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Abstract

This paper presents a new compiler optimization algorithm that parallelizes applications for symmetric, shared-
memory multiprocessors. The algorithm considers data locality, parallelism, and the granularity of parallelism.
It uses dependence analysis and a simple cache model to driveits optimizations. It also optimizes across pro-
cedures by using interprocedural analysis and transformations. We validate the algorithm by hand-applying it
to sequential versions of parallel, Fortran programs operating over dense matrices. The programs initially were
hand-coded to target a variety of parallel machines using loop parallelism. We ignore the user’s parallel loop di-
rectives, and use known and implemented dependence and interprocedural analysis to find parallelism. We then
apply our new optimization algorithm to the resulting program. We compare the original parallel program to the
hand-optimized program, and show that our algorithm improves 3 programs, matches 4 programs, and degrades
1 program in our test suite on a shared-memory, bus-based parallel machine with local caches. This experiment
suggests existing dependence and interprocedural array analysis can automatically detect user parallelism, and
demonstrates that user parallelized codes often benefit from our compiler optimizations, providing evidence that
we needbothparallel algorithms and compiler optimizations to effectively utilize parallel machines.
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structuring compilers, performance evaluation.
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1 Introduction

One lesson from vectorization is that users rewrote programs based on feedback from vectorizing compilers.
These rewritten programs were independent of any particular vector hardware and were written in a style
amenable to vectorization. Compilers were then able to generate machine-dependent vector code with excellent
results. We believe that just as automatic vectorization was not successful for dusty deck programs, automatic
parallelization of dusty decks is unlikely to yield complete success. Finding medium to large grain parallelism is
more difficult than single statement parallelism and compilers have had limited success on dusty deck programs
[10, 19, 42, 43, 17]. We believe that only a combination of algorithmic parallelization and compiler optimization
will enable the effective use of parallel hardware. This paper provides evidence that this approach is viable.

Since the amount of parallelism a dusty deck program contains is unknown, measuring the success of paral-
lelizing compilers on them is tenuous. The programs may actually be inherently sequential, parallel, or some-
where in between. Since a different version of the algorithmcould potentially achieve linear speed-up, only lin-
ear speed-ups (performance improvements that scale with the number of processors) can be declared a complete
success. Linear speed-up is rare, even for parallel applications due to communication overheads and Amdahl’s
Law. In practice, parallel programs often require algorithms and data structures that differ from their sequential
and vector counterparts. To achieve good parallel performance, the intellectual and programming costs required
for good parallel performance need to be paid. Our ultimate goal is to provide compiler technology that de-
tects and exploits parallelism on a variety of parallel machines, so that the programming cost will only have to
be paid once. Users will concentrate on parallel algorithmsat a high level. The compiler will be responsible
for machine-dependent details such as exploiting the memory hierarchy. In this paper, we consider optimizing
Fortran programs for symmetric shared-memory, bus-based parallel machines with local caches.

We present an advanced parallelizing algorithm for complete applications that exploits and balances data
locality, parallelism, and the granularity of parallelism. The algorithm uses existing dependence analysis tech-
niques and a new cache model to drive the following loop optimizations: loop permutation, tiling, fusion, and
distribution. It tries to organize the computation such that each processor achieves data locality, accessing only
the data in its own cache, and such that the granularity of parallelism is large. Since we find that large grain
parallelism often crosses procedure boundaries, the algorithm uses existing interprocedural analysis and new
interprocedural optimizations. The main advantage of our optimization algorithm is that it yields good results,
and is polynomial with respect to loop nesting depth (it doeshowever use dependence analysis which is, of
course, more expensive). In this paper, we present a new parallelizing algorithm, but clearly good analysis is a
prerequisite to this work and we discuss the analysis that enables our parallelization algorithm to succeed. We
present our parallelization algorithm in detail in Section3.

To test the algorithm, we performed the following experimental study. We collected Fortran programs writ-
ten for a variety of parallel machines. Most of the programs in our suite are published versions of state-of-the-art
parallel algorithms. The programs use parallel loops and two also use critical sections. We created sequential
versions of each program by converting the parallel loops tosequential loops and by eliminating the critical
sections. The algorithm then optimized this version. We do not recommend that users convert their programs to
serial versions before handing it to the compiler, but we usethis methodology to assess the ability of the com-
piler to find, exploit, and optimize known parallelism. We used ParaScope [12, 27], an interactive parallelization
tool, to systematically apply the transformations in the algorithm to the sequential programs. ParaScope imple-
ments dependence analysis, interprocedural analysis, andsafe application of the loop transformations (tiling,
interchange, fusion, and distribution), but not the interprocedural optimizations, nor the optimization algorithm
itself. Sections 4 and 5 detail this experiment.

In Section 6, we show that the algorithm matched or improved the performance of seven of nine programs
on a shared-memory, bus-based parallel machine with local caches. In addition to dependence analysis, many of
the programs require interprocedural and symbolic analysis to find parallel loops. We also analyze which parts
of the algorithm are responsible for the improvements. Mostof the improvements occur in cases where data
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locality and parallelism intertwine. The programmers werenot able to exploit both when they conflict, but our
algorithm does. This result suggests a combination of algorithmic parallelism and compiler optimization will
yield the best performance.

To explore whether a machine-independent parallel programming style exists, we also examined program-
ming styles in light of the algorithm’s successes and failures in Section 6. We found that for the most part,
these parallel programmers use a clean, modular style that is amenable to compiler analysis and optimization.
Although the test suite is small, we believe this result addsto the evidence that programmers can write portable,
parallelizable programs for scientific applications from which compilers can achieve very good performance.

The remainder of this paper is organized as follows. Section2 briefly reviews the technical background.
Section 3 describes the parallelization algorithm. Section 5 presents our experimental framework and the pro-
gram test suite and its characteristics. Section 4 measuresthe effectiveness of our algorithm at parallelizing
and optimizing the programs in our test suite. Section 7 compares our work to other research in this area, and
Section 8 summarizes our approach and results.

2 Technical Background

This section overviews the technical background on dependence and reuse that is need to understand the paral-
lelization algorithm.

Data Dependence. We assume the reader is familiar withdata dependence[18, 29]. Throughout the paper,~� = f�1 : : : �kg represents a hybrid direction/distance vector for a data dependence between two array refer-
ences. Each entry in the vector describes the distance or direction in loop iterations between references to the
same location. Dependence vectors are written left to rightfrom the outermost to innermost loop enclosing the
references. Data dependences areloop-independentif the references to the same memory location occur in the
same loop iteration andloop-carried if they occur on different iterations.Parallel loopshave no loop-carried
dependences andsequential loopshave at least one.

Sources of Data Reuse. The two sources of data reuse aretemporal reuse, multiple accesses to the same
memory location, andspatial reuse, accesses to nearby memory locations that share a cache line or a block of
memory at some level of the memory hierarchy. (Spatial reuseis sometimes referred to as stride 1 or unit stride
access.) Spatial reuse may result fromself-reuse, consecutive accesses by the same array reference to the same
cache line, or fromgroup-reuse, multiple array references accessing the same cache line. Similarly, temporal
reuse may arise from multiple accesses to the same memory location by a single array reference or by multiple
array references. Without loss of generality, we assume Fortran’s column-major storage.

Augmented Call Graph. We use anaugmented call graphGac to describe the calling relationships among
procedures and loop nest structures in the program [20]. This flow-insensitive call graph contains procedure
nodes and call nodes. For each procedurep that makes a procedure call at sites, an edge connects nodep to
nodes. For each call sites to procedureq, an edge connects nodes to nodeq. The Gac also adds loop nodes for
every loop and edges to represent nesting. For each outer loop l in procedurep, the Gac contains an edge from
nodep to nodel. An inner loop is also connected to its outer loop with an edge. If loop l in procedurep surrounds
a call to a procedureq, the usual edge from nodep to the call toq is replaced by an edge from nodep to nodel and an edge from nodel to the call nodeq. If an outer loop surrounds all the other statements in a procedure,
it is markedenclosing. Note that call and loop nodes will have only one predecessor, but procedure nodes may
have multiple predecessors. For example, Figure 1(b) illustrates the Gac for the program in Figure 1(a).

3 The Parallelization Algorithm

This section describes a new algorithm for parallelizing programs. The algorithm is unique in its ability to exploit
both data locality and parallelism, to increase the granularity of parallelism, and to optimize across procedure
boundaries. Section 3.1 begins by presenting the basic structure of the driver, an overview of each component of
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Figure 1: Two Adjacent Calls todmxpy from Linpackd

(a) original program

subroutine dmxpy(n1, y, n2, ldm, x, m)
double precision y(*), x(*), m(ldm, *)

do j = 1, n2
do i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
enddo

enddo

program main

do t = 1, timesteps: : :
call dmxpy(n1, y, n2, ldm, x, m)
call dmxpy(n1, a, n3, ldm, b, r)

enddo

(b) Augmented Call Graph (Gac)
dmxpy

do j

do i

do t

main

call dmxpy call dmxpy

(c) optimized kernel

subroutine dmxpy(n1, y, n2, ldm, x, m)
double precision y(*), x(*), m(ldm, *)

parallel do ii = 1, n1, tile
do j = 1, n2

do i = ii, min(ii + tile - 1,n1)
y(i) = y(i) + x(j) * m(i,j)

enddo
enddo

end parallel do

program main

do t = 1, timesteps: : :
call dmxpy(n1, y, n2, ldm, x, m)
call dmxpy(n1, a, n3, ldm, b, r)

enddo

(d) optimized program

subroutine dmxpyE(n1, y, n2, ldm, x, m, ii, tile)
double precision y(*), x(*), m(ldm, *)

do j = 1, n2
do i = ii, min(ii + tile - 1,n1)

y(i) = y(i) + x(j) * m(i,j)
enddo

enddo

program main

do t = 1, timesteps: : :
parallel do ii = 1, n1, tile

call dmxpyE(n1, y, n2, ldm, x, m, ii, tile)
call dmxpyE(n1, a, n3, ldm, b, r, ii, tile)

end parallel do
enddo

the algorithm, and an example. The subsequent sections thendetail the individual components of the algorithm.

3.1 Driver

The basic structure of the driver for the parallelization algorithm appears in Figure 2. TheDriver algorithm
proceeds top down recursively from the root of the Gac, such that a noden is only visited once all its predecessors
have been visited. All nests and procedures nodes are initialized tounvisitedandunoptimized. Notice thatDriver
is fairly specialized to the node type. For a call node, it does book keeping forvisitedandoptimizedand then
recurses further down the call chain. Notice the secondif statement. If all the predecessors of a procedurep are markedoptimized, then parallelism has been introduced in all the calling contexts and the procedure is
not optimized further. Otherwise for a procedure, it collects the outer loop nodes that are adjacent, and calls
Parallelize. Parallelizeuses a variety of transformations that act individually andcollectively on the nests. If
Parallelizedoes not introduce parallelism,Driver recurses further down the call chain. This algorithm performs
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Figure 2:Driver: Driver for Parallelization Algorithm

INPUT: n is a procedure or call node in the Gac, loop nodes are handled withinDriver
ALGORITHM:

procedure Driver(n)
if n is a procedure and any predecessor ofn is not visitedreturn
markn visited
if n is a procedure and all predecessors ofn are markedoptimizedreturn
if n is a call node to procedurep Driver (p) fskip over call nodesg
if n is a procedure node

partition the outer loops nodesL = fl1; : : : ; lkg of n into sets of adjacent outer loopsRi = ffl1; : : : ; ljg; : : : ; flr; : : : ; lkgg
forall i Parallelize(Ri)
forall lk

if lk now contains a parallel loop
mark it and call nodes nested within the parallel loopoptimizedandvisited

forall s, call nodes nested inlk not surrounded by a parallel loopDriver(s)
endforall

endif

only intraprocedural loop transformations. In Section 3.5, we extendDriver to produce multiple optimized
versions of a procedure for different calling contexts, andhandle interprocedural transformations. For purposes
of explanation, we divide the components of our algorithm into the following steps.

Optimize - uses loop permutation and tiling on a single nest to exploitdata locality and parallelism.

Fuser - performs loop fusion and distribution to enableOptimizeon a single nest and to increase the granularity
of parallelism across multiple nests.

Parallelize - combinesOptimizeandFuserresulting in an effective intraprocedural parallelization algorithm
for loop nests.

Enabler - uses interprocedural analysis and transformations to enable theParallelize to be applied across
procedure calls. In particular, it parallelizes and optimizes loop nests containing calls and spanning calls.
It uses the interprocedural transformations (loop embedding, loop extraction, andprocedure cloning) as
needed to enable loop transformations.

Example. To introduce the algorithm, we overview how the algorithm optimizes the program in Figure 1(a) for
a shared-memory multiprocessor. Ideally, we want to organize the computation such that each processor only
uses data in its private cache. The computation would thus exhibit locality, and would never need to get data from
main memory or another processor’s cache. To achieve locality, we want the references in the loop to the same
memory location or adjacent locations to occur within a short period of time. The shorter the period of time,
the more likely the cache line on which the item resides will still be in the cache. Indmxpy in Figure 1(a), the
references toy(i) have spatial locality on thei loop and invariant, temporal locality on thej loop, the referencex(j) has spatial locality on thej loop and temporal invariant locality on thei loop, and the referencem(i; j)
has spatial locality on thei loop and no locality on thej loop. The original loop ordering, with thei loop in the
inner position varying most rapidly, thus achieves temporal or spatial locality for all the references.

Parallelism is usually most effective when it achieves the largest possiblegranularity, the largest amount of
work per parallel task. Indmxpy in Figure 1(a), the outerj loop carries a recurrence and the inneri loop is
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parallel. Maximizing the granularity of this nest thus prefers thei loop in the outer position, but as we showed
above, exploiting locality prefersi in the inner position. If we choose to permute thei loop to the outer position
and parallelize it, we can ruin locality in two ways:

1. If the runtime system assigns adjacenti iterations to different processors, multiple processors will share
cache lines. For example, each processor will update one element ofy(i), causing consistency traffic
between the local caches that sharey(i) and memory. This effect is calledfalse sharing, since each
processor is actually only using and updating independent elements in each cache line. This effect can
dramatically degrade performance [24].

2. Even if the runtime system assigns adjacent elements ofy(i) to the same processor, each pair of processors
may share cache lines. Also, because the reuses ofy(i) are further apart in time than with an inneri loop,
it is more likely thatm(i; j) orx(j) will map to the same cache line causing additional cache misses. This
effect also degrades performance [24].

To achieve locality and parallelism, we thus strip-mine andinterchange thei loop as shown in Figure 1(c).
The outerii loop is parallel, and the inneri loop still attains spatial and temporal locality given a large enough
tile. TheOptimizealgorithm drives this process with a cache model.

Notice also that inmainthere are two adjacent, independent calls todmxpy. In Figure 1(c), processors must
wait for the previous call todmxpy to complete before proceeding. Our analysis uses the Gac and interproce-
dural array section analysis to detect independence and loop structure. The algorithmEnablerthen extracts the
outer loop from each call andFuserputs them into one loop, as illustrated in Figure 1(d). This transformation
eliminates barrier synchronization and can also improve locality. The next section describes each of these steps
in detail.

3.2 Optimize: Data Locality and Parallelism

The most effective and essential component of our parallelization algorithm uses a simple memory model to
drive optimizations for data locality and parallelism [34,24]. We employ loop permutation to improve data
locality and tiling to introduce parallelism. Using a memory model and loop transformations, our algorithm
places the loops with the most reuse innermost and parallel loops outermost, where each is most effective. It
also balances tradeoffs between the two when they conflict.

To simplify locality analysis, we concentrate on reuse thatoccurs between small numbers of inner loop
iterations. Our memory model assumes there will be no conflict or capacity cache misses in one iteration of the
innermost loop.1 The algorithm performs the following five steps.

1. It puts array references that exhibit group-temporal and/or group-spatial locality into the samereference
group.

2. It determines the cost of loop nest organizations in termsof the number of cache lines accessed.

3. It determinesmemory order, the permutation of the loops in the nest that yields the bestdata locality in
terms of the fewest cache lines accessed.

4. It achieves memory order or anearbyloop nest order through loop permutation.

5. It introduces outer loop parallelism bytiling the nest to to maintain locality on individual processors asthe
computation is divided among multiple processors. The tiling step strip-mines and if necessary, permutes
the nest to position an outermost parallel loop.1McKinley and Temam support this assumption [35], and McKinley et al. demonstrate that this memory model works well for

uniprocessor caches [34].
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Figure 3:Optimize: Data Locality and Parallelization Algorithm

INPUT: A loop nestL = fl1; : : : ; lkg
OUTPUT: An optimized loop nestP
ALGORITHM:

procedure Optimize(L)
computeRefGroup for all references inLMO = MemoryOrder(L)P = NearbyPermutation(L;MO)
for j = 1;m f outermost to innermost loop ofP g

if pj parallel
strip minepj and parallelizerj , the resulting outer loop
if (j 6= 1) permuterj into the outermost legal position inP
mark nest optimized
break

endif
endfor

The first four steps determine the amount of reuse for the nestconsidering each loop as if it were innermost.
Based on this measure, the algorithm then permutes the nest to achieve the lowest possible cost over the entire
nest while preserving correctness. Figure 3 contains the procedural version of theOptimizealgorithm, which we
explain in detail below.

3.2.1 Reference Groups

The goal of theRefGroupalgorithm is to avoid over counting cache lines accessed by multiple references that
generally access the same set of cache lines.RefGroupfinds references with group-spatial and group-temporal
locality with respect to a candidate inner loop and places them intoreference groups. For every loopl in the
nest, it considersl as a candidate for the innermost position.

RefGroup: ReferencesRef1 andRef2 belong to the same reference group with respect to loopl if:

1. 9 Ref1 ~� Ref2 , and

(a) ~� is a loop-independent dependence, or

(b) �l is a small constantd (jdj � 2) and all other entries are zero,

2. or,Ref1 andRef2 refer to the same array and differ by at mostd0 in the first subscript dimension,
whered0 is less than or equal to the cache line size in terms of array elements. All other
subscripts must be identical.

Condition 1 accounts for group-temporal reuse and condition 2 detects most forms of group-spatial reuse. Note
that a reference can only belong to one group.

3.2.2 Loop Cost in terms of Cache Lines

Step 2 determines the cost in cache lines of each reference group. Using a representative array reference from
each group, the algorithmLoopCostin Figure 4 determines for each candidate inner loop, the number of cache
lines the reference will access. Intuitively, given a candidate inner loopl with trip iterations and a cache line
sizecls in array elements, an array reference is classified and assigned a cost as follows.

Loop invariant - (temporal locality) if the subscripts of the reference do not vary with l, then it requires only
one cache line for all iterations ofl (these references should end up in registers). Loop invariant references
have temporal locality.
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Figure 4:LoopCost: LoopCost Algorithm

INPUT: L = fl1; : : : ; lng a loop nest with headerslbl; ubl; steplR = f Ref1; : : : ; Refmg representatives from each reference grouptripl = (ubl � lbl + stepl)=stepl
cls = the cache line size,

coeff(f; il) = the coefficient of the index variableil in the subscriptf
stride(f1; il; l) = j stepl � coeff(f1; il)j

OUTPUT:
LoopCost(l) = number of cache lines accessed withl as innermost loop

ALGORITHM:

LoopCost(l) = mXk=1 (RefCost(Refk(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in)); l))Yh 6=l triph
RefCost(Refk, l) = 1 if ((coeff(f1; il) = 0) ^ : : :^ Invariant(coeff(fj ; il) = 0))

tripl�
cls

stride(f1;il;l)� if ((stride(f1; il; l) < cls)^ Unit(coeff(f2; il) = 0) ^ : : :^(coeff(fj ; il) = 0))
tripl otherwise None

Consecutive - (spatial locality) if only the first subscript dimension (the column) varies withl, then it requires
a new cache line everycls iterations, resulting intrip/cls number of cache lines accessed. (The algorithm
in Figure 4 adjusts for non-unit strides less than the cache line size.) Consecutive references have spatial
locality.

No Reuse – if the subscripts vary withl in any other manner, then the array reference is assumed to require a
different cache line every iteration, yielding a total oftrip number of cache lines accessed.

To determine thereference costover the entire nest when loopl is innermost,LoopCostmultiplies the above
cost by the trip counts of the remaining loops. These loops would enclosel if l is innermost. SinceLoopCost
only measures reuse in the innermost loop, the order of the remaining loops does not affectLoopCost. LoopCost
then sums the cost over all the reference groups for a candidate inner loopl. The next section shows how we
useLoopCostto find the best loop order for the entire nest. This method evaluates imperfectly nested loops,
complicated subscript expressions, and loops with symbolic bounds.

Example. Consider again the subroutinedmxpy from Linpackd in Figure 5. In this example, the reference
groups are the same for thei andj loops. Since there is only one reference to the arraysx andm, RefGroup
place each in a reference group by itself. Since the two references toy are connected by a loop-independent
dependence, they make a single group. We assume for the example that 4 elements of each array fit on a cache
line. As illustrated by the table in Figure 5, the referencey(i) has spatial locality and is thus consecutive in thei loop, and has temporal locality because it is invariant in the j loop. The referencex(j) has spatial locality on
the j loop and has temporal invariant locality on thei loop. The referencem(i; j) has spatial locality on thei
loop and has no reuse on thej loop. Notice when thei loop is the candidate inner loop, thej loop must be the
outer loop and thereforeLoopCostmultiplies the reference costs byn2, thej loop’s trip count. Similarly, whenj is the candidate inner loop,LoopCostmultiplies the reference costs byn1, thei loop’s trip count.
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Figure 5: Subroutinedmxpy from Linpackd

do j = 1, n2
do i = 1, n1

y(i) = y(i) + x(j) * m(i,j)
enddo

enddo

Cost in Cache Lines, cls = 4

reference candidate inner loop
group loop i loopj

y(i) 1/4 n1� n2 1 � n1
x(j) 1 � n2 1/4 n2� n1

m(i,j) 1/4 n1� n2 n2� n1

loop cost 1/2 n1� n2 + n2 5/4 n1� n2 + n1

3.2.3 Memory Order

Even thoughLoopCostdoes not directly measure reuse across outer loops, we can use it to determine the loop
permutation for the entire nest which accesses the fewest cache lines by relying on the following observation:

If loop l promotes more reuse than loopl0 when both are considered for the innermost loop,l will
promote more reuse thanl0 at any outer loop position.

We therefore simply rank the loops using their loop cost, ordering the loops from outermost to innermostfl1 : : : lng such that the loop cost ofli is less than or equal toli�1. We call this permutation of the nest with the
least costmemory order. Although contrived counterexamples exist to the above observation for 3 or more levels
of loop nesting, previous work demonstrates that in practice, the model is extremely accurate and always gets
the inner loop right [34]. We assume that each of the loop bounds is greater than 1, which is the only interesting
case. If the constants are comparable with the number of cache items on a line, this model loses accuracy. In
this case however, reuse across outer loops is likely, and thus this algorithm still produces good results. If the
bounds are symbolic, we compare the dominating terms. If thedominating term is a function of all loop bounds,
then regardless of the relative sizes of the loop bounds, themodel is accurate.

Example. Assumingn1; n2 > 1 in dmxpy, loop i accesses fewer cache lines thanj and should be placed
innermost, yielding a memory order offlj ; lig.
3.2.4 Achieving Memory Order

Memory order specifies the permutation of the nest with the least cost. To determine if the order is a legal
one for a perfect nest,2 we permute the corresponding entries in the distance/direction vector. If the result is
lexicographically positive (the majority of the time it is [34]), the permutation is legal and we transform the nest.
If not, we use the algorithmNearbyPermutationin Figure 6.

Given a memory orderingL = fi�1 ; i�2 ; : : : ; i�ng of the loopsfi1; i2; :::; ing wherei�1 has the least reuse
andi�n has the most, the algorithm builds up a legal permutation inP by first testing to see if the loopi�1 is
legal in the outermost position. If it is legal, it is added toP and removed fromL. If it is not legal, the next loop
in L is tested. Once a loopl is positioned, the process is repeated starting from the beginning ofL� flg until L
is empty. The following theorem holds for theNearbyPermutationalgorithm.

Theorem: If there exists a legal permutation where�n is the innermost loop, thenNearbyPermuta-
tion will find a permutation where�n is innermost.2Determining memory order does not depend on a perfect nest. Methods exist for permuting imperfect nests [49], but we only

permute perfect nests or nests that fusion or distribution make perfect (see Section 3.3.1).
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Figure 6:NearbyPermutation: NearbyPermutation Algorithm

INPUT:O = fi1; i2; :::; ing, the original loop orderingL = fi�1 ; i�2 ; : : : ; i�ng , a permutation ofO
OUTPUT:P = fp1; : : : ; png a nearby permutation ofO
ALGORITHM:

procedure NearbyPermutation (O, L)P = ; ; k = 0 ; m = n
while L 6= ;

for j = 1;ml = i�j 2 L f l is thejth loop inLg
if direction vectors forfp1; : : : ; pk; lg are legalP = fp1; : : : ; pk; lgL = L � flg ; k = k + 1 ; m = m� 1

break for
endif

endfor
endwhile

The proof by contradiction of the theorem proceeds as follows. Given an original set of legal direction vectors,
each step of the “for” is guaranteed to find a loop which results in a legal (lexicographically positive) direction
vector, otherwise the original was not legal [3, 9]. In addition, if any loop�1 through�n�1 may be legally
positioned prior to�n, it will be.

NearbyPermutationtherefore places the loops carrying the most reuse as innermost as possible. If the
desired inner loop cannot be obtained, it places the next most desirable inner loop in the innermost position if
possible, and so on. This characteristic is important because most data reuse occurs on the innermost loop(s), so
positioning it correctly yields the best data locality.

3.2.5 Tiling for Parallelism

This step introduces a single level of outer loop parallelism, which is all the outer loop parallelism that typical
bus-based shared memory parallel processors can effectively exploit. At this point in the algorithm, the nest is
structured such that it accesses the fewest cache lines and accesses to the same cache line occur close together
in time. In addition, if a loop carries temporal invariant orspatial locality, it has been identified. The two goals
during the introduction of parallelism are:

1. To place a parallel loop in the outermost legal position, maximizing the granularity of parallelism.

2. If the parallel loop carries reuse, to tile it such that cache line reuse will fall locally on a processor, reducing
or eliminating communication between processors.

The algorithm therefore selects a loop for parallelizationwhich is either already parallelizable in the outermost
position or if not, can be legally permuted and parallelizedinto an outermost position. If this loop carries either
temporal or spatial reuse, the algorithm strip-mines it bytile size. Strip-mining is always safe and it produces two
loops, a parallel outeriterator and an inner contiguousstrip. If the iterator is not in the outermost position, the
optimizer permutes it to the outermost legal position.3 The algorithm strip-mines by the number of processors,3Additional register and cache tiling for the individual processors should also be performed when applicable, but is beyond the scope
of this paper.
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assigning one iteration to each processor with the largest strips possible. We discuss this choice in more detail
after an example.

Example. Considerdmxpy again. Note that only thei loop is parallel. It can be safely interchanged and
parallelized in the outermost position. Since it carries temporal invariant and spatial locality, we tile the nest.
The optimizer strip-mines thei loop by the number of processors, permutes the iterating loop to the outermost
position, and parallelizes it. Figure 1(c) illustrates theresult. Because this loop structure maximizes data locality,
it reduces communication of data between iterations and therefore between processors. In experiments on the
Sequent, this version ofdmxpy results in speed-ups of up to 16.4 on 19 processors. This algorithm also attains
linear speed-ups for kernels such as matrix multiply [24].

Previous work also experiments with different versions ofdmxpy, and shows the version in Figure 1(c) is the
best [24]. For example, parallelizingi in the outermost position and assigning adjacenti iterations to different
processors instead causes the cache line fory(i) to be shared among multiple processors. When compared with
the version our algorithm produces, this sharing results inadditional bus traffic when the line is sent to multiple
processors instead of one processor, and additional coherence traffic since every write or an invalidate must
go to all the caches which contain the line. Previous work demonstrates that these costs degrade performance
significantly [24].

Constants and Tile Sizes. In the experiments reported in Section 4, the optimizer gives the parallel iterator one
iteration for each processor, producing strips as large as possible. If the parallel loop carries spatial reuse and
has enough iterations, reuse is attained and this strategy works well [24]. If the parallel loop has spatial locality
and fewer iterations than the number of processors times thenumber of items on a cache line, then previous
work shows that to achieve the best performance, we should actually reduce the number of parallel iterations
such that the cache lines are not shared between processors [24]. A runtime test could differentiate these cases.
In this work for unknown loop bounds of parallel loops, we assume the number of iterations is greater than the
number processors times the cache line size.4
3.2.6 Summary and Discussion

To review, the completeOptimizealgorithm appears in Figure 3. We first compute theRefGroupfor all the
references in the loop. Next we find memory order, and applyNearbyPermutationto achieve memory order when
possible. The final step parallelizes the outermost parallel loop, and if necessary permutes it to the outermost
position.

In our experiments, memory order is usually a legal permutation of the nest [34]. The complexity of the entire
algorithm in this case is dominated by the time to sort the loops in the nest and the corresponding dependence
vectors. The algorithm is thusO(n log(n)) in time to sort and linear in space, wheren is the depth of the
nest. In the worst case, when the desired outermost loop mustbe innermost,NearbyPermutation’s complexity
dominates,O(n2) time. The parallelization step of the algorithm is linear. We have previously shown the data
locality algorithm effective for uniprocessors [34]. We have also demonstrated that the parallelization algorithm
effective for kernels [24], and in Section 4 we show that thisalgorithm is effective for application programs on
shared-memory multiprocessors.

3.3 Fuser: Improving the Granularity of Parallelism

This section describes an approach for incorporating fusion and distribution into theOptimizealgorithm. Loop
fusion and distribution have several purposes in our algorithm. The foremost purpose is fusing parallel loops
together to increase the granularity of parallelism and to reduce communication of shared data. Fusion and
distribution may also create perfect nests whichOptimizecan improve.4An alternative approach would give the runtime scheduler the flexibility to balance irregular work loads. For example, by making
the strips the same size as the cache line, there would be moreparallel iterations than processors, and thus the runtime scheduler could
assign iterations to processors dynamically.
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Figure 7: Loop Distribution and Parallelization Example

parallel do j = 1, m
do i = 1, n do i = 1, n

a(i� 1, 1) = : : : =) b(i, j) = a(i, j)
do j = 1, m distribution enddo

b(i, j) = a(i, j) end parallel do
enddo parallel do ii = 1, tile

enddo do i = ii, min(ii + tile -1, n)
a(i�1, 1) = : : :

enddo
end parallel do

3.3.1 Loop Distribution

If a loop nest cannot be parallelized effectively usingOptimize, then dividing the statements in the nest using dis-
tribution may enable parallelization of some subset of the statements by either creating perfect nests or isolating
dependences that prevent loop permutation. For example, inthe left loop nest in Figure 7, there is a loop-carried
dependence between the two assignment statements that prevents the nest from being performed correctly in
parallel. Distribution exposes parallelism, and results in the two parallel nests on the right in Figure 7.Optimize
then interchanges the resulting doubly nested loop to achieve good inner loop locality and parallelizes the outer
loop. Optimizealso tiles the singly nested loop to exploit spatial locality and parallelism. Both nests now execute
efficiently and correctly in parallel.

Distribution algorithm. Beginning with the innermost loopln in a nestfl1; : : : ; lng, the algorithmDistribute
divides the statements into strongly connected regionsscrsbased on the dependences. Eachscr is then placed
in a loop by itself which divides the statements up into the finest granularity possible. In the style of Allen
et al. [2], the process is repeated for the next outermost loop, until some loop cannot be distributed over the
statements (this loop may of course beln). If new nests are created as in Figure 7, these become candidates for
parallelization byOptimize. This algorithm is not optimal because combining distribution with loop permutation
may uncover deeper distributions that in turn may be more effectively parallelized [4, 33]. This flexibility was
not required in our experiments and is not explored further here.

After distribution and parallelization, there may be a sequence of parallel and sequential nests, some of
which may be fused back together. We showed that the problem of fusing a set of loops is the same, regardless if
they resulted from distribution or were written that way [25]. Fusion is desirable between parallel loops because
it may reduce communication of shared data and it reduces thenumber of barrier synchronization. Barrier
synchronization is often costly on multiprocessors.

3.3.2 Loop Fusion

Loop fusion merges multiple loops withconformable headersinto a single loop. Two loop headers are con-
formable if they have the same number of iterations and are both either sequential or parallel loops. Two loop
nests are conformable at levelk, if each is perfectly nested and the headers at level 1 through k are conformable.
For example, in Figure 8(a) all four nests are conformable atlevel 2. Fusion eliminates unnecessary barrier
synchronization and reduces communication of shared data between loops. It is safe if it does not reverse any
dependences between candidate loops. We only perform safe fusions. Our goal is to maximize parallelism.
Subject to this constraint, we then minimize the number of parallel loops. Fusion does not combine two parallel
loops when dependences would force the resulting loop to execute sequentially.

Fusion algorithm. When there is a group of adjacent loop nests with conformableheaders which are differen-
tiated only by their parallel and sequential status andn candidate nests, we have anO(n2) time and space algo-
rithm that minimizes the number of parallel loops [25]. (More general fusion problems are NP-hard [25, 26].)
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Figure 8: Fusion Example from Subroutine tridvpi in Erlebacher

(a) original program

do k = 1, kmaxd
do j = 1, jmaxd

(1) f(1,j,k) = f(1,j,k) � b(1)

do k = 1, kmaxd
do j = 1, jmaxd

do i = 2, n-1
(2) f(i,j,k) = (f(i,j,k) - a(i) � f(i-1,j,k)) � b(i)

do k = 1, kmaxd
do j = 1, jmaxd

(3) tot(j,k) = 0

do k = 1, kmaxd
do j = 1, jmaxd

do i = 2, n-1
(4) tot(j,k) = tot(j,k) + d(i)� f(i,j,k)

(b) fused program

parallel do k = 1, kmaxd
do j = 1, jmaxd

f(1,j,k) = f(1,j,k) � b(1)
do i = 2, n-1

f(i,j,k) = (f(i,j,k) - a(i) � f(i-1,j,k)) � b(i)
tot(j,k) = 0
do i = 2, n-1

tot(j,k) = tot(j,k) + d(i) � f(i,j,k)

(c) fusion DAG

1 2 3 4

This restricted case however arises frequently in practice. It occurs when the fusion candidates result from dis-
tribution. Programmers also write these types of adjacent and fusible nests and several occur in programs in our
test suite.

The fusion algorithm works by building a fusionDAG where nodes are nests, edges represent dependences
between nests, and fusion-preventing edges are specially marked. A dependence is fusion preventing if fusion is
not safe or inhibits parallel execution. The algorithm firstgreedily merges nodes representing parallel nests such
that the graph remains aDAG and no nodes connected by a fusion-preventing edge are merged. It then greedily
merges sequential nodes. This merge respects the original constraints, any constraints introduced by the fusion
of parallel nests, and insures that aDAG results [25]. The original order of the nests may change as long as no
dependence constraints are violated.

Example. Figure 8(c) illustrates theDAG for the code in Figure 8(a). Since all the outerk loops are parallel
and the number of iterations are the same up to level 2, the loops are conformable at level 2. There are no
fusion-preventing dependences and thus all the nodes can befused into one parallel doubly nested loop. The
resulting code appears in Figure 8(b). Notice that statement reordering would enable an additional fusion of the
inner loops and thus further improve locality. This step is beyond the scope of this paper [34, 25].

