
A Quantitative Analysis of Loop Nest Locality �
Kathryn S. McKinley Olivier Temam

University of Massachusetts Versailles University

Abstract

This paper analyzes and quantifies the locality characteristics of
numerical loop nests in order to suggest future directions for ar-
chitecture and software cache optimizations. Since most programs
spend the majority of their time in nests, the vast majority of cache
optimization techniques target loop nests. In contrast, the locality
characteristics that drive these optimizations are usually collected
across the entire application rather than the nest level. Indeed, re-
searchers have studied numerical codes for so long that a number of
commonly held assertions have emerged on their locality character-
istics. In light of these assertions, we use the Perfect Benchmarks to
take a new look at measuring locality on numerical codes based on
references, loop nests, and program locality properties. Our results
show that several popular assertions are at best overstatements. For
example, we find that temporal and spatial reuse have balanced
roles within a loop nest and most reuse across nests and the entire
program is temporal. These results are consistent with high hit
rates, but go against the commonly held assumption that spatial
reuse dominates. Another result contrary to popular assumption is
that misses within a nest are overwhelmingly conflict misses rather
than capacity misses. Capacity misses are a significant source of
misses for the entire program, but mostly correspond to potential
reuse between different loop nests. Our locality measurements re-
veal important differences between loop nests and programs; refute
some popular assertions; and provide new insights for the compiler
writer and the architect.

1 Introduction

Because processor speed is increasingly outpacing memory speed,
an enormousamount of research focuseson improving the cache be-
havior of numerical programs (see for example, Smith’s bibliogra-
phies on hardware aspects of cache memories [Smi86, Smi91] and
compiler techniques that exploit cache memories [CM95, CMT94,
LRW91, MLG92, WL91]). Most of this work depends on loop
nests to provide predictable and regular data accesses. Techniques
to improve data cacheperformance typically target and model local-
ity characteristics found in loop nests. For example, software and
hardware prefetching exploit the spatial locality of regular accesses
in loop nests [CB95, CKP91, Dra95, KL91, MLG92]. Wolf and
Lam [WL91] model data locality by distinguishing four categories
of locality which they use to drive loop optimizations: spatial –
reuse of adjacent locations in a cache block; temporal – reuse of the
same location; self – reuse from the same data reference; and group
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programs to determine how often these locality types occur. Even
though many of these approaches yield significant improvements,
there exists no broad quantitative study of loop nest locality, of
which we are aware, driving this exploration.

New memory architectures can exploit locality more selec-
tively than previous caches [HP95, MW96]. For example, the HP-
7200 [HP95] uses a form of cachebypass for a reference stream with
only spatial locality. These architectures require detailed knowl-
edge about the locality properties of loop nests and programs. Of
course, much of the research on memory optimizations analyzes
relevant locality characteristics. These studies are typically con-
ducted across the entire application, while many optimizations just
target loop nests. For instance, several studies find numerous ca-
pacity misses in applications [HP95, HS89, SA93]. If these misses
actually correspond to locality across distinct nests, loop nest opti-
mizations are unlikely to eliminate them.

In this paper, we investigate the locality behavior of loop nests in
order to suggest targets for future software and hardware research.
We focus on data cache behavior although the data cache may only
have a small impact on the total performance for programs with very
low miss rates. We investigate in detail how well caches exploit
locality characteristics. We quantify both achieved and potential
locality as a function of the distance between load/store references
to the same word or cache block. We measure and quantify locality
within a nest, across nests, and for the entire program.

Because numerical codes have been the target of memory op-
timizations for so long, a number of popular assertions on their
memory characteristics have emerged. To provide a framework
for our study, we examined the literature on memory optimizations
and extracted some of the most prevalent assertions. These as-
sertions, listed in Table 1, arise from extensive measurements of
complete programs [Bel66, GHPS93, Hil88, HS89, HP95, PHH88,
Smi82, SA93], slightly more narrow measurements that evaluate
proposed hardware or software techniques [AP93, CB95, Dra95,
Jou90, KL91, MLG92], and software models [CMT94, GJG88,
MLG92, WL91]. Our results dispute Assertions 1 and 2, and con-
firm Assertions 3 and 4 for our benchmark suite.

For instance, we find that loop nest locality significantly differs
from whole program locality; loop nests attain more spatial reuses
(Assertion 1) and dramatically fewer capacity misses than programs
(Assertion 2). Our quantification of locality characteristics suggests
that the scope of some optimizations should be revisited; even
though most reuse is within a nest (Assertion 3), most misses occur
between nest executions. This result suggests compiler writers
should next focus on optimizing multiple nests at once. We also
show that bandwidth and the cache are frequently wasted due to
loads of blocks in which only one word is referenced (Assertion 1).
This result suggests that architects should focus more on adjustable
block sizes and cache bypass instructions. In summary, this paper
explores and checks a number of popular assertions on data locality,
and provides new quantitative insights on locality within and across
numerical loop nests.

The remainder of this paper is organized as follows. Section 2
describes our experimental framework. We then examine our re-
sults from three different perspectives: intra-nest data locality (Sec-
tion 4), inter-nest and whole program data locality (Section 5), and
load/store instruction locality (Section 6). Within each of the sec-
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Table 1: Assertions about reuse characteristics and cache behavior of numerical programs

Assertions Related Issues, Assertions, & Questions
1. Spatial reuse is the dominant form of reuse [CMT94, Jou90, KW73,

PHH88, Smi82, Smi87].
a. Temporal reuse avoids fewer misses than spatial.
b. Cache blocks effectively exploit spatial reuse [KW73, PHH88,

Smi82, Smi87].
c. Most cache pollution is due to spatial-only blocks, i.e., blocks which

are only reused spatially [Pou94].
2. Capacity misses occur more frequently than conflict misses, and both

are significant sources of misses [HP95, HS89, SA93].
a. Do ping-pong conflicts occur frequently?
b. 2-way set-associative caches remove the majority of conflict

misses [AP93, HS89].
3. Most reuse occurs within a nest rather than across nests [CMT94,

TGJ93, WL91].
a. Targeting individual loop nests is sufficient.
b. Is inter-nest reuse difficult to exploit?

4. Many memory references within numerical codes correspond to reg-
ular references [BC91].

a. What is the fraction of misses due to scalar references?
b. The most commonly used stride value is 1.
c. Loop nest structures are mostly rectangular and triangular.

tions, we examine the relevant assertions and mention related work.
When each assertion is encountered for the first time, we further
justify it. At the end of each section, we summarize the results with
respect to the relevant assertions.

2 Experimental Framework

In this section, we delineate loop nests and locality. We describe
the programs we used, their basic characteristics, and how we in-
strumented them to obtain our results.

2.1 Loop Nests

We chose to measure intra-nest locality in loop nests that are at
most 3 deep, without calls, and with only one loop at each level.
(Note the Perfect Benchmarks do not make use of mathematical
libraries.) The loops need not be perfectly nested, i.e., there can
be statements between nesting levels, as long as the intervening
statements do not affect control flow. We apply these restrictions
to try to select the nests usually targeted by software and hardware
optimizations. Section 2.3 shows that this selection of nests is
comparable to published targets of nest optimizations and finds the
nests responsible for the majority of references in the programs. As
an example, consider the nests in Figure 1. Given these loops, we
collect statistics on the three inner nests: Matrix-Vector Multiply,
Matrix-Matrix Multiply, and Stencil. Because the outer L loop
contains multiple loops at the same nesting level, it is not included
in the intra-nest measurements and the loop is split into the 3 nests.

The program trace then becomes a set of in-nest statement ex-
ecutions separated by out-nest statements. We define intra-nest

Figure 1: A Few Classic Examples
DO L = 1, N

Matrix-Vector Multiply
DO I = 1, N

DO J = 1, N
C(I) = C(I) + A(J,I) * D(J)

ENDDO
ENDDO

Matrix-Matrix Multiply
DO I = 1, N

DO K = 1, N
DO J = 1, N

X(J,I) = X(J,I) + Y(J,K) * Z(K,I)
ENDDO

ENDDO
ENDDO

Stencil
DO I = 1, N

DO J = 1, N
A(J,I) = A(J,I+1) + B(J,I) + B(J+1,I)

+ E(I,J) + E(I+1,J)
ENDDO

ENDDO
ENDDO

events as ones that occur within a single execution of a nest. For
example, if the same block is referenced more than once during
a single nest execution, we call all these references but the first
one intra-nest locality. We thus exclude the first reference to a
block from the intra-nest statistics. Any locality the first reference
incurs is inter-nest locality. Inter-nest events are between differ-
ent executions of nests, including different executions of the same
nest. Program locality, of course, includes all the references in the
program.

Examples. Consider the array A in Matrix-Vector Multiply and
in Stencil. Assume no interference in the cache from the other
arrays accessed in the L loop, A is not originally in the cache, that R
elements ofA fit on a cache block, andN>R. On the first iteration of
the L loop, Matrix-Vector Multiply misses once everyR iterations of
the J loop, and then hits on the intervening R-1 accesses, yielding
intra-nest spatial reuse. If A is still in the cache when Stencil
executes, these hits are inter-nest and temporal. If on the second
iteration of L, Matrix-Vector Multiply still finds A in the cache this
reuse is also inter-nest temporal reuse for all N2 references to A.
The intra-nest locality of A on the second execution of Matrix-
Vector Multiply is the same same as it was on the first execution of
the nest, intra-nest spatial locality for b (R-1)=R � N c references.
This example illustrates why even though most references occur in
loops, intra-nest, inter-nest, and program characteristics may differ
significantly.

2.2 Classifying Locality and Reuse

The classical definitions of locality properties found in programs
are: temporal locality – if an item is referenced, it will tend to be
referencedagain soon; and spatial locality – if an item is referenced,
an adjacent item will tend to be referenced soon [HP95]. Given a
reference, cache designers exploit temporal locality by placing the
referenced word into the cache, and spatial locality by using a cache
block size greater than one word that places adjacent words in the
cache at the same time. References with locality thus have the
potential for reuse in the cache. Reuse is simply a hit in the cache
that achieves its locality. References with locality can also miss in
the cache. Unfortunately, we cannot directly use the definitions of
temporal and spatial locality to measure which of the properties the
cache best exploits.

Figure 2 illustrates our new classification system. This classi-
fication enables us to measure locality properties with respect to a
given cache organization in terms of individual references in pro-
grams. Given a reference, it either hits or misses in the cache.
If it hits, the word is in the cache and a previous reference either
accessed the same word (temporal reuse) or another word in the
same cache block (spatial reuse). If a reference misses and the
cache previously contained the word, the cache is not exploiting
locality and there is potential for improvement. A temporal miss
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Figure 2: Locality Classifications
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Table 2: Test Suite Characteristics

% Percent of % Number of Program Instrumented Nests Cache Miss Rate
References Misses Data References Working Set Size at depth 8K, 32B block

Code In-Nest Out-Nest In-Nest Out-Nest f=full, p=partial in 4 byte words Total 1 2 3 direct-mapped

ADM 88 12 90 10 918,546,427 (f) 29,753 159 105 36 18 5.6
QCD2 39 61 77 23 508,546,774 (f) 463,133 90 80 6 4 1.1
BDNA 95 5 98 2 2,331,001,541 (f) 429,217 154 133 18 3 4.2

OCEAN 99 1 99 1 4,000,000,000 (p) 156,688 76 35 41 0 6.2
DYFESM 93 7 84 16 452,663,362 (f) 28,409 108 60 42 6 3.2

ARC2D 99 1 99 1 4,000,000,000 (p) 2,001,043 141 76 59 6 9.9
FLO52 98 2 99 1 956,221,083 (f) 214,622 87 39 39 9 6.8

TRFD 96 4 89 11 1,429,808,439 (f) 1,354,205 29 13 9 7 5.0
average 88.4 11.6 91.9 8.1

occurs if the last time the cache contained the word, the word was
referenced. A spatial miss occurs if the last time the cache con-
tained the word, the word was not referenced. For either a hit or
a miss, if the previous reference to the word or cache block came
from the same instruction, we call it self-locality. If it came from a
different instruction, we call it group-locality.

Notice that (1) given a one word cache block, references with
temporal reuse would still be classified as temporal; and (2) spatial
reuse is a function of the cache block size. It is not obvious how
other changes to associativity, cache block size, and cache size
affect this classification. In this study, we focus on a single cache
organization and do not examine how varying cache parameters
changes our locality classifications.

To discover why a reference misses in the cache, we use Hill’s
miss classification which is orthogonal to the above: compulsory
misses – misses that occur on the first reference to a block; capac-
ity misses – additional misses resulting from the limited capacity
of a cache; and conflict misses – additional misses due to map-
ping constraints in set-associative caches [Hil87, HS89]. Like Hill,
we measure conflict and capacity misses with respect to a fully-
associative cache using an LRU replacement policy.

We measure the locality distance in terms of the number of
memory references (load/store references in the trace) between two
references to the same word or cache block. We chose this metric
because it is more context-independent than the number of cycles.

Examples. To measure intra-nest spatial reuse, we consider only
the load/store references in a single execution of the nest. If the nest
references a word which has not yet been referenced, but the nest
has previously accessed the cache block on which the word resides,
the nest exhibits intra-nest spatial reuse. If the reference was from
the same instruction, we further classify the locality as self-spatial
reuse. Consider the reference to Y in Matrix-Matrix Multiply in
Figure 1. It has self-spatial locality on the inner loop. The first
reference to X has group-spatial locality with the second reference
to X. (See Section 4.1 for additional examples.)

2.3 Test Suite

For our test suite, we used 8 of the Perfect Benchmark programs
which range in number of non-comment lines from 485 to 6105,
averaging 3509 lines [CKPK90]. Although the Perfect Benchmarks
suffer from the same flaw as SPEC92 [Uni89], namely small data
set sizes, they are real applications, and thus are more likely to ex-
hibit classic programming patterns. For each benchmark, Table 2
presents the percent of references and misses in nests and out of
nests; the total number of references; the working set size of the pro-
gram; the number of instrumented loop nests partitioned into nests
of depth 1, 2, and 3; and the program miss rate for an 8-Kbyte, 32-
Byte block size, direct-mapped data cache (the DEC 21164 [Dig94]
first-level data cache implements these parameters). These miss
rates vary from 1.1 to 9.9%. We selected the smallest cache param-
eters available in current processors to keep the ratio of data set size
to cache size as close as possible to that of real programs run on
future-generation processors. All of our figures use this basic con-
figuration. We also discuss a few results for a 2-way set-associative
version of the same cache (the Intel P6[Res95] first-level data cache
implements these parameters).

Our nest selection, on average, considers more nests than Carr
et al. [CMT94] consider for optimization. The numbers are not
directly comparable because Carr et al. do not include single loops
and consider more complex nesting structures than we do. In 7 of
the 8 programs, 88% or more of the references occur within the
nests we instrumented. In QCD2, only 39% references are in nests.
The reasons for this low number are essentially (1) references not
considered because of the limitations of the instrumentation, (2)
loops programmed with GOTOs and counters, and (3) loops with
call statements where the called subroutine only contains the loop
body and is thus not instrumented. We include QCD2 because 77%
of misses are within the nests we instrument. Although we collected
statistics for MDG, we exclude them from our statistics because less
than 50% of references and misses are in nests.
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2.4 Instrumentation and Analysis

We modified the Spy tracing tool from the Spa package by G. Ir-
lam [Irl91] to trace each benchmark on a Sparc-20 workstation.
Spy uses object codes as inputs so no special compilation flag is
required. Spy traces all calls to system libraries but doesn’t han-
dle a number of traps. Six of the eight benchmarks were run till
completion. The trace length was limited to 4 billion entries for
two codes (OCEAN and ARC2D). We compiled the benchmarks with
Sun’s F77 compiler using -O2 which includes all optimizations
except optimizations on global variables and loop unrolling. We
disabled loop unrolling because it obscures self and group locality.

We instrumented the programs with Sage++, a source-to-source
Fortran compiler [BBG+94]. Our Sage++ routine detects loop nests
as described in Section 2.1 and inserts variables and subroutine calls
to uniquely identify nests. Spy catches the instrumented subroutine
calls. Since the subroutine calls are outside of the nests and contain
very few assembly instructions, the trace perturbation is negligi-
ble. We also used Sage++ to identify arrays and scalars based on
their declarations. We collected locality statistics about each word,
block, and reference (loads and stores). Since we record several
pieces of information about each word and reference, the working
set size of the analyzer is several times that of the traced code.

3 Explanation of Figures

All the figures in this paper present average statistics over the differ-
ent benchmarks. We did not weigh the averages in order to balance
the impact of each benchmark. Figures 3 thru 8 plot the fraction of
reuse (Figures 3, 4, and 5) and misses (Figures 6, 7, and 8) as a func-
tion of the locality distance in log2 between references to the same
word or cache block. (Figures 9 thru 14 use the same x-axis.) Each
bar partitions the references into four locality groups: self-spatial
(white), group-spatial (light gray), self-temporal (dark gray), and
group-temporal (black). These categories reveal which type of lo-
cality is responsible for hits and misses and if these references come
from the same (self) or a different (group) instruction. For a given
distance 2i, a box encloses the fraction of references which incurred
the locality between the distances 2i�1 and 2i. The unboxed por-
tion represents the fraction of references incurring locality between
1 and 2i�1, the cumulative locality. Since all categories of local-
ity may increase at each distance, we plot both the increment and
the accumulated portions to make comparisons between distances
easier.

Comparing Figures 3, 4, and 5 reveals the differences between
intra-nest, inter-nest, and program reuse. Compare Figures 6, 7,
and 8 similarly for misses. The differences in locality between
reuses and misses are demonstrated by comparing pairwise between
Figures 3 and 6 for intra-nest locality; Figures 4 and 7 for inter-nest
locality; and Figures 5 and 8 for program locality. Section 4 and
Section 5 are organized around this later comparison and Section 6
focuses on load/store instruction locality.

4 Intra-Nest Data Locality

In this section, we focus on intra-nest references and explore their
behavior in the context of Assertions 1 and 2 from Table 1.

Probably the most widespread assertion we address is Asser-
tion 1: Spatial reuse is the dominant form of reuse [CMT94,
Jou90, KW73, PHH88, Smi82, Smi87]. For example, all mod-
ern caches use block sizes greater than one. Spatial locality enables
hardware and software prefetching to achieve most of its improve-
ments [CB95, Dra95, Jou90, KL91, MLG92]. Software techniques
have also attributed their improvements to improved spatial local-
ity [CMT94].

4.1 Intra-Nest Reuse

Figure 3 shows that on average, only 40% of intra-nest reuse is
spatial. QCD2, TRFD, and DYFESM achieve a majority of spatial
reuse (51%, 56%, and 61%, respectively), but FLO52, ARC2D, ADM,

OCEAN, and BDNA achieve a majority of temporal reuse (61%, 61%,
66%, 68%, and 87%, respectively). These results also hold for
2-way set-associativity and are in contrast to Assertion 1 and 1.a
since spatial reuse is never the single overwhelming factor.

Compiler algorithms to improve locality target group and self,
spatial and temporal locality [CMT94, TGJ93, WL91]. All of
which have a role in these results. Two classic examples in Fig-
ure 1 that demonstrate a mixture of self-temporal, group-temporal,
self-spatial, and group-spatial reuse are Matrix-Vector Multiply and
Matrix-Matrix Multiply. Both are written in the best order for ex-
ploiting short-term data locality, assuming Fortran’s column-major
order [CMT94, WL91]. In Matrix-Vector Multiply on the inner J
loop, the cache should exploit group-temporal locality for C, self-
spatial for A, and self-spatial for D. For the entire nest, C is group-
spatial and temporal, A is self-spatial, and D is self-spatial and
temporal. In Matrix-Matrix Multiply, the cache should exploit self-
temporal and self-spatial locality for all arrays. In Stencil, A and
B exhibit self-spatial and group-temporal locality, and E exhibits
group-spatial and group-temporal locality. While compiler opti-
mizations often use classic examples like Matrix-Vector Multiply
that suggest self-temporal reuse is significant, our results show that
86% of intra-nest temporal reuse is group-temporal reuse. In Fig-
ure 3, half of group-temporal reuse occurs at short distances, like
X in Matrix-Matrix Multiply. Except for a concentration of group-
temporal reuses at short distances, the reuse distance for group-
temporal reuse is distributed relatively evenly. The group-temporal
reuse distance for references like A(J,I) and A(J,I+1) in Sten-
cil is the number of load/store references in the inner loop. Longer
distances may be achieved for a complete execution of inner loops.
These three factors contribute to the relatively even distribution of
group-temporal reuse distances.

4.2 Intra-Nest Misses

4.2.1 Ping-Pong

Comparing Figure 3 and 6 reveals one impact of spatial locality:
spatial misses are the dominant source of misses. QCD2 and TRFD
are completely dominated by spatial misses. The other benchmarks,
BDNA, ADM, OCEAN, DYFESM, ARC2D and FLO52 have more similar
proportions of all locality types for both their reuses and misses,
but all have more spatial misses than reuses. The misses are spread
out over distances ranging from 1 to 228: Without loop nest opti-
mizations, spatial locality probably cannot be exploited for reuse
distances greater than 1024 (210). Loop nest optimizations have
demonstrated the ability to turn intra-nest spatial locality with long
distances into spatial reuse with short distances in ARC2D. Most
misses in the original program are at a distance of 210 or greater.
Loop interchange and fusion improve ARC2D’s performance by a
factor of 2.15 on an IBM/RS6000 [CMT94]. However, a significant
portion of intra-nest self-spatial misses occur for very short reuse
distances. A given load/store instruction is thus not able to exploit
all the spatial reuse within a cache block before a miss occurs due
to another load/store instruction that uses the same cache block for
other data. This phenomenon is called ping-pong. In OCEAN, TRFD,
DYFESM, and QCD2, 23%, 25%, 33%, and 95%, respectively, of all
intra-nest misses correspond to spatial locality with a distance of
only 8 references or less.

The classic case of ping-pong interference is when the beginning
of two arrays fall into the same cache block. References to these
arrays in the same nest with identical linear subscript expressions
will then ping-pong during execution. The probability that the first
elements of two arrays fall in the same cache block is low, about1=(number of cache blocks), suggesting ping-pong does not occur
frequently (Issue 2.a). We found however that ping-pong between
two arrays occurs repeatedly, but for short periods of time. The
recurrence of the same ping-pong sequences may result in very
irregular miss distributions across cache blocks: a high of 6% of
misses in DYFESM are concentrated in a single cache block.
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Figure 3: Distribution of Intra-Nest Reuse Locality
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Figure 4: Distribution of Inter-Nest Reuse Locality
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Figure 5: Distribution of Program Reuse Locality
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Figure 6: Distribution of Intra-Nest Miss Locality
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Figure 7: Distribution of Inter-Nest Miss Locality
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Figure 8: Distribution of Program Miss Locality
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Figure 9: Locality of Polluting Lines

Looking at the program source reveals that array subscripts
are often identical, but that the array sizes differ. During the ex-
ecution of a loop, their relative position changes. Consider the
references A(J,I) and B(J,I) declared as A(100,100) and
B(150,150). On each iteration of I, the relative cache position
of A and B is (a+100�I) mod CS � (b+150�I) mod CS where a
and b are the array base addressesand CS is the cache size in words.
While A and B may not interfere initially, eventually one or more
iterations of the I loop map them to the same cache block, thus
inducing ping-pong misses. The 2-way set-associative 8-Kbyte
cache eliminates most of this ping-pong effect and the resulting
spatial misses at short reuse distances.

4.2.2 Pollution

References with spatial locality across outer loops also cause spatial
misses, for example, E(I,J) where I is the outer loop and J the
inner loop in Stencil. The spatial locality occurs after a complete
execution of the inner loop. Since the spatial locality is far apart,
it is difficult to exploit. As we discussed in Section 4.2, loop
interchange can solve this problem for some nests [CMT94].

We found such references to be responsible for a high share of
global pollution, in line with Assertion 1.c: Most cache pollution is
due to spatial-only blocks. This assertion arises from the assump-
tion that references that only exhibit spatial locality like A(J,I)
in Matrix-Vector Multiply are the culprits in pollution. The Assist-
Cache of the HP-7200 [Pou94] and stream buffers [MW96] use
cache bypass to avoid pollution from blocks with only spatial lo-
cality. In Figure 9, we measure polluting blocks within nests by
evaluating the ratio of temporal to spatial reuses for each block upon
its eviction from cache. This ratio defines the 7 classes indicated
in Figure 9. Between the time a block is flushed and it is reused
again, we record the number of blocks in each class that polluted
the locality, i.e., that were loaded in the same cache block between
the two references. Figure 9 accumulates these statistics over all
cache lines and all reuses. For example, the temporal/spatial classes
demonstrate that less than 30% of cache blocks that pollute the
cache are reused both spatially and temporally (a temporal/spatial
ratio greater than 0).

In line with Assertion 1.c, very few polluting blocks exhibit
numerous temporal reuses. But the very high fraction, about 40%,
of polluting blocks that have no spatial reuse (only a single word
is used) is surprising. (This result is consistent with the intra-nest
temporal locality demonstrated in Section 4.1.) When pollution is
measured over all the references in the program, then the ratio of
polluting blocks with no spatial reuse is smaller, but still remains
high at 20% (and for 40% of blocks, all words are not used). These
statistics contradict Assertion 1.b. An important corollary to this
observation is that cache blocks are not efficiently exploited and
many loaded words are not used, wasting cache bandwidth. Other
works support these results [BKG96, TFMP95, WHK91]. Future

architectural and software improvements to cache performance may
therefore need to selectively load the cache and/or use adjustable
cache block sizes.

4.2.3 Capacity and Conflict Misses

Previous research demonstrates Assertion 2: Capacity misses oc-
cur more frequently than conflict misses, and both are significant
sources of misses for whole programs [HP95, HS89, SA93]. Con-
flict misses play the lesser role in these results, typically making
up about 30-40% of misses. Figure 12 divides program misses
into self and group,1 capacity and conflict misses, again plotting
the fraction of misses against their distance. Self-conflict misses
occur when both the reuse and the pollution results from different
memory references from the same load/store instruction interfer-
ing in the cache, i.e., mapping to the same block. Such conflicts
can occur more frequently when loop boundaries are different from
array boundaries. Group-conflict misses occur when a different
load/store instruction causes pollution. The graph partitions ca-
pacity misses similarly. Figure 10 provides the same statistics for
intra-nest misses, and Figure 11 illustrates inter-nest misses.

Perhaps the most dramatic difference between intra-nest statis-
tics and previous work on whole programs is that on average, more
than 80% of intra-nest misses are conflict misses (100% are conflict
misses for ADM, QCD2, DYFESM and OCEAN). Only in ARC2D did
capacity misses exceed conflict misses (77% vs 23%). The conflict
locality distances are short, suggesting they could be avoided. On
average, conflict misses reduce to 68% of intra-nest misses with 2-
way set-associativity, but are still a significantly larger fraction than
the average of 30 to 40% conflict misses on whole programs for
direct-mapped caches in Figure 12 and other studies [SA93, HP95].

Considering that these programs have relatively high hit rates
(see Table 2), this result should not have been surprising. The
working set of most executions of a loop nest should fit and already
be in the cache, implying inter-nest misses should be conflict misses.
We confirmed this result by measuring nest working set sizes. The
vast majority of intra-nest misses are in nests with working set sizes
of only 32 to 512 words. In QCD2 and TRFD, several nests had
large working set sizes, about 256 Kbytes, but these misses barely
contribute to the total number of intra-nest misses.

Several software techniques focus on selecting tile sizes that
eliminate capacity misses and do not introduce self-interference
misses [CM95, LRW91]. These tiling studies focus on kernels, and
have yet to demonstrate effectiveness on complete applications.
The lack of capacity misses in Figure 10 indicates that the data set
sizes for these programs are too small to make tiling effective. Wolf
supports this conclusion as he was unable to achieve improvements
from tiling SPEC92 [Wol92]. Larger data set sizes would probably
result in increased capacity misses that may be eliminated by tiling.
Even if tiling increases self-conflict misses, it is also clear from
Figure 10 that eliminating group-conflict misses is also important.
Group-conflicts are however much more difficult to analyze and
reduce [TFJ94]. Hardware mechanisms like victim caches [Jou90]
or higher set associativity may be more likely to eliminate these
misses (see Section 5.1.1).

4.2.4 Miss Characteristics of Individual Nests

We also measured how the individual nests contribute to the overall
misses. Misses are not concentrated in a few nests, but rather
distributed over 10 or more nests in all benchmarks, with 90% of
misses requiring 40 nests in FLO52. We also found that the miss
rates of nests that induced the most raw misses could vary from a
high of 30% in ADM to a low of 10% in TRFD. To determine if
optimizations can have the same effect across different executions
of the same nest, we measured nest miss variations. Nest misses
proved to be very stable. 90% of nests have nearly the same number1We use group-conflict instead of the more frequently used term cross-conflict for
consistency with the rest of the paper.
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Figure 10: Capacity/Conflict Intra-Nest Misses
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Figure 11: Compulsory/Capacity/Conflict Inter-Nest Misses
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Figure 12: Compulsory/Capacity/Conflict Program Misses

of misses on every execution, and the other 10% only have small
variations, possibly because loop bounds are changing.

Another side-effect of the small working set sizes in nests is that
each nest only uses a small part of the cache (see Section 4.2.3).
The cache is thus often underutilized within a nest, and many blocks
reside in cache even though they are dead and will not be used again.
These blocks often have long agonies, i.e., they stay in the cache
a long time after they die, and on average 60% of dead blocks
are replaced by blocks from a different nest. Long cache block
agonies have also been observed by Wood et al. [WHK91] and
Burger et al. [BGK95].

4.2.5 Summary of Results

The major findings of this section refute Assertions 1 and 2. Instead
of a preponderance of spatial reuse, we find a more balanced role

between spatial and temporal reuse (Assertion 1.a), particularly
group-temporal reuse. The majority of intra-nest misses are spatial,
and tended towards short reuse distances for the direct-mapped
cache. The high number of blocks with few spatial or temporal
reuses reveals that cache blocks are poorly exploited (Assertion 1.b).
Cache blocks that are only referenced once or a few times also
significantly pollute the cache and are responsible for many misses
(Assertion 1.c). We find a large fraction of intra-nest misses are
group-conflict misses, in contrast to previous work on complete
applications. This result is consistent with higher hit rates, since
programs that fit in the cache will have relatively few capacity
misses, and capacity misses will thus increase in importance. Ping-
pong occurs relatively frequently (Assertion 2.a) and accounts for
some conflict misses. Spatial misses with large strides are also a
source of conflict misses. To use the cache more effectively will
require new hardware, software, and combined solutions.

5 Inter-Nest and Program Data Locality

In this section, we investigate inter-nest locality, locality that occurs
across outer nests and between loop nests. We explore Assertion 3
and compare intra-nest, inter-nest, and program behavior.

.

5.1 Inter-Nest and Program, Reuse and Misses

The vast majority of hardware and software techniques to improve
cache performance target individual nests. This strategy implies
Assertion 3: Most reuse occurs within a nest rather than across
nests. Most researchers correctly state that majority of execution
time is spent in loops which is subtly different from Assertion 3.
Figure 13 and 14 partition misses by load/store distances and indi-
cate if the locality is intra-nest or inter-nest. The boxes represent the
increment added for the corresponding distance. It confirms Asser-
tion 3, finding that 93% of hits are intra-nest, and 7% are inter-nest.
ARC2D, OCEAN, BDNA, and FLO52 all achieve 100% intra-nest reuse.
McIntosh et al. confirm this result for small caches, and show when
caches are much larger and hit rates drop, inter-nest reuse is more
prevalent [CKM95].

Although most reuse is intra-nest (Figure 13), more than 70%
of misses are inter-nest (Figure 14). To decrease these misses,
optimizations cannot simply focus on nest optimizations but need
to consider more than one nest, in contrast to Assertion 3.a. An
inter-nest miss is a miss on a block that was previously referenced
in another nest. The natural question posed by Assertion 3.b is how
far apart in the program are these two nests? The further apart they
are, the harder it will be to optimize them in concert. Figure 15 illus-
trates the fraction of inter-nest misses as a function of nest distance,
the number of nest executions since the last reference to the data.
Only 57% of inter-nest locality is exploited, but fortunately, more
than 70% inter-nest misses correspond to short locality distances of
at most 4 adjacent nests, and 50% of inter-nest misses are between
adjacent nests (nest distance = 1). (Since these are nest executions,
they could be the same nest.) This result implies fusion and other
cross nest optimizations have the potential to reduce misses. McIn-
tosh et al. [CKM96] propose an inter-nest reuse analysis to exploit
locality, but have not yet implemented it.

Figures 4, 5, 7, and 8 continue the trend away from spatial
locality that we saw in Section 4.1 for intra-nest reuse. Spatial
locality accounts for only 14% of inter-nest reuse. Nests are unlikely
to achieve to achieve much spatial reuse since that would require one
nest to access part of a cache block and subsequent nests to access
other elements in the block. Group-temporal locality accounts
for 58% and self-temporal for the other 28% of inter-nest reuse.
Since a nest of depth 3 can be surrounded by a loop, reuse from
one execution to the next can result in self reuse. For example in
TRFD, 60% of reuses are self-temporal reuses becauseone large loop
surrounds collections of 1 and 2-deep loop nests in the subroutine
OLDA and elsewhere. Such constructs may be easy targets for
inter-nest optimizations to reduce inter-nest misses.
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Figure 13: Intra-Nest versus Inter-Nest Reuses
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Figure 14: Intra-Nest versus Inter-Nest Misses
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Figure 15: Nest Distance of Inter-Nest Locality

Similar to inter-nest reuse, program reuse is 86% temporal (Fig-
ure 5), with highs of 96% temporal reuse for QCD2 and 94% for ADM.
The inter-nest and program reuse results are consistent with rela-
tively high hit rates. The reader might expect that Figure 5 would
be a combination of Figures 3 and 4, weighted by their relative im-
portance from Figure 13, but it is not. As discussed in Section 2.1,
intra-nest reuse does not include hits due to references from out-
side the loop; inter-nest reuse captures just the reuse due to shared
accesses from different nest; and program reuse includes every
reference in the program. These measurements are thus different
views of the same references.
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Figure 16: Set-Associativity that Eliminates Conflict Misses

5.1.1 Capacity and Conflict Misses

Figures 11 and 12 demonstrate that the fractions of capacity misses
are higher for program misses and inter-nest misses than for intra-
nest misses. Inter-nest capacity misses range from 20% to 100%,
averaging 74%. Inter-nest misses are mostly capacity misses be-
cause the locality distances are large and there is a high probability
that the number of words reloaded between two reuses is greater
than the cache size. In other words, the working set size of a single
nest tends to be small enough to fit in cache while the working set
of multiple nests often exceeds cache size. To further understand
the nature of capacity/conflict misses, we determined the minimum
cache size necessary to remove each capacity miss that occurs in an
8-Kbyte direct-mapped cache with a 32-byte block, and the min-
imum associativity required to remove each conflict miss that oc-
curs in the same cache for intra-nest, inter-nest, and whole program
misses (Figure 16).

Our results show that doubling the cache to 16 Kbytes removes
40% of program capacity misses. Further gains are more difficult to
achieve; a 128-Kbyte cache is required to achievean additional 40%
gain. As expected, a reasonably sized cache (32 Kbytes) eliminates
most intra-nest capacity misses. However, even a large cache size
of 128 Kbytes leaves 20% of inter-nest capacity misses for software
techniques to attack.

Figure 16 plots the fraction of conflict misses removed by dif-
ferent set-associativities of the base cache. A 2-way set-associative
cache removes 73% of intra-nest conflict misses and 90% with a
4-way cache, thus supporting Assertion 2.b. On the other hand,
a 16-way set-associative cache eliminates about 65% of inter-
nest conflict misses. In contrast to Assertion 2.b, 2-way set-
associativity removes only 39% of program conflict misses; 16-
way set-associativity is necessary to remove about 80% of conflict
misses.

5.2 Summary of Results

In this section, we confirmed Assertion 3; most reuse is intra-nest.
We find that most misses are however inter-nest, suggesting new
optimizations should target locality across nests (Assertion 3.a),
and that high associativities are sometimes required to eliminate a
majority of conflict misses (Assertion 2.b). Inter-nest misses often
occur between adjacent nests so it may be possible to remove some
of them (Assertion 3.b). The lack of intra-nest capacity misses is
consistent with the high hit rates of these programs. The individual
nests do not run out of cache, but multiple executions of the same
nest or multiple nests do result in capacity misses. We show that the
locality patterns between intra-nest, inter-nest, and program locality
are usually very different.
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6 Load/Store Locality

Hardware and software optimizations target not only nests, but
the load/store instructions within nests. For instance, prefetching
tables [CB95] analyze the stride of each load/store instruction within
nests. Compilers of course translate array references into load/store
instructions. Optimizing compilers may expand array references
into several load/store instructions. Other advanced optimizations,
like scalar replacement combined with unroll-and-jam [CCK90,
CK94], collapse several array references into a single load/store.
Even with these caveats, load/store statistics tend to reflect the
behavior of array references.

6.1 Stream Locality

6.1.1 Stream Reuse

Probably the most classic characteristic of dense numerical codes
is embodied in Assertion 4: Many memory references within nu-
merical codes correspond to regular references, since load/store
instructions for array references typically reference data with a
constant stride. For this reason, numerical codes are often called
regular codes. A load/store instruction induces a regular refer-
ence if the distance between 3 consecutive references (2 strides)
is identical (the hardware characterization proposed by Chen and
Baer [CB95]). A set of regular references using a constant stride is
called a stream. The stream ends with the nest execution or when
the stride changes. Figure 17 quantifies the fraction of references
that belong to streams. There are three types of references: scalar
references – the load/store instruction references the exact same
address throughout program execution; stream references – the
load/store instruction accesses addresses that differ by a constant
stride (for the moment, ignore the different stream types in Fig-
ure 17); and non-stream references– two consecutive executions of
the load/store instruction have distinct strides. Stream references
clearly dominate (95% of references in TRFD and 90% in DYFESM),
confirming Assertion 4. In some programs, stream references are
slightly less pervasive, 50% of references in ADM and 65% for
FLO52. With respect to Assertion 4.a, the programs also contain a
surprising number of scalar references (24% on average), with 34%
for ADM and OCEAN, even though we compiled using F77’s scalar
optimizations. While this result may be due to register spilling, it
may also simply be dependent on the pairing of the compiler and
instruction set.

6.1.2 Stream Misses

Figure 18 divides the fraction of total nest misses (intra-nest and
inter-nest misses) into stream, scalar, and other references. Misses
are accumulated over all nest instructions which are sorted by de-
creasing number of total misses. These results confirm Abraham
et al.’s [ASW+93] findings that misses are concentrated in partic-
ular load/store instructions. In addition, Figure 18 illustrates that
the concentration is even higher for stream misses, misses occurring
within streams. For instance, 27% of DYFESM’s stream misses occur
within a single instruction. For stream and non-stream misses, the
address referenced changes on each new execution of the load/store
instruction so it seems natural that the fraction of misses and refer-
ences is correlated. With respect to Assertion 4.a, we did not expect
to see such a high fraction of scalar misses, since scalar references
correspond to reuse of the same word. For ADM and DYFESM, scalar
references account for respectively 13% and 21% of all nest misses.
The same concentration of stream misses in specific instructions is
also found in scalar misses.

6.1.3 Types of Streams and Stream Strides

Figure 17 splits streams into 4 categories: fixed-length streams –
the stride change is always the same (this behavior is typical of
rectangular loop nests); strided-length streams – the stride change
itself is regular (this behavior is typical of triangular loop nests);
irregular streams – the stride change is irregular; and single-length
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Figure 17: Stream Types, Lengths, and Frequencies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Log2(Number of Instructions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n o

f N
es

t M
iss

es

In-Stream
Scalar References
Non-Stream References

Figure 18: Stream, Scalar, and out of Stream Misses

streams – the stride never changes during the stream and the stream
ends with the nest. Fixed-length and single-length streams typ-
ically attain spatial reuse on the inner loop. For example, the
reference to Y in Matrix-Matrix Multiply in Figure 1 is a single-
length stream if the leading dimension of Y is equal to the loop
bound N, because the stride would never change even between two
executions of the J loop. If the declaration differs, the stream is
a fixed-length stream because stride will change every time the J
loop ends. Single-length and fixed-length streams are dominant in
Figure 17. For these numerical codes, this result confirms the first
part of Assertion 4.c: Loop nest structures are mostly rectangular
and triangular. Triangular loops are very infrequent: 2% of all
nests in these codes, except for 10% in DYFESM. Irregular stream
lengths are also extremely infrequent. Single-length streams rep-
resent 43% of all references. These references correspond to loop
invariant references in nests where loop bounds match array bounds.

