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Abstract

Loop fusion is a program transformation that merges multiple loops into one and is an effective optimization both

for increasing the granularity of parallel loops and for improving data locality. This paper introduces typed fusion, a

formulation of loop fusion which captures the fusion and distribution problems encountered in sequential and parallel

program optimization. Typed fusion is more general and applicable than previous work.

We present a fast algorithm for a typed fusion on a graph G = (N;E), where nodes represent loops, edges represent

dependence constraints between loops and each loop is assigned one of T distinct types. Only nodes of the same type

may fuse. Only nodes of the same type may be fused. The asymptotic time bound for this algorithm isO((N +E)T ).
The fastest previous algorithm considered only one or two types, but was still O(NE) [KM93]. When T > 2 and

there is no reason to prefer fusing one type over another, we prove the problem of finding a fusion with the fewest

resultant loops to be NP-hard. Using typed fusion, we present fusion and distribution algorithms that improve data

locality and a parallel code generation algorithm that incorporates compound transformations. We also give evidence

of the effectiveness of this algorithm in practice.

1 Introduction

Loop fusion is useful because it can increase the granule size of parallel loops and expose opportunities to reuse

variables in local storage. When it can be legally applied, loop fusion transforms multiple distinct compatible loop

nests into a single nest. Loop nests can be incompatible for a variety of reasons. For example, the outer loop in one

nest could be parallel while the other is sequential. We do not fuse these nests, because the resultant loop must be

sequential.

One important source of incompatibility is conformability. Two loop headers are said to be conformable if they

have the same number of iterations and are both either sequential or parallel loops. Note that they need not have the

same index variable. Previous algorithms for performing loop fusion have only considered the case when all loop

headers are conformable [Cal87, GOST92, KM93].

In typed fusion, we consider a wider class of problems where the loops being considered for fusion need not have

conformable headers. The type of a loop or loop nest is determined by its header(s). Two loop nests with conformable

headers have the same type. Typed fusion seeks to find the minimal number of loops resulting from a fusion in which

nodes of a different type cannot be fused. Example 1 shows the application of typed fusion of sequential loops in order

improve variable reuse on a uniprocessor.�This research was supported in part by the Center for Research on Parallel Computation, a National Science Foundation Science and Technology

Center.
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L1 DO J = 1, JMAXD
DO I = 1, IMAXD

F(I,J,1)=F(I,J,1)�B(1)L2 DO K = 2, N-1 G1 DO J = 1, JMAXD
DO J = 1, JMAXD DO I = 1, IMAXD

DO I = 1, IMAXD F(I,J,1)=F(I,J,1)�B(1)
F(I,J,K)=(F(I,J,K)-A(K)�F(I,J,K-1))�B(K) TOT(I,J) = 0.0L3 DO J = 1, JMAXD TOT(I,J)=TOT(I,J)+D(1)�F(I,J,1)

DO I=1, IMAXD
TOT(I,J) = 0.0 G2 DO K = 2, N-1L4 DO J = 1, JMAXD DO J = 1, JMAXD

DO I = 1, IMAXD DO I = 1, IMAXD
TOT(I,J)=TOT(I,J)+D(1)�F(I,J,1) F(I,J,K)=(F(I,J,K)-A(K)�F(I,J,K-1))�B(K)L5 DO K = 2, N-1 TOT(I,J)=TOT(I,J)+D(K)�F(I,J,K)

DO J = 1, JMAXD
DO I = 1, IMAXD

TOT(I,J)=TOT(I,J)+D(K)�F(I,J,K)

(a) Original (b) After Typed Fusion

Example 1: Subroutine tridvpk from ERLEBACHER.

Example 1(a) contains a fragment taken from the subroutine tridvpk in ERLEBACHER1 where JMAXD, IMAXD,

and N are compile time constants. If we only consider fusion problems where all the nests are conformable (as we did

in our previous work [KM93]), we would only attempt to fuse L3 and L4.

Using typed fusion, we instead identify two types, t0 and t1 of conformable loop nests which may be fused, whereL1, L3, and L4 are of type t0, and L2 and L5 are of type t1. The typed fusion algorithm presented here fuses L1,L3 and L4 into the fused nest G1 and L2 and L5 into G2 (see Example 1 (b)). Note that even though loops of

type t0 may not fuse with loops of type t1, data dependences between loops of differing types prevent the problems

from being considered in isolation. In our example, the data dependences require G1 to precede G2. In addition,

data dependences represent opportunities to move references to the same memory location closer together in time,

increasing the likelihood of reuse from cache or a register. For instance in G1, the references to F(I,J,1) now occur on

the same iteration rather than (N-1)�JMAXD�IMAXD + 2�JMAXD�IMAXD iterations apart and may therefore be

placed in a register.

This paper addresses the problem of producing the fewest number of resultant loop nests for the typed fusion

problem without violating dependence constraints. We begin with a short technical background and formulate the

typed fusion problem. We then contrast this work to previous work. In Section 5, we further motivate typed fusion

by presenting several of its applications in parallel and sequential code generation. We next show typed fusion to be

NP-hard if the number of types is not bounded.

In Section 7.1, we present an algorithm which fuses loops of the same type in a graph with typed nodes, dependence

edges and fusion-preventing dependence edges. This algorithm requires O(N + E) time and space. We employ this

algorithm to produce an O((N + E)T ) time algorithm for ordered typed fusion, in which the T types can be strictly

prioritized. This algorithm produces a fusion that is incrementally optimal in the sense that the fusion produces the

minimum number of loops of each type, assuming that the fusions of all the higher-priority types are given and cannot

be changed. Finally, Section 8 gives preliminary evidence of the effectiveness of typed fusion.

2 Technical Background

2.1 Dependence

We assume the reader is familiar with data dependence [Ber66, KKP+81] and the terms true, anti, output and input

dependence, as well as the distinction between loop-independent and loop-carried dependences [AK87]. Parallel1An ADI solver written by Thomas M. Eidson at ICASE
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loops have no loop-carried dependences and sequential loops have at least one.

2.2 Safe Loop Fusion

Loop fusion is a loop-reordering transformation; it changes the order in which loop iterations are executed. A

reordering transformation is said to be safe if it preserves all true, anti and output dependences in the original program.

Input dependences need not be preserved.

Consider safe loop fusion between two loops (or loop nests) with conformable headers. Between two candidates

the following cases may occur: (1) no dependence, (2) a loop-independent dependence, and (3) a dependence carried

by an outer loop which encloses the candidates. Clearly, fusion is always safe, but maybe not desirable for case (1).

Fusion is also safe in case (3); any loop-carried dependence between two loops must be on an outer loop which encloses

them and fusing them does not change the carrier, thus preserving the dependence.

In the case of a loop-independent dependence, fusion is safe if the sense of the dependence is preserved, i.e., if

the dependence direction is not reversed. A simple test for this case performs dependence testing on the loop bodies

as if they were in a single loop. After fusion, a loop-independent dependence between the original nests can (a)

remain loop-independent, (b) become forward loop-carried or (c) become backward loop-carried. Since the direction

of the dependence is preserved in the first two cases, fusion is legal. Fusion is illegal when a loop-independent

dependence becomes a backward carried dependence after fusion. These dependences are called fusion-preventing

dependences [AS79, War84].

Since a loop is parallel if it contains no loop-carried dependences and is sequential otherwise, fusion in case (b)

is safe but prevents parallelization of the resultant loop. If either one or both of the loops were parallel, fusion would

reduce loop parallelism. Consequently, when fusion is concerned with maximizing loop parallelism, these dependences

are fusion-preventing. The algorithms below only perform safe fusions.

2.3 Loop Distribution

If loop distribution is applied to create the finest possible loop nests, then to exploit data locality or increase the

granularity of parallel loops, loop fusion must be applied [KM93]. Two applications which use typed fusion to perform

loop distribution is described in Section 5. However, all the fusion algorithms are applicable to loop distribution.

3 Typed Fusion

We represent the typed fusion problem with a graph in which each candidate loop nest is represented by a node. We

say a pair of nests with depths d1 and d2 are conformable at level k (where k � d1 and k � d2) if loops 1 to k are

perfectly nested and each pair of loop headers is conformable. A pair of conformable loop headers have the same

number of iterations at each loop level and when generating parallel loops, they are either both parallel or sequential.

If two nests have conformable headers at level k, they have the same type, otherwise their types are distinct and they

cannot be fused. Each program fragment which falls between a pair of candidate nests is also assigned a node and a

unique type, such that it may not fuse with any other node. Dependence and fusion-preventing edges from statements

represented by one node to statements represented by a different node correspond to edges with the same orientation

in the fusion graph. These edges further restrict the safe fusions which may be performed.

Given the definition of dependence on the original program ordering, the fusion graph is a directed acyclic graph

or DAG. Typed fusion partitions nodes into fusion sets using the following rules and goal.

Rules:

1. Separation constraint: two nodes of different type cannot fuse.
2. Fusion-preventing constraint: two nodes connected by a fusion-preventing edge cannot fuse.
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3. Ordering constraint: the relative ordering of two nodes connected by a dependence edge cannot

change.

Goal: without violating the constraints, fuse nodes of the same type so that resultant program has a

minimal number of nodes.

4 Related Work

Typed fusion considers more general and complex problems and subsumes the problems that have previously been

addressed in the fusion literature [Cal87, GOST92, KM93]. In addition to being more powerful, the typed fusion

algorithm is O((N + E)T ) and is quicker than previous solutions when applied to the same problem domain. In

Callahan’s dissertation, a greedy loop fusion algorithm introduces both task and loop parallelism, but does not address

improving data locality or granularity of loop parallelism [Cal87]. The greedy algorithm is O(N2 + E) space and

time and is applicable only to a collection of conformable nests of a single type.

Gao et al. consider a weighted loop fusion problem for improving reuse on uniprocessors with and without

pipelining [GOST92]. Their work is based on the maximum-flow/minimum-cut algorithm, but only considers sets of

loops with conformable headers, i.e., a single type T = 1. Their algorithm is limited because it does not reorder nests

and it is not clear if its additional complexity results in better solutions. The algorithm is O(knm log(n2=m)) time,

where k is the number of fusion preventing edges, n is the number of nodes, and m is the number of edges.

For increasing the granularity of parallel loops, our previous work focused on a special case of typed fusion [KM93].

In this problem, all the nests have the same number of iterations and nodes are either marked parallel or sequential,

i.e., T = 2. The solution presented is O(NE), but is only minimal in the number of parallel loops. We now have

an algorithm for this problem which is minimal in the number of parallel loops and the total number of loops. In our

previous work, we also considered the same weighted fusion problem as Gao et al. and proved it NP-hard [KM93].

We prove below that even the unweighted problem is NP-hard for T > 2. Typed fusion subsumes our previous work

and fully characterizes general fusion problems.

5 Applications of Typed Fusion

This section describes three important applications of typed fusion.

5.1 Sequential-Parallel Fusion or Loop Distribution for Parallelism

Suppose you create a collection of loops by distributing a single original loop around the statements in its body and

then parallelize the loops wherever possible. The result is a collection of loops with conformable headers that come in

two categories: parallel and sequential. A typed fusion algorithm with the two types, parallel and sequential, may be

used to fuse these loops back together for maximum loop granularity.

5.2 Loop Fusion for Reuse

Given a graph which represents a collection of loop nests and code that is not in any loop, we would like to fuse

conformable nests when they contain statements that access the same memory location, i.e., introduce reuse. For

obvious reasons, fusing to introduce reuse needs to consider input dependences in addition to the true, anti and output

dependences required for correctness. We thus add any undirected input dependence edges to the typed fusion graph.2
In fact, only true and input dependences indicate opportunities for reuse of a value in a register since a write kills the2Input dependences are undirected because the references may occur in either order.
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L1 PARALLEL DO J = 1, JMAXD PARALLEL DO J = 1, JMAXD
DO I = 1, IMAXD DO I = 1, IMAXD

F(I,J,1)=F(I,J,1)�B(1) F(I,J,1)=F(I,J,1)�B(1)=) TOT(I,J) = 0.0L2 PARALLEL DO J = 1, JMAXD TOT(I,J)=TOT(I,J)+D(1)�F(I,J,1)
DO K = 2, N-1 PARALLEL DO J = 1, JMAXD

DO I = 1, IMAXD DO K = 2, N-1
F(I,J,K)=(F(I,J,K)-A(K)�F(I,J,K-1))�B(K) DO I = 1, IMAXD

F(I,J,K)=(F(I,J,K)-A(K)�F(I,J,K-1))�B(K)L3 PARALLEL DO J = 1, JMAXD TOT(I,J)=TOT(I,J)+D(K)�F(I,J,K)
DO I=1, IMAXD + + + +

TOT(I,J) = 0.0 PARALLEL DO J = 1, JMAXD
DO I = 1, IMAXDL4 PARALLEL DO J = 1, JMAXD F(I,J,1)=F(I,J,1)�B(1)

DO I = 1, IMAXD TOT(I,J) = 0.0
TOT(I,J)=TOT(I,J)+D(1)�F(I,J,1) TOT(I,J)=TOT(I,J)+D(1)�F(I,J,1)

DO K = 2, N-1L5 PARALLEL DO J = 1, JMAXD DO I = 1, IMAXD
DO K = 2, N-1 F(I,J,K)=(F(I,J,K)-A(K)�F(I,J,K-1))�B(K)

DO I = 1, IMAXD TOT(I,J)=TOT(I,J)+D(K)�F(I,J,K)
TOT(I,J)=TOT(I,J)+D(K)�F(I,J,K)

(a) Parallelized Nests (b) Two iterations of Typed Fusion by ParallelCodeGen

Example 2: Subroutine tridvpk from ERLEBACHER.

live range of a value. On many modern uniprocessors, even the time to write a cache line does not differ appreciably

whether the corresponding line is in cache or not. Accordingly, reuse may only be improved by fusion when loop nests

are connected by a path of true and/or input dependences.

The typed fusion graph G = (N;E) for reuse is thus constructed by adding input edges and typing the nests

as follows. Two nodes have the same type if their nests are conformable and there exits a path in G between them

consisting only of true and input edges. Returning again to Example 1, L1 and L4 are compatible and connected by

input dependence, and L3 and L4 are connected by a true dependence. By transitivity, L1, L3, and L4 are assigned the

same type. This model may be further refined to keep register pressure down by assigning the same type only when

the references may share a register after fusion.

We can also weight the edges to further differentiate between fusion choices. This problem is NP-hard even for

one type [KM93]. Extending this algorithm to the weighted problem for reuse is left for future work.

5.3 Parallel Code Generation

Now we examine the problem of performing loop fusion as part of a general automatic parallel code generator.

Given L = fl1; l2; :::; lng a collection of nests and code that is not in any nest, the body of each nest li may also be a

collection of nests and statements. This view inspires a hierarchical code generation scheme we call ParallelCodeGen.

The basic strategy is to parallelize each nest li independently and then fuse the results together. If li cannot be

parallelized, it is decomposed into the finest possible subnest using maximal distribution on which ParallelCodeGen is

applied recursively. In a little more detail, the following steps make up ParallelCodeGen.

1. For i = 1 to n attempt to parallelize li. We use techniques described elsewhere [KM92] which perform loop

interchange and other transformations to introduce outer loop parallelism and effectively exploit data locality.

A parallelization strategy appropriate to the target architecture should be selected. If li cannot be parallelized,

maximally distribute li into subnests SN = fs1; s2; :::; smg and invoke ParallelCodeGen recursively on SN .

2. After all li have been considered, type the nests as deeply as possible, i.e., if two or more nests of depth d are

conformable to depth d, assign them a unique type. A worst case O(N2) time algorithm to create these types

places l1 into an equivalence class and considers adding l2. If l2 and l1 are conformable at any level k, add l2 to

the class and mark it with k, otherwise create another class. Now consider adding lj to a class with 2 or more
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Figure 1: A Typed Fusion Conflict

1 2

3 4

type 1type 0

members. If lj is conformable with a member at a deeper level than k, then the members conformable to lj are

split into a new class. Each equivalence class is then assigned a unique type.

3. Apply typed fusion. If fusion is applicable, repeat step 2 but find equivalence classes only for depth k � 1 or

shallower, where k is the depth of the deepest nests just fused and k > 1.3
As an example, we return to ERLEBACHER. Assume a parallelization strategy that simply finds a parallel loop and

moves it to its outermost legal position. In Example 1, all the J loops would be made parallel and inL2 andL4 the J loop

would be shifted into the outermost position, completing step 1 in ParallelCodeGen as illustrated in Example 2(a). The

first iteration of steps 2 and 3 then assign the classes {L1,L3,L4}and {L2,L5}distinct types and fuses each at depth 2

and 3 respectively, resulting in the two nests in the top right corner of Example 2(b). The second iteration of steps 2,

builds an equivalence class for depth 2 or shallower. The two nests are conformable at level 1 and are safely fused in

step 3, resulting in the single parallel nest in Example 2(b).

This hierarchy prefers fusions of deeper loop nests which creates the most opportunities for reuse. An alternative

strategy which prefers larger granularity of parallelism fuses beginning with single outermost loops, recursing on inner

loops inside any fused region. In Example 2, since all the fusions of conformable headers are legal, fusing innermost

first or outermost first makes no difference in the result.

6 Unordered Typed Fusion

The unordered typed fusion problem assumes that there is no reason to prefer fusion of one type of node over another.

Consider the fusion graph depicted in Figure 1. In this graph, if we fuse the two nodes of type 0, we cannot fuse the

nodes of type 1 because that would introduce a cycle in the fused graph. Such a cycle is illegal because it is impossible

to chose an order for the resulting nodes. How difficult is it to find the optimal solution for the unordered typed fusion

problem with the constraints enumerated in Section 3, where optimal means fusing the nodes into the fewest number

of resultant loops?

Theorem 1: Unordered Typed Fusion is NP-hard.

Proof. To establish the result, we present a polynomial-time algorithm for reducing Vertex Cover to Unordered Typed

Fusion. Vertex Cover is the problem of choosing a minimal set S of vertices in an undirected graph G = (V;E) such

that every edge in V is incident on at least one vertex in S. Construct a fusion graph GF = (VF ; EF ) as follows.3Two nests conformable at level k are also clearly conformable at level k � 1.
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1. Represent each vertex v 2 V from Vertex Cover by two nodes hv and tv with the same unique type in VF .
2. For each edge (v; w) 2 E add two edges (hv ; tw) and (hw; tv) to EF .

This construction clearly takes time proportional to the size of the original Vertex Cover graph.

Claim: There is a solution S of size k for the Vertex Cover problem G = (V;E) if and only if there is a solution of

size V + k to the Unordered Typed Fusion problem GF = (VF ; EF ).
If. Assume there is a solution of size k to the Vertex Cover problem, i.e., there exists a set S of size k which is an

edge cover for G = (V;E). For each node v 2 S, place a fusion-preventing dependence (hv; tv) in GF . If w is not

in S, no fusion-preventing edge is needed between hw and tw in GF . The only way an edge might be required is if

there is another pair hx and tx such that (hw; tx) and (hx; tw) are both in EF and there is no fusion-preventing edge

(hx,tx). But the corresponding edge (w; x) is in E and neither w nor x is in S, implying S is not an edge cover, a

contradiction. Every hw and tw, where w is not in S, can therefore be fused. After fusion, there are k types with two

vertices, V � k types with only one vertex, and the size of the solution graph is V + k.

Only If. Assume that there exists a set F of types in which the hv and tv node are fused and the size of this set isV � k. Since the remaining k types have two vertices each, the total number of vertices in GF is V + k. Let S be the

set of vertices in V corresponding to the types that are not in F . S must be an edge cover. If it were not, there would

exist at least one edge (v; w) where neither endpoint is in S, but then there would be edges (hv; tw) and (hw; tv) and

the two pairs hv and tv, and hw and tw would be fused F . Those fusions cannot be in F because it would cause a

cycle in the graph after fusion. 2
Note that the number of types in this reduction corresponds to the number of vertices in the Vertex Cover problem,

which suggests that there might exist polynomial solutions for a fixed number of types. Callahan proved that if a

greedy algorithm is employed on a DAG with a single type, the resulting fusion has the smallest possible number

of partitions [Cal87]. We also believe there exists a polynomial-time algorithm to find an optimal solution to the

Unordered Typed fusion problem for two types. This proof is left for future work.

7 Ordered Typed Fusion

In some applications of typed fusion, there is an implied preference that can help resolve conflicts in the fusion graph.

For example in the simple case of fusing parallel and sequential loops where reuse is not a consideration (the application

from Section 5.1), the parallel loop is always preferred for fusion, because larger granularity is critical for parallelism,

while fusing two sequential loops can only save a little loop overhead.

The ordered typed fusion is a typed fusion problem in which there is an absolute order of the types ft1; t2; : : : ; tkg
such that if there is a conflict between types ti and tj where i < j then it is always preferable to fuse the nodes of

type ti, no matter how many fusions are prevented in types ti+1; ti+2; : : : ; tk as a result. An ordered typed fusion is

incrementally optimal if for each type t, given a fusion of types with higher priority, the fusion for t has a minimal

number of resultant loops. In the next section, we introduce an algorithm that produces an incrementally optimal

solution for the ordered typed fusion problem.

7.1 A Typed Fusion Algorithm

We now explain the algorithm TypedFusion from Figure 2 for typed fusion of a single selected type t0 in a graph with

multiple types. In essence, this algorithm carries out greedy fusion for the single selected type. We define a bad path

for type t to be a path that begins with a node of type t and either contains a fusion-preventing edge between two nodes

of type t, or a node of type different from t. The algorithm treats a bad path as a fusion-preventing edge. Only nodes

of the same type are considered for fusion.

TypedFusion achieves an optimal O(N + E) time bound by choosing the correct node with which to fuse in

constant time as each new node n of the selected type is visited. Intuitively, n can fuse with all its ancestors from
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which there is not a bad path, but it cannot by pass its predecessors to fuse with an ancestor. It can also fuse with nodes

which are neither ancestors nor descendants. MaxBadPrev(n) determines the first node m of type t0 from which there

is no bad path to n. It contains the maximum number of a node of type t0 from which there exists a bad path to the

node n being visited. We show that n cannot fuse with that node or any node with lower number, where nodes are

numbered breadth-first in their fusion group.

The algorithm also computes maxPred(n), the highest number of a direct predecessor of n with which n can

fuse. We show that n cannot fuse with any node numbered lower than that predecessor. The algorithm therefore

computes the fusion node by taking the maximum of the next higher node than maxBadPrev(n) and of maxPred(n).
If the result is 0, then n receives the next higher new number. Consequently, n fuses with a direct predecessor, or a

node from which there is no path to n. The algorithm produces a greedy fusion for the selected type, because it finds

the lowest-numbered node with which n can fuse.

We note that if there is only one type, this algorithm is an O(N +E) algorithm for untyped fusion, the fastest such

algorithm of which we are aware.

Correctness. To establish correctness, we must show that the constraints in the problem definition are observed.

First, the separation constraint is clearly satisfied, because the algorithm fuses only nodes of the selected type. To

show that it obeys the fusion-preventing constraint, we must establish that it never fuses two nodes joined by a fusion-

preventing edge. To show that it satisfies the ordering constraint, we must show that it never fuses two nodes joined

by a path that passes through a node of different type. Since all original edges are left in the graph, this ensures that

fusion does not create a cycle in the output DAG. Both of these hypotheses are established by the following Lemma,

which relies on the greedy structure of the algorithm.

Lemma 1. For each n taken from the worklist W in TypedFusion, n cannot fuse with a previously visited nodex if (a) there exists a previously visited node y 6= x such that type(y) = type(n) = t0, num(y) > num(x) andy cannot legally be fused with n or (b) there exists a node m such that (m;n) 2 E, m can be fused with n, andnum(m) > num(x).
Proof. Suppose there is an element for which neither (a) nor (b) hold, then there must exist some first element n1 for

which they do not hold. Since the algorithm always picks the first node of type t0 in visit order, assume that previous

steps of the algorithm always correctly fused with the earliest possible node of the same type. Recall that a bad path

for type t0 is one that begins at a node of type t0 and either contains a fusion-preventing edge between two nodes of

that type or passes through a node of a different type. We can fuse n1 with any node of type t0 as long as there is no

bad path from that node to n1.

1. To establish condition (a), assume that n1 can fuse with x even though there exists a y of the same type and larger

number that cannot fuse with n1. Since previous steps of the algorithm correctly fuse with the lowest-numbered

node of compatible type, we must assume that y did not fuse with x because it would have been incorrect to do

so. Consequently, there must be a bad path for type(n1) from x to y. But since y cannot fuse with n1, there

must also be a bad path from y to n1. But that means that there must be a bad path from x to n1, so the nodes

cannot be fused.

2. Assume there exists a direct predecessorm of n1 such that type(m) = type(n1) = t0 and num(m) > num(x).
Why did this node not fuse with x? Since previous steps of the algorithm correctly fuse with the earliest possible

node, there must be a bad path for type(n1) from x to m. Hence, there is a bad path from x to n1 and these

nodes cannot be fused.

TypedFusion computes for each node m the quantity maxBadPrev(m), which is the maximum number for nodes

of type t0 visited by the time m is reached from which there is a bad path for type t0 to m. A node n may

8



Figure 2: Algorithm for Fusion of a Specified Type in a Graph

TypedFusion (G, T , t0)

INPUT: G = (N;E) the original typed graphT is a set of typest0 is a specific type for which we will find a minimal fusiontype(n) is a builtin function that returns the type of a node

OUTPUT: L a linear list of fused loops consistent with the constraints

INTERMEDIATE: num(n) is the number of the first visit to node n of type t0.lastnum is the most recently assigned number.maxBadPrev(n) is maxfnum(x)jtype(x) = t0 and 9 a bad path for t0 from x to n}.MaxPred(n) is maxfnum(x)j(x; n) 2 E & x has been visited}.node(i) is an array that maps numbers to nodes such that node(num(x) = x).visited is the number of the first node of type t0 in the graph.next(i) maps the ith node to the number of the next node of the same type.W is a working set of nodes ready to be visited

ALGORITHM:lastnum := 0; count(�) := 0; visited := 0; node(�):= 0; /* Initialization */
for each edge e = (m;n) 2 E do count(n) := count(n) + 1;

for each node n 2 N do {maxPred(n) := 0; maxBadPrev(n) = 0; num(n) := 0; next(n) := 0;

if count(n) = 0 then W := W [ fng end if; }

while W 6= ; do begin /* Iterate over working set, visiting nodes, and fusing nodes of type t0 */
let n be an arbitrary element in W ; W := W � fng; t := type(n);

l1: if t = t0 then /* A node of the type being worked on */

/* Compute node to fuse with. If none, assign a number and add to visited.*/
if maxBadPrev(n) = 0 then afterNoFuse :=visited
else afterNoFuse := next(maxBadPrev(n)) end if;p := max(maxPred;afterNoFuse);
if p 6= 0 thenx := node(p);num(n) := num(x); maxBadPrev(n) := max(maxBadPrev(n);maxBadPrev(x));

fuse x and n and call the result n, making all edges out of either be out of n;

else /* a new node */lastnum := lastnum+ 1; num(n) := lastnum; node(num(n)) := n;

/* append node n to the end of visited */
if lastnum = 1 then visited := lastnum
else next(lastnum� 1) := num(n);end if;

end if; end if;
/* Update maxBadPrev and maxPred for successors and add to W as appropriate */

l2: for each node m such that (n;m) 2 E do {count(m) := count(m)� 1; if count(m) = 0 then W := W [ fmg; end if;
if t 6= t0 thenmaxBadPrev(m) := max(maxBadPrev(m);maxBadPrev(n))
else /* t = t0 */

if type(m) 6= t0 or (n;m) is fusion-preventing thenmaxBadPrev(m) := max(maxBadPrev(m);num(n))
else /* equal types and not fusion preventing */maxPred(m) := max(maxPred(m);num(n));maxBadPrev(m) := max(maxBadPrev(m);maxBadPrev(n))

end if; end if; }

end for; end while;
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Figure 3: Algorithm for Ordered Typed Fusion.

OrderedTypedFusion (G, T )

INPUT: G = (N;E) the original typed graphT is a set of types, ordered by priority

ALGORITHM:

for all t 2 T in order of decreasing type priority do TypedFusion(G, T , t);
topologically sort G to produce final output

end OrderedTypedFusion

not fuse with a node numbered maxBadPrev(n) or lower, by the lemma above. It could, however fuse with

afterNoFuse=next(maxBadPrev(n)).
The algorithm also computes for each node n of type t0 the quantity maxPred(n), the maximum number of a

predecessor of n that can be fused with n. By Lemma 1, n cannot fuse with any node having a number less than

maxPred(n). Thus, if max(afterNoFuse,maxPred(n)) exists, it is exactly the first node with which n may legally fuse.

The algorithm is greedy, because it always chooses to fuse with this node, if it exists.

Since all edges in the original graph are left in the final graph (adjusted to reflect fusion) and we cannot fuse nodes

joined by a bad path, the output graph after fusion is acyclic. 2
Optimality. A greedy algorithm for fusing nodes of the same type repeatedly selects loops from a set for which all

predecessors have been assigned to a partition and adds them to the current partition until no more can be added. At

that point, it starts a new current partition. In his dissertation, Callahan proved that if a greedy algorithm is employed

on a DAG where all the nodes are of the same type, the resulting fusion is optimal, i.e., it has the smallest possible

number of partitions [Cal87]. The proof here is similar. TypedFusion carries out the greedy algorithm for a selected

type because, for each node n, it finds the lowest-numbered node in visited(type(n)) that can be fused with n. 2
Complexity. There are two major phases in this algorithm: initialization and worklist iteration. Clearly, initialization

takes no more than O(N + E) time. Consider the worklist iteration. Each node is put on and extracted from the

worklist W exactly once, so the total time taken by worklist extraction is O(N). For each node extracted, two major

phases are executed. In the code beginning at label l1, which selects the node for fusion, no operation takes more than

constant time. The loop beginning at label l2 examines each successor of the node being visited exactly once, so the

total number of iterations of this loop is O(N +E). Within a single iteration, all of the operations can be implemented

in constant time. Hence, the total time for the loop is O(N +E).
Procedure OrderedTypedFusion can be used to solve the ordered typed fusion problem by calling it for each type

in order of reducing priority, as shown in Figure 3. Proof that this algorithm is correct and produces an incrementally

optimal schedule is straightforward. Since algorithm TypedFusion is called once for each type, the entire process takesO((N +E)T ), where T is the total number of types in the graph.

Discussion. To adapt this algorithm for untyped fusion, some order must be selected in which to consider the types.

This order should be dependent on the application. When fusing for reuse for example, the types should probably be

ranked based on their amount of potential reuse.
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Figure 4: Parallel-sequential Fusion Example with Label Annotations by TypedFusion.
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Example. As an example, we demonstrate the behavior of OrderedTypedFusion on the problem of fusing parallel

and sequential loops from Section 5.1. The input graph is shown in Figure 4, in which parallel loops are indicated by

a double circle and sequential loops by a single circle. The label within each node indicates the order in which that

node is visited.

The labels adjacent to each node illustrate the behavior of the first pass of TypedFusion which fuses the parallel

nodes. The parallel nodes are annotated with the following labels:

(maxBadPrev(parallel), maxPred)! final node number,

and sequential nodes are annotated with a pair:

(maxBadPrev(parallel), -).

Using these labels in Figure 4, we can see that when node 5 is visited it cannot fuse with node 1 because it inherits a

maxBadPrev(parallel) of 1 from the node visited on step 4. The rest of the example is straightforward from examination

of the TypedFusion algorithm. The final graph after fusion is shown in Figure 5.

8 Experimental Results and Discussion

In our previous work, improvements in execution times due to untyped fusion ranged from 4 up to 32 percent [KM93].

Every time fusion was applied it was profitable. For example, untyped fusion of ERLEBACHER on uniprocessors

improved performance between 4 and 17 percent. However, typed fusion on the nests in Example 1 fuses nests of

depth 2 and 3 that provide significant locality and could not be fused in untyped fusion. We expect further improvements

for both parallel and sequential execution.

The fusion problems we have encountered are fairly simple (7 or fewer initial loop nests) and are handled optimally

using these algorithms. This preliminary evidence indicates that a more complex algorithm is probably unnecessary in

practice. However, more complex problems may be presented by Fortran 90 programs. Fusion is especially important

for Fortran 90 because of the array language constructs. To compile Fortran 90 programs, the array notation must be

expanded into loop nests which contain a single statement, providing significantly more opportunities for fusion.
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Figure 5: Final Graph after Fusion, but Before Topological Ordering
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9 Summary

This paper discusses the problem of typed fusion, which seeks to fuse nodes of the same type in a DAG that contains

nodes of several different types. In such a graph two nodes of the same type may be fused if there is no fusion-

preventing edge between them and they are not joined by a path that passes through a node of a different type or a

node of the same type that cannot be joined to either of the endpoints. Finding an optimal solution for the problem of

unordered typed fusion is shown to be NP-hard.

The paper presents an incrementally optimal algorithm for ordered typed fusion of loops that maximizes the

granularity of loop parallelism, therefore minimizing synchronization. The algorithm runs in O((N + E)T ) time,

where N is the number of nodes in the input graph, E is the number of edges and T is the number of types. This

algorithm is applied to several problems in parallel and sequential code generation. One of these applications is a

general framework for parallel code generation using loop fusion and loop distribution.
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