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Abstract

The explosion of content in distributed information retrieval (IR) systems requires new mechanisms in

order to attain timely and accurate retrieval of unstructured text. This paper shows how to exploit locality by

building, using, and searchingpartial replicasof text collections in a distributed IR system. In this work,a

partial replica includes a subset of the documents from larger collection(s) and the corresponding inference

network search mechanisms. For each query, the distributedsystem determines if partial replica is a good

match and then searches it, or it searches the original collection. We demonstrate the performance of partial

replication is better than systems that usecacheswhich only store previous query and answer pairs. We

first use logs from THOMAS and Excite to show to build partial replicas and caches from frequent queries.

We show that searching replicas can improve locality (from 3to 20%) over the exact match required by

caching. Replicas increase locality because they satisfy queries which are distinct but return the same or

very similar answers. We then present a novel inference network replica selection function. We vary its

parameters and compare it to previous collection selectionfunctions, demonstrating a configuration that

directs most of the appropriate queries to replicas in a replica hierarchy. We then explore the performance

of partial replication in a distributed IR system. We compare it with caching and partitioning. Our validated

simulator shows that the increases in locality due to replication make it preferable to caching alone, and

that even a small increase of 4% in locality translates into aperformance advantage. We also show a hybrid

system with caches and replicas that performs better than each on their own.

Keywords:Partial replication, Replica Selection, Distributed information retrieval architectures.

1 Introduction

Due to the explosion of information and users on the Internetand intranets, a major challenge for distributed

information retrieval systems is providing fast and scalable performance. Information retrieval (IR) systems

solve the problem of finding documents related to a query. Users issue a query, and the IR server typically re-

sponds with a list of relevant documents and snippets of textfrom these documents. If any of these documents

meet the users information need, they request one or more of them. If not, users refine or change their query.

To achieve scalable performance on this workload, IR systems distribute queries, and restrict the search to as
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little data as possible while maintaining acceptable retrieval accuracy. Previous work on distributed databases

and Web search engines improve performance using multiple cache and/or full replica servers to distribute

workloads. When these servers are closer to their users thanthe source collection, they also reduce network

traffic, minimizing network latency.

To achieve accurate results with caches and other mechanisms that restrict query search, IR systems need

to exhibit and exploitquery locality, i.e., users issue the same, or closely related queries, andimprovements

are of course limited by the locality the queries present. The classic system mechanism to exploit locality is

cachingwhich in an IR system stores pairs of recently issued queriesand results. For example, Web search

engines adopt query caches that store a map between queries and result lists. They use a simple, exact test

of set membership to determine if the query is in the cache. The cache improves performance when queries

exactly matcha previous query in the cache.

In this work, we proposepartial replicaswhich exploit locality from the sameand from closely related

queries. Because information retrieval engines find similarity or relevance between queries and documents,

partial replicas build on this functionality to query a subset of the collection and return relevant documents. A

partial replica thus includes query logic as well as a subsetof the documents. If two queries are not the same,

but return the same top documents, partial replicas find and exploit this locality. Partial replicas therefore

can more thoroughly exploit locality because the queries need not match. To be more effective than caches,

partial replicas need to provide additional locality, an efficient selection mechanism to direct queries to partial

replica(s) or the original collection, and a scalable IR architecture. We examine all these components in this

paper.

To motivate our approach, we first investigate the type and amount of locality for a few traces. Although

others report on query locality (Croft, Cook, & Wilder, 1995; Holmedahl, Smaith, & Yu, 1998), there exist no

widely available, shared, or standard query sets. In addition, no results divide locality into exact match and

similar queries (we conservatively define similar queries to require the top 20 documents to match). We report

locality properties on server logs from THOMAS (THOMAS, 1998) for 62 days and Excite (Excite, 1997) for

1 day. These results show that locality remains high (above 20%) over time (weeks) for the THOMAS logs.

For both traces, inexact match increases locality from 3% upto 15%, even with our very restrictive definition

of query similarity. These results are due to human variety that results in queries that do not exactly match

but return the same results. We then turn to exploiting the additional locality of partial replicas as compared

to caches to improve performance.

To maintain retrieval effectiveness, a selection functionmust determine whether a replica contains all,

some, or none of the relevant documents for a query. We describe such a function that uses an inference

networks and demonstrate its effectiveness using the 20 GB TREC VLC collections and TREC queries. We

vary the selection function parameters and compare it with collection ranking functions. For a given query,

this function correctly selects the most relevant of a set ofreplicas or the original collection, when appropriate.

It maintains the highest retrieval effectiveness while searching the least amount of data as compared to the
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other replica selection functions we explore.

We then describe our distributed IR architecture and reportits performance as a function of locality using a

validated simulator (Lu, 1999). We show that the simulator closely matches our prototype system which uses

InQuery for the basic IR functionality on all the collections (original and replicated) (Callan, Croft, & Broglio,

1995). We compare the performance of searching a terabyte oftext using partial replication to partitioning

and caching. Partition simply divides a large collection into multiple parts and stores them on separate servers.

We find partial replication is more effective at reducing execution time, even with many fewer resources, and

it requires only modest query locality to achieve better, sometimes much better, performance than partitioning

and caching.

In summary, this paper is the first to explore partial replication. We first show that there is sufficient query

locality in a few real traces to justify this exploration. Wethen develop a novel and effective replica selection

function which is able to choose between a hierarchy of replicas and the original collection to achieve high

accuracy and high performance. We furthermore show that partial replication offers a performance benefit

over exact match caching, and can work in cooperation with caching to further improve performance.

The remainder of this paper is organized as follows. The nextsection further compares our work to re-

lated work. In Section 3, we characterize the locality and access patterns of our test logs from THOMAS and

Excite. We also define our notion of query similarity, and show it increases locality up to 15%. Section 4

describes the replication architecture. Section 5 describes how to select a partial replica based on relevance,

and compares its effectiveness with the ranking functions for collection ranking. Section 6 reports on the per-

formance of searching a terabyte of text using partial replication and compares performance with collection

partitioning as well as caching. Section 7 summarizes our results and concludes.

2 Related Work

This paper combines and extends our previous work studying query locality (Lu & McKinley, 2000) and

developing a replica selection function (Lu & McKinley, 1999). We include here a more detailed presentation

of retrieval effectiveness on using partial replicas with varying numbers of top documents, strategies on update

replicas, data validating our simulator, and a richer set ofperformance studies, including using a hierarchy of

replicas rather than just one. We discuss below a variety of related research topics by others: architectures for

fast, scalable, and effective large scale information retrieval; single query performance; IR versus database

systems; IR versus the web; caching; and collection selection.

2.1 Scalable IR Architectures

In this section, we discuss architectures for parallel and distributed IR systems. Our research combines and

extends previous work in distributed IR (Burkowski, 1990; Harman, McCoy, Toense, & Candela, 1991; Cou-

vreur et al., 1994; Burkowski, Cormack, Clarke, & Good, 1995; Cahoon & McKinley, 1996; Hawking, 1997;

Hawking, Craswell, & Thistlewaite, 1998; Cahoon, McKinley, & Lu, 2000) since we model and analyze

a complete system architecture with replicas, replica selection, and collection selection under a variety of
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workloads and conditions. We base our distributed system onInQuery (Callan, Croft, & Harding, 1992; Tur-

tle, 1991), a proven, effective retrieval engine. We also model architectures with very large text collections;

up to 1 terabyte of data on up to 32 InQuery servers. Much of theprior work on distributed IR architectures

has been restricted to small collections, typically less than 1 GB and/or 16 servers. Participants in the TREC

Very Large Collection track use collections up to 100 GB, butthey only provide query processing times for a

single query at a time (Hawking et al., 1998). It is clear thatsome industrial sites use collections larger than

what we simulate, but they choose not to report on them in the literature to maintain their competitive edge,

with an exception of Google, the most popular search engine nowadays, which has reports on its technologies

when it was a research project (Brin & Page, 1998).

Harman et al. show the feasibility of a distributed IR systemby developing a prototype architecture

and performing user testing to demonstrate usefulness (Harman et al., 1991). Unlike our research which

emphasizes performance, Harman et al. do not study efficiency issues and they use a small text collection

(i.e., less than 1 GB).

Burkowski et al. report on a simulation study which measuresthe retrieval performance of a distributed

IR system (Burkowski, 1990; Burkowski et al., 1995). The experiments explore two strategies for distributing

a fixed workload across a small number of servers. The first equally distributes the text collection among all

the servers. The second splits servers into two groups, one group for query evaluation and one group for

document retrieval. They assume a worst case workload whereeach user broadcasts queries to all servers

without any think time. We experiment with larger configurations, and consider collection selection and

replicas with replica selection.

Couvreur et al. analyze the performance and cost factors of searching large text collections on parallel

systems (Couvreur et al., 1994). They use simulation modelsto investigate three different hardware archi-

tectures and search algorithms including a mainframe system using an inverted list IR system, a collection

of RISC processors using a superimposed IR system, and a special purpose machine architecture that uses a

direct search. The focus of the work is on analyzing the tradeoff between performance and cost. Their results

show that the mainframe configuration is the most cost effective. They also suggest that using an inverted list

algorithm on a network of workstations would be beneficial but they are concerned about the complexity. In

their work, each query is evaluated against all collections.

Hawking designs and implements a parallel information retrieval system, called PADRE97, on a collec-

tion of workstations (Hawking, 1997). The basic architecture of PADRE97, which is similar to ours, contains

a central process that checks for user commands and broadcasts them to the IR engines on each of the work-

stations. The central process also merges results before sending a final result back to the user. Hawking

presents results for a single workstation and a cluster of workstations using a single 51 term query. A large

scale experiment evaluates query processing on a system with up to 64 workstations each containing a 10.2

GB collection. The experiment uses four short queries of 4 to16 terms. This work focus on the speedup of a

single query, while our work evaluates the performance for aloaded system under a variety of workloads and
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collection configurations.

The founders of Google reported Google’s architecture overview and core technology: PageRank before

Google went to commercial (Brin & Page, 1998). Since the performance of search was not the major focus

of their research at that time, the paper just mentions they intend to speed up Google considerably through

distribution and hardware, software, and algorithmic improvements, without any supporting experiments. As

far as we know, there are no recently published reports on theperformance or architecture of their current

system.

Cahoon et al. report a simulation study on a distributed information retrieval system based on In-

Query (Cahoon & McKinley, 1996; Cahoon et al., 2000). They assume the collections are uniformly dis-

tributed, and experiment with collections up to 128 GB usinga variety of workloads. They measure per-

formance as a function of system parameters such as client command rate, number of document collections,

terms per query, query term frequency, number of answers returned, and command mixture. They demon-

strate system organizations for which response time gracefully degrades as the workload increases and per-

formance scales with the number of processors under some realistic workloads. Our work builds on and

extends this work by adding replicas, a replica selection function, and caches.

2.2 How to Search Large Collections

The TREC conference recently added the Very Large Collection track for evaluating the performance of IR

systems on large text collections (Hawking & Thistlewaite,1997; Hawking et al., 1998). To handle large col-

lections, participants use shared-memory multiprocessors and/or distributed architectures. The experiments

in TREC-7 use 49 long queries on a 100 GB collection of web documents. The Very Large Collection track

summary (Hawking et al., 1998) presents precision and queryprocessing time results but does not provide

significant details about each system. The experiments report response times for a single query at a time,

rather than for a variety of workloads as we do. None of the systems report results for caching or searchable

replicas. Two of the participants present details of their distributed systems elsewhere, but neither provide

significant performance evaluations (Burkowski et al., 1995; Brown & Chong, 1997).

2.3 Database versus IR Architectures

There is also a large volume of work on architectures for distributed and parallel database systems including

research on performance (Stonebraker et al., 1983; DeWitt et al., 1986; Mackert & Lohman, 1986; Hagmann

& Ferrari, 1986; DeWitt & Gray, 1992; Bell & Grimson, 1992). Although the fields of information retrieval

and databases are similar, there are several distinctions which make studying the performance of IR systems

unique. A major difference between database systems and information retrieval systems is structured versus

unstructured data. In structured data, the tests resemble set membership. In unstructured data, we measure

similarity of queries to documents. The unstructured nature of IR data raises questions about how to create

large, efficient architectures. Our work attempts to discover some of the factors that affect performance

when searching and retrieving unstructured data. Furthermore, the types of common operations that are
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typical to database and IR systems are slightly different. For example, the basic commands in an IR system,

query evaluation and document retrieval, differ from thosein a database system. In our IR system, we are not

concerned with updates (commit protocols) and concurrencycontrol which are important issues in distributed

database systems. We assume our IR system performs updates offline.

2.4 Web versus IR Architectures

Although commercial information retrieval systems, such as the web search engines AltaVista and Infoseek

exploit parallelism, parallel computers, caching, and other optimizations to support their services, they have

not published their hardware and software configurations, which makes comparisons difficult.

There are several important differences between the IR technology we discuss here and the web’s im-

plementation. We consider a more static collection of unstructured text on a local area network, such as a

collection of case law or journal articles. Whereas the web has more structured text on a wide area network

whose content is very dynamic. On the web, most caches are built for specific documents, not for querying

against as we do here (Wang, 1999). The web’s document cache simply uses set membership tests to deter-

mine if the cache has a requested document. Web users do employ search engines for queries, which can

maintain query caches, but the query caches seem not to be distributed because of the very dynamic nature of

the web’s content (as far as we know).

2.5 Caching

Caching in distributed IR systems has a long research history (Simpson & Alonso, 1987; Martin, Macleod,

Russell, Lesse, & Foster, 1990; Martin & Russell, 1991; Tomasic & Garcia-Molina, 1992). The client caches

data so that operations are not repeatedly sent to the remoteserver. Instead, the client locally performs

frequent operations. These early reports show that the use of caching is significantly beneficial for systems

that are distributed over slow networks or that evaluate queries slowly.

Recently, Markatos reports on caching search engine results (Markatos, 1999). He analyzes a trace from

the Excite search engine and uses trace-driven simulationsto compare several cache replacement policies.

He shows that medium-sized caches (a few hundred Mbytes large) can achieve the hit ratio of around 20%,

and effective cache replacement policies should take into account both recency and frequency of access in

their replacement decisions. Larger caches should of course improve hit rates.

Saraiva et al. report on a two-level caching schema for search engines where one level caches query

results, and another level caches inverted lists (Saraiva et al., 2001). They experiment with this caching

schema using a set of log queries from a real case search engine, and show that the throughput of the two-

level cache is up to 52% higher than the cache of inverted lists and 36% higher than the cache of query results.

Our results are complementary to these, and our mechanisms will work in their system as well.

Researchers have also used replication techniques to solvethe problem of scale in the Web (Katz, Butler,

& McGrath, 1994; Bestavros, 1995; Baentsch, Molter, & Sturm, 1996). Katz et al. report a prototype

of a scalable web server (Katz et al., 1994). They treat several identically configuredhttp servers as a
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cluster, and use the DNS (Domain Name System) service to distributehttp requests across the cluster in

a round-robin fashion. Bestavros proposes a hierarchical demand-based replication strategy that optimally

disseminates information from its producer to servers thatare closer to its consumers in the environment of

the web (Bestavros, 1995). The level of dissemination depends on the popularity of that document (relative

to other documents in the system) and the expected reductionin traffic that results from its dissemination.

Baentsch9 et al. implement a replication system called CgR/WLIS (Caching goes Replication/Web Location

and Information Service) (Baentsch et al., 1996). As the name suggests, CgR/WLIS turns web caches into

replicated servers as needed. In addition, the primary servers forward the data to their replicated servers. A

name service WLIS is used to manage and resolve different copies of data.

Although we also organize replicas as a hierarchy, our work is different from those above, because our

system is a retrieval system that supports queries while their servers contain Web documents and only support

document fetching. Our work is different from Web caching, because we use searchable replicas and a replica

selector to select a partial replica based on content and load, rather than simple membership test in caching.

Compared with caching, selection based on content increases observed locality, and is thus able to offload

more work from servers that process original collections. However, there is an additional space overhead

with partial replicas compared to caches which will slightly degrade locality as well, since the partial replicas

will store less (see Section 3.3 for a discussion and quantitative results for our traces). In addition, the query

processing of partial replication is greater than simply anexact match test. These overheads indicate, that the

partial replica will need more than a slight locality benefitto improve performance, and that the best system

architecture will probably include both caches and partialreplicas.

2.6 Collection Selection

A number of researchers have been working on how to select most relevant collections for a given query

(Callan, Lu, & Croft, 1995; Chakravarthy & Haase, 1995; Danzig, Ahn, Noll, & Obraczka, 1991; Gra-

vano, Garcia-Molina, & Tomasic, 1994; Voorhees, Gupta, & Johnson-Laird, 1995; Fuhr, 1999; Xu & Croft,

1999). Only this and our previous work (Lu & McKinley, 1999) considers partial replica selection based on

relevance.

Danzig et al. use a hierarchy of brokers to maintain indices for document abstracts as a representation of

the contents of primary collections (Danzig et al., 1991). They support Boolean keyword matching to locate

the primary collections. If users’ queries do not use keywords in the brokers, they have difficulty finding the

right primary collections. Our approach is thus more general.

Voorhees et al. exploit similarity between a new query and relevance judgments for previous queries to

compute the number of documents to retrieve from each collection (Voorhees et al., 1995). Netserf extracts

structured, disambiguated representations from the queries and matches these query representations to hand-

coded representations (Chakravarthy & Haase, 1995). Both approaches require manual intervention which

limits them to relatively static and small collections.

Callan et al. adapt the document inference network to ranking collections by replacing the document
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node with the collection node (Callan et al., 1995). This system is called CORI. CORI stores the collection

ranking inference network with document frequencies and term frequencies for each term in each collection.

Experiments using CORI with the INQUERY retrieval system and the 3 GB TREC Volumes 1+2+3 collection

which is basically organized by source show that this methodcan select the top50% of subcollections and

attain similar effectiveness to searching all subcollections.

GLOSS uses document frequency information for each collection to estimate whether, and how many,

potentially relevant documents are in a collection (Gravano et al., 1994; Gravano & Garcia-Molina, 1995).

The approach is easily applied to large numbers of collections, since it stores only document frequency and

total weight information for each term in each collection. French et al. compare GLOSS with CORI and

demonstrate that CORI consistently returns better resultswhile searching fewer collections citeFrench99.

Fuhr proposes a decision-theoretic approach to solve the collection selection problem (Fuhr, 1999). He

makes decisions by using the expected recall-precision curve which yields the expected number of relevant

documents, and uses cost factors for query processing and document delivery. He does not report on effec-

tiveness.

Xu and Croft propose cluster-based language models for collection selection (Xu & Croft, 1999). They

first apply clustering algorithms to organize documents into collections based on topics, and then apply the

approach of (Callan et al., 1995) to select the most relevantcollections. They find that selecting the top 10%

of topic collections can achieve retrieval accuracy comparable to searching all collections.

Our work on partial replica selection reported here and in (Lu & McKinley, 1999) modifies the collection

inference network model of (Callan et al., 1995), to rank partial replicas and the original collections, proposes

a new algorithm for replica selection, and shows that it is effective and improves performance.

3 Access Characteristics in Real Systems

In this section, we examine query locality in two logs from real systems. We examine query similarity

versus exact match, how locality changes over time, and its effect on the size of replicas. We also suggest

mechanisms for keeping replicas up to date.

Since currently there exists no widely available, shared, or standard set of queries with locality properties,

we obtained our own sets of server logs from THOMAS (THOMAS, 1998) and Excite (Excite, 1997). The

THOMAS system is a legislative information service of the U.S. Congress through the Library of Congress.

THOMAS contains the full text Congressional Records and bills introduced from the 101st Congress to 105th

Congress. We analyze the logs of THOMAS between July 14 and September 13, 1998, during which the Starr

Report became available. We obtained full day logs for 40 days, and partial logs for remaining 22 days due

to lack of disk space in the mailing system of the library of Congress. The Excite system provides online

search for more than 50 million Web pages. The Excite log we obtained contains one day of log information

for September 16, 1997.

Since the logs do not contain document identifiers returned from query evaluation, we built our own test

databases to cluster similar queries. We define atopic as all queries whose top 20 documents completely
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Num. Num. Topics

queries unique queries total occurring only once more than once more than one unique query

8143 (7703) 4876 (4651) 4069 2888 (71%) 1181 (29%) 412

percentages of queries that top topics account for

100 200 500 1000 2000

21.2% 28.7% 41.5% 54.1% 73.0%

percentages of queries that top unique queries account for

100 200 500 1000 2000

18.1% 24.5% 36.4% 49.4% 64.5%

(a) Query locality in the THOMAS log

Num. Num. Topics

queries unique queries total occurring only once more than once more than one unique query

499836 (444899) 365276 (320987) 249405 196672 (79%) 52733 (21%) 32750

percentages of queries that top topics account for

500 1000 5000 10000 20000

12.3% 16.0% 27.9% 34.4% 42.0%

percentages of queries that top unique queries account for

500 1000 5000 10000 20000

7.9% 10.4% 18.4% 23.0% 28.2%

(b) Query locality in the Excite log

Table 1: Query locality in the logs

overlap. This definition of query similarity is arbitrary and restrictive; a looser definition would further

improve the locality we observe. Exact top 20 overlap is lesslikely to occur if we increase the number of

documents. For large collections, partial overlap would probably yield results almost as accurate as exact

overlap, and would also yield better locality than full overlap. For queries from the THOMAS log, we

reran all queries against a test database that uses the Congress Record for 103rd Congress (235 MB, 27992

documents). For queries from the Excite log, we reran all queries against a test database using downloads of

the websites operated by ten Australian Universities (725 MB, 81334 documents).

3.1 Query Locality

Table 1 shows query locality statistics for our THOMAS and Excite logs. We collect the average number of

queries, unique (singleton) queries, topics, topics occurring only once, topics occurring more than once, and

topics that contain more than one unique query. We also present the percentages of queries that correspond to

the top topics and top unique queries, respectively. Table 1(a) shows the average numbers in the THOMAS

logs over 40 days with full day logs. The numbers of queries that actually find matching documents from our

test database are in the parentheses in columns 1 and 2. Some queries do not find any matching documents,

due to misspelling, or because query terms do not exist in thetest database. The statistics show that on

the average, 29% of topics occur more than once, and they account for 63% ((7703-2888)/7703) of queries.

Among the topics occurring more than once, 35% (412) containmore than one unique query. The top 100
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topics (2.5% of topics) and the top 500 topics (12% of topics)account for 21.2% and 41.5% of queries, while

the top 100 unique queries and top 500 unique queries accountfor 18.1% and 36.4%.

The Excite log on September 16, 1997, shown in Table 1(b), demonstrates that the Excite queries also have

high query locality: 21% of topics occur more than once, and they account for 56% ((444899-196672)/444899)

of queries. Among the topics occurring more than once, 62% (32750) contain more than one unique query.

The top 1000 topics and the top 10000 topics account for 16.0%and 34.4% of queries, while the top 1000

unique queries and top 10000 unique queries account for 10.4% and 23.0%. Both sets of logs see a drop in

locality between 3 and 14% if we require an exact match.

3.2 Locality as a Function of Time

We also examine the THOMAS logs to see how many queries on a given day match a topic or a query that

appears on a previous day or week, in order to examine the overlap as a function of time. Table 2 shows

for a number of days between July 15 and September 11, 1998 thepercentage of queries that match a top

query through topic match and exact query match on a previousday or week. Column 1 lists date. Columns 2

through 4 list the query overlap when we build a replica usingtop topics or top unique queries on the previous

day and update it daily. Columns 5 through 7 list the query overlap when we build a replica using top topics

or top unique queries on July 14, 1998, without update afterwards. Columns 8 through 10 list the query

overlap when we build a replica using top topics or top uniquequeries in the week from July 14 to July 20,

1998, without update afterwards. Replicas may actually satisfy more queries than we report, because we do

not include queries whose top documents appear in the replica because the response is a combination of two

or more other topic queries. Since the logs do not contain document identifiers and our test database is pretty

small, we can not obtain accurate figures about this situation.

The statistics also show that topic matching finds up to 15% more overlap than exact query match for

the same size replicas over time. For example on September 11, 1998, we saw many distinct queries such

as “Starr,” “Starr Report,” “Bill Clinton,” and “Monica Lewinsky,” all presumably trying to access the Starr

Report.

For topic match, we build a replica with the top documents forthe top topics. For exact query match,

we build a replica with the top documents for the top unique queries. For example, when we build replicas

using top 1000 topics or unique queries of the week of July 14 to July 20, topic match on July 23 increases

the overlap from 28.6% (query exact match) to 35.9%, which means a replica can satisfy 7.3% more queries

from the original server. Replicating more topics further widens this difference.

3.3 Estimating the Size of Replicas

Based on query locality, we may estimate the replica size, which is a function of average document size,

query locality, and number of top documents per query we chose to store, as shown in Table 3. The average

document size varies from source to source. For example, theaverage document sizes of the USENET

News, Wall Street Journal, and the websites operated by 10 Australia Universities are 2 KB, 3 KB, and 9
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Overlap with

the previous day 7/14 the week of 7/14-7/20

Topic match Topic match Topic match

date all top 500 top 1000 all top 500 top 1000 all top 500 top 1000

7/15 43.3% 24.8% 30.1% 43.3% 24.8% 30.1% n/a n/a n/a

7/16 44.4% 24.4% 30.4% 42.6% 24.0% 29.2% n/a n/a n/a

7/23 45.0% 27.3% 31.5% 41.4% 23.4% 28.7% 60.8% 29.0% 35.9%

7/31 n/a n/a n/a 38.5% 21.9% 26.4% 58.0% 26.0% 32.3%

8/14 36.6% 21.9% 26.1% 38.1% 21.3% 26.0% 54.9% 25.6% 31.0%

8/28 32.9% 19.1% 23.0% 34.3% 18.3% 23.4% 51.9% 22.8% 28.4%

9/11 78.1% 69.2% 71.7% 44.0% 8.7% 22.2% 58.6% 11.2% 27.0%

Exact query match Exact query match Exact query match

date all top 500 top 1000 all top 500 top 1000 all top 500 top 1000

7/15 33.1% 18.9% 23.3% 33.1% 18.9% 23.3% n/a n/a n/a

7/16 34.5% 19.3% 23.0% 32.9% 18.1% 22.4% n/a n/a n/a

7/23 36.4% 21.1% 24.6% 32.3% 17.9% 22.3% 49.4% 23.7% 28.6%

7/31 n/a n/a n/a 29.4% 16.9% 20.3% 46.5% 20.8% 25.1%

8/14 28.2% 16.3% 20.0% 29.0% 16.4% 20.0% 43.4% 20.2% 24.1%

8/28 25.4% 14.5% 17.6% 25.9% 14.0% 17.5% 41.2% 18.2% 22.2%

9/11 71.8% 63.6% 65.2% 24.9% 6.6% 18.7% 43.2% 8.2% 19.3%

Table 2: Overlap over time in the THOMAS log: Topics vs. exactquery match

Top % of Replica Size (top 200 documents per query)

topics queries (2 KB per doc) (3 KB per doc) (9 KB per doc)

1000 16.0% 400 MB 600 MB 1.8 GB

5000 27.9% 2 GB 3 GB 9 GB

10000 34.4% 4 GB 6 GB 18 GB

20000 42.0% 8 GB 12 GB 36 GB

Table 3: The Replica Size Based on the Excite log
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KB, respectively (Harman, 1997). The average document sizeof the 20 GB TREC VLC collection is 2.8

KB (Harman, 1997). The TREC VLC text collection consists of data from 18 sources, such as news, patents,

and Web sites. Our estimation uses three different numbers:2 KB, 3 KB, and 9 KB. For query locality, we use

the statistics obtained from the Excite log, since its workloads are at the level of the system we investigate.

We obtain the top 200 documents for each query. The size is simply a linear function (e.g., 100 MB for 20,000

documents). Table 3 contains overestimates because we assume there is no overlap among the documents,

although as shown above, distinct queries often result in overlapping documents. In Table 3, columns 1 and

2 show the query locality from the Excite log; columns 3 through 5 show the estimated replica size when we

vary the average document size. For example, a 4 GB, 6 GB, and 18 GB replica satisfies at least 34.4% of

queries with an average document size of 2 KB, 3 KB, and 9 KB, respectively.

3.4 When to Build or Update a Replica

Query overlap tends to decrease very gradually as time elapses. For example, 35.9% of queries on July 23

and 32.3% of queries on July 31, 1998 matched a topic in the replica covering top documents for top 1000

topics of the week of July 14 to July 20, respectively. These statistics suggest that we do not need to update

the replica daily on a typical day, since significant numbersof queries match a top query that appeared several

days ago. However we do need some mechanism to deal with a bursty event like the Starr Report, as shown

by the sharp decrease in locality on September 11, 1998. Regular, daily updating would catch this event, but

it may be too costly, react too slowly, or unnecessarily degrade performance when the system experiences the

expected gradual degradation of locality. We propose two on-demand updating strategies as follows:� Event triggered updating: watch for bursty events, and trigger the updating procedure when some

special events happen.� Performance triggered updating: watch the percentage of workloads the replica selector sends to the

replicas, and trigger the updating procedure when the percentage falls below some threshold.

For event triggered updating strategy, we can simply use human intervention. When the system manager

anticipates or observes a special event, and increasingly many users issue queries on it, she initiates the

updating procedure. Automatic event detection is an on-going research topic. When it becomes effective,

we suggest using it to trigger the updating procedure automatically. Instead of rebuilding a replica, we could

add documents into replicas without deleting others for quicker updates, which means we need to save some

extra space for bursty events.

Performance triggered updating is very easy to implement inthe current system. We let the replica selector

record the percentage of queries that it sends to each replica, when the percentage falls below a threshold, the

system informs the system manager. Performance triggered updating also works for bursty events, if a lot of

users search for an event that does not exist in the replicas.
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Figure 1: The replication hierarchy

4 Replication Architecture

We now propose a logical hierarchy of replicas to exploit thepotential of enhanced query locality in a system

with small partial replicas of a larger collection.

For our experiments, we will replicate the top documents andtheir index in a partial replica which helps

queries about the same and similar topics but that use different terms to find their relevant documents in these

partial replicas. We determine which documents to replicate as follows: for a given query, we tag all topn documents that query processing returns as “accessed” and increment their access frequencies, regardless

of whether the user requests the text of these documents. We keep the access frequency for each document

within a time period, e.g., a week, and then replicate the most frequently accessed documents the most.

We organize replicas as a hierarchy, illustrated in Figure 1. The top node represents an original collection

that could be a single collection residing on a network node or a virtual collection consisting of several

collections distributed over a network. The bottom nodes represent users. We may divide users into different

clusters, each of which reside within the same domain, such as an institution, or geographical area. The inner

nodes represent partial replicas. The replica in a lower layer is a subset of the replicas in upper layers, i.e.,

Replica 1-1� Replica 1� Original Collection. The replica that is closest to a user cluster contains the set of

documents that are most frequently used by the cluster. An upper layer replica may contain frequently used

documents for more than one cluster of users. The solid linesillustrate data is disseminated from the original

collection to replicas. Along the arcs from the original collection, the most frequently used documents are

replicated many times.

The replica selection database directs queries to a relevant partial replica or to the original collection

along the arcs from the top node depending on relevance and other criteria, such as server load. The dotted

lines illustrate the interaction between users and data. Ifwe do not divide the users into different groups, the

hierarchy is simply a linear hierarchy in which each layer has only one partial replica. Replica selection is

a two-step process in this architecture: it ranks replicas based on relevance, and then selects one of the most

relevant replicas based on load.

In the next section, we will show that the inference network model is very effective at selecting a relevant
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Figure 2: The collection retrieval inference network.

replica. We implement the replica selection inference network as a pseudo InQuery database, where each

pseudo document corresponds to a replica or collection, andits index stores the document frequency and

term frequency for each term in any of the replicas. Since thereplica selection database stores document

frequency and collection term frequency for each term that occurs in any of replicas, its size is determined by

the number of unique terms in the largest replica. Based on our observations, the size of the replica selection

database is approximately 6 MB for every 100,000 unique terms. We know the 20 GB TREC VLC collection

has 13,880,064 unique terms. If our largest replica is 20 GB,the estimated size of the replica selection

database is around 1.2 GB. Based on these statistics, we estimate the replica selection database for 1 terabyte

of text is between 1 and 2 GB.

5 Partial Replica Selection Based on Relevance

The first step of replica selection is how to find a partial replica that contains enough relevant documents for

a given query. In this section, we investigate how to do this task with inference networks, and evaluate the

effectiveness of our replica selection approach using the InQuery retrieval system (Callan et al., 1992), and

the 2 GB TREC Volumes 2+3 collection and the 20 GB TREC VLC collection. We use queries developed

for TREC topics 51-350 in our experiments. We compare our proposed replica selection function with the

collection ranking function. We measure the system’s ability to pick the expected partial replica, and the

precision of the resulting response as compared with searching the original collection.

The rest of the section is organized as follows: Section 5.1 investigates how to rank partial replicas and

the original collection using the inference network model,Section 5.2 describes the experimental settings,

Section 5.3 compares our proposed replica selection function with the collection selection function, Sec-

tion 5.4 and Section 5.5 further demonstrate the effectiveness of our approach for both replicated queries and

unreplicated queries, and Section 5.6 summarizes the results of this section.

5.1 Ranking Partial Replicas with the Inference Network Model

We adapt the collection retrieval inference networks (Callan et al., 1995) to rank partial replicas and the

original collection. The collection retrieval inference network model consists of two component networks:
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T = dfijdfij + k � ((1� b) + b � wiave w )I = log( jNj
cf + 0:5)log(jN j+ 1:0)P (rj jDi) = �+ (1� �) � T � I

wheredfij is the number of documents that contain termrj in collectionDi ,wi is the number of words in collectionDi,ave w is the average number of words,N is the number of collections,

cf is the number of collections that containrj .k is a constant that controls the magnitude ofdf (the default is 200),b is a constant varying from 0 to 1 used to control the sensitivity of

the function tow (the default is 0.75), and� is a default belief (set to 0.4).

Figure 3: The collection ranking function in InQuery.

a collection network and a query network, illustrated in Figure 2. TheDi nodes correspond to collections,

and therj nodes correspond to concepts in the collections. TheQ node represents a query, and thei nodes

correspond to query concepts in the query. By using the collection retrieval inference network, collection

ranking becomes an estimate ofP (I jDi) from combining the conditional probabilities through the network.

When we adapt the collection retrieval inference network model to rank replicas, we useDi nodes to represent

the original collection and partial replicas, whereDn represents the original collection,Di; i = 1; 2; :::n� 1
represent partial replicas, andD1 � D2 � ::: � Dn. (In the collection retrieval inference network,Di
nodes do not have a subset relationship.) The purpose of ranking partial replicas is to find asinglereplica

that satisfies a given query instead of a subset of collections in the collection retrieval inference network. We

refer to this inference network as to the replica selection inference network. As in the collection retrieval

inference network model,P (kjrj) is set to1:0. The central work of applying this inference network to

replica selection is to develop an effective replica ranking function to estimateP (rj jDi).
Since we adapt the collection retrieval inference network,we first examine whether the InQuery collection

ranking function works well with ranking partial replicas.The InQuery collection ranking function usesdf
(the document frequency of each term) as the basic metric, and favors collections with largerdf , as shown in

Figure 3 (Callan et al., 1995). In our experiment settings inSection 5.2, the default InQuery collection ranking

function directs more than70% of the replicated queries to the original collection, however, since we use

these replicated queries to build replicas, the replica selector should direct them to the replicas instead of the

original collection. Although we can tune the parameters ofthe InQuery collection ranking function to direct

more queries to the replicas, the precision drops too much, for example, the precision drops approximately

25% when the function directs 80% of replicated queries to the replicas (see Section 5.3 for the details). The
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ave tf = ctfijdfij
cutoffi = cutoff1 log(DNi)log(DN1)AT = � ave tf if dfij > cutoffi
ave tf � dfij

cutoffi otherwiseT = ATAT + k � ((1� b) + b � ave doleniave ave dolen )I = log( jNjrf + 0:5)log(jN j+ 1:0)P (rj jDi) = �+ (1� �) � T � I
where

ctfij number of occurrences of termrj in replica/collectionDi ,dfij number of documents that contain termrj in Di ,DNi number of documents inDi ,
cutoff1 cutoff value for the smallest replicaD1, which we set as the

number of top documents for each query,

cutoffi cutoff number of documents inDi ,N number of replicas plus the original collection,rf number of replicas and the collection that containrj ,

avedocleni average document length inDi,
aveave doclen averageave doleni,k constant that controls the magnitude ofAT ,b constant varying from 0 to 1 used to control the sensitivity of

the function toavedoclen, and� default belief (set to 0.4).

Figure 4: The replica selection function.

InQuery collection ranking function does not work well withreplica selection, because it favors collections

with largerdf , but partial replicas typically have smallerdf than the original collection.

Since a partial replica contains the top documents of the most frequently used queries, by examining the

document ranking function, we know that the top documents are ranked as the top, just because query terms

occur more often in these documents than the others. Therefore if a replica contains the top documents for

a query, the average term frequency of each query term in the replica should be higher than in the original

collection. Based on this heuristic, we construct a replicaselection function based on the average term

frequency. In addition, we find a term is important in selecting replicas if it occurs often (with middle or

high term frequency) in that replica/collection and it alsooccurs in a certain number of documents (above

a cutoff for document frequency). A term occurring in too fewdocuments does not help even though it has

high term frequency. We need to ignore these terms. Figure 4 illustrates our replica selection function which

uses the average term frequency and penalizes the terms thatappear less than a given cutoff number in the

corresponding replica/collection. We compare this function with the InQuery collection ranking function in

Section 5.3, and demonstrate its effectiveness using 350 TREC queries on a 2 GB collection and a 20 GB
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collection in Section 5.4 and Section 5.5.

We implement the replica selection inference network as a pseudo InQuery database, where each pseudo

document corresponds to a replica or collection, its index stores thedf (document frequency) andctf (replica/collection

term frequency) for each term. We do not store any proximity information in order to minimize the space

requirements of the replica selection database. As in the collection retrieval inference network, all proximity

operators are replaced with Boolean AND operators.

5.2 Experimental Settings

We evaluate the effectiveness of our replica selection approach using InQuery (Callan et al., 1992) against a

2 GB TREC collection that contains collections from TREC Volume 2 and TREC Volume 3, and a 20 GB

collection that contains all TREC-6 VLC collections. We usequeries developed for TREC topics 51-350 in

our experiments. We measure the system’s ability to pick therelevant partial replica, and the precision of the

resulting response as compared with searching the originalcollection. We use TREC queries instead of the

queries from the logs, because some of TREC queries have relevance judgments that enable us to produce

precision and recall figures for evaluating the effectiveness.

By using the 2 GB collection, we compare the effectiveness ofour replica selection function with the

InQuery collection ranking function using short queries, and demonstrate the effectiveness of our replica

selection function using both short queries and long queries. A short query is simply a sum of the terms in the

corresponding description field of the topic. Long queries are automatically created from TREC topics using

InQuery query generation techniques (Callan et al., 1992),which consist of terms, phrases and proximity

operators. Generally, a long query for a topic is more effective than the short query (Callan et al., 1992).

The average number of terms per query for the set of short queries is 8 after removing the stopwords, and

the average number of terms per query for the set of long queries is 120. For each set of queries, we divide

queries into two categories: replicated queries and unreplicated queries, wherethe replicated queries are

those whose top documents are used to build the replicas. Since only topics 51-150 and topics 202-250 have

relevance judgment files for the 2 GB TREC collection, a single trial contains 50 random unreplicated queries

from these 149 topics, and we use them report the effectiveness for these topics.

We conduct our experiments by repeating the following procedure 5 times, each trial uses a different

number as the seed to produce random numbers, and thus picks different queries for a query set. In each

trial, we randomly choose 50 queries from queriesf51-150, 202-250g as ourunreplicatedquery setT , and

randomly divide the remaining 250 queries in queries 51-350into 5 sets:fQi; i = 1; 2; 3; 4; 5g, each set

containing 50 queries. We then build a 6-layer replication hierarchy by using the 2 GB TREC collection or

the 20 GB collection as the original collectionC, and collecting the topn documents resulting from searching

the original collection for each query infQi; i = 1; 2; 3; 4; 5g to build 5 partial replicasfDi; i = 1; 2; 3; 4; 5g,

whereDi contains at mostn � i documents, consisting of the topn documents for each query in query setsfQj ; j = 1; :::; ig. Clearly,D1 � D2 � D3 � D5 � C. This structure mimics 5 replicas that increase in

size and thus includes more of the top queries. We build a replica selection inference network to rank these
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five replicas and the original collection. The queries in query setsfQi; i = 1; 2; 3; 4; 5g are calledreplicated

queries.

By using the 20 GB collection, we examine how the size of collection affects the effectiveness of our

replica ranking function. Since we do not have relevance judgment files for topics 51-150 and topics 202-

250 against the 20 GB collection, and the 2 GB collection is a subset of the 20 GB collection, we use the

relevance judgment files for the 2 GB collection to produce the precision figures. We also conduct another

set of experiments in order to make up for insufficient relevance judgments for topicsf51-150, 202-250g.

We use queries 301-350 as our unreplicated query setT , since these 50 topics are more thoroughly judged

against the 20 GB VLC collection than topicsf51-150, 202-250g. We use queries 51-100 asQ1, 101-150 asQ2, 151-200 asQ3, 202-250 asQ4, and 251-300 asQ5.
When using the 2 GB collection as the original collection, the size of replicas ranges from 0.3% to 1.5%,

1% to 5%, 2% to 10%, and 5% to 20% of the original collection when replicating the top 30, 100, 200, and

500 documents, respectively. When using the 20 GB collection as the original collection, the size of replicas

ranges from 0.1% to 0.5%, 0.2% to 1%, and 0.5% to 2% of the original collection when replicating the top

100, 200, and 500 documents, respectively.

When we evaluate a document or collection ranking function,we say a function is better than others if

and only if it can produce higher precision at selected numbers of documents or at all standard levels of

recall. In the case of replica selection, we need to add another criterion for the ranking function: directing

as many queries as possible to the relevant replicas in orderto improve system response time. We can tune

the parameters of our functions to control the percentage ofreplicated queries to the replicas (as shown in

Section 5.3). The range varies from 0% to 90%. None of the function we tested can direct 100% of replicated

queries to the replicas. However when we direct more queriesto the replicas, we have to tolerate a larger

precision loss. In our experiments, we compare the precision of each function when it directs more than 80%

of replicated queries to the replicas.

For a replicated query, since we know which replica containsits top documents, we define itsexpected

replica as the smallest replica that is built with the top documents for the query. For an unreplicated query,

since replicas may contain some relevant documents, we expect our replica selector will direct some of these

queries to a relevant replica. We define theexpected replicafor an unreplicated query as the smallest replica

that causes a precision drop less than 5%. For both kinds of queries, especially unreplicated queries, we

expect we will have to tolerate some loss in precision in order to avoid searching the entire collection. We

choose a drop in precision between0 and10% for a query as our acceptable range, i.e., searching the selected

replica retrieves at most one less relevant document for every 10 documents as compared with searching the

entire original collection.

We definecollection precise queriesas those queries that can achieve the precision above10% when

searching the original collection for the topn documents, i.e., the query finds at least one relevant document

for every ten documents. We exclude collection imprecise queries when we present the ability of a replica
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selector to pick the relevant replicas for unreplicated queries, because a replica with zero relevant documents

is probably an acceptable choice for a query whose precisionis below 10% in the original collection. We

definereplica precise queriesas those for which searching the selected replica causes a precision loss less

than 5% of the precision attained by searching the original collection.

5.3 Comparing Ranking Functions

In this section, we compare the effectiveness of the InQuerycollection ranking function illustrated in Figure 3

and our replica selection function illustrated in Figure 4 by varyingk andb for short queries in test trial 1 when

we replicate the top 200 documents for each query. (We also performed experiments replicating the top 100

and 500 documents with similar results.) We will show that our replica selection function is comparable to the

collection ranking function in ability to pick the expectedreplica for replicated queries, but that it significantly

improves precision and finds the expected replica much more consistently for unreplicated queries.

Table 4 lists the results of replica selection by counting the number of queries to which replica or col-

lection each function directs the queries, when the parameters,k andb, vary. Table 4(a) lists the results for

99 replicated queries for which we have relevance judgments. Table 4(b) lists the results for 37 unreplicated

collection precise queries, 18 of which are replica precisequeries. In both tables, columns 1 through 3 list the

name of functions, the values of parametersk andb, and the function abbreviations. In both tables, columns

4 through 9 contains the number of queries that the replica selector sends to each of the replicas (Di) as well

as the original collection (C). (Table 4(b) only includes collection precise queries.)

For replicated queries in Table 4(a), columns 10 through 13 contain the percentages of queries that it di-

rects to the expected replica (right), smaller replica, larger replica, and the original collection. The “expected”

(E) row lists the number of judged queries that a perfect replica selector would direct to each replica and to the

original collection. For unreplicated queries in Table 4(b) column 10 contains the percentages of collection

precise queries that are directed to the original collection and the replicas that cause a precision loss less than

5%; columns 11 through 12 contain the percentages of collection precise queries that are directed to replicas

that cause a precision loss from 5% to 10%, and more than 10%. Column 13 contains the percentage of 18

replica precise queries that are directed to the original collection. The “expected” (E) row for the unreplicated

queries contains the number of queries that we expect to go toeach of replicas and the original collection

with less than a 5% drop in precision.

First lets consider replicated queries in Table 4(a). For the InQuery collection ranking function, varyingk from 100 to 400 does not significantly change effectiveness (compare I3-I5). When we setk to 200 (the

default of the InQuery collection ranking function) and increase the value ofb, the replica selector directs

more queries to the replicas. The default InQuery collection ranking function (k=200,b=0.75) directs only

30% of queries to the replicas, which is not our choice. When we tune the parameters to k=200 and b=1, the

function directs 89% of queries to the replicas.

For the replica selection function,k = 2 gets better results thank = 1 andk = 4 (compare the functions

R3-R5). When we decrease the value ofb, the replica selector directs more queries to the replicas.For k=2
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Ranking Parameters Func. Replica % to replicas

Function k, b code D1 D2 D3 D4 D5 C right smaller larger C

Expected E 18 16 25 21 19 0 100% 0% 0% 0%

Random Ran 17 17 17 16 16 16 16% 35% 33% 16%

InQuery 200, 0.25 I1 0 0 0 0 0 99 0% 0% 0% 100%

Collection 200, 0.75 I2 0 1 4 5 20 69 14% 0% 16% 70%

Ranking 200, 1 I3 28 14 22 14 10 11 65% 16% 8% 11%

Function 100, 1 I4 28 15 22 14 10 10 65% 17% 8% 10%

400, 1 I5 29 14 23 14 8 11 64% 17% 8% 11%

2, 0 R1 22 12 10 12 32 11 59% 7% 23% 1%

Replica 2, 0.2 R2 20 15 11 17 24 12 57% 9% 22% 12%

Selection 2, 0.8 R3 6 3 3 5 1 81 15% 1% 2% 82%

Function 1, 0.2 R4 17 6 7 14 28 27 47% 5% 20% 27%

4, 0.2 R5 21 10 10 11 26 21 54% 7% 18% 21%

(a) Replicated queries (99 queries)

Replica Precision loss % of replica

Ranking Parameters Func. C + 5%� precise

Function k, b code D1 D2 D3 D4 D5 C < 5% 10% > 10% queries to C

Expected E 1 6 3 6 2 19

Random Ran 7 8 5 7 4 6 35% 19% 46% 22%

InQuery 200, 0.25 I1 0 0 0 0 0 37 100% 0% 0% 100%

Collection 200, 0.75 I2 0 0 0 0 6 31 89% 3% 8% 89%

Ranking 200, 1 I3 6 5 11 7 2 6 40% 30% 30% 11%

Function 100, 1 I4 5 6 12 7 2 5 38% 30% 32% 11%

400, 1 I5 6 6 11 11 6 2 40% 30% 30% 11%

2, 0 R1 8 7 1 2 9 10 51% 19% 30% 6%

Replica 2, 0.2 R2 7 6 2 2 8 12 68% 16% 16% 11%

Selection 2, 0.8 R3 0 0 0 0 1 36 100% 0% 0% 94%

Function 1, 0.2 R4 4 2 1 1 13 16 73% 14% 14% 22%

4, 0.2 R5 7 2 2 1 10 15 64% 14% 22% 22%

(b) Unreplicated queries (37 collection precise queries)

Table 4: Comparing ranking functions using short queries onthe 2GB TREC Volumes 2+3 collection (replicas

built with top 200 documents)

and b=0.2, the function directs 88% of queries to the replicas. For unreplicated queries in Figure 5(b), we see

that ranking the collection functions degrade precision byover 10% for around 30% of the queries when they

avoid searching the entire collection (I3, I4, I5), and is thus not a good choice here either.

Among the functions listed in Table 4(a), six functionsrandom, I3, I4, I5, R1, and R2 direct more than

80% of replicated queries to the replicas. We compare the precision of these six functions in Table 5.

The first column lists the number of documents at which we present the precision. Column 2 lists the

precision when all queries go to the original collection, i.e., what percent of the topm documents is relevant

when searching the original collection. Columns 3 through 8list the results using random selection and each

ranking function. The numbers in parentheses show the precision percentage difference as compared with

searching the original collection. Table 5(a) lists the results for replicated queries, and Table 5(b) lists the
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atm Precision of Replicated Queries (%)

docs C random I3 I4 I5 R1 R2

10 48.7 40.4 (-17.2) 47.7 (-2.3) 48.2 (-1.2) 47.2 (-3.3) 48.4 (-0.8) 48.3 (-1.6)

20 44.8 36.1 (-19.6) 43.2 (-3.7) 43.3 (-3.4) 42.9 (-4.4) 44.4 (-1.0) 44.2 (-1.4)

30 40.7 32.4 (-20.4) 39.3 (-3.4) 39.4 (-3.0) 39.1 (-4.0) 40.2 (-1.1) 40.2 (-1.2)

100 31.1 23.9 (-23.1) 29.4 (-5.6) 29.5 (-5.5) 29.3 (-6.1) 30.5 (-2.2) 30.5 (-2.1)

200 25.1 18.7 (-25.3) 23.0 (-8.4) 23.0 (-8.4) 22.9 (-8.7) 24.8 (-2.8) 24.3 (-3.2)

(a) 99 Replicated queries

atm Precision of Unreplicated Queries (%)

docs C random I3 I4 I5 R1 R2

10 39.8 24.6 (-38.2) 30.0 (-24.6) 29.4 (-26.1) 30.0 (-24.6) 33.6 (-15.6) 35.9 (-9.6)

20 36.8 23.7 (-35.6) 27.2 (-26.1) 26.6 (-27.7) 27.3 (-25.8) 32.3 (-12.2) 34.4 (-7.9)

30 33.4 22.3 (-33.1) 24.9 (-25.4) 24.3 (-27.2) 24.9 (-25.4) 30.8 (-7.8) 31.9 (-4.6)

100 26.4 15.0 (-43.1) 16.9 (-35.9) 16.2 (-38.7) 16.9 (-35.9) 22.8 (-13.6) 23.5(-10.8)

200 21.1 10.4 (-50.5) 11.7 (-44.7) 11.1 (-47.3) 11.7 (-44.7) 17.1 (-19.2) 18.1(-14.5)

(b) 50 Unreplicated queries

Table 5: Effectiveness of different ranking functions using short queries on the 2 GB TREC Volumes 2+3

collection (replicas built with top 200 documents)

results for unreplicated queries. Replicated queries produce much better results than unreplicated queries,

because their top documents are stored in at least one of the replicas.

It is not surprising that random selection performs poorly,because it has high probability of picking a

replica with few relevant documents. For replicated queries, it causes a precision loss ranging from17% to25%. For unreplicated queries, it causes a precision percentage loss ranging from38% to 50% as compared

with searching the original collection, C.

For the other five functions in Table 5, when we examine the precision for replicated queries (Table 5(a)),

all these functions are acceptable, since the precision drops less than 8.7%. However, when we examine

the precision for unreplicated queries (Table 5(b)), the precision difference is significant. Using InQuery

collection ranking functionI3 where we setk = 200 andb = 1, the precision loss of unreplicated queries

range from 24.6% to 44.7%. We get our best result using our replica selection functionR2 with k = 2
andb = 0:2. The precision of the replicated queries drops less than3:2% of the original collection, and is

better when fewer documents are returned. The precision loss of the unreplicated queries range from4:8% to14:5%. For the top 30 documents, the precision loss of unreplicated queries range from4:8% to 9:6%.

In the remaining experiments, the replica selector uses thereplica ranking function withk = 2 andb = 0:2, because it sends appropriate queries to replicas with an acceptable precision loss of at most 9.6%

for the top 30 documents in this test suite.

5.4 Effectiveness with Replicated Queries

This section evaluates our proposed replica selection function for replicated queries on a wider range of

queries and collections. For replicated queries, we want totest whether the replica selector directs most of
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Query Top Average Num. of Queries to Replica % to Replica

Size Type n D1 D2 D3 D4 D5 C right smaller larger C

Expected 21.6 16.6 21.4 20.6 18.8 0

30 16.0 11.6 13.2 13.2 24.6 20.4 52.7% 4.2% 22.6% 20.6%

100 17.2 13.0 15.8 15.2 24.0 13.8 58.4% 5.9% 21.8% 13.9%

2 GB short 200 20.0 13.2 14.2 17.0 21.0 13.6 59.8% 8.1% 18.4% 13.7%

500 25.0 14.4 15.8 18.6 15.6 9.6 65.1% 12.7% 12.5% 9.7%

Ave. 19.5 13.0 14.8 16.0 21.3 14.3 59.0% 7.7% 18.9% 14.4%

100 15.8 13.4 13.2 13.2 25.8 17.6 52.7% 5.8% 23.6% 17.8%

2 GB long 200 18.0 17.4 12.6 14.4 28.2 8.4 57.0% 8.5% 26.0% 8.5%

500 21.8 17.6 14.0 15.0 24.0 6.6 62.4% 10.7% 20.2% 6.7%

Ave. 18.5 16.1 13.3 14.2 26.0 10.9 57.4% 8.3% 23.3% 11.0%

100 15.6 14.2 12.8 15.8 20.2 20.4 54.3% 4.2% 21.0% 20.6%

20 GB short 200 15.4 13.2 12.0 15.4 24.6 18.4 56.5% 4.2% 20.6% 18.6%

500 18.2 14.4 12.2 16.0 25.8 12.4 64.2% 4.2% 19.0% 12.5%

Ave. 16.4 13.9 12.3 15.7 23.5 17.1 58.3% 4.2% 20.2% 17.3%

Table 6: Replica selection for replicated queries

them to an expected replica. Note it is possible for a replicasmaller than the expected one to contain all top

documents for a given query, since the top documents of otherqueries could include the top documents for

this query. Although we use 250 queries to build replicas, weonly present the results for 99 replicated queries

which have relevance judgment files in this section.

Finding the Expected Relevant Replica

This section measures the ability of the replica selector topick the expected replica by counting the number

of queries that are directed to different replicas and the original collection, as shown in Table 6. In Table 6,

columns 1 and 2 indicate the size of collection and the type ofqueries we use in our experiments. Column 3

indicates the number of top documents for each query. The remaining columns are the same as Table 4(a).

For short queries on the 2 GB collection, on average, our replica selector directs85:6% (59:0%+7:7%+18:9%) of replicated queries to the replicas, and66:7% of queries to the expected replica or a replica smaller

than we expect. Increasing the number of replicated documents increases the accuracy of replica selection,

because the replicas contain more relevant documents for replicated queries. For example, when using the top

500 documents for each query to build replicas, the replica selector directs90:3% of queries to the replicas

on the average. When using the top 100 documents, it directs86:1% of queries to the replicas on average.

For long queries on the 2 GB collection, on average, our replica selector directs89:0% (57:4%+8:3%+23:3%) of replicated queries to the replicas, and65:7% of queries to the expected replica or a replica smaller

than expected. Increasing the number of replicated documents also increases the accuracy of replica selection,

similar to the results for the short queries.

For short queries on the 20 GB collection, on average, our replica selector directs82:7% (58:3%+4:2%+20:2%) of replicated queries to the replicas, and62:5% of queries to the expected replica or a replica smaller

than we expect. Increasing the number of replicated documents increases the accuracy of replica selection,
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at Precisionm docs orig. Top 30 Top 100 Top 200 Top 500

10 47.3 46.9 (-0.8) 47.0 (-0.6) 47.4 (+0.3) 46.9 (-0.8)

20 43.5 43.0 (-1.2) 43.0 (-1.1) 43.3 (-0.4) 42.9 (-1.3)

30 39.6 39.0 (-1.5) 39.1 (-1.3) 39.4 (-0.7) 39.2 (-0.9)

100 30.8 29.9 (-2.7) 30.1 (-2.0) 30.1 (-2.1)

200 24.7 24.0 (-3.0) 24.0 (-3.0)

500 16.5 16.0 (-3.1)

(a) short queries on the 2 GB collection

at Precisionm docs orig. Top 100 Top 200 Top 500

10 56.3 56.1 (-0.4) 56.4 (+0.1) 56.2 (-0.2)

20 54.6 54.2 (-0.7) 54.3 (-0.6) 54.1 (-0.9)

30 51.7 51.3 (-0.8) 51.1 (-1.1) 51.2 (-1.0)

100 41.5 41.1 (-1.1) 41.0 (-1.2) 41.0 (-1.1)

200 34.1 33.4 (-2.1) 33.6 (-1.6)

500 22.9 22.4 (-2.4)

(b) long queries on the 2 GB collection

at Precisionm docs orig. Top 100 Top 200 Top 500

10 15.5 15.5 (-1.2) 15.4 (-1.2) 15.5 (-0.3)

20 15.0 15.0 (-0.3) 15.0 (-0.5) 15.0 (+0.0)

30 14.0 14.0 (+0.0) 14.0 (-0.1) 14.0 (+0.2)

100 11.5 11.4 (-0.9) 11.5 (-0.6) 11.5 (-0.3)

200 9.8 9.7 (-0.9) 9.7 (-0.1)

500 7.5 7.4 (-0.8)

(c) short queries on the 20 GB collection

Table 7: Effectiveness of replica selection for replicatedqueries (each trial has 99 judged queries)

similar to the results for the 2 GB collection.

Precision of Replica Selection versus the Original Collection

Since the replica selector directs a few queries to a replicathat is smaller than expected, we compare the

effectiveness of executing queries against replicas or theoriginal collection selected by the replica selector

with against the original collection. Table 7 compares the average precision of replica selection over 5 test

trials with searching the original collection for short queries on the 2 GB collection, long queries on the 2

GB collection, and short queries on the 20 GB collection. In these tables, column 1 lists the number of

documents at which we present the precision figures. Column 2lists the precision figures when all queries go

to the original collection. Columns 3 through 6 list the precision figures when building replicas using different

numbers of top documents. The numbers in the parentheses show the precision percentage difference.

For short queries on the 2 GB collection, replica selection results in a precision percentage loss less than3:1% of searching the original collection for the same number of responses or fewer. For long queries on the
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2 GB collection, replica selection results in a precision percentage loss less than2:4%.

For short queries on the 20 GB collection, replica selectionresults in a precision percentage loss less

than1:2% as compared to searching the original collection, and sometimes the precision improves a little,

because the replica does not contain some top-ranked unrelevant documents. In other words, selecting a

smaller replica occasionally does no harm.

5.5 Effectiveness with Unreplicated Queries

This section evaluates our proposed replica selection function on a wider range of queries and collections for

unreplicated queries. See Section 5.2 for detailed experimental setting.

Finding the Relevant Replica

Table 8 lists the average expected number of collection precise queries in each replica over five test trials and

shows the results of replica selection by collecting the average number of collection precise queries that are

directed to different replicas as well as the original collection. We list results for short queries on the 2 GB

TREC Volumes 2+3 collection, long queries on the 2 GB TREC Volumes 2+3 collection, and short queries on

the 20 GB TREC VLC collection. In Table 8, columns 1 and 2 indicate the size of collection and the type of

the query sets. Column 3 indicates the number of documents stored for each query. The remaining columns

are the same as Table 4(b).

For short queries on the 2 GB collection, on the average, our replica selector directs83:6% (70:2% +13:4%) of collection precise queries to the replicas that cause a precision loss less than10% (our acceptable

level) as well as the original collection, and only directs18:1% of queries which are replica precise to the

original collection. For long queries on the 2 GB collection, on the average, our replica selector directs91:5%
(75:5%+16:0%) of collection precise queries to the replicas that cause a precision loss less than10% as well

as the original collection, and only directs14:9% of replica precise queries to the original collection.

For short queries on the 20 GB collection, when we experimentwith the same setting as the 2 GB col-

lection, on the average, our replica selector directs90:8% (85.1%+5.7%) of collection precise queries to the

replicas that cause a precision loss less than10% as well as the original collection. When we experiment with

queries 301-350 as our unreplicated queries, our replica selector directs 87.7% (85.8%+1.9%) of collection

precise queries to the replicas that cause a precision loss less than10% as well as the original collection.

Precision of Replica Selection versus the Original Collection

This section compares the retrieval precision of executingunreplicated queries against replicas or the original

collection selected by our replica selector with only searching the original collection. Table 9 lists average

precision over 5 test trials for short queries on the 2 GB TRECVolumes 2+3 collection, long queries on the

2 GB TREC Volumes 2+3 collection, and short queries on the 20 GB TREC VLC collection.

For the 2 GB collection using short queries, the precision losses range from6:8% to 17:1%. Increasing

the number of replicated documents for each query improves the precision, because the replicas contain more

relevant documents for each replicated query, which helps determining the similarity between unreplicated
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Coll. Precision loss less than 5%

Top Query Precise Ave. Queries Expected

Size Type n queries D1 D2 D3 D4 D5 C

30 38.2 2.6 1.0 2.2 1.2 1.4 29.8

100 37.8 3.8 2.8 3.2 2.2 1.0 24.8

2 GB short 200 37.8 4.6 3.8 2.6 3.2 1.2 22.4

500 37.8 6.2 3.8 4.4 3.4 1.4 18.6

Ave. 37.9 4.3 2.9 3.1 2.5 1.3 23.9

100 42.4 3.6 3.4 3.4 2.2 1.2 28.6

2 GB long 200 42.4 5.2 3.8 3.4 2.2 2.0 25.8

500 42.4 8.2 5.4 4.0 2.8 2.0 20.0

Ave 42.4 5.7 4.2 3.6 2.4 1.7 24.8

100 18.4 0.8 0.6 0.8 1.0 0.0 15.2

20 GB short 200 19.0 0.4 1.0 1.2 1.2 0.6 14.6

500 19.2 2.2 2.0 2.0 1.0 1.0 11.0

Ave. 18.9 1.1 1.2 1.3 1.1 0.5 13.7

100 36 0 1 1 0 3 31

20 GB 301-350 200 35 0 0 1 0 4 30

short 500 35 0 1 0 1 4 29

Ave. 35.3 0 0.6 0.6 0.3 3.7 30.0

(a) Expected number of collection precise queries in each replica

Query Top Ave. Queries to Replica Precision Loss % of Repl.Prec.

Size Type n D1 D2 D3 D4 D5 C C+< 5% 5%� 10% > 10% queries to C

30 2.6 2.0 2.0 2.8 5.6 23.2 72.4% 7.4% 16.2% 27.9%

100 2.6 3.0 3.2 3.4 8.2 17.4 70.5% 12.2% 17.4% 13.8%

2 GB short 200 4.0 3.4 2.4 4.8 6.8 16.4 71.5% 11.2% 17.3% 15.3%

500 4.8 3.0 4.6 6.4 5.8 13.2 66.2% 22.7% 11.1% 15.4%

Ave. 3.5 2.8 3.1 4.4 6.6 17.5 70.2% 13.4% 15.5% 18.1%

100 3.6 2.4 1.8 2.8 6.6 25.2 77.5% 13.1% 9.4% 25.9%

2 GB long 200 4.8 4.0 1.8 3.0 11.2 17.6 70.6% 17.6% 11.8% 13.1%

500 5.4 4.8 3.2 5.0 10.2 13.8 78.5% 17.4% 4.2% 5.7%

Ave. 4.6 3.7 2.3 3.6 9.3 18.9 75.5% 16.0% 8.5% 14.9%

100 0.4 0.4 0.6 0.8 2.2 14.0 84.7% 4.5% 10.8% 37.0%

20 GB short 200 0.6 0.6 1.2 1.4 1.8 13.4 84.2% 6.3% 9.5% 31.6%

500 0.4 0.8 1.8 1.2 2.6 12.4 86.4% 6.2% 7.3% 29.0%

Ave 0.5 0.6 1.2 1.1 2.2 13.3 85.1% 5.7% 9.2% 32.5%

100 2 1 0 1 1 31 86.1% 0.0% 13.8% 50.0%

20 GB 301-350 200 2 1 0 1 1 30 85.7% 0.0% 14.3% 40.0%

short 500 1 1 0 1 2 30 85.7% 5.8% 8.5% 40.0%

Ave 1.7 1.0 0.0 1.0 1.3 30.3 85.8% 1.9% 12.2% 43.3%

(b) Results of replica selection for collection precise queries

Table 8: Replica selection for unreplicated queries
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atm Precision

docs orig. Top 30 Top 100 Top 200 Top 500

10 42.8 37.8 (-11.9) 38.9 (-9.2) 39.4 (-8.0) 39.9 (-6.8)

20 39.4 34.0 (-13.8) 35.8 (-9.1) 36.1 (-8.4) 35.6 (-9.7)

30 35.5 30.3 (-14.6) 32.6 (-8.2) 32.7 (-7.8) 32.7 (-7.9)

100 27.2 23.3 (-14.0) 24.0 (-11.6) 24.2 (-10.8)

200 21.8 18.3 (-16.5) 18.8 (-13.9)

500 14.3 11.8 (-17.1)

(a) short queries on the 2 GB collection

atm Precision

docs orig. Top 100 Top 200 Top 500

10 55.3 52.9 (-4.3) 52.0 (-6.0) 54.8 (-0.9)

20 52.7 49.4 (-6.2) 48.6 (-7.8) 50.9 (-3.4)

30 50.0 46.2 (-7.6) 45.7 (-8.7) 47.9 (-4.3)

100 40.4 35.3 (-12.6) 35.1 (-13.2) 36.8 (-8.8)

200 33.1 27.3 (-17.4) 29.1 (-12.0)

500 21.8 18.2 (-16.6)

(b) long queries on the 2 GB collection

atm Precision

docs orig. Top 100 Top 200 Top 500

10 12.8 12.4 (-3.1) 12.6 (-1.6) 12.4 (-3.4)

20 12.3 11.6 (-5.5) 11.9 (-3.1) 11.8 (-3.4)

30 11.8 11.4 (-3.1) 11.9 (+0.8) 11.8 (+0.3)

100 10.0 9.1 (-9.6) 9.6 (-4.2) 10.1 (+0.2)

200 8.4 7.7 (-7.9) 8.3 (-1.0)

500 6.4 5.9 (-7.7)

(c) short queries on the 20 GB collection

atm Precision

docs orig. Top 100 Top 200 Top 500

10 40.4 36.2 (-10.4) 36.2 (-10.4) 37.8 (-6.4)

20 35.4 30.7 (-13.3) 30.7 (-13.3) 31.3 (-11.6)

30 31.3 26.9 (-14.2) 26.9 (-14.2) 27.0 (-14.0)

100 20.2 17.8 (-11.9) 17.8 (-11.9) 17.2 (-15.0)

200 14.4 12.8 (-10.9) 12.2 (-14.0)

500 7.8 6.7 (-14.0)

(d) short queries (topics 301-350) on the 20 GB collection

Table 9: Effectiveness of unreplicated queries (each trialhas 50 queries)
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and replicated queries. When the number of top retrieved documents is less than 30 documents, which are the

retrieval levels that concern online users most, our replica selector causes an average precision percentage loss

within 14:6% and 10% of searching the original collection, when we only replicate the top 30 documents and

the top 100 documents for each replicated query, respectively. For the 2 GB collection using long queries,

the precision losses range from0:9% to 17:4%. For the top 30 retrieved documents, on the average, the

precision drops less than 8.7% when we replicate more than 100 documents for each replicated queries,

which is slightly better than short queries.

For the 20 GB collection using short queries, when we experiment with the same setting as the 2 GB

collection and use the relevance files for the 2 GB collection, the precision ranges from losing 9.6% to

improving 0.8%. For the top 30 retrieved documents, the precision loss is less than 5.5%. When we use short

queries 301-350 as our unreplicated queries, the precisionloss for the top 30 documents is less than 14.2%.

Since topics 301-350 were much more thoroughly judged than topicsf51-150, 202-250g for the 20 GB VLC

collection, although still only the top 30 documents of eachquery were judged, we think the results using

topics 301-350 are more accurate, which means our replica selection performs slightly worse on the 20 GB

collection than on the 2 GB collection. However, the precision percentage loss of 14.2% in our context only

means we retrieve one less relevant document for the top 30 documents.

5.6 Summary

This section showed a function that selects a relevant partial replica using the inference network model.

Our approach enables a system to efficiently rank partial replicas, and select one when appropriate based

on relevance for a given query. We illustrate using the TREC collection that our replica selection function

is more effective than previous work on collection ranking function. Our replica selection function directs

at least 82% of replicated queries to a relevant partial replica rather than the original collection. When we

use replicas with the 100 top documents for each query, our function achieves a precision percentage loss

less than 10% for the 2 GB collection and 14.2% for the 20 GB collection, i.e., it returns one less relevant

document out of the top 30 for a given query.

6 Performance of Partial Replication for Searching a Terabyte of Text

This section explores the performance benefits of partial replicas. We first briefly describe the server ar-

chitectures we explore, measure a few configurations of an actual system, and compare those results to our

simulator. The remaining results use a simulator which letsus easily control and vary our experiment. The

bulk of this section compares partial replication with partitioning, caching, and a combination of replication

and caching. It demonstrates that the additional locality benefits of replicas have performance benefits, and

these benefits can be substantial.

6.1 Our Distributed Information System

We illustrate our distributed IR system in Figure 5. Clients, InQuery servers, and the connection broker re-

side on different machines. Clients are typically light-weight user interfaces to the retrieval system. InQuery

27



:

Selector
:

:

Client 1

Client 2

Client m

Connection Broker

InQuery Server 1

:
:

InQuery Server k

Original
Collection

InQuery Server k+1

InQuery Server p

:
:

Replica 1

InQuery Server n Replica q

Replica

Figure 5: Our Distributed Information Retrieval System

servers store the original collection and partial replicas, and perform IR service such as query evaluation, ob-

taining summaries, and document retrieval. A collection ora replica may be distributed over several InQuery

servers. The connection broker keeps track of all the InQuery servers for replicas or otherwise, outstanding

client requests, and organizes response from InQuery servers. For partial replication, the connection broker

also performs replica selection based on both relevance andload.

In addition to queries, our clients issuesummary, anddocumentcommands to provide a more realistic

command mix. For each query, a client obtains one or more summaries on relevant documents. The summary

information of a document typically consists of the title and the most relevant passages in the document. A

client may also retrieve complete documents.

When a client sends a query to the connection broker, the connection broker first uses a replica selector

to determine whether there is a partial replica that is not only relevant to the query, but is not overloaded. If

there is one, the connection broker sends the query to the InQuery server(s) that maintain the relevant replica,

otherwise it sends the query to the InQuery servers that maintain the original collection. After each involved

InQuery server returns the query results, the connection broker merges results and returns them to the client.

For a summary command, the connection broker sends the command which contains server and document

identifiers returned in a query result to the corresponding InQuery servers. The connection broker merges the

summary information responses and sends a single message back to the client. For a document command, the

connection broker sends the command to the InQuery server that contains the document, and then forwards

the document to the client as soon as it receives the documentfrom the InQuery server.

In this system, if query locality is high, the replica selector may send too many queries to a replica

which results in load imbalance. We load balance by predicting the response time of each replica and the

original collection using the average response time and thenumber of the outstanding queries. When the

replica selector chooses a replica based on relevance, we calculate the predicted response timep respj of

the replica, any larger replica , and the original collection usingave respj � (1 + num wait mesj), whereave respj is the average response time for last 200 responses for either the replica or the original collection,
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(a) the simulator

Figure 6: Performance validation of simulator with partialreplication.

andnum wait mesj is the number of the outstanding queries to which neither theoriginal collection or

the replica have responded. We send the query to the one with the leastp respj . The connection broker

obtains information on the response time as it receives queries responses and tracks the number of outstanding

messages.

We evaluate the performance of our distributed informationretrieval system using a simulator with a

performance model that is driven by measurements obtained using InQuery running on DEC Alpha Server

2100 5/250 with 3 CPUs (clocked at 250 MHZ) and 1024 MB main memory, running Digital Unix V3.2D-1

(Rev 41). Servers are connected by a 10 Mbps Ethernet. In previous work, we showed the simulator closely

matches a multithreaded implementation of InQuery (Cahoonet al., 2000; Lu, McKinley, & Cahoon, 1998).

In addition, we report on the validation of some of our simulation results below, comparing partitioning and

replication with varying degrees of locality for a 16GB collection on a single server, and again our measured

times closely match our simulator. Of course, simulation enables us to explore in a controlled environment

high loads and very large configurations.

6.2 Validation of Partial Replication Performance

This section compares the simulator and an implementation of partial replication for searching a 16 GB

collection on a multi-tasking server using InQuery 3.1 as the query arrival rate increases on a 3-CPU Alpha

Server 2100 5/250 running Digital UNIX V3.2D-1 (Rev 41). We used a multi-tasking server instead of a

multithreaded server just to save us time from implementingreplica selection in our legacy system, which

uses too many global variables.

In this experiment, we distribute a 16 GB collection over 4 disks and used an extra disk to store a 4 GB

replica. We assume queries arrive as a Poisson process, and use 50 short queries with average of 2 terms

per query. Figure 6 compares the performance of using the real system and the simulator when the replica

satisfies 40% of queries, and shows that two systems present the same trends and expected improvements

from partial replication.

Our earlier work showed that the multitasking server performs similarly to the multithreaded server,
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Parameters Abbre. Values

Num. of Commands Nom 1000

Command Arrival Rate 0.1 2 4 6 8 10

Poisson dist. (avg. commands/sec) � 12 14 16 18 20

Command Mixture Ratio

query:summary:document Rm 1:1.5:2

Terms per Query (average)

shifted neg. binomial dist. Ntpq 2

Query Term Frequency Obs.

dist. from queries Dqtf Dist.

Data per Server Ssize 32 GB

Size of Collection Csize 1 TB

Replication Percentage Prepl 3% (32 GB)

Hit Rate HR 10% - 100% by 10

Table 10: Configuration Parameters for Terabyte Experiments

although the multithreaded server is always slightly faster (90% of measured response times fall within10%
of each other) (Lu et al., 1998). Our previous work also used and validated this simulator using parameters

that matched a slower MIPS processor. Taken together these results show that our simulator is robust with

respect to target architecture and could be used to model thelatest, fastest processor.

6.3 Searching a Terabyte of Text

In this section, we compare the simulated performance of partial replication with collection partitioning using

one and a hierarchy of replicas. We model command arrival as aPoisson process. We use short queries with

an average of 2 terms per query, and set the ratio of query commands, summary commands, and document

commands to 1:1.5:2, as we observed in the THOMAS log. We assume each server stores a 32 GB collection.

As our baseline, we use 32 servers to store 1 terabyte of text.These experiments use a 32 GB replica, which

is sufficient to satisfy more than 40% of queries in the Excitelog. We vary thehit rate which represents the

percentage of queries that the replica selector directs to partial replicas. The hit rate is also the percentage of

mixed commands sent to partial replicas, since if a query is directed to a partial replica, and its corresponding

summary and document commands will go to that replica too. Table 10 presents the experimental parameters,

their abbreviations, and values.

Partial Replication versus Collection Partitioning

In this section, we compare the performance of the followingconfigurations with the baseline (partitioning

over 32 servers):� Partitioning over additional servers: partitioning 1 TB oftext over 33, and 64 servers, each of which

stores 31 GB and 16 GB of data.� Partial Replication: building a 32 GB replica on one additional server (33 total servers).

Figure 7 illustrates the average query response time when wepartition 1 TB of text over 32, 33, and

64 servers, and over 32 servers plus one server that containsa 32 GB replica. We vary the hit rate which
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indicates the percent of queries sent to the replica. Figure7(a)-(c) illustrate when commands arrive at 4, 10,

and 20 commands per second. The graphs plot query response time versus the hit rate. When we have one

additional server, using it to store a replica performs significantly better than further partitioning over this

server, especially when the commands arrive at a high rate, as shown in Figure 7(c). The improvement occurs

when the replica satisfies only 3% of commands for more highlyloaded systems, e.g., 10 and 20 commands

per second, and the improvement increases with increases inquery locality. Using one partial replica also

performs similar or better than partitioning over twice as many as servers when the replica satisfies at least

20% of commands. For example, when the arrival rate is 20 commands per second, partitioning over 64

servers reduces the average query response time by a factor of 1.6, while one partial replica reduces it by

a factor of 2.3 when the replica satisfies 40% of commands. When the hit rate becomes high, the replica

selector load balances between the replica and the partitioned original collection which maintains retrieval

effectiveness and quick response times.

There are two major reasons that partial replication outperforms partitioning. (1) A server takes around

3/5 the time to search half the data according to our measurements, and thus when we partition a terabyte

of text over 64 servers instead of 32 servers, each server cannot process twice as many commands as using

32 servers. (2) Searching a replica results in less network traffic and needs less coordination of the results

from each partition in the connection broker. For example, the utilization of the network and the connection

broker for partitioning over 64 servers are 28% and 70%, while the corresponding utilization for using 32

servers and one partial replica is 12% and 58%. For highly loaded systems, replication significantly improves

performance over partitioning and uses only about half of the resources!

6.4 Partial Replication as a Hierarchy

In this section, we assume 1, 2, and 4 additional servers and organize them as a hierarchy of replicas. We

examine how much improvement a hierarchy of replicas will produce. We assume the first, second, third, and

fourth additional server stores 32 GB, 16 GB, 8 GB and 4 GB of data. whereR1 � R2 � R3 � R4 andRi
represents the data on thei-th additional server. The replicas satisfy accurately a total of p% of commands,

i.e., the hit rate is p%. Of these p% of commands the replica selector sends to replicas, all are satisfied by the

largest replica, 10% less, i.e., (p% - 10%) are satisfied by the second largest replica, another 10% less, i.e.,

(p% - 20%) by the third largest replica, and (p% - 30%) by the fourth replica, where all the commands sent

to ai-th largest replica may also be satisfied at the(i� 1)-th largest replica.

Figure 8 illustrates the average query response time when webuild one and two replicas, where the

replicas’ hit rate (HR) is 20%, 40%, and 60%, as well as four replicas, where the hit rate is 40% and 60%.

The results show that 2 replicas are sufficient to achieve large performance improvements beyond partitioning

when the replicas satisfy 40% and 60% of commands. In our baseline, partitioning over 32 servers achieves an

average query response time below 10 seconds at 7 commands per second. Using one replica to satisfy 20%

of commands and using two replicas to satisfy 40% and 60% of commands achieve average query response

time below 10 seconds at 9, 16, and more than 20 commands per second, respectively, while partitioning over
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Figure 7: Partial replication versus partitioning as a

function of hit rate, for three command arrival rates
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Figure 8: Partial replication versus a hierarchy of

replicas as a function of command arrival rate
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64 servers (using 32 additional servers) only achieves average query response time below 10 seconds at 10

commands per second.

Thus, for our system (slower than the current state of the art), we achieve query response times under 10

seconds for a relatively highly loaded system with 20 requests per second using 4 replicas and query locality

of about 50%. With a faster base system, replication is stillpreferable to partitioning given even modest

query locality, however fewer replicas are necessary to maintain fast response times. We show this result

elsewhere (Lu, 1999).

6.5 Partial Replication versus Caching

In this section, we compare the performance of partial replication to caching which is the most widely used

mechanism to improve performance for IR systems. We still use partitioning 1 TB of text over 32 servers as

the baseline, and compare it with the following configurations:

Partitioning: partition 1 TB of text over one additional server (33 servers in total), each of which stores 31

GB of data.

Connection broker caching: partition 1 TB of text over 33 servers and build a cache in themain memory of

the connection broker.

Server caching: partition 1 TB of text over 33 servers and build a cache in themain memory of each InQuery

server.

Partial Replication: partition 1TB of text over 32 servers and use one additionalserver to build a partial

replica.

Partial replication and connection broker caching: partition 1TB of text over 32 servers and use one addi-

tional server to build a partial replica, and also build a cache in the main memory of the connection

broker. When a command comes in, first check the cache, if it isnot in the cache, then use the replica

selector to select the relevant replica. We assume that the connection broker cache satisfies 10% of

commands, and the replica satisfiesHR� 10% of commands.

For caching, we present an upper bound of its performance; weonly count the time for cache lookup and

assume cache replacement takes no time. We assume the resultlists for most frequently used queries are in

cache. We also assume the documents and query summaries are in memory, although not many machines

have several to several tens of GB worth of memory. For the partial replica, we assume the summaries and

documents must be fetched from disk. We thus give the cache a large advantage. We explore server caching

to show the benefits of same server caching for independent collections which may not permit connection

broker caching.

Figures 9(a) and (b) compare connection broker caching and partial replication. They illustrate the aver-

age query response time versus the command arrival rate whenthe connection broker cache satisfies 20% and

30% of commands, as we found in our logs. The results show thatif the partial replica and the connection

broker cache satisfy the same amount of commands, partial replication results in slightly worse performance
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Figure 9: Partial replication versus caching as a function of command arrival rate
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as compared with connection broker caching. But when the replica hit rate increases by just 3%, partial repli-

cation performs better than connection broker caching; it performs almost a factor of 2 better when the replica

hit rate increases by 15% for high command arrival rates. As we showed in Section 3.2, replicas can improve

locality from 7% to over 20% over time as compared with exact match caching. Searching the replica is so

much faster than searching the entire collection, even small amounts of locality have a significant impact on

performance.

Figure 10 demonstrates the effect of the hit rate more clearly. It plots the average query response time

versus the hit rate when commands arrive at 10 commands per second. Figure 10 shows that the performance

of server caching is slightly worse than connection broker caching, since the connection broker cache elim-

inates the coordination time of multiple servers and reduces network traffic between the connection broker

and InQuery servers. Partial replication outperforms connection broker caching when the replica satisfies 3%

or more of commands until partial replication needs load balancing (which occurs when the hit rate is around

40%). After this point, partial replication performs significantly worse than connection broker caching, since

it redirects significant amount of commands to the original servers, while caching does not. The log analysis

in Section 3 shows that the cache achieves a hit rate between 20% - 30%, or less in most cases. However,
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combining the connection broker cache and partial replication further improves performance; an unsurprising

result at this point.

7 Conclusions

In this paper, we investigated how to search a terabyte of text using partial replication. We built a hierarchy of

replicas based on query frequency and available resources,and used the InQuery retrieval system for the repli-

cas and the original collection. We examined queries from THOMAS (THOMAS, 1998) and Excite (Excite,

1997) to find locality patterns in real systems. We find there is sufficient query locality that remains high over

long periods of time which will enable partial replication to maintain effectiveness and significantly improve

performance as compared to caching. For THOMAS, updating replicas hourly or even daily is unnecessary.

However, we need to some mechanism to deal with bursty events. We propose two simple updating strategies

that trigger updates based on events and performance, instead of regular updating. In our traces, requiring

exact match for a query misses locality between queries withdifferent terms that in fact return the same top

documents, whereas partial replication with an effective replica selection function will find the similarities.

We believe this trend will hold for other query sets against text collections and for web queries.

We investigate how to select a relevant partial replica using the inference network, and demonstrate the

effectiveness of our approach using the InQuery retrieval system and TREC collections. The results show

that the inference network model is a very promising approach for ranking partial replicas. By using our new

replica selection function, our replica selector can direct at least 82% of replicated queries to a relevant partial

replica rather than the original collection, and it achieves a precision percentage loss within10% and 14.2%

for the top 30 retrieved documents for those unreplicated queries, when sizes of replicas range from 2% to

10% for the 2 GB collection, and 0.2% to 1% for the 20 GB collection, respectively.

We demonstrate the performance of our system searching a terabyte of text using a validated simulator.

We compare the performance of partial replication with partitioning over additional servers. Our results show

that partial replication is more effective at reducing execution times than partitioning on significantly fewer

resources. For example, using 1 or 2 additional servers for replica(s) achieves similar or better performance

than partitioning over 32 additional servers, even when thelargest replica satisfies only 20% of commands.

Higher query locality further widens the performance differences. We also compare partial replication with

caching under a variety of workloads. The performance of partial replication with a connection broker ex-

ceeds that of connection broker caching as well as server caching under a variety of configurations when the

partial replica increases the hit rate by at least 3%. Our work porting and validating InQuery and the simula-

tor from a slower MIPS processor to the Alpha, as well as experiments with faster querying times which are

reported elsewhere (Lu, 1999; Lu & McKinley, 2000), lead us to believe the performance trends will hold for

faster systems using fewer resources. Although the simplicity of caching is appealing, a combined approach

that incorporates partial replication will yield both an effective and better performing system.
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