Table 3 presents the stride distributions for each program and
confirms Assertion 4.b: The most commonly used stride value is 1.
The table includes the 5 most frequently used strides and its fraction
of total stream references. Array element sizes in BDNA, TRFD, and
ARC2D are double precision, and are complex in OCEAN, which
results in the stride-1 value of 2 in Table 3. All other codes use
single-precision, 1 word data. In QCD2, DYFESM, FLO52, ARC2D,
and TRFD, stride-1 references account for 50% or more of all stream
references (ranging from 29% for BDNA to 90% for FLO52). Aside
from stride-1 streams, no other general rule on stride values across
programs emerges. Stride values are however consistent within a
program. Each program uses very few distinct strides. At most 5
different strides account for more than 95% stream references. For
instance, 42% of stream references in QCD2 have a stride of 9. 18%
of stream references in TRFD have a stride of 1640, and in ARC2D,
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Table 3: Stride Values in Streams
Code Stride Value (% of all stream references)

ADM 0 (66.68%) 1 (33.32%)
QCD2 1 (49.70%) 9 (41.96%) 0 (8.33%)
BDNA 0 (55.54%) 2 (29.31%) 6 (12.35%)

OCEAN 258 (50.90%) 2 (38.62%) 0 (7.67%)
DYFESM 1 (72.75%) 45 (9.74%) 20 (7.18%)
ARC2D 2 (68.01%) 578 (21.30%) 0 (10.41%)
FLO52 1 (89.72%) 194 (8.99%)
TRFD 2 (54.89%) 1640 (18.06%) 1260 (10.63%) 0 (6.12%) 930 (5.77%)
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Figure 19: Potential Effectiveness of Prefetching

21% of stream references have a stride of 578. ADM has 67% null-
stride references, though only 33% scalar references.2 This result
is due to array references that only vary according to outer-loop
indices and are thus invariant in an inner loop. The small number
of strides suggests load/stores could be tagged with a few bits to
indicate which among the few specified strides should be used for
prefetching. 2 bits are sufficient since there are usually less than
4 strides.

6.1.4 Stream Lengths and Prefetching

The x-axis in Figure 17 plots the number of references between
stride changes. These stream lengths are quite short, often con-
sisting of 16 to 32 references. Since many array declarations are
much larger than these lengths, small data sets are not solely re-
sponsible for short stream lengths. Many linear algebra codes
use sub-matrices of larger matrices. When a nest scans 2-D sub-
matrices, the address of the last element of a row is not consecutive
with the address of the first element of the next row. Therefore, the
stride changes, the stream ends, and hence the short stream lengths.
Short stream lengths can disrupt hardware prefetching. For instance
in prefetch tables [CB95], prefetching stops if the stride changes
and the instruction must make 3 new stream references to stabilize.
Tagged prefetching fails to improve performance when a stride is
larger than a cache block. (Strides that occur at the end of a stream
are usually larger than a cache block.) Since 16 to 32 references to
adjacent words correspond to 2 to 4, 32-byte cache blocks, tagged
prefetching [Jou90] may fail every 2 to 4 prefetch requests. This
result suggests prefetching should handle stride changes [MLG92]
as well as stream references [CB95].

To determine the influence of short length streams and the po-
tential of data tagged prefetching, we implemented a form of virtual
tagged prefetching. Under the same conditions as tagged prefetch-
ing, on a miss or a hit of a prefetched block, the next block is marked
as virtually prefetched but is not actually brought in cache. Thus,2A stream can have a null-stride and not correspond to a scalar if the address
referenced changes from one execution of the nest to another.

the potential of prefetching can be measured since virtual prefetch-
ing ignores cacheside-effects such as flushing prefetched blocks too
early, the pollution of useful data, coherence issues, and limitations
due to the prefetch buffer size [Dra95]. In Figure 19, the fraction
of intra-nest misses that can be potentially removed with prefetch-
ing is plotted as a function of the prefetch distance in number of
references between the prefetch and the use. We observe that vir-
tual tagged prefetching breeds an average of 43% useless prefetch
requests (the data is already in the cache) with a high of 82% for
ADM and a low of 27% for OCEAN. On average, tagged prefetching
can potentially remove more than 57% intra-nest misses, as shown
in Figure 19. Many of these misses are conflict misses (see Sec-
tion 4). Figure 19 also quantifies prefetch distances in number of
references and shows that half of useful prefetch requests are used
many references later, which would require significant buffering.

6.2 Summary of Results

In this section, we confirmed Assertion 4, but also found there
were many short streams that require special care to exploit, and
that the impact of scalars may not be negligible (Assertion 4.a). A
more detailed study of stream length characteristics showed that
triangular or irregularly-strided loops are very infrequent. Most
loops are rectangular (Assertion 4.c). We also found many strides
other than than stride-1 (Assertion 4.b), and that each program was
characterized by a few specific stride values. Finally, we briefly
evaluated the impact of these observations on data prefetching.

7 Conclusions and Future Work

In this paper, we demonstrate that nests differ from programs in
some important locality characteristics, and that numerical codes
are not yet as well understood as one might expect. We develop
a new framework to quantify and measure program locality. We
confirm and provide new insights to some popular assertions. For
example, we confirm that most reuse occurs in nests, but most
misses are actually inter-nest and the nests are nearby. We also
confirm many references are in stream references of stride 1, and
that other stride values vary across programs, but are consistent
within a program. In addition, we present results that suggest
several popular assertions are at best overstatements. For instance,
we find spatial and temporal locality have balanced roles for intra-
nest reuse, but temporal locality dominates inter-nest, and program
reuse in our test suite. We find conflict misses the most significant
source of intra-nest misses and 2-way set-associativity unable to
resolve many of them. Our results are fairly consistent across
our test suite, but we still intend to measure additional programs,
including SPEC95, with larger data sets and a variety of cache
organizations.

We pointed out several possible ways for improving cache per-
formance. For instance, hardware and software could cooperate to
use the cache more selectively with data bypass and prefetch; com-
pilers should address inter-loop reuse; and compilers and architects
still need to address the interference problem. In summary, there
is still room to improve the efficiency and effectiveness of data
caches.
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