Ulterior Reference Counting:
Fast Garbage Collection without a Long Wait

Stephen M Blackburn

Department of Computer Science
Australian National University
Canberra, ACT, 0200, Australia
Steve.Blackburn@anu.edu.au

ABSTRACT

General purpose garbage collectors have yet to combinesmse
times with high throughput. For example, generationalexbirs

Kathryn S McKinley*

Department of Computer Sciences
University of Texas at Austin
Austin, TX, 78712, USA
mckinley@cs.utexas.edu

1. Introduction

A long-standing and unachieved goal for general purposeaggr
collectors is to combine short pause times with excellertiph-

can achieve high throughput. They have modest average pausePUt- This goal is especially important for large server amteri

times, but occasionally collect the whole heap and consgtyue
incur long pauses. At the other extreme, concurrent caltsctn-
cluding reference counting, attain short pause times btht 8ig-
nificant performance penalties. This paper introduces a mew
brid collector that combines copying generational coitetfor the
young objects and reference counting the old objects toeaehi
both goals. It restricts copying and reference countinghéodb-

ject demographics for which they perform well. Key to our al-

gorithm is a generalization of deferred reference countiegcall
Ulterior Reference CountingJlterior reference counting safely ig-
nores mutations to select heap objects. We compare a genafat
reference counting hybrid with pure reference countinge poark-
sweep, and hybrid generational mark-sweep collectorss fiéiv
collector combines excellent throughput, matching a higtfqu-

mance generational mark-sweep hybrid, with low maximunspau

times.

Categories and Subject Descriptors

D.3.4 [Programming L anguages]: Processors-Memory manage-
ment (garbage collection)

General Terms

Design, Performance, Algorithms

Keywords

Ulterior Reference Counting, Reference Counting, Copyibgn-
erational Hybrid, Java

*This work is supported by NSF ITR grant CCR-0085792, and
DARPA grant F33615-01-C-1892. Any opinions, findings, con-

clusions, or recommendations expressed in this mategaharau-
thors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OOPSLA'030October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/00108$5.00.

active applications. Table 1 illustrates the state of thasle-off
with the throughput (running time), and responsivenesiimam
pause) of a highly responsive reference counting (RC) cmlie
and a high throughput generational collector (BG-MS) on daea
benchmarks. Generational (G) collectors separate newtstijem
old ones since they tend to have different demographics.ME5-
uses abounded(B) copying nurseryfor newly allocