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Abstract

Modern processors are hungry for instructions. To sat-
isfy them, compilers need to find and optimize execution
paths across multiple basic blocks. Path profiles pro-
vide this context, but their high overhead has so far lim-
ited their use by dynamic compilers. We present new
techniques for low overhead onlinepractical path profil-
ing (PPP). Following targeted path profiling (TPP), PPP
uses an edge profile to simplify path profile instrumenta-
tion (profile-guided profiling). PPP improves over prior
work by (1) reducing the amount of profiling instrumen-
tation on cold paths and paths that the edge profile pre-
dicts well and (2) reducing the cost of the remaining in-
strumentation.

Experiments in an ahead-of-time compiler perform
edge profile-guided inlining and unrolling prior to path
profiling instrumentation. These transformations are
faithful to staged optimization, and create longer, harder
to predict paths. We introduce thebranch-flowmetric
to measure path flow as a function of branch decisions,
rather than weighting all paths equally as in prior work.
On SPEC2000, PPP maintains high accuracy and cov-
erage, but has only 5% overhead on average (ranging
from -3% to 13%), making it appealing for use by dy-
namic compilers.

1. Introduction
To perform well, modern out-of-order processors need
long sequences of predictable instructions. To provide
these sequences, compilers must look beyond a sin-
gle basic block to find, analyze, and optimizehot (fre-
quently executed) paths. Prior work uses hot paths to
drive hyperblock and superblock formation [7, 22, 24]
and path-based analyses and optimizations [1, 18, 19,
33]. In an ahead-of-time compiler, the compiler col-
lects a path profile and then uses it to optimize the pro-
gram. The optimized program thus does not incur pro-
filing overhead. In a dynamic compiler, execution time
includes the compile-time overhead of adding path pro-
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filing instrumentation and the runtime overhead of exe-
cuting the instrumentation, which has so far been pro-
hibitively high for dynamic optimizers. This paper fo-
cuses on reducing runtime overhead with modest impact
on compile-time overhead.

The runtime overhead of Ball-Larus path profiling
(PP) is 31% on average, but as high as 97% [10]. Joshi et
al. targeted path profiling (TPP) improves over PP with
profile-guided profiling and has overhead of 16% on av-
erage, but as high as 53% [23]. This high overhead has
driven dynamic compilers to use edge profiles [5], which
are inexpensive to collect but are often poor predictors of
a program’s hot paths. We show here that edge profile
accuracy at predicting hot paths is on average 73% and
as low as 26% for SPEC2000.

This paper introducespractical path profiling(PPP),
which is efficient enough to use in a dynamic setting,
without much loss of accuracy or coverage. PPP builds
on PP and TPP. It lowers overhead by (1) instrument-
ing even fewer paths than TPP, and (2) more efficiently
profiling the paths it does instrument. For example, PPP
uses a global criterion to exclude more cold paths than
TPP; pushes instrumentation further than PP and TPP
by ignoring cold edges; places less instrumentation on
the hottest paths than PP and TPP; and eliminates TPP’s
poison check.

This paper also improves the methodology for eval-
uating path profiling by introducing a new metric and
using a more realistic and challenging compilation set-
ting. Previous work uses what we call theunit-flowmet-
ric to evaluate estimated path profiles [11, 23]. Unit
flow weights all paths equally regardless of length,
which leads to non-intuitive results and obscures how
well profiling predicts longer paths. We introduce
thebranch-flowmetric to measure prediction accuracy,
which weights paths by their lengths.

To provide more realistic paths than prior profiling
work, we first perform edge profile-guided inlining and
unrolling. This step produces longer and more complex
paths, making accurate path profiling harder. This envi-
ronment is more faithful to staged optimization, which
first finds hot calls and loops, inlines and unrolls, instru-
ments paths, and then applies path optimizations.

We implement and evaluate PP, TPP, and PPP in



Scale [25], an ahead-of-time compiler, which provides a
deterministic platform for the experiments but neglects
compilation costs. Our results show that PPP is almost
as accurate as TPP: PPP predicts 96% of hot path flow
on average, and is within 1% of TPP. PPP performs bet-
ter than TPP: TPP instrumentation adds 12% on average
(from -4 to 50%) to program runtime, whereas PPP adds
5% on average (from -3 to 13%). Furthermore, we show
that all of PPP’s techniques contribute to its low over-
head.

2. Related Work
This section first discusses how well edges predict paths.
It then overviews related work for reducing the cost of
collecting path profiles. Section 3 reviews the path pro-
filing algorithms on which PPP builds.

If an edge profile accurately predicts the path profile,
the optimizer can use it to estimate the path profile. This
approach is inexpensive: Edge profiling has negligible
overhead (0.5 to 3%) using sampling [2, 34] or hardware
support [13, 14, 16, 20]. Ball et al. found that 80% of
the paths could be attributed from an edge profile, but
noted that the most complex paths are not predictable
from an edge profile [11]. We repeat their analysis here
with methodology that is more realistic for a dynamic
setting and find that just 48% of paths can be attributed
from an edge profile (Section 8.1).

One way to reduce path profiling overhead in a dy-
namic optimizer is to execute instrumented code only
part of the time. Previous approaches use code sam-
pling [6, 21] and dynamic instrumentation [26, 28, 31].1

These approaches lower overhead at the cost of extend-
ing the time it takes to collect a given number of sam-
ples. PPP lowers overhead directly by making instru-
mentation less expensive and is thus orthogonal to these
approaches. Furthermore, PPP demonstrates overhead
comparable to that of code sampling frameworks alone.

Dynamo [7, 17] demonstrates dynamic optimiza-
tion benefits for real programs already optimized by
an ahead-of-time compiler. Dynamo selects likely hot
paths using Next Executing Tail (NET) (previously
called Most Recently Executed Tail), which collects a
single path trace after a backward branch becomes hot.
While NET is statistically likely to select the hottest
path, it cannot distinguish between the cases of a few
dominant hot paths and many “warm” paths. As a result,
Dynamo is too aggressive in the latter case, causing it to
thrash the code cache and bail out to native execution
in some benchmarks. In contrast, PPP can distinguish
these cases through wider coverage (Section 8.1).

Selective path profiling (SPP) [3] reduces instrumen-
tation by profiling only a subset of a program’s paths,

1Except for structural path profiling [31], which improves cover-
age of dynamic instrumentation for Ball-Larus path profiling, these
approaches are not limited to intraprocedural, acyclic paths. For ex-
ample, bursty tracing [21] can profile cyclic, interprocedural paths,
albeit at a lower sampling rate.

calledpaths of interest. Like PPP, SPP assigns unique
path numbers to the profiled paths and non-unique path
numbers to the other paths. However, SPP assigns high
path numbers to profiled paths and lower path numbers
to other paths, while PPP does the opposite. As a result,
PPP places less instrumentation on profiled paths, which
are also the hot paths.

Another approach uses hardware to collect paths,
such as the Pentium 4’s path buffer [27], but aggregat-
ing path statistics from the buffer remains a challenge.
Vaswani et al. present a hardware-based programmable
path profiler that maintains a hot path table (HPT) in
hardware [29]. Their approach has very low overhead
(less than 1% on average), and its accuracy is high
(above 90% on average) when the HPT is large enough.

3. Background
We first review Ball-Larus [10] and Joshi et al. [23],
since PPP builds on them.

3.1. Ball-Larus Path Profiling (PP)

PP adds instrumentation to a program to count how
many times it executes each acyclic, intraprocedural
path (i.e., a loop back edge ends the current path and
starts a new path; a routine call starts a new path, defer-
ring the current path until the routine returns).2

PP first converts the routine’s control flow graph
(CFG) to a directed acyclic graph (DAG) by removing
each back edge (loop tail→ loop header) and adding
two dummyedges: one from the routine entry to the loop
header and one from the loop tail to the routine exit. Fig-
ures 1(a) and 1(b) illustrate this process of “breaking” a
back edge. The algorithm in Figure 2 then assigns val-
ues to edges such that, for each of theN acyclic paths in
the DAG, the sum of the edge values is a unique number
in [0, N − 1]. Figure 1(c) shows a labeled DAG where
the sum of the edge values is a unique value in[0, N−1],
whereN = 8.

PP then uses Ball’s efficient event counting algo-
rithm [8] to reassign values to DAG edges so each path
computes the same path number as before, but more effi-
ciently. It estimates edge frequencies with simple static
heuristics (e.g., loops execute 10 times and branch di-
rections are 50/50) to select a spanning tree containing
the predicted high frequency edges. It reassigns zero to
the spanning tree edges and nonzero values to the other
edges, such that the path numbers remain the same. Fig-
ure 1(d) shows the DAG with new edge values after ap-
plying the event counting algorithm.

PP next places instrumentation on edges. A variable
r, called thepath register, computes the unique number
for a path as the path executes. The instrumentation

1. initializes the path register to zero (r=0) on entry;

2Young presents an alternative approach that ignores loop and
routine boundaries but limits path length to a constant number of
branches [32].
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Figure 1. An example routine instrumented by PP. (a) Original routine; (b) after PP converts the CFG to a DAG; (c) after path num-
bering; (d) after edge value reassignment via the event counting algorithm; (e) after instrumentation placement; (f) after instrumentation
pushing and combining; and (g) after conversion back to the CFG.

2. adds values to the path register (r+=val) on edges
with nonzero values; and

3. updates the frequency for the taken path in a path
frequency table (count[r]++) on exit.

Figure 1(e) shows the DAG with instrumentation that
counts paths. To reduce overhead further, PP pushes
instrumentation with the formr=0 down paths until
it reaches instrumentation with the formr+=val, and
then combines them intor=val. Similarly, it pushes
count[r]++ up until it encountersr+=val (or even
r=val) and then combines them intocount[r+val]++
(or count[val]++). Figure 1(f) shows the DAG af-
ter pushing path initialization instrumentation down and
path counting instrumentation up. The final step of the
PP algorithm converts the DAG back to a CFG. It re-
moves dummy edges, restores back edges, and moves
instrumentation from dummy edges to their correspond-
ing back edges. Figure 1(g) shows the example con-
verted back to a CFG.

Ball and Larus show that PP instrumentation adds
runtime overhead of 31% on average to SPEC95, al-
though it is as high as 73% forperl and 97% for
gcc, which are considered most representative of mod-
ern programs. The next section describes how targeted
path profiling (TPP) lowers PP overhead in a dynamic
optimizer.

3.2. Joshi et al. Targeted Path Profiling (TPP)

TPP [23] uses an existing edge profile to simplify in-
strumentation and thus reduce two sources of overhead

foreach basic blockv in reverse topological order
if v is the exit block

NumPaths(v) = 1
else

NumPaths(v) = 0
foreach edgee = v→w in incr. order ofNumPaths(w)

Val(e) = NumPaths(v)
NumPaths(v) = NumPaths(v)+ NumPaths(w)

Figure 2. PP path numbering algorithm.

in PP: (1) hashing and (2) instrumentation of paths the
edge profile predicts well.

Cold Path Elimination PP uses hashing instead of an
array to store path frequencies when the number of pos-
sible paths results in a too large array [10]. A large array
wastes space and has poor caching and paging perfor-
mance. Joshi et al. estimate hashing is about five times
more expensive than an array [23]. To remove the need
for a hash table, TPP eliminates cold paths by identify-
ing and excluding cold edges from profiling. It uses a
local criterion to identify cold edges: An edge is cold
if the ratio of its frequency to its source basic block’s
frequency is below a threshold. Consider Figure 3(a),
which has eight possible paths. After removing the cold
edge, it has only four possible paths—the other paths
each contain a cold edge. TPP assigns values to the re-
maining edges (Figure 3(b)) and instruments the routine
(Figure 3(c)).

However, programs may stillexecutecold edges,
computing incorrect or even invalid path numbers. TPP
solves this problem bypoisoningthe path register on
cold paths. Poisoning assigns the path register a large
negative value. Instrumentation at the end of a path ex-
amines whether the path register is poisoned (r<0). If
so, TPP increments acold counter; otherwise, it counts
a hot path (Figure 3(d)). Because poison checks add
overhead, TPP only eliminates cold paths from routines
that would require a hash table to count pathswithout
cold path removal, but can use an array after cold path
removal.

Obvious Path Identification TPP also reduces PP
overhead by not instrumenting paths that the edge pro-
file predicts well. For example, consider the routine in
Figure 4. Each path has at least one edge, adefining
edge, that is only on that path. Joshi et al. call such
a path anobvious pathbecause its frequency is equal
to the frequency of the defining edge. TPP also identi-
fies loops with obvious bodies (i.e., all paths in the loop
body are obvious) and high average trip counts, and does
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Figure 3. Cold path poisoning. (a) Original routine with a cold edge; (b) after cold edge removal and path numbering; (c) after
instrumentation; (d) after poisoning the cold edge and adding poison tests (TPP only); (e) after poisoning the cold edge (PPP only).

not instrument these loops, effectively trading informa-
tion about paths that enter or exit the loop for low over-
head. Joshi et al. found that identifying obvious paths
and loopsaftercold path removal significantly increases
the number of obvious paths.

4. Practical Path Profiling
This section describes the six techniques that PPP uses
in addition to TPP’s techniques to reduce profiling over-
head further. The first four techniques reduce the
amount of instrumentation, while the other two reduce
the cost of the remaining instrumentation.

4.1. Instrument Routines with Low Coverage

TPP identifies and does not instrument obvious paths for
which the edge profile always provides perfect coverage
of the path profile (Section 3.2). Coverage is the frac-
tion of the path profile that the edge profile measures
(Section 6.2). Many non-obvious paths still have high
coverage from an edge profile, and profiling them costs
as much as profiling paths with low coverage. PPP thus
does not instrument routines with coverage exceeding a
threshold.

4.2. Global Edge Criterion

TPP eliminates many cold paths by removing cold edges
(Section 3.2). It marks an edge cold if its bias is above
some threshold percentage. Thislocal criterion trades
loss of accuracy on cold paths for simpler instrumen-
tation on hotter paths in the same routine. PPP adds a
global criterion: An edge is cold if its frequency, as a

A
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D
G

H
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F

Figure 4. Example routine with all obvious paths. Each path
has at least one defining edge (marked in bold).

percentage oftotal program flow, falls below a thresh-
old. PPP marks an edge cold if either criterion applies.

4.3. Self-Adjusting Criterion

Even after eliminating cold and obvious paths, some
routines have so many possible paths that they still re-
quire hashing, which is expensive (Section 3.2). To
eliminate hashing, PPP increases the global cold edge
threshold and re-executes path numbering, trading pro-
file accuracy for lower overhead. PPP repeats this pro-
cess until the number of possible paths falls below the
hashing threshold. We find PPP rarely needs to adjust
the global edge criterion. In our experiments, PPP ad-
justs it for only two routines, one invpr and one in
mesa, and it needs at most four iterations to drop below
the hashing threshold.

4.4. Pushing Instrumentation Further

PP, TPP, and PPP assign instrumentation to edges and
then push down path register initialization and push up
path counting (Section 3.1). For correctness, they stop
pushing along a path when the current edge and another
merge at the same basic block. TPP stops pushing even
if the other edge is cold. Unlike TPP, PPP ignores cold
edges when pushing instrumentation and thus finds ad-
ditional opportunities to combine instrumentation and
detect obvious paths. Consider the example routine in
Figure 5(a), where the edgeMO is cold. After cold
edge removal, TPP places instrumentation as shown in
Figure 5(b). TPP does not push the counting instrumen-
tation (count[r]++) aboveM because it has two out-
going edges. PPP instead ignores the cold edgeMO, so
M effectively has only one outgoing edge (MN ), and
PPP pushes instrumentation above blockM as shown in
Figure 5(c). As a result, PPP (1) removes instrumenta-
tion altogether from the obvious pathsAIJLMNO and
AIKLMNO and (2) combines the path counter incre-
ment onMN with the path register increment onEF .

This PPP optimization causes some cold paths to
record hot paths. For example, in Figure 5 if the
cold pathABCEGHMO executes, the instrumenta-
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Figure 5. TPP and PPP push instrumentation. (a) Routine with cold edge; (b) TPP instrumentation; and (c) PPP instrumentation.

tion counts path number 2 (ABCEGHMNO). Since
cold paths execute infrequently, the overcount tends to
be low. Section 6.2 describes how to account for over-
count when measuring the coverage of PPP.

4.5. Smart Path Numbering

PPP numbers paths and places instrumentation so the
hottest edges have the lowest runtime overhead. It mod-
ifies two PP algorithms to use edge frequencies rather
than static heuristics: path numbering and event count-
ing (Section 3.1). PP path numbering numbers a block’s
outgoing edges in order of increasing number of possible
paths in each edge’s target’s subgraph, which decreases
the range of edge increments [10]. PPP instead numbers
each edge in decreasing order of execution frequency
(Figure 6). Thus, it assigns zero to the hottest outgoing
edge, adding no instrumentation to the most frequently
executed edge (unless it begins or ends a path). While
the PP event counting algorithm uses static heuristics to
build a spanning tree, the PPP version uses an edge pro-
file. Because an edge profile is generally a better pre-
dictor of future edge frequencies than static heuristics,
PPP event counting moves instrumentation from rela-
tively hot edges to relatively cold edges more success-
fully than PP.

4.6. Free Poisoning

TPPpoisonsthe path register with a large negative value
on cold edges and checks for a poisoned path register at
the end of a path (Section 3.2). This test adds overhead.
PPP instead poisons cold edges so that each cold path
computes a non-unique path number in approximately

foreach basic blockv in reverse topological order
if v is the exit block

NumPaths(v) = 1
else

NumPaths(v) = 0
foreach edgee = v→w in decr. order of exec. freq.

Val(e) = NumPaths(v)
NumPaths(v) = NumPaths(v) + NumPaths(w)

Figure 6. PPP path numbering. Changes from the original
Ball-Larus algorithm (Figure 2) are underlined.

[N, 2N−1], eliminating the need to check for a poisoned
path. Conceptually, PPP maps cold paths to this range
by setting the path register toN on cold edges; the incre-
ments on any remaining edges on the path add at most
N − 1 to the path register. In practice, event counting
may assign negative values to edges, so PPP compen-
sates. It first computes the range of possible incoming
path register values for the cold edge’s target block with
a single reverse topological traversal. It then adds ap-
propriate instrumentation on the cold edge to map the
path register to a range that is at most[N, 3N − 1]. Fig-
ure 3(e) shows how PPP instruments an example routine
with free poisoning. The cold edge poisons the path reg-
ister by setting it to 4. The four cold paths compute path
numbers in[4, 5] and thus do not interfere with the hot
path numbers[0, 3].

Because TPP adds checks for poisoned paths, Joshi
et al. remove cold edges only when as a result, TPP will
use an array instead of a hash table (Section 3.2). PPP
removes cold edges from all routines since its poisoning
trades extra space to eliminate the poison check.

4.7. PPP Analysis Time

PPP trades lower profiling overhead for additional
compile-time analysis. PPP’s techniques are linear, ex-
cept for identifying routines with high edge profile cov-
erage (Section 4.1), which takesO(|V |×width(G)) time
in the worst case [11].|V | is the number of basic blocks,
andwidth(G) is the number of edges in a maximal cut
of DAG G. In practice, this computation is linear. How-
ever, Section 8.3 shows this technique adds little im-
provement to the others in PPP, so a dynamic optimizer
could omit it to guarantee a linear-time analysis. We
do not present quantitative results for PP, TPP, and PPP
analysis time because none of these implementations are
designed for efficiency.

5. Constructing Estimated Path Profiles
So far we have discussed how PPP instruments pro-
grams. This instrumentation produces an estimated path
profile for Pinstr, the set of paths instrumented by PPP.
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The set of all pathsP equalsPinstr ∪ Puninstr. PPP esti-
mates the profile forPuninstr from thedefinite flowpro-
file. This section explains definite flow and how PPP
computes the definite flow profile. It first definesflow
and how we measure it.

5.1. Flow, Unit Flow, and Branch Flow

Flow is a measure of the amount of execution on a path
or paths. Prior work uses theunit-flow metric, which
defines flow along a pathp as its execution frequency:

F (p) = freq(p)

The flow on a set of pathsP is the sum of the paths’
flows:

F (P ) =
∑

p∈P

freq(p)

Unit flow weights all paths equally, regardless of path
length. This metric produces non-intuitive flows. For
example, consider the edge profile for routinesX andY
in Figure 7(a). The pathACDEG has flow 10, and the
pathHJK also has flow 10, since the call toY starts a
new path (Section 3.1). The total unit flow throughX and
Y is thus 10 + 10 = 20. However, if the compiler inlines
Y into X (Figure 7(b)), then the pathACDHJKDEG
has flow 10, and total unit flow is only 10.

We introduce thebranch-flowmetric, which instead
measures flow as a function of the number of branches
bp in a path:

F (p) = freq(p) × bp

The flow on a set of pathsP is again the sum of the
flows:

F (P ) =
∑

p∈P

( freq(p) × bp)

We define a branch as an edge whose source block has
at least one other outgoing edge. If we measure flow
using branch flow, then in Figure 7(a), pathACDEG
has flow 20 because it has two branches and frequency
10, and pathHJK has flow 10 because it has one branch
and frequency 10. Total flow is 20 + 10 = 30. In Figure
7(b), the pathACDHJKDEG has flow 30 because it

50 30

60 20
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B C
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E F

G

Figure 8. Example edge profile.

has three branches and frequency 10. Total flow is thus
30 in both the original and inlined code.

5.2. Definite Flow

Ball et al. introducedefiniteflow, which is the minimum
flow that an edge profile guarantees [11]. For example,
consider the edge profile in Figure 8. The routine’s to-
tal actual flowusing the branch-flow metricis 50 + 30
+ 60 + 20 = 160 (i.e., the sum of branch edge frequen-
cies). The actual flow on any of the four paths is un-
knowable from the edge profile. We can, however, com-
pute the minimum flow of each path. For example, con-
sider pathABDEG. The other three paths may have
flow at most 100 (if pathACDEG has frequency 30
and thus flow 60, pathABDFG has flow 40, and path
ACDFG has flow 0). Thus the minimum, or definite,
flow of pathABDEG is 160 - 100 = 60. By similar rea-
soning, the definite flows of pathsACDEG, ABDFG,
andACDFG are 20, 0, and 0, respectively. The rou-
tine’s definite flow is thus 60 + 20 + 0 + 0 = 80.

PPP constructs the definite flow path profile using
Ball et al.’s algorithm [11], but modified to use the
branch-flow metric. The appendix presents our modified
algorithms for definite flow, potential flow [11], and re-
constructing paths from definite and potential flow. The
reconstruction algorithm also includes a minor fix to the
original not related to branch flow.

6. Evaluating an Estimated Path Profile
This section describesaccuracyandcoverage, two mea-
sures of how closely an estimated path profile imitates
the actual path profile.

6.1. Accuracy of an Estimated Path Profile

We defineaccuracyas the ability of an estimated path
profile to predict the hot paths in a program. To measure
accuracy, we use Wall’s weight matching scheme [30],
following Ball et al. [11]. The scheme first identifies a
program’s actual hot paths,Hactual, from the path pro-
file collected by PP. A path is hot if its flow is above a
threshold percentage of total program flow. The scheme
then constructs the set of estimated hot paths,Hestimated,
by selecting the|Hactual| hottest paths from the estimated
path profile. Accuracy is the fraction of actual hot path
flow that the estimated path profile predicts correctly:

Accuracy=
F (Hestimated∩ Hactual)

F (Hactual)



For edge profiling, we selectHestimatedfrom apotential
flow profile because Ball et al. found it predicts hot paths
better than definite flow and a greedy algorithm [11].

For PPP, we selectHestimatedfrom the estimated path
profile PPP constructs (Section 5). An exception is
when PPP does not add any instrumentation to a pro-
gram (swim andmgrid in our experiments). In this
case, we selectHestimatedfrom a potential flow profile in
order to match edge profile accuracy.

6.2. Coverage of an Estimated Path Profile

We definecoverageas the fraction of actual program
flow that a profiling method (e.g., edge profiling, TPP,
or PPP) definitely measures. The coverage of an edge
profile is the ratio of definite flow to actual flow:

Coverage=
DF(P )

F(P )

Ball et al. call this ratioattribution of definite flow[11].
In Figure 8, the coverage of the edge profile is 80 / 160
= 50% (Section 5.2 has the intermediate computations).
Intuitively, 50% of the routine’s flow can be attributed
from the edge profile. The other 50% cannot be defi-
nitely attributed to any path.

PPP’s estimated path profile is a combination ofmea-
suredflow (MF) for Pinstr and computeddefinite flow
(DF) for Puninstr (Section 5). PPP may overcount some
paths inPinstr (Section 4.4), makingMF(Pinstr) an over-
estimate. Thus, we useactualflow F (Pinstr) when com-
puting coverage, and subtract out the overcounted flow
Fovercount= MF(Pinstr) − F (Pinstr) as a penalty:

Coverage=
F (Pinstr) + DF(Puninstr) − Fovercount

F (P )

7. Methodology
This section describes our compiler framework, archi-
tecture platform, the path characteristics of our bench-
marks, and our path profiling implementations.

7.1. Compiler and Platform

We implement path profiling in Scale, a retargetable
ahead-of-time optimizing compiler for C and For-
tran [25]. Scale uses static single assignment and per-
forms many classic compiler optimizations (e.g., con-
stant propagation, value numbering, register allocation,
and alias analysis). Although it is a research compiler,
it achieves competitive performance for the Alpha and
SPARC architectures. While this evaluation differs from
a dynamic optimization system evaluation, it eliminates
non-determinism, yielding stable and understandable re-
sults. Scale generates optimized Alpha binaries, which
we execute on an AlphaServer 4100 with four 21164
processors running at 600 MHz, each with 8 KB direct-
mapped L1 split caches, 96 KB shared on-chip sec-
ondary cache, 8 MB off-chip secondary cache, and 2 GB
of memory running OSF1.

7.2. Benchmarks

We use the C and Fortran 77 SPEC2000 benchmarks.
We omit (1)gzip andvortex because Scale would
not generate correct binaries for these benchmarks and
(2) gcc because our (admittedly space inefficient) code
for computing profiling accuracy (Section 6.1) runs out
of memory. We use theref inputs to collect profiles and
to measure profiling overhead. Because we are simulat-
ing a dynamic optimizer, which uses information about
execution behavior from the same run, thisself advice
is a realistic choice. For benchmarks with aref input
with multiple runs, we combine profiles from all runs,
and report combined runtimes. Scale generates an exe-
cutable forperlbmk that will not executeref inputs
1, 4, 5, 6, and 7 correctly, so we use 2 and 3 only.

7.3. More Realistic Paths

We first perform edge profile-guided inlining and un-
rolling to approximate optimized code in a staged dy-
namic optimizer. This section shows the runtime and
path length effects of profile-guided inlining and un-
rolling. These optimizations provide only modest exe-
cution time improvements. However, they increase the
average number of branches and instructions in a path,
sometimes significantly. We use these versions for the
remaining experiments because they provide a realistic
and challenging setting for path profiling. Previous work
does not include these optimizations.

Table 1 compares the dynamic paths of SPEC2000
benchmarks with and without the effects of inlining and
unrolling. For theoriginal code, we perform standard
scalar optimizations without inlining or unrolling. We
perform the same optimizations oninlined and unrolled
code. Table 1 shows the number of dynamic paths; aver-
age number of branches and instructions (statements in
Scale’s low-level internal representation (IR)) per path
for the original and expanded code; percentage of dy-
namic calls inlined; unroll factor (averaged over dy-
namic loop executions); and speedup (or slowdown)
from inlining and unrolling.

Profile-guided inlining uses a cost-benefit analysis
similar to Arnold et al. [4]. The inliner assigns each
call site a priority based on expected benefit (i.e., hot-
ness of the call site) and cost (i.e., size of the callee).
Scale inlines call sites in order of decreasing priority un-
til total program size increases by an amount calledcode
bloat. It does not inline large callees (more than 200 IR
statements). We use a code bloat of 5% following prior
work [4]. This modest code bloat balances compilation
time with runtime gains for their dynamic optimizer.

Our experiments with larger code bloat increase the
percentage of inlined dynamic calls by more than 1%
in parser and bzip2 only. Increasing the code
bloat does not induce more inlining in other benchmarks
because either (1) there are no additional calls with
nonzero execution frequency; (2) the candidate callees
are too large; (3) the inliner cannot safely perform inlin-



Original code Inlined and unrolled code
Dyn. paths Avg. Avg. Dyn. paths Avg. Avg. % calls Avg. unroll

Benchmark (in billions) branches instrs. (in billions) branches instrs. inlined factor Speedup
vpr 6.2 2.73 17.88 3.8 4.19 24.99 71% 1.65 0.97
mcf 6.1 1.80 8.92 4.0 2.70 16.41 98% 1.00 1.01
crafty∗ 3.7 3.50 14.74 3.7 3.50 14.74 0% 1.00 1.00
parser 19.4 2.45 11.77 16.0 2.91 13.76 29% 1.46 1.03
perlbmk∗ 1.0 2.64 13.82 0.9 2.75 14.28 14% 1.00 1.02
gap 8.8 2.97 14.94 7.9 3.26 16.33 59% 1.22 1.02
bzip2 19.3 1.88 18.98 13.4 2.43 24.46 49% 1.99 1.07
twolf 16.4 1.86 13.93 11.2 2.40 17.30 23% 2.19 0.96
INT Avg 10.1 2.48 14.37 7.6 3.02 17.78 43% 1.44 1.01

wupwise 14.0 2.06 14.34 10.0 2.72 17.40 0% 1.90 0.98
swim 5.7 1.00 35.47 1.4 1.01 82.60 0% 4.00 1.02
mgrid 10.4 1.03 13.54 2.6 1.23 57.12 10% 4.00 0.96
applu 16.8 1.47 17.90 7.6 1.75 25.61 0% 1.31 1.14
mesa∗ 5.3 2.62 21.08 4.2 3.09 24.99 0% 2.31 1.00
art 11.5 1.67 11.70 3.4 3.67 21.40 100% 4.00 1.06
equake 3.7 1.20 16.53 1.0 2.37 41.54 100% 2.97 1.03
ammp 13.9 2.12 16.23 11.6 2.36 18.11 98% 1.81 1.02
sixtrack 16.7 1.19 25.62 5.1 2.12 62.48 57% 3.35 1.29
apsi 55.9 0.44 8.63 5.4 2.04 64.91 100% 3.90 1.02
FP Avg 15.4 1.48 18.10 5.2 2.24 41.62 46% 2.96 1.05

Overall Avg 13.0 1.92 16.44 6.3 2.58 31.02 45% 2.28 1.03
Table 1. Dynamic path characteristics with and without inli ning and unrolling. ∗No cross-module inlining.

ing (e.g., because of aliased reference variables in For-
tran); or (4) cross-module inlining (i.e., the caller and
callee are in different source files) is disabled, which is
the case forcrafty, perlbmk, andmesa due to lim-
itations in Scale.

Scale unrolls hot inner loops by a factor of four. The
Alpha compiler [12] and Jikes RVM [5] use the same
factor. If a loop has a low average trip count (less than
eight), or unrolling would make the loop larger than 256
IR statements, Scale unrolls less or not at all. Scale does
not unroll mostwhile loops, so unrolling applicability
is limited in the integer C programs.

Inlining and unrolling improve performance very lit-
tle. Our performance numbers are comparable to profile-
guided inlining and unrolling results for the Alpha com-
piler [12] on SPEC95. These transformations do how-
ever increase the average numbers of instructions and
branches in dynamic paths, and thus provide a challeng-
ing setting for path profiling.

7.4. Path Profiling Implementations

We implement PP, TPP, and PPP. The profilers use 64-
bit rather than 32-bit path numbers as in previous work,
increasing the maximum number of possible paths from
231 to263, making path truncation rare [10]. We also use
64-bit path counters because some paths in SPEC2000
execute more than231 times. In routines with more than
4000 possible paths, the profiler uses a hash table with
701 slots and three tries of secondary hashing [15]. If
a path still conflicts, the instrumentation increments a
“lost path” counter. Less than 0.1% of all dynamic paths
are lost except incrafty, which loses 7% of flow.

