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Abstract

Microarchitectures increasingly rely on dynamic opti-

mization to improve performance in ways that are dif-

ficult or impossible for ahead-of-time compilers. Dy-

namic optimizers in turn require continuous, portable,

low cost, and accurate control-flow profiles to inform

their decisions, but prior approaches have struggled to

meet these goals simultaneously.

This paper presents PEP, a hybrid instrumentation

and sampling approach for continuous path and edge

profiling that is efficient, accurate, and portable. PEP

uses a subset of Ball-Larus path profiling to identify

paths with low overhead, and uses sampling to mitigate

the expense of storing paths. PEP further reduces over-

head by using profiling to guide instrumentation place-

ment. PEP improves profile accuracy with a modified

version of Arnold-Grove sampling. The resulting system

has 1.2% average and 4.3% maximum overhead, 94%

path profile accuracy, and 96% edge profile accuracy

on a set of Java benchmarks.

1. Introduction

Traditional static optimization is limited by factors such

as dynamically linked libraries, lack of runtime mi-

croarchitecture information, and unpredictable or phasic

behavior. Recent work shows that dynamic optimiza-

tion can overcome these limitations by using dynamic

control-flow information to inform optimizations [2, 5,

9, 11, 15, 16, 17, 20, 22, 32]. Effective dynamic re-

compilation depends on control-flow information that is

accurate, continuous, and low overhead. Existing ap-

proaches struggle to meet all these goals at once.

Instrumentation-based approaches generally profile
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every path or edge [6, 8, 14] but are too expensive for all-

the-time use, or their accuracy relies on relatively pre-

dictable program behavior. Sample-based approaches

profile a representative fraction of dynamic paths or

edges [1, 4, 18, 26, 27] but either cannot collect path

profiles or require switching between uninstrumented

and instrumented code. Some software-based systems

achieve low overhead by limiting profile collection to

initial program execution [2, 30], giving up the goal of

continuous profiling and risking performance degrada-

tion if behavior changes [31]. Platform-specific hard-

ware [10, 23, 28] achieves low runtime overhead but for-

sakes portability.

This paper presents PEP, a low overhead, high ac-

curacy continuous path and edge profiling approach.

PEP is a hybrid: it combines both instrumentation and

sampling. It uses a low-overhead subset of Ball-Larus

path profiling that correctly and continuously computes

paths, but only stores paths at sample points to mitigate

this expense. PEP requires only (1) a thread-switching

mechanism that is common to Java virtual machines and

operating system support for timer interrupts, or (2) an

existing sampling mechanism. PEP further lowers in-

strumentation overhead using profile-guided profiling: it

places instrumentation using the edge profile collected

so far. To our knowledge, PEP is the first profiling tech-

nique to combine all-the-time instrumentation with sam-

pling, and the first to employ path profiling as an effi-

cient means for edge profiling.

We evaluate PEP in Jikes RVM, a high performance

Java-in-Java virtual machine with an adaptive sample-

based compiler. We demonstrate a configuration of PEP

with 1.2% average and 4.3% maximum overhead, and

collects path and edge profiles with 94% and 96% av-

erage accuracy using SPEC JVM and DaCapo bench-

marks. This combination of accuracy, continuity, and

efficiency creates new opportunities for dynamic opti-

mizers to be more speculative and aggressive.



2. Related Work

This section compares PEP to previous work. It first

discusses systems that reduce costs by collecting only

an initial profile. It then presents continuous approaches

that use instrumentation, sampling, and hardware.

2.1. One-Time Profiling

Some online profiling techniques achieve low overhead

by profiling only part of a program’s execution. Jikes

RVM’s baseline compiler collects a one-time edge pro-

file for unoptimized code, but its optimizing compiler

does not [2]. Structural path profiling collects a one-

time path profile with dynamic instrumentation, which

it later removes [30]. A one-time profile may not

capture whole-program behavior, and performance will

consequently suffer. The effects can be devastating in

systems with high misspeculation penalties (e.g., re-

PLay [20] and MSSP [32]). Aggressive, speculative dy-

namic optimizers must respond quickly to changing pro-

gram behavior to avoid significant performance degrada-

tion [31].

2.2. Instrumentation-Based Profiling

Continuous instrumentation-based profiling tends to

have high overhead. Ball and Larus path and edge pro-

filing add 31% and 16% on average [6].

Practical path profiling (PPP) [8] and targeted path

profiling [14] use profile-guided profiling to reduce over-

head. PPP simplifies path profiling instrumentation us-

ing an existing edge profile. PEP borrows PPP’s smart

path numbering algorithm to place instrumentation on

cold edges (Section 3.4). If the edge profile is unrepre-

sentative, path profile accuracy does not suffer, although

performance may. PPP however uses other techniques

that do sacrifice accuracy, although not much for SPEC

C and Fortran programs. PEP has lower runtime over-

head than PPP (1.2% vs. 5% on average), with about the

same path profiling accuracy (94% vs. 95% on average).

2.3. Sample-Based Profiling

Sample-based approaches avoid the high runtime over-

head of instrumentation. The DIGITAL Continuous Pro-

filing Infrastructure (DCPI) collects a basic block profile

(less information than a path or edge profile [13]) by oc-

casionally sampling the program counter [1]. DCPI has

1-3% overhead on average, which is similar to PEP’s.

Arnold and Ryder sample instrumentation by switch-

ing between uninstrumented and instrumented versions

of program code [4]. The switching framework alone

has 4.9% average overhead, which drops to 1.4%

by moving yieldpoints from uninstrumented to instru-

mented code. In contrast, PEP adds a small amount of

instrumentation instead of duplicating code, and does

not need to switch between uninstrumented and instru-

mented code. Its instrumentation (without sampling) ex-

ecutes all the time with an average overhead of 1.1%.

Dynamic instrumentation can emulate sampling by

repeatedly adding and removing instrumentation [18,

26, 27]. The relatively high cost of this swapping limits

how quickly dynamic systems can respond to changes

in program behavior. Because this approach is complex,

not many dynamic optimizers use it.

2.4. Profiling with Hardware Support

Hardware support includes using existing branch predic-

tion hardware to collect edge profiles with low overhead

(0.4-4.6%) [10], and a programmable, hardware-based

path profiler with low overhead (0.5% on average) and

high accuracy (above 90% on average) using a suffi-

ciently large hardware-based path table [28]. Shye et al.

collect path profiles by sampling the Itanium 2’s branch

trace buffer (BTB), achieving 1% overhead on average

and 88% path accuracy on average [23]. PEP avoids spe-

cialized hardware but has overhead and accuracy com-

parable to hardware-based profilers.

3. Continuous Path and Edge Profiling

This section describes our mechanism for continuous

path and edge profiling (PEP) in dynamic optimizers.

We first review Ball-Larus path profiling since PEP ex-

tends it. We then describe PEP instrumentation, sam-

pling, and profile-guided profiling.

3.1. Ball-Larus Path Profiling

Ball-Larus path profiling (BLPP) instrumentation counts

how many times each acyclic, intraprocedural path ex-

ecutes [6]. Paths begin on method entry and end on

method exit. Paths also begin and end on loop back

edges. A procedure call starts a new path and defers

the caller’s path until the callee returns. BLPP adds in-

strumentation that computes a unique path number for

each possible path, and stores it at the end of the path.

To enumerate acyclic paths, BLPP first converts a

routine’s control flow graph (CFG) to a directed acyclic

graph (DAG) by truncating each loop back edge. BLPP

truncates the back edge by removing it and adding two

dummy edges: (1) one from method entry to loop header

and (2) one from loop tail to method exit. Figures 1(a)

and (b) illustrate truncation.

The Ball-Larus path numbering algorithm (Figure 2)

then assigns values to edges such that, for each of the N

acyclic paths in the DAG, the sum of the edge values is a

unique number in [0, N − 1]. Figure 1(c) shows a DAG

labeled with edge values where N = 8.



Figure 1. An example routine instrumented by Ball-Larus path profiling. (a) Original routine; (b) after conversion from the CFG
to a DAG; (c) after path numbering; (d) after instrumentation placement; and (e) after conversion back to the CFG.

foreach basic block v in reverse topological order

if v is the exit block

NumPaths(v) = 1
else

NumPaths(v) = 0
foreach edge e = v→w

Val(e) = NumPaths(v)
NumPaths(v) = NumPaths(v)+ NumPaths(w)

Figure 2. Ball-Larus path numbering algorithm.

BLPP next places instrumentation on edges. It uses

a variable r, called the path register, to compute the

unique number for each path as the path executes. The

instrumentation

1. initializes r to zero (r=0) on method entry;

2. adds nonzero values to r (r+=val) on edges; and

3. updates the frequency for the taken path in a path

frequency table (count[r]++) on method exit.

Figure 1(d) shows the example DAG with path-counting

instrumentation. The final step of the BLPP algo-

rithm converts the DAG back to a CFG. It removes

dummy edges, restores back edges, and moves instru-

mentation from dummy edges to the corresponding back

edges, including copying r=0 from method entry and

count[r]++ from method exit to the back edge. Fig-

ure 1(e) shows the example converted back to a CFG.

Ball and Larus showed that BLPP’s runtime overhead

is 31% on average on SPEC95, but is as high as 73% for

perl and 97% for gcc.

3.2. PEP Instrumentation

PEP relies on the simple observation that Ball-Larus in-

strumentation can be separated into two steps:

1. computing the current path’s path number, and

2. incrementing the frequency for that path.

This separation matters because step (1) is extremely

inexpensive, and step (2) is not. Step (2) is a load-

increment-store memory operation or a hash function

call [6], while step (1) is a sequence of register additions

(plus the cost of any register spills). Our measurements

confirm that step (2) represents the bulk of the runtime

overhead of Ball-Larus instrumentation.

PEP avoids storing all paths by sampling the value

of the path register r at exactly the same locations

BLPP would update the path profile (i.e., it samples the

count[r]++ instrumentation). There are a variety of

ways to implement this feature in a dynamic optimizer

that uses operating system or hardware support to sam-

ple programs. Our implementation piggybacks on Jikes

RVM’s thread-switching system [2]. This system sup-

ports a general mechanism that the VM uses to sup-

port multithreading, thread scheduling, JIT compilation,

garbage collection, and method and call sampling. To

gain control of a thread quickly, Jikes RVM inserts yield-

points on loop headers, method entry, and method exit.

Each yieldpoint examines a global status flag that is true

only when the RVM needs to take a sample or perform

some other system function.

Since yieldpoints are on loop headers, rather than

loop back edges, we implement PEP to end paths at

headers rather than back edges. PEP splits paths that

traverse a header into two paths at the header. We be-

lieve this difference from BLPP is minor because it only

affects the first path through a loop. We could avoid this

difference by modifying Jikes RVM to place yieldpoints

on back edges rather than headers. Figure 3 shows how

BLPP works when paths end at loop headers instead of

back edges. Figures 3(a) and (b) show how we truncate

a loop header: we split it immediately after the yield-



Figure 3. (a)-(e) An example routine instrumented by BLPP when paths end at loop headers rather than back edges. (f) PEP
instrumentation and the points at which PEP samples the path register.

point (in B1), and truncate the edge between the two sub-

blocks by removing it and adding two dummy edges.

Figures 3(c)-(e) show path numbering, instrumentation,

and conversion back to a CFG. Figure 3(f) shows the in-

strumentation PEP adds to the example CFG, and where

PEP samples the value of the path register. PEP stores

the directed acyclic graph (DAG) representation labeled

with edge values (e.g., Figure 3(c)), which we call the

P-DAG, for later use during sampling.

We believe PEP could be implemented in a system

without thread-switching points. First, this approach re-

quires compiler analysis to determine the location of the

current path value (i.e., which register or stack location)

at each program point, which is similar to GC maps

in JVMs [2]. Second, this approach requires a way to

reconstruct the partial path from the partial path num-

ber. Conveniently, a partially taken path can be identi-

fied from the partial path number using the same greedy

reconstruction algorithm for full paths [6].

3.3. PEP Sampling

This section describes how PEP updates the path and

edge profiles when it samples the value of the path reg-

ister. The value of the path register at each sample point

is the path number for the most recently taken path, so

PEP updates the path profile simply by incrementing the

frequency of the path in the method’s path profile.

To update the edge profile, PEP uses an efficient

greedy algorithm [6] to trace the sequence of edges in

the P-DAG (see previous section) that make up the taken

path. It then updates the frequencies of each edge in the

edge profile.

3.4. Profile-Guided Profiling

PEP uses existing edge profile information to further

reduce the cost of executing the path profiling instru-

mentation PEP inserts. This profile-guided profiling is

a good fit for staged dynamic optimization, in which a

method is successively recompiled at higher optimiza-

tion levels in response to profile information [8, 14].

PEP uses smart path numbering, one of the profile-

guided profiling techniques from practical path profiling

(PPP) [8]. The smart path numbering algorithm (Fig-

ure 4) modifies the Ball-Larus path numbering algorithm

(Figure 2) to assign zero to the hottest outgoing edge of

each basic block, so PEP does not place any instrumen-

tation on these edges.

foreach basic block v in reverse topological order

if v is the exit block

NumPaths(v) = 1
else

NumPaths(v) = 0
foreach edge e = v→w in decr. order of exec. freq.

Val(e) = NumPaths(v)
NumPaths(v) = NumPaths(v) + NumPaths(w)

Figure 4. Smart path numbering algorithm. Changes to Ball-
Larus numbering (Figure 2) are underlined.

Profile-guided profiling provides only modest perfor-

mance improvement. If we instead use profile-guided

profiling to place instrumentation on hot edges, PEP in-

strumentation’s execution overhead increases only 1.4%

(i.e., from 1.1% to 2.5%; full results omitted for space).

PEP’s overhead is much lower than BLPP’s mainly due

to its novel instrumentation-sampling mix.

4. Implementation

This section describes our implementation of PEP in

Jikes RVM.

4.1. Adaptive Compilation in Jikes RVM

Jikes RVM is a high performance Java-in-Java virtual

machine that uses an adaptive compilation system trig-

gered by sampling [2]. The compilation system has two



completely distinct compilers and four levels of opti-

mization. When Jikes RVM first loads a class, it in-

vokes the baseline compiler, which translates bytecode

to unoptimized, native code. All subsequent compila-

tion uses the optimizing compiler at one of three pro-

gressively higher levels of optimization.

To support multithreading, garbage collection, and

other Java language features, Java VMs provide thread

switching points. Since VMs need to gain control of

threads quickly, these points almost always include loop

back edges, method entries, and method exits. Jikes

RVM uses exactly these yieldpoints to perform thread

switching and sampling. Our focus here is sampling.

Jikes RVM schedules regular operating system timer in-

terrupts, and the interrupt handler sets a flag. Every

yieldpoint examines this flag and executes the yieldpoint

handler if the flag is set. This handler examines the

stack, computes method invocation counts, and updates

the dynamic call graph.

4.2. One-Time Edge Profiling

In addition to method sampling, the baseline compiler

collects an intraprocedural edge profile. When the base-

line compiler translates bytecode to unoptimized, native

code, it also inserts instrumentation on each branch that

updates a taken or not-taken counter. This instrumenta-

tion is expensive, but is not executed for long since Jikes

RVM quickly recompiles frequently executed methods.

The optimizing compiler computes branch biases

from this edge profile and uses them to drive optimiza-

tion such as Pettis-Hansen code reordering [21], loop

invariant code motion, and register allocation. The op-

timizing compiler does not add edge profile instrumen-

tation, so subsequent recompilations of the method in-

stead use the out-of-date edge profile generated by the

baseline compiler.

4.3. Implementing PEP in Jikes RVM

Since (1) programs execute mostly optimized code by

design, (2) the baseline compiler already has edge pro-

filing, and (3) the baseline compiler is a separate com-

piler altogether, we implement PEP in the optimizing

compiler only. The PEP instrumentation pass

1. builds the P-DAG representation (Section 3.2);

2. assigns values to edges (Section 3.4);

3. inserts instrumentation (Section 3.2); and

4. modifies yieldpoints to pass the value of the path

register to the yieldpoint handler.

The yieldpoint handler uses hash tables to keep track of

path frequencies, and it updates the edge profile as de-

scribed in Section 3.3. Our implementation saves time

by computing a path’s edges only when PEP samples a

path for the first time. When PEP samples the same path

again (the common case), it looks up the sequence of

edges in the path profile.

For consistency and simplicity, PEP collects an edge

profile that is directly comparable to the edge profile col-

lected by the baseline compiler. The baseline compiler

uses a taken counter and a not-taken counter for each

bytecode-level branch. The optimizing compiler’s inter-

nal representation (IR) stores a map from the original

bytecode branch to the corresponding IR branch. Note

that multiple branches in the IR may map to the same

bytecode branch due to method inlining, loop unrolling,

and other optimizations. PEP uses the same taken and

not-taken counters for each of these branches. The com-

piler may eliminate a bytecode-level branch altogether

via constant propagation and dead code elimination. In

this case, PEP cannot collect a profile for it, but since it

never executes, accuracy is not compromised.

PEP can lose accuracy when the optimizing com-

piler does not insert yieldpoints. This occurs when (1)

a method is a leaf with no branches or (2) a method

is marked as uninterruptible, indicating that Jikes RVM

should not switch threads during the method. In the first

case, the method has no branches, so its profile is trivial.

The second case occurs in internal Jikes RVM methods

only. The compiler occasionally inlines such a method

into an application method. If the inlined uninterrupt-

ible method contains a loop, the compiler does not add

a yieldpoint to the loop header. PEP instruments the ap-

plication method, but loses information about paths that

end at the uninterruptible loop’s header.

4.4. Arnold-Grove Sampling

This section explains two problems with timer-based

sampling, how Arnold and Grove address this problem,

and how we adapt their solution for PEP.

Jikes RVM uses a timer-based interrupt to set the

yieldpoint flag, triggering a call to the yieldpoint han-

dler (Section 4.1). Timer ticks occur relatively infre-

quently (e.g., every 20 ms on IA32), which is not often

enough to collect representative path and edge profiles

for our short-running programs, although it may be suf-

ficient for long-running server programs. Furthermore,

because sampling is timer-based, and the time between

consecutive yieldpoints varies considerably throughout

a program, some yieldpoints are more likely to be sam-

pled than others, resulting in sampling bias [3].

Arnold and Grove identify these two problems and

present a solution that improves profile accuracy for call

graph profiles [3]. They collect SAMPLES samples at

successive yieldpoints by setting, rather than resetting,



Figure 5. Example comparing (a) timer-based sampling, (b) Arnold-Grove sampling, and (c) simplified Arnold-Grove sam-
pling. Boxes represent sampling opportunities. Filled boxes represent taken samples, while unfilled boxes are skipped samples. For
(b) and (c), SAMPLES is 4, and STRIDE is 3.

the thread-switch flag at the end of the yieldpoint han-

dler. To alleviate timer-based sampling bias, they stride,

taking a sample every STRIDE yieldpoints. Before the

first sample, they stride by an amount that rotates among

the values in [1, STRIDE]. Figures 5(a) and (b) compare

timer-based sampling to Arnold-Grove sampling.

We observe that in Jikes RVM, taking a sample is

almost as expensive as striding over a sample [3]. We

find that the most important time to stride is before the

first timer tick, and that striding after the first sample is

not a good overhead-accuracy trade-off, at least for PEP.

Thus, we modify Arnold-Grove sampling to stop strid-

ing after the first sample of a timer tick. We refer to this

modification as simplified Arnold-Grove sampling. Fig-

ures 5(b) and (c) compare simplified and regular Arnold-

Grove sampling.

We use the notation PEP(SAMPLES,STRIDE) to re-

fer to a PEP configuration that uses simplified Arnold-

Grove sampling. For example, PEP(1,1) is equivalent to

timer-based sampling: it takes one sample per timer tick

and does not stride. PEP(64,17) strides by up to 17 (i.e.,

it skips between 0 and 16 samples) after a timer tick, and

then it takes 64 samples without striding.

5. Methodology

We now describe our experimental platform, bench-

marks, and methodology. We evaluate PEP in Jikes

RVM (CVS HEAD, 2005/02/19 04:02:09 UTC) [2].

Platform. We perform our experiments on a 3.2 GHz

Pentium 4 with hyper-threading enabled. It has a 64-

byte L1 and L2 cache line size, an 8KB 4-way set as-

sociative L1 data cache, a 12Kµops L1 instruction trace

cache, a 512KB unified 8-way set associative L2 on-chip

cache, and 1GB main memory, and runs Linux 2.6.0.

Benchmarks. We use the SPEC JVM98 bench-

marks, a fixed-workload version of SPEC JBB2000

(70000 transactions) called pseudojbb, and the Da-

Capo benchmarks that execute on Jikes RVM [19, 24,

25]. We omit the DaCapo benchmark hsqldb because

we could not get it to run correctly with Jikes RVM, with

or without PEP.

Methodology. We use two methodologies for our

experiments. (1) The adaptive methodology lets the

adaptive compiler behave as intended and is non-

deterministic. (2) The replay compilation methodology

(previously known as pseudo-adaptive) is deterministic

and eliminates variations due to non-deterministic appli-

cation of the adaptive compiler. Without it, exactly when

the timer interrupt goes off changes compilation deci-

sions. Replay compilation forces Jikes RVM to compile

the same methods in the same order on different execu-

tions and thus prevents high variability.

Replay compilation uses advice files produced by a

previous well-performing adaptive run (best of five).

The advice files specify (1) the optimization level for

compiling each method, (2) the dynamic call graph

profile, and (3) the edge profile produced by baseline-

compiled code. We execute two consecutive iterations

of the application. During the first iteration, Jikes RVM

optimizes code using the advice files. The second itera-

tion executes only the application at a mix of optimiza-

tion levels.

We report benchmark execution time as the minimum

of 10 trials (shown as dots; crosses represent trials off

the graph), since it is the least disturbed by system vari-

ability. The median produces almost exactly the same

results. We use 25 trials for compress because its times

vary a lot. We report profile accuracy as the median of

10 trials (shown as dots) to obtain a representative accu-

racy not swayed by outliers.

5.1. Collecting Perfect Profiles

To collect perfect profiles for comparison with PEP,

we implement pure instrumentation-based path and

edge profiling in the optimizing compiler. Our

instrumentation-based path profiling mimics PEP’s in-

strumentation, except that it updates the path profile

at every yieldpoint via an inserted hash call. Like
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Figure 6. The execution overhead of PEP. We use the second iteration of replay compilation.
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Figure 7. The compilation and execution overhead of PEP. We use the first iteration of replay compilation.

PEP, instrumentation-based path profiling does not pro-

file paths that end at uninterruptible loop headers (Sec-

tion 4.3). Instrumentation-based edge profiling mimics

the existing edge profiling in the baseline compiler (Sec-

tion 4.2). It adds instrumentation on each IR branch that

increments a taken or not-taken counter for the corre-

sponding bytecode-level branch. Instrumentation-based

path and edge profiling have 92% (8 to 407%) and 10%

(0 to 34%) average overhead, respectively. This over-

head is tolerable because we only use instrumentation-

based profiling to collect perfect profiles for comparison

purposes.

6. Results

This section evaluates the overhead and profile accu-

racy of PEP. We demonstrate a sampling configuration,

PEP(64,17) (Section 4.4), that has 1.2% runtime over-

head, 94% path profile accuracy, and 96% edge profile

accuracy. We measure the performance potential of con-

tinuous profiles by driving edge profile-guided optimiza-

tions in Jikes RVM with PEP.

6.1. Overhead

Figure 6 presents execution times for PEP instrumenta-

tion alone and with various sampling configurations. We

use the second run of replay compilation to determinis-

tically measure application execution time only. Exe-

cution times for each benchmark are normalized to the

Base (i.e., without PEP) time.

The overhead of PEP’s instrumentation alone is on

average 1.1% and at most 5.4%. Timer-based sampling

(PEP(1,1)) adds no detectable overhead. PEP(64,17)

adds 0.1% overhead on average, yielding on average

1.2% and at most 4.3% total runtime overhead. The

other sampling configurations add 0.8-2.3% additional

overhead on average.

For some programs, overhead decreases when instru-

mentation is added or when the sampling rate increases.

This result is counterintuitive because instrumentation

and increased sampling rate only give the processor

more work to do. These results must be due to sensi-

tivities at the microarchitecture and JVM levels. For ex-

ample, PEP instrumentation perturbs code layout, which

could improve instruction cache performance.

6.2. The Cost of Adding Instrumentation

In addition runtime overhead, PEP adds compilation

overhead by inserting instrumentation. Qualitatively,

PEP adds little to compilation time: it performs three
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Figure 8. The path profile accuracy of PEP.
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Figure 9. The edge profile accuracy of PEP.

quick passes over each method compiled by the optimiz-

ing compiler to (1) construct the P-DAG (Section 3.2),

(2) perform smart path numbering (Section 3.4), and (3)

insert instrumentation. In this section, we evaluate this

claim quantitatively. We report run times for the first it-

eration of replay compilation, which includes both com-

pilation and program execution, yielding overheads that

reflect the combined cost of both inserting and executing

PEP instrumentation.

Figure 7 shows the compilation and execution over-

head of PEP. This overhead is 1.6% on average and 4.6%

at most, which is higher than execution overhead alone

(Section 6.1), suggesting that, as a percentage, PEP adds

more overhead to compilation than to program execu-

tion. However, because PEP’s compilation overhead

is modest, it is only likely to affect performance for

shorter-running programs, which the dynamic optimizer

spends a greater proportion of time compiling. These

benchmarks are generally short-running: median execu-

tion time (including compilation) is 11 seconds. For ex-

ample, jack executes in four seconds, and its PEP com-

pilation and execution overhead is relatively high (3.5%)

compared to execution overhead alone (1.8%).

6.3. Path Profiling Accuracy

This section evaluates PEP’s accuracy at predicting pro-

grams’ hot paths. We use the Wall weight-matching

scheme [29], as does previous work [7, 8, 23]. It mea-

sures PEP’s ability to identify a program’s hot paths,

given a threshold, but does not compare relative frequen-

cies. We use this measure because accurate hot path

identification is exactly what most path-based optimiza-

tions need.

We compute flow, which is a measure of the amount

of execution along a path, using the branch-flow met-

ric [8]. Branch flow computes the flow F (p) of a path

p by weighting p’s frequency freq(p) by its length in

branches, bp:

F (p) = freq(p) × bp

The flow on a set of paths P is the sum of the flows:

F (P ) =
∑

p∈P

( freq(p) × bp)

The Wall weight-matching scheme first identifies a pro-

gram’s actual hot paths, Hactual, using a perfect path pro-

file collected with instrumentation. A path is hot if its

flow is above 0.125% of total program flow, the same



threshold used in previous work. The scheme then con-

structs the set of estimated hot paths, Hestimated, by se-

lecting the top |Hactual| hottest paths from PEP’s esti-

mated path profile. Accuracy is the fraction of actual

hot path flow that the estimated path profile predicts:

Accuracy =
F (Hestimated ∩ Hactual)

F (Hactual)

Figure 8 shows the accuracy of PEP at predicting pro-

grams’ hot paths. Multiple samples per timer tick and

striding yield high accuracy, with small improvements

from higher sampling rates. PEP(64,17) has 94% path

profile accuracy. Timer-based sampling, with 53% ac-

curacy, is not sufficient for predicting hot paths.

6.4. Edge Profiling Accuracy

This section evaluates PEP’s ability to collect a represen-

tative edge profile. We compare PEP’s edge profile to a

perfect edge profile generated by instrumentation-based

path profiling to avoid measuring loss of accuracy due to

uninterruptible loop headers (Section 5.1). However, if

we compare to instrumentation-based edge profiling in-

stead, accuracy falls by only 2% on average (e.g., 96%

to 94% for PEP (64, 17)), indicating that uninterrupt-

ible loop headers execute rarely in application code (full

results omitted for space).

We compare the actual and PEP’s estimated edge pro-

files using relative overlap. Relative overlap measures

how well PEP predicts the taken/not-taken bias for each

branch. We use this measure because Jikes RVM uses

only bias, rather than absolute edge frequency, for op-

timizations. The accuracy for branch b is 1 minus the

difference between b’s actual taken bias, takenactual(b),
and the taken bias that PEP predicts, takenestimated(b):

Accuracy(b) = 1 − |takenactual(b) − takenestimated(b)|

To compute accuracy of an edge profile, relative over-

lap weights the accuracy of each branch b by its actual

execution frequency freqactual(b):

Accuracy =

∑
b∈Branches (freqactual(b) × Accuracy(b))∑

b∈Branches (freqactual(b))

Figure 9 shows PEP’s accuracy at predicting a represen-

tative edge profile. Multiple samples per timer tick and

striding yield high accuracy, with more samples per tick

producing slightly more accurate edge profiles on aver-

age. PEP (64, 17) provides 96% edge profile accuracy.

