[15] C. Flanagan and S. N. Freund. Adversarial Memory For Detecting
Destructive Races. In ACM Conference on Programming Language
Design and Implementation, 2010.

[16] J. Gray. Why Do Computers Stop and What Can Be Done About
It? In Symposium on Reliability in Distributed Software and Database
Systems, pages 3–12, 1986.

[17] T. Harris, S. Tomic, A. Cristal, and O. Unsal. Dynamic Filtering:
Multi-Purpose Architecture Support for Language Runtime Systems.
In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 39–52, 2010.

[18] T. A. Henzinger, R. Jhala, and R. Majumdar. Race Checking by
Context Inference. In ACM Conference on Programming Language
Design and Implementation, pages 1–13, 2004.

[19] M. Hirzel and T. Chilimbi. Bursty Tracing: A Framework for Low-
Overhead Temporal Profiling. In ACM Workshop on Feedback-
Directed and Dynamic Optimization, pages 117–126, 2001.

[20] M. Jump, S. M. Blackburn, and K. S. McKinley. Dynamic Object
Sampling for Pretenuring. In ACM International Symposium on Mem-
ory Management, pages 152–162, 2004.

[21] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[22] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able Statistical Bug Isolation. In ACM Conference on Programming
Language Design and Implementation, pages 15–26, 2005.

[23] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University of
California at Berkeley, 2004.

[24] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 329–339, 2008.

[25] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access-Interleaving Invariants. In ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 37–48, 2006.

[26] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
ACM Symposium on Principles of Programming Languages, pages
378–391, 2005.

[27] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In ACM Conference
on Programming Language Design and Implementation, pages 134–
143, 2009.

[28] F. Mattern. Virtual Time and Global States of Distributed Systems.
In Workshop on Parallel and Distributed Algorithms, pages 215–226,
1988.

[29] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection
for Java. In ACM Conference on Programming Language Design and
Implementation, pages 308–319, 2006.

[30] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In ACM Conference on Programming Language
Design and Implementation, pages 22–31, 2007.

[31] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton,
J. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of Mutual
Inconsistency in Distributed Systems. IEEE Transactions on Software
Engineering, 9(3):240–247, 1983.

[32] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. Concurrency and
Computation: Practice & Experience, 19(3):327–340, 2007.

[33] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In ACM Confer-
ence on Programming Language Design and Implementation, pages
320–331, 2006.

[34] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In ACM Symposium on Operating Systems Principles, pages 27–37,
1997.

[35] Standard Performance Evaluation Corporation. SPECjbb2000 Docu-
mentation, release 1.01 edition, 2001.

[36] A. Thakur, R. Sen, B. Liblit, and S. Lu. Cooperative Crug Isolation.
In International Workshop on Dynamic Analysis, pages 35–41, 2009.

[37] C. von Praun and T. R. Gross. Object Race Detection. In ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 70–82, 2001.

[38] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection on
Millions of Lines of Code. In European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 205–214, 2007.

[39] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking. In ACM Symposium on
Operating Systems Principles, pages 221–234, 2005.