3.4 Intra and Inter-Nest Parallelization

We combineOptimizeandFuser in Figure 9 to optimize loop nests within a single procedure.We call this
algorithmParallelize. It combines fusion and distribution withOptimizeto introduce effective parallelism and
to improve the granularity of parallelism achieved. It takes as input a set of adjacent loop nests,R = fl1; : : : ; lng
in a procedure and produces an optimized version of the nests. For each nestlj , it begins by applyingOptimize.
Optimizefirst improves locality and then detects and introduces parallelism at the outermost possible level as
described above. IfOptimizeintroduces parallelism,Parallelizegoes on to the next loop nestlj+1. Otherwise,
Parallelizetries to fuse the inner loops oflj , in order to enable permutation and tiling, and triesOptimizeagain.
If it is still unable to introduce parallelism, the algorithm distributes to the finest granularity. If distribution is
able to form new loop nestslni, they may be parallel at some inner level or the outermost level. lni may be
inner nests or outer nests in theelseof Figure 9. The algorithm appliesOptimizeto eachlni. These resultant
nests are candidates for fusion. Similarly, after it optimizes each outer looplj , the algorithm fuses the resultant
nests when safe and profitable.
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Figure 9:Parallelize: An Intraprocedural Parallelization Algorithm

INPUT: R = fl1; : : : ; lng, lj adjacent nests in a procedure

OUTPUT: an optimized version ofR
ALGORITHM:

procedure Parallelize (R)
forall lj

if Optimize(lj) introduces parallelismcontinue
elseif Fuse all inner loops oflj formingF andOptimize(F) introduces parallelism

continue
elsefln1; ln2; : : : ; lnmg = Distribute(lj)

if m = 1 continue
forall lni Optimize (lni)
Fuse (ln1; ln2; : : : ; lnm)

endif
endfor
Fuse(L1; : : : ; Ln)

3.5 Enabler: Interprocedural Analysis and Transformation

Striving for a large granularity of parallelism has a natural consequence: the compiler must look for parallelism
in regions of the program that span multiple procedures. Ourapproach to interprocedural optimization differs
fundamentally from previous research that uses inlining. Inlining is typically performed instead of interprocedu-
ral analysis and without knowing if it yields any optimization opportunities. Our approach adds to the complexity
of the individual loop optimizations, but avoids performing unnecessary inlining. We restrict the application of
interprocedural transformations to cases where it enablesloop optimizations and is therefore expected to be prof-
itable. This strategy is calledgoal-directedinterprocedural optimization. We introduce two new interprocedural
transformations: (1)Loop embedding– which pushes a loop header into a procedure called within the loop, and
(2) loop extractionwhich extracts an outermost loop from a procedure body into the calling procedure. We also
useprocedure cloningto make specialized versions of procedures. The following subsections first review the
interprocedural analysis we need, and then describe the extensions to the loop transformations, and our use of
interprocedural transformations.

3.5.1 Interprocedural Analysis

This section describes the interprocedural array section analysis that enables interprocedural optimization. This
analysis is part of dependence testing in ParaScope, and is computed before optimization [22]. We include this
description as technical background.

We usesectionanalysis to analyze interprocedural side effects to arrays[8, 20, 21, 22]. Sections represent
the most commonly occurring array access patterns; single elements, rows, columns, grids, and their higher
dimensional analogs. The various approaches to interprocedural array side-effect analysis must make tradeoffs
between precision and efficiency [8, 11, 22, 30, 45]. Sectionanalysis loses precision because it only represents
a selection of array structures and it merges sections for all references to a variable in a procedure into a single
section. However, these properties make it efficient. It often works as well as more precise techniques [22, 30].

Sections reduce the dependence problem on loops containingprocedure calls to the problem on ordinary
statements. For example, Figure 10 illustrates the two sections for arraya that result from each of the two calls
to Q. The sections are in terms of constants and parameters passed at the call. The superscript indicates a
Read and/orWrite access and their relative order. The sections contain all the information necessary to perform
dependence testing in the calling procedure without further inspecting the called procedure [22]. Since we also
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Figure 10: Interprocedural Parallelization Example

(a) before optimization (b) loop extraction (c) fusion, interchange, &
parallelization

subroutine P(a) subroutine P(a) subroutine P(a)
real a(n,n) real a(n,n) real a(n,n)
integer i integer i,j integer i,j

do i = 1, 7
do i = 1, 7 do j = 1, 100 parallel do j = 1, 100

call Q(a,i) SRWa : a[i,j=1:100] call Q(a,i,j) do i = 1, 7
call Q(a,i+1) SRWa : a[i+1,j=1:100] enddo call Q(a,i,j)

enddo do j = 1, 100 call Q(a,i+1,j)
call Q(a,i+1,j) enddo

enddo end parallel do
enddo

subroutine Q(f,i) subroutine Q(f,i,j) subroutine Q(f,i,j)
real f(n,n) real f(n,n) real f(n,n)
integer i,j integer i,j integer i,j
do j = 1,100

f(i,j) = f(i,j) + : : : f(i,j) = f(i,j) + : : : f(i,j) = f(i,j) + : : :
enddo

test for loop interchange and fusion between loops in the caller and the call, we require sections that are slightly
more precise thandata access descriptors[8]. We need to know if the sections are precise. For example,when
section analysis merges information for two read accesses it may lose precision. At a section merge, we record
whether the new section is still precise or if it becomes imprecise. We also use the augmented call graph Gac to
reveal the call and the loop nesting structure as described in Section 2.

The next paragraph uses an example to demonstrate dependence testing and motivate testing across calls for
intraprocedural loop fusion and interchange. We then discuss the transformation tests in more detail, and finally
we show how to move loops across calls to effect these transformations.

Example. Consider Figure 10(a) where the calls toQ are annotated bySa, precise sections of arraya. In this
example, the first call reads and modifies rowi, and the second call reads and modifies rowi + 1 of arraya.
Using the sections, ParaScope’s dependence testing reveals the dependence between the two calls,~� = f1; 0g,
carried by thei loop inP , and a that thej loop in subroutineQ is parallel. Notice we have the distance for thej
loop, even though it results from code in subroutineQ that we have not inspected. If the loops were in the same
procedure,Parallelizewould fuse thej loops and then interchange thei andj loops. Fusing thej loops would
create a perfect nest. The interchange would place thei loop in the innermost position yielding the best locality
and thej at the outermost position yielding the largest granularityof parallelism, as in Figure 10(c). To perform
the required tests,Parallelize, Optimize, andFusemust use the Gac to look across procedure calls and deal with
sections as well as references. This process is very similarto dependence testing with sections.

3.5.2 Extending Loop Optimizations across Procedures Boundaries

Parallelize. Consider again theParallelizealgorithm in Figure 9.Parallelizebegins with a set of adjacent nestsR = fl1; : : : ; lng and simply passes loop nests toOptimize, Fuse, andDistribute. Figure 11 containsEnabler,
the modified, interprocedural version ofParallelize. To avoid the barriers of procedure calls, we generalizeR
to sets of adjacent nests and/or calls. Consider for exampleoptimizing procedureC in Figure 12. Since the call
to Q and thei loop are adjacent, we pass the call node and the loop node toParallelize. Similarly, we extend
OptimizeandFuseas described below. TheDriver procedure also needs slight modifications: the partitioning
step now creates sets of adjacent nests and calls, and instead of callingParallelize, Driver callsEnabler.
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Figure 11:Enabler: An Interprocedural Parallelization Algorithm

INPUT: R = fl1; : : : ; lng, lj adjacent nests and calls in a procedure

OUTPUT: an optimized version ofR
ALGORITHM:

procedure Enabler (R)
forall lj

if lj is a call to procedurep Driver(p)
elseif lj nests around callsci to pk and sections forpk are not exact

forall pk Driver(pk)
elseif Optimize(lj) introduces parallelismcontinue
elseif lj contains no calls

Fuse all inner loops oflj formingF andOptimize(F) introduces parallelism
continue

elseif lj contains only adjacent callsci to pk with outer enclosing nests
if Fuse (ci) formingF andOptimize(F) introduces parallelism

continue
elseif lj does not contain callsfln1; ln2; : : : ; lnmg = Distribute(lj)

if m = 1 continue
forall lni Optimize (lni)
Fuse (ln1; ln2; : : : ; lnm)

endif
endfor
Fuse(l1; : : : ; ln)

Testing for distribution into a procedure requires more information than interprocedural sections provide,
therefore we do not generalize the parameters toDistribute. Enablerensures arguments toDistributeare nests.

Optimize. Enabler only calls Optimizewith a loop nest that contains no calls, or that contains calls whose
actions are represented by exact sections. The original version ofOptimize, of course, works for the first case.
For a nest containing one or more calls,Optimizeuses any array references in the nest and the sections at calls
to determine loop order of the loops in the calling procedure. This case only looks at the nests in the calling
procedure, and the only change is to use sections in additionto references upon encountering the call statement.

If the nest contains a single procedure call, and an outer nest encloses the entire body of this procedure,
Optimizecomputes memory order for each loop in the caller, and each loop in the outer enclosing nest of the
called procedure as well. The sections identify these loopsand all array references. As we showed in the
example above, dependence testing on the exact sections results in a direction vector that includes the loops in
the called procedure.Optimizesimply uses this direction vector to determine if the loop order it wants is legal.
Optimizedoes not have to compute any additional dependence information. If Optimizespecifies an interchange
of nests that cross procedure boundaries, it clones the procedure and moves the nest out of the callee and into
the caller (see Section 3.5.3).

Fuser. Enabler(Figure 11) callsFusein 3 places. In the first call, it passes outer loop nests that do not contain
calls. In the second, it passes a group of adjacent calls withexact sections and an enclosing loop nest. In this
case,Fuseapplies the fusion test to the sections for a candidate call.Fuseuses the exact sections to determine
if the loop nest headers are conformable, to test for dependences between the sets of conformable headers, and
then builds and partitions the fusion graph in the usual way.If Fusefinds a fusion, it extracts the loop nests from
the calls and clones the called procedure (see Section 3.5.3). Optimizethen tries again on the resulting loop
structure. In the final call toFuse, Fusemay see inexact sections, nests and/or calls, and it must check these
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parameters.

Example. For Figure 10,Driver calls Enabler with the i loop from procedureP . Enabler determines the
sections for all calls in thei loop are exact, and callsOptimizethe first time.Optimizedetermines thei loop is
not parallel, and since there is more than one call in the nest, it returns, failing to introduce parallelism.Enabler
then determines that all calls are adjacent, and that the called procedures contain an outer loop nest, and calls
Fuseon these calls.Fusetests the sections for fusion, finds they can be fused, extracts the nests, and fuses
them.Enablersends the result toOptimizewhich now can interchange thei loop to exploit spatial locality, and
parallelize thej loop in the outermost position.

3.5.3 Interprocedural Code Motion: Loop Embedding and Loop Extraction

OptimizeandFusethus may specify that two loops in different procedures should be interchanged or fused. We
use loop embedding and loop extraction to place the loops in the same procedure and enable the loop trans-
formation. Loop embeddingpushes a loop header into a procedure called within the loop,and loop extraction
extracts an outermost loop from a procedure body into the calling procedure. These transformations expose the
loop structure to optimization without incurring all the costs of inlining. Just as inlining is always safe, these
transformations are always safe. Note, a similar analysis could decide when to perform inlining.

The choice between embedding and extraction is made based onthe desired optimizing transformation. All
things being equal, embedding loop nests into the called procedure is preferable because it reduces procedure
call overhead by the number of iterations in the nest. If a loop nest optimization needs loops that originate
inside a call site, extraction is required, as illustrated in Figures 1(d) and 10(b). An implementation could handle
this in two ways. (1) WhenOptimizedecides to do an interprocedural interchange, it would always perform
embedding. IfFuselater detected a fusion involving the same nest, the loops would be extracted and fused. The
disadvantage of this option is that the compiler would need to incrementally update the Gac. (2) Alternatively,
OptimizeandFusecould just record their desired loop transformations and a transformation phase could decide
between embedding and extraction as it performed the loop transformations. This method separates mechanisms
from policy and is consistent with good software engineering practices.

3.5.4 Procedure Cloning

Procedure cloning generates multiple copies of a procedureeach tailored to its calling environment [13]. Even
without embedding or extraction, cloning is necessary for interprocedural parallelization because multiple ver-
sions of a procedure are required if a procedure is called in two or more settings that require different paralleliz-
ing optimizations. For instance, there are two calls toQ in Figure 12(a); one is surrounded by a loop and one
is not. Both thei andj loops are parallel, but we only want to introduce one level ofparallelism. We therefore
produce a version tailored to each call site, as illustratedin Figure 12(b).

3.5.5 Summary

The judicious application of interprocedural optimizations does not change the basic structure of the kernel
parallelization algorithm, but it complicates testing thesafety and profitability of the individual loop transfor-
mations, as described above. Our strategy separates legality and profitability tests from the mechanics of the
transformations [33]. The safety tests depend on the precision of the dependence information and section anal-
ysis. For permutation, the dependences must be precise enough in the caller to determine if they would be
reversed after permutation. Since fusion requires additional dependence testing, the sections must be precise. If
they are not precise, the algorithms conservatively assumethat transformation is unsafe.

4 Experiment

For our experimental validation, we measure our algorithm’s ability to match or exceed performance on parallel
programs written by programmers who thought and cared aboutparallel performance, not dusty deck sequential
programs. Our baseline measurement is thus a hand-coded parallelized program. We assembled programs
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Figure 12: Cloning Example

procedure C procedure C
call Q call Qclone
do i = 1, n parallel do i = 1, n

call Q call Q
enddo end parallel do

procedure Q procedure Q
do j = 1, m do j = 1, m: : : : : :
enddo enddo

procedure Qclone
parallel do j = 1, m: : :
end parallel do

(a) original (b) parallelized with cloning

written for a variety of parallel machines. We eliminated all the parallel loops and synchronization to create
sequential versions of each program. We then applied our algorithm to these sequential versions. The compiler
was required to use its analysis and algorithms to parallelize the program. We do not recommend that users
eliminate their directives, but we use use this version to measure the compiler’s ability to find and further
optimize parallelism we know exists. Since the focus of thispaper is the optimization algorithm, in a few cases
we assume more advanced analysis than was implemented. We note all these exceptions. We executed and
compared the original hand-parallelized version, the sequential version, and the hand-optimized parallel version
on a 20 processor Sequent Symmetry S81. Our results are applicable to other symmetric multiprocessors. Our
results are very encouraging. Our algorithm exceeds or matches hand-coded parallel programs for seven of nine
programs in our suite. Based on our successes and failures, we comment on a parallel programming style from
which compilers are more likely to achieve or improve hand-tuned performance for shared-memory, bus-based
parallel machines.

5 Methodology

In this section, we describe the experimental setup of the program versions, the implementation status, the
execution environment, and the program test suite.

5.1 Creating Program Versions

For each Fortran program we obtained, we measured three program versions,the original parallel version, the
sequential version, and the hand-optimized parallel version. Each Fortran program was then compiled and
executed on the Sequent. The original parallel version is parallelized according to the user’s original intent.
For each of the programs that were originally written for theSequent, the original program version is simply
the user’s parallel program. For the programs written for other architectures, we modified all the parallelization
directives to reflect the equivalent Sequent directives. The programs used parallel loop directives which include
declarations for private variables, and critical sections. In Erlebacher, the parallelism is not explicit. Here, we
performed a naive parallelization of outer loops to create the hand parallelized version.

We created the sequential version of each program simply by ignoring all the parallel directives. We opti-
mize the sequential version using the advanced analysis andtransformations available in our interactive parallel
programming tool, the ParaScope Editor (PED) [12, 27], and also use PED to hand-apply our parallelization
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algorithm. PED is a source-to-source transformation tool which provides dependence and section analysis, loop
parallelization, and loop transformations. Although the individual loop transformations were automated, the
parallelization algorithm and interprocedural transformations were not.5 We discuss the implementation of the
analyses and transformations below.

5.2 Parallelization

Analysis. PED uses a range of dependence tests that start with simple, quick tests and then, if necessary, uses
more powerful and expensive tests [18]. If a dependence cannot be disproved, PED produces distance and direc-
tion vectors. It also performs analysis to determine scalarvariables that can be made private in parallel loops.
To improve the precision of dependence testing, it uses advanced symbolic dependence tests, interprocedural
constants, interprocedural symbolics, and interprocedural MOD andREF array sections [22]. All of this testing
is implemented.

Transformations. PED’s selection of source-to-source transformations includes loop parallelization with pri-
vate variable declarations, loop interchange, fusion, distribution, and tiling. It does not include loop embedding,
extraction, or procedure cloning. PED produces a variety of parallel Fortran outputs, one of whichis Sequent
Parallel Fortran. We used the transformations available inPED to apply our parallelization algorithm. In PED

transformations have two phases. The mechanics of a transformation are separated from its test for correctness.
Users select a transformation and in response, PED determines the safety of the transformation using depen-
dence analysis. If it is safe, the user decides to apply it or not. If a transformation is applied, PED carries out the
mechanics of changing the program and incrementally updating the dependence information to reflect the new
source. We did not implement our algorithm in PED. We instead performed the transformations as specified by
the algorithm in PED, and applied them only when PED assured their correctness. We kept optimization diaries
for each program [33].

5.3 Execution Environment

We ran and compared all three versions on a Sequent Symmetry S81 with 20 processors. We validated each
program using its output. For each of the programs, all the versions produced the same correct output. The
Sequent has a simple parallel architecture, allowing our experiments to focus solely upon medium and large
grain parallelism. Each processor has its own 64Kbyte two-way set-associative cache with a cache line size of 4
words. Each processor and one shared, main memory is connected to the bus. The Sequent compiler introduces
parallelism based on parallel loop and fork directives [39].

We used the parallel loop directives with private variable declarations to introduce parallelism. We compiled
with version 2.1 of Sequent’s Fortran ATS compiler using thecompiler options that specify multiprocessing, the
Weitek 1167 floating-point accelerator, and optimization at its highest level (O3). In a few programs, Sequent
compiler bugs prevented the highest level of optimization and use of the Weitek chip at the same time. In these
programs, we used the Weitek 1167 floating-point accelerator since it achieves better performance.

5.4 The Programs

To our knowledge, no test suites of explicitly parallel Fortran programs currently exist. To obtain parallel
programs, we solicited scientists at Argonne National Laboratory and users of the Sequent and Intel iPSC/860
at Rice. We present all the programs that users submitted. The first 9 applications programs in Table 1 were
volunteered and were written to run on the following parallel machines: the Sequent Symmetry S81 with 20
processors, the Alliant FX/8 with 8 and 16 processors, and the Intel iPSC/860 with 32 processors. Table 1
enumerates the programs, their total number of non-commentlines, their authors and affiliations. 9 programs
out of all 10 are dense matrix codes.Interior is a sparse matrix code. The authors are all numerical scientists and
6 of the 9 programs are state-of-the-art parallel versions.Papers have been published about them and a lot of5Our algorithm is automatable, and much of the algorithm has been implemented since these experiments were performed.
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Table 1: Program Test Suite

Name Description lines Authors Affiliation
1. Seismic 1-D Seismic Inversion 606 Michael Lewis Rice
2. BTN BTN Unconstrained Optimization 1506 Stephen Nash, Ariela Sofer [36, 37] George Mason
3. Erlebacher ADI Integration 615 Thomas Eidson ICASE
4. Interior Interior Point Method 3555 Guangye Li, Irv Lustig [31] Cray Research, Princeton
5. Control Optimal Control 1878 Stephen Wright Argonne
6. Direct Direct Search Methods 344 Virginia Torczon [14] Rice
7. ODE Two-Point Boundary Problems 3614 Stephen Wright [51] Argonne
8. Multi Multidirectional Search Methods 1025 Virginia Torczon [14] Rice
9. Banded Banded Linear Systems 1281 Stephen Wright [50] Argonne
10. Linpackd Linpackd benchmark 772 Jack Dongarra [15] Tennessee

attention was paid to their performance. It is therefore unlikely that large amounts of additional parallelism are
available without significant algorithm restructuring. The programs are described in more detail elsewhere [33].

The discussion will focus on the first 8 programs. We includedLinpackd since it is well known and it
contains parallelism, but we did not use a hand-parallelized version. The ninth code,Banded, did not execute
correctly on the Sequent.Bandedwas written for an Alliant FX/8 and converting three parallel loops to the
equivalent Sequent parallel loop directives resulted in a runtime error. Because of this error, we do not present
results for this program, but we did examine and try to parallelize it. Our techniques could not discover any of the
parallelism inBanded. The parallel loops contained procedure calls that explicitly divided a linearized array on
to 8 processors. The program used offsets into a logical row of a linearized array at a call site and then subscripted
it with negative indices. This practice is not legal Fortran, will thwart even advanced dependence analysis, and is
most likely responsible for the runtime error on the Sequent. Our inability to analyze or parallelize this program
was due to two poor programming styles: linearization of logical arrays, and using a fixed number of processors
to divide the work. These practices illustrate a programming style that is not portable to a different machine
or even to different numbers of processors. SinceBandeddid not execute, we exclude it from the rest of the
discussion.

By collecting programs rather than writing them ourselves we avoided the pitfall of writing a test suite to
match the abilities of our techniques and architecture. However, many of the problems inherent to any program
test suite also arise here. Maybe only authors of easy to parallelize, well structured codes volunteered. Maybe
the authors of poorly structured ones did not want to expose their codes to a critical eye.

6 Results

We measured execution times for:
seq: the sequential version of the program,
hand: the hand-coded, user parallelized program, and
opt: the version obtained using our optimization algorithm.

The elapsed times for the entire applications were measuredin seconds using the system callsecnds. From these
times, we computed speed-ups for the parallel programs. We also measured subparts of a program if there were
differences between the hand-optimized parallel version and the user parallelized version. We separate those
differences into the following categories.

The Entire Application:execution time of the application.

Optimization: execution times in subparts of the program where our optimization algorithm generated a dif-
ferent parallelization strategy than the hand-coded version.

Analysis: execution times in subparts where the optimized version could not detect parallelism specified by
the hand-coded version.
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Table 2: Speed-ups over Sequential Program Versions

Speed-ups over the sequential version on a 19 Processor Sequent

Optimization Analysis Entire Application
Name hand opt hand opt hand opt �
Seismic 3.0 7.9 9.1 12.3 35%
BTN 2.0 3.9 -6.1 1.0 3.2 4.1 28%
Erlebacher 13.8 15.0 13.2 14.2 7%
Interior 6.9 10.4 6.9 5.2 6.9 6.9 0%
Controly 3.8 3.8 0%
Direct 2.4 2.4 0%
ODE 3.4 3.4 0%
Multi 15.1 1.0 5.3 1.0 -530%
Linpackd 16.5 9.2 NA

Table 3: Program Execution Times

Execution Times in seconds

Optimization Analysis Entire Application
seq hand opt seq hand opt seq hand opt

Seismic 21.14 7.14 2.69 155.97 17.05 12.59
BTN 13.97 7.045 3.57 0.14 0.85 0.14 44.01 13.93 10.73
Erlebacher 87.83 6.36 5.86 88.22 6.67 6.20
Interior 19.50 2.00 1.87 24.12 3.47 4.64 1044.16 151.16 151.53
Controly 17.44 4.61 4.61
Direct 151.28 63.65 63.65
ODE 41.96 12.22 12.22
Multi 75.45 4.98 75.45 87.60 16.32 87.60
Linpackd 517.87 31.43 547.59 59.43y : 8 processors

We used the microsecond clock,getusclk, to measure execution times for the differing program subparts. For
differences on inner loops, we measured the performance of the outermost enclosing loop in order to disrupt
execution as little as possible. The speed-ups of these optimized subparts are under reported.

Table 2 contains speed-ups over the sequential program version for the entire application and subparts. The
execution times in seconds of all the program and program subpart versions appear in Table 3. In both tables,
a blank entry means that no program or program subpart fell inthat category. Since we did not use a hand
parallelized version ofLinpackd, those columns are empty in Tables 2 and 3. InControl, Direct, andODE, the
optimized version and the user parallelized version did notdiffer and therefore we did not measure any subparts.

6.1 Interpretation and Analysis of Results

As can be seen in the percent change column (�) in Table 2, the optimized programs either performed as well
or better than the hand-coded parallel versions except forMulti . These programs are complete applications
that contain I/O and computation. The speed-ups were therefore not linear and ranged from 2.4 to 14.2 on
19 processors. Consider theOptimizationcategory. Every time our algorithms chose an optimization strategy
different from the user’s, it was an improvement. The improvement was at least a factor of 1.9 and at best a
factor of 4.9.
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In the following sections, we discuss the program analysis and optimizations that achieved our improvements
in more detail. We include analysis because good optimization is intimately tied to good analysis. Since our
focus is optimization, we assumed better analysis than was implemented in a few cases. These caveats are
detailed as well.

6.1.1 Program Analysis

The 8 programs contained 923 loops. There were 445 nests of depth 1 or deeper. Dependence analysis detected
551 parallel loops at all levels of nesting out of the 923 loops (60%) and 271 out of 445 (61%) parallel loops in
the outermost position of a nest.6 Compared with the programmers, dependence analysis failedto detect user
parallelism in about 3% of the loops and found parallelism users had missed in about 2% of the loops. When
users introduced parallelism, the compiler was usually able to find it. Compilers are generally more thorough and
meticulous than the average user, but users often have high-level knowledge the compiler cannot ascertain. The
improvements experienced by the optimized versions were not due to analysis, but were due to our optimization
strategy which differed from the user’s strategy (see Section 6.1.2). All the degradations in Tables 2 and 3 result
from analysis failing to find parallelism.

In three programs,BTN, Interior, andMulti , users found more parallelism than our analysis did (theAnalysis
column in Tables 2 and 3). ForInterior, these degradations did not have much effect on overall execution time.
If we look at the execution times in Table 3, it is apparent that this program subpart only affects the overall
execution time by less than 3%. Each ofBTN andMulti contain parallel loops with critical sections that update
shared variables. Analysis techniques exist that can properly identify the parallelism [44], but since it was not
part of our algorithm, we did not use them. InBTN, the benefit of parallelism was actually overwhelmed by the
overhead of the critical section, resulting in better performance when the loop executed sequentially. InMulti ,
there was a single outer loop with a critical section. This parallel loop accounted for 86% of the sequential
running time and 30% of the parallel running time. The algorithm did not parallelize this loop because of the
critical section, and thusMulti ’s performance degraded.

Interprocedural Sections. Interprocedural section analysis proved to be a very important. Only one program,
Erlebacher, did not have one or more parallel loops containing a call. Out of a total of 246 procedure calls made
by the first 8 programs in the tables, 119 (48%) of these calls are nested inside loops and 48 (20%) of these loops
were parallel. Section analysis detected parallel loops with calls as well as programmers. ParallelizingBTN
andODE required flow-sensitive section analysis. InBTN andODE, we determined the array kill by hand since
it is a very simple case that a reasonable implementation would catch. To effectively analyze and optimize the
modular parallel programming style found in these programsrequires both flow-sensitive and flow-insensitive
interprocedural section analysis.