An alternative measure of edge profile accuracy that

we call absolute overlap (previous work simply calls it

overlap [3, 4, 12]) is concerned with branch frequency

rather than just branch bias. PEP accuracy computed us-

ing absolute overlap remains high but is lower, which

is not surprising since it is more difficult to predict

an edge’s frequency relative to the entire edge profile.

PEP(64,17) has 83% accuracy using absolute overlap;

PEP(256,17) has 87% accuracy; and PEP(1024,17) has

88% accuracy. (We omit individual results for brevity.)

6.5. Driving Optimization with PEP

This section evaluates the impact of using continuous

edge profiles to drive optimization in Jikes RVM.

We first compare the accuracy of one-time edge pro-

filing (see Section 4.2) to perfect continuous edge profil-

ing (see Section 5.1). We omit full results to save space.

The accuracy (using relative overlap) of one-time pro-

filing is very high: 97% on average and 86% at worst.

Initial behavior is a good predictor of whole-program

behavior for these programs, so there is likely to be little

room for improvement from continuous profiling.

Next we evaluate the performance pontetial of using

continuous edge profiles to drive optimizations in Jikes

RVM (e.g., code reordering, loop invariant code motion,

and register allocation). Figure 10 compares driving op-

timization with a perfect continuous edge profile and a

one-time profile (first two bars). We use the second iter-

ation of replay compilation to measure only program ex-

ecution. The graph shows an average 0.9% performance

improvement using a continuous profile over a one-time

profile. This only modest improvement is not surprising,

given that the programs we evaluate have very high one-

time profile accuracy. Programs with less predictable

behavior may benefit more from continuous profiles.

The third bar uses a flipped continuous profile, where

each probability is flipped (e.g., a 90% taken branch be-

comes 10% taken). Performance degradation is signif-

icant, indicating that Jikes RVM’s edge profile-guided

optimizations are in fact sensitive to profile accuracy.

Finally, we evaluate the costs and benefits of PEP

instrumentation using the adaptive methodology. Fig-

ure 11 evaluates the performance of using PEP(64,17)

both to collect an edge profile and to drive optimization

with it. The comparison point Base is a normal adaptive

run that uses only the one-time edge profile generated

by baseline-compiled code. We take the median of 25

trials because of the high variability between executions

due to the non-deterministic application of the optimiz-

ing compiler.

The figure shows that using PEP in Jikes RVM adds

1.3% average and 3.2% maximum overhead. This result

means that the costs of PEP (compilation and execution

overhead) outweigh the benefit (continuous profiling in-

formation), which is not surprising given the limited po-
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Figure 10. The performance of using a continuous edge profile rather than a one-time edge profile to drive optimization. We
use the second iteration of replay compilation.
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Figure 11. The performance of using PEP to collect profiles and drive optimization. We use the adaptive methodology.

tential in these programs. This result occurs in part be-

cause of the predictability of the programs we use, and in

part because Jikes RVM does not aggressively speculate

on runtime information. Continuous profiling is ideal

for aggressive, speculative dynamic optimizers that take

big gambles on runtime information, and for programs

with unpredictable, phased behavior.

7. Conclusions

This paper presents PEP, a low-cost approach for contin-

uous path and edge profiling that requires only an exist-

ing thread-switching or sampling mechanism. PEP is a

hybrid that, to our knowledge, is the first to combine all-

the-time instrumentation with sampling and the first to

use path profiling as an efficient way to collect an edge

profile. We demonstrate a sampling configuration for

PEP with 1.2% runtime overhead that collects continu-

ous path profiles with 94% accuracy and edge profiles

with 96% accuracy in Jikes RVM. This cost and accu-

racy combination points to a future where highly aggres-

sive and speculative dynamic optimizers can readily de-

pend on continuous and accurate runtime information.
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