Our TPP implementation is faithful to Joshi et al. [23]
with a few changes. (1) We could not easily reproduce

TPP’s efficient poisoning, which uses inline assembly
and a conditional move. We instead use PPP’s free poi-
soning (Section 4.6). (2) The original TPP truncates
paths at disconnected loop entrances and exits. PPP
instead marks such entrances and exits as cold. (3)
Joshi et al. use edge frequencies to estimate frequen-
cies of uninstrumented paths. We use definite flow to
estimate paths TPP does not instrument. The former is
an overcount, while the latter is an undercount. These
changes should not affect accuracy and coverage much,
and should slightly improve performance.

We use the following parameters for TPP and PPP.
The TPP parameters are the same as Joshi et al. [23].

• TPP/PPP marks an edge cold if its frequency is less
than 5% of the frequency of its source (Section 3.2).

• PPP marks an edge cold if its frequency is less than
0.1% of total program flow in terms of unit flow
(Section 4.2).

• TPP/PPP disconnects obvious loops that have aver-
age trip counts of at least 10 (Section 3.2).

• PPP only instruments routines with less than 75%
coverage from an edge profile (Section 4.1).

• PPP increases the global edge criterion by 50% un-
til the number of paths drops below the hashing
threshold (Section 4.3).

8. Results
This section first characterizes hot paths and how well
PPP finds them compared with edge profiling and TPP.
It also compares the overheads of PP, TPP, and PPP.
PPP delivers much higher accuracy and coverage than
an edge profile, although it has slightly less accuracy



Distinct No. hot paths and % program flow
Benchmark paths ≥0.125% flow ≥1% flow
vpr 3395 89 85.6% 24 66.1%
mcf 279 39 98.0% 16 90.9%
crafty 4559 133 72.3% 16 37.4%
parser 5627 133 76.6% 19 37.2%
perlbmk 2276 127 86.0% 21 54.0%
gap 3972 79 88.3% 19 67.5%
bzip2 2124 106 91.0% 18 61.7%
twolf 2039 100 95.3% 32 66.7%
INT Avg 86.6% 60.2%

wupwise 128 46 99.5% 26 92.5%
swim 75 16 99.8% 4 97.4%
mgrid 224 41 98.7% 17 85.8%
applu 242 44 97.9% 30 90.5%
mesa 412 60 95.3% 22 79.0%
art 463 43 97.7% 21 88.0%
equake 169 20 97.9% 12 96.2%
ammp 603 35 96.6% 12 89.7%
sixtrack 948 33 98.1% 11 89.5%
apsi 576 135 94.8% 28 43.9%
FP Avg 97.6% 85.2%

Overall Avg 92.7% 74.1%
Table 2. Hot paths in SPEC2000. Divided into all distinct paths,
hot paths and their percent total program flow (hot is defined as
0.125% or 1% total program flow).

and coverage than TPP. However, PPP is significantly
cheaper than TPP (one-third the overhead on the integer
benchmarks).

8.1. Accuracy and Coverage

Table 2 shows the number of distinct paths the program
takes at runtime, how many of these paths are hot, and
the fraction of total program flow that hot paths repre-
sent. We use the same thresholds as Ball et al., 0.125%
and 1% [11]. If we consider only hot paths with at least
1% of total program flow, the hot path flow is just 37%
in two cases. We use a threshold of 0.125% in the rest
of the evaluation because it includes hot paths that rep-
resent more program flow, but still effectively winnows
the hot path candidates.

For these hot paths, Figure 9 presents the accuracy of
edge profiling, TPP, and PPP, i.e., the fraction of hot path
flow that each profiling method predicts (Section 6.1).
Clearly, edge profiles are unable to predict hot paths
well. PPP predicts 96% of hot path flow on average,
and is within 1% of TPP. We believe PPP’s accuracy,
which never falls below 90%, is acceptable for many
optimizations, but some very aggressive optimizations
may require essentially perfect accuracy.

Figure 10 plots the coverage, i.e., the portion of the
actual path profile definitely measured (Section 6.2).
Edge profiling has poor coverage; it captures only about
half of the actual path profile. Compared with PPP, TPP
has consistently better coverage on the integer bench-
marks because it is less aggressive at eliminating paths.
However, as Figure 9 shows, PPP sacrifices some cover-
age but without a corresponding drop in accuracy.

Figure 11 plots the fraction of dynamic paths instru-

mented. Although TPP and PPP instrument only about
half of all dynamic paths on average, they are still able
to predict hot paths well (Figure 9).

8.2. Overhead

Figure 12 compares the overheads of PP, TPP, and
PPP. Edge profiling has negligible overhead (Section 2).
PP increases program execution time substantially in a
number of cases, ranging from 39% up to 119% for eight
benchmarks. TPP substantially reduces path profiling
overhead, on average by 67%, although overhead is still
sometimes high, ranging from 22% to 50% for four
benchmarks. PPP reduces path profiling overhead fur-
ther to 5% on average, compared with 12% for TPP. PPP
overhead grows beyond 10% only incrafty, twolf,
and wupwise. These benchmarks are among those
for which the edge profile has the worst coverage (Fig-
ure 10). Further reductions will be difficult to achieve.

TPP reduces PP’s overhead by 86% on the floating-
point (FP) benchmarks, which tend to have less path
complexity. TPP eliminates hashing from all FP bench-
marks exceptmesa, and it instruments just 55% of dy-
namic paths on average (Figure 11). PPP offers only
modest improvements over TPP (37% on average) on
FP programs.

TPP eliminates hashing from just four of the eight in-
teger programs, leaving room for PPP to improve (Fig-
ure 11). TPP reduces PP’s overhead by 45%, but PPP’s
techniques reduce overhead by 67% over TPP (82% over
PP).

Although PPP’s instrumentation is at least as simple
as TPP’s, PPP occasionally has greater overhead than
TPP (e.g.,mcf). And although PPP can only add to ex-
ecution time, PPP has a few negative overheads (e.g.,
sixtrack). These reproducible anomalies must be
due to architectural sensitivities to factors such as code
and data placement in the caches.

These results show that the techniques in PPP reduce
the overhead of profile-guided profiling to levels accept-
able for use in staged optimization.

8.3. Effects of Individual Techniques

Figure 13 shows how PPP’s six techniques perform in-
dividually (Section 4). We present results for the bench-
marks for which PPP improves performance signifi-
cantly: more than 5% over TPP. We use aleave-one-out
methodology, evaluating each technique by turning it
off. Because the global edge criterion and self-adjusting
are dependent, we evaluate them as one technique.

Each technique is essential to attaining the best per-
formance on one or more benchmarks. The most im-
portant techniques are free cold path poisoning (FP),
the self-adjusting global edge criterion (SAC), and
to a lesser extent, aggressive instrumentation pushing
(Push). Removing a technique sometimes reduces over-
head (e.g., SPN forvpr). These results are another per-
formance anomaly. SPN permutes the mapping of paths
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to path numbers, which changes data cache accesses sig-
nificantly. These effects seem to outweigh the benefits
of SPN (i.e., fewer increments on hot edges). Remov-
ing SPN reduces overhead for four benchmarks and in-
creases overhead for four.

The leave-one-out methodology suggests that instru-
menting routines with low coverage only (LC) and SPN
are not very beneficial. If we instead use aone-at-a-time
methodology (results omitted for lack of space), we find
LC and SPN are beneficial, lowering TPP’s overhead by
27% and 16%, respectively, for the benchmarks in Fig-
ure 13.

9. Summary
This paper demonstrates a series of optimizations to
prior path profiling work. It also introduces the branch-
flow metric that fairly evaluates path profiling accuracy.

The appendix corrects a small algorithmic error in prior
work. The evaluation shows PPP adds 5% average pro-
gram runtime overhead, yet still identifies the hot paths.
This result makes it feasible for future staged dynamic
compilation systems to collect path profiles continu-
ously and use them to drive path-based optimizations.
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Appendix
Figures 14 and 15 show the algorithms we use to effi-
ciently compute definite and potential flow profiles from
an edge profile. These dynamic programming algo-
rithms follow Ball et al. [11], but use branch flow instead
of unit flow (Section 5.1). Figure 16 shows the algorithm

for efficiently selecting the hottest paths from a definite
flow profile. This algorithm follows Ball et al. [11],
but uses the branch-flow metric and corrects a minor
error that we confirmed with Ball [9]. To select the
hottest paths from apotentialflow profile, we make two
changes to the algorithm: (1)f + freq(tgt(e)) − freq(e)
to g and (2)g = f to g is minimal,g ≥ f . The algo-
rithms use flow values[(f, b) 7−→ ∆], wheref is fre-
quency,b is the number of branches on the path(s),
and∆ is the number of paths with frequencyf andb
branches. The

⊎
operator combines flow values with

the samef andb.

M
D̂

[exit] := [(F, 0) 7−→ 1]
for v ∈ V − {exit} in reverse topological orderdo

for e ∈ out(v) do
fs := freq(tgt(e)) − freq(e)
M

D̂
[e] :=

U
((f,b) 7−→∆)∈M

D̂
[tgt(e)]

(f > fs ? [(f − fs, b) 7−→ ∆] : [])
M

D̂
[v] :=

U
e∈out(v)(e is branch edge?

[((f, b + 1) 7−→ ∆) | ((f, b) 7−→ ∆) ∈ M
D̂

[e]] : M
D̂

[e]

Figure 14. An algorithm for computing definite flow using
the branch-flow metric.

M
P̂

[exit] := [(F, 0) 7−→ 1]
for v ∈ V − {exit} in reverse topological orderdo

for e ∈ out(v) do
M

P̂
[e] :=

U
((f,b) 7−→∆)∈M

P̂
[tgt(e)]

[min(f, freq(e)) 7−→ ∆]
M

P̂
[v] :=

U
e∈out(v)(e is branch edge?

[((f, b + 1) 7−→ ∆) | ((f, b) 7−→ ∆) ∈ M
P̂

[e]] : M
P̂

[e]

Figure 15. An algorithm for computing potential flow using
the branch-flow metric.

procedure main(M : map;cutoff : int)
var Paths:= φ

for each((f, b) 7−→ ∆) ∈ M [entry] s.t.f ·b ≥ cutoff,
in decreasing order off ·b do

enumerate(entry, [], f , b, f , ∆)
returnPaths

procedure enumerate(v : vertex;p : path;f , b, f ′, ∆ : int)
var ∆′ := ∆

used:= φ

if v = exit then
Paths:= Paths∪ {(p, f ′, b)}

else
while ∆′ > 0 do

let e ∈ out(v) and((g, c) 7−→ ∆g) ∈ M [e] s.t.
g = f , b = c, and(e, g, c) 6∈ used

debit= min(∆′,∆g)
in

enumerate(tgt(e), append(p, e),
f + freq(tgt(e)) − freq(e),
(e is branch edge? b − 1 : b), f ′, debit)

used:= used∪ {(e, g, c)}
∆′ := ∆′ − debit

Figure 16. An algorithm for selecting hot paths from a def-
inite flow profile using the branch-flow metric. Fixes to the
original algorithm, which are unrelated to our modifications for
branch-flow metric, are underlined.