Index Arrays. Five of the 10 programs use index arrays that are permutations of the index set. Several of these
are monotonic non-decreasing with a regular, well defined pattern. InInterior, Control, andDirect, paralleliza-
tion would not have been possible without using user assertions and the testing techniques developed in our
earlier research [32]. The other two programs used them in a way that did not affect parallelization. When the
user asserts that an index variable used in a subscript is a monotonic non-decreasing permutation array, depen-
dence testing can then eliminate dependences and detect parallel loops. We used this information to parallelize
loops inInterior, Control, andDirect.

Linearized Arrays. ODE andBandedcontain linearized arrays and use symbolics to index them inorder to
simulate multiply dimensioned arrays. A symbolic test is needed when the symbolic term is unknown, but loop
invariant. This feature would enable precise dependence analysis of many symbolic references into linearized
arrays. However, a better solution is to reward well structured multidimensional array references with excellent6The statistics in this section do not includeBandedsince it did not execute on the Sequent, norLinpackdsince we did not use a
hand parallelized version.
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Figure 13: Extracting, Fusing, and Cloning in Seismic

subroutine setvel subroutine setvel
call setvz(..) parallel do i = 1, np
call ftau(..) call setvzExt(..)
parallel do i = 1, np call ftauExt(..)

call chgvar(..) call chgvar(..)
end parallel do call fzetaExt(..)
call fzeta(..) end parallel do

(a) original (b) parallelization, extraction, & fusion

performance. Programmers will then have an incentive to usemultiply dimensioned arrays when appropriate. If
array linearization improves performance, as it often doeson the Cray YMP, then the compiler should perform
it.

Summary. For the most part, we used the existing interprocedural and intraprocedural dependence and symbolic
analysis. Since our focus is on the optimization strategy, we assumed better analysis than was implemented in
a few straight-forward cases: flow-sensitive analysis forBTN (6 loop nests) andODE (2 loop nests), and index
variable analysis forInterior, Control, andDirect.

6.1.2 Program Optimization

Three programs,Seismic, BTN, andErlebacher, experience significant improvements due to our optimization
strategy. InSeismic, the majority of the improvement comes from fusing 4 loops. In the original program, part of
which appears in Figure 13(a), each of the subroutinessetvz, ftau, andfzetacontains an outer, enclosing parallel
loop withnp iterations. Our parallelization algorithm, using the augmented call graph, detects that these parallel
loops are candidates for fusion. The fusion is safe, so it extracts them and performs the fusion in the subroutine
setvel, as illustrated in Figure 13(b). The optimized version actually has more procedure call overhead, but the
benefits of reduced synchronization and communication far out weigh this cost. None of the other optimized
programs use interprocedural transformations.

BTN ’s improvements are due to improved parallelization of 3 important nests that accounted for 50% of
the hand-coded parallel execution time. TheOptimizeportion of our algorithm improves the locality of the
nests with permutation and then tiles to introduce outer loop parallelism. In this case, tiling uses permutation
to move the parallel loop out and leaves a strip in place to exploit locality. This optimization cuts the execution
time of the 3 nests in half and improves overall performance by 28%. These nests need to balance locality and
parallelism. The users successfully parallelized 24 outerloops in which locality and parallelism did not conflict,
but failed to achieve parallelism and data locality on the 3 nests when they conflicted. This result implies users
are capable of detecting parallelism and locality, but are less proficient at combining them.

Similarly, most of the improvement toErlebacherresults from the use of permutation and tiling byOptimize
to balance locality and parallelism.Erlebacheralso benefits from the application of fusion to 8 groups of nests.
The number of nests fused in a group varied from 2 to 5 nests, with an average of 3 nests fused.Interior also
benefits from fusion.7

Except for distribution and embedding, the programs exercised all of the transformations in the paralleliza-
tion algorithm. Every time our algorithms chose an optimization strategy that differed from the users, it was an
improvement.7Fusion of sequential loops inControlalso improves its performance, but scalar improvements arebeyond the scope of this work.
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7 Related Work

Not many studies of parallelizing optimizers have been published. Many commercial parallelizing compilers
do not reveal their optimization strategies to maintain a market advantage. The IBM PTRAN project, an in-
dustrial research compiler, has published parallelization algorithms that use control and data dependence, and a
wide selection of transformations, but without results [1,40, 41]. Below, we compare this study with those of
parallelizing compilers from Illinois and Stanford [10, 17, 19, 43].

The Illinois studies are traditional; they evaluate their techniques on dusty deck programs [10, 16, 28, 17].
They extend Kap, an automatic parallelizer, and then use it to parallelize the Perfect Benchmarks. Their target
architecture is Cedar, a shared-memory parallel machine with cluster memory and vector processors. Their work
focuses on detecting parallelism via array and scalar analysis, rather than improving locality. Their interprocedu-
ral analysis results de facto from inlining or is performed by hand. In some cases, they do not measure program
performance, but rather number of parallel loops found. Ourresults demonstrate that performance is dependent
on locality and granularity, not just parallelism. The algorithms Kap uses are unpublished, which limits what
can be learned from these papers. The resulting programs were then further improved manually by ‘automat-
able’ transformations. It is not clear that even if each individual transformation they propose is automatable,
that a practical decision procedure exists that could correctly apply them. The most recent work on Polaris [17]
demonstrates that they have come closer to finding such a decision procedure, but they still do not specify it.
In contrast, our study uses a more clearly defined algorithm.Both studies however would benefit greatly from
complete implementations.

Singh & Hennessy used the Alliant FX/8, the Encore Multimax,and their Fortran compilers [42, 43]. The
compiler algorithms are again unpublished. The FX/8 has cluster memory instead of local caches, which means
all data accesses are slow. Since caches are not available toimprove performance, the parallelization algorithm
is simplified. On the Encore, the slow processors minimized the impact of its small local caches. Singh &
Hennessy considered dusty deck programs. By inspection, they found interprocedural analysis, user assertions,
and symbolic analysis to be useful. Our results offer a significant step towards providing these analyses, as well
as going a step further to optimize for a more complex architecture. The main result in these papers is that suc-
cessful parallelization requires many programs to be rewritten. We start with this premise. However, the ability
of our techniques to find further improvements reveals that even after users perform algorithm restructuring for
parallelism, there is performance to be gained.

Our core technique,Optimize, bears the most similarity to Wolf & Lam’s research [47, 48].Their algorithm
is potentially more precise and uses skewing and reversal. Our algorithm can take advantage of known loop
bounds to more precisely compute locality and granularity of parallelism, and is more efficient. When a nest of
depthn is fully permutable our algorithm experiences it’s best caseO(n log(n)) time complexity while Wolf
& Lam’s algorithm experiences exponential behavior in the depth of the loop nestn. The most expensive step
in both algorithms is determining the reuse. Our algorithm performs this step only once, and then chooses an
optimization to achieve the reuse. Their algorithm evaluates reuse for every legal permutation. Their work
includes very few experimental results for the parallelization algorithm, and they do not perform fusion, dis-
tribution, or any interprocedural analysis and transformations. More recent work on the SUIF system includes
extensive interprocedural analysis and data and control restructuring between nests to further improve locality
and parallelism [5, 19]. This work demonstrates important improvements over our approach, and some success
on dusty deck programs. However, they do not perform fusion or distribution, and our approach is effective in
many cases.

Instead of using fusion to eliminate barrier synchronization, recent work has focused on replacing barrier
synchronization between nests with explicit data placement and finer grain communication [6, 7, 38, 46]. The
data placement yields locality on the processor and the finergrain communication enables the processors to
overlap more computation and communication rather than allwaiting at a barrier. When fusion is legal, fusion
can be more effective because references to the same location occur more closely together in time, making the

24



cache more likely to exploit the locality. For example, consider two adjacent loops that access the same array. If
the working set of the first loop exceeds the cache, fusion yields reuse. However when fusion is not legal, these
techniques can be used instead to improve performance.

Jeremiassen and Eggers [23] improve locality in explicitlyparallel programs by restructuring the data layout.
We instead focus on restructuring the program control flow. We also transform the program into a sequential
equivalent and therefore do not analyze parallel programs.Data transformations [23] and combining data trans-
formations with control transformations [5] can successfully parallelize programs that the techniques presented
in this paper can not.

8 Conclusions

This paper presents a new parallelization algorithm that balances parallelism and data locality. We use an
effective strategy to introduce locality, exploit parallelism, and maximize the granularity of parallelism. In-
terprocedural section analysis is an important component of our successes. We evaluated the parallelization
algorithm against hand-parallelized programs with promising results. The algorithm improves performance
over hand-parallelized programs whenever it applied optimizations, significantly improving performance in 3 of
the 9 programs. It matches or improves parallel performancefor programs written in Fortran 77 with a clean,
modular parallel programming style. The successes and failures indicate that many parallel programmers are
using a portable programming style and an advanced compilercan analyze and optimize these programs. The
compiler improvements come from balancing locality and parallelism, and increasing the granularity of paral-
lelism. The compiler also improves on user-parallelized codes because it is inherently more methodical than a
user. Most importantly, these results suggest that we need both parallel algorithms and compiler optimizations
to effectively utilize parallel machines.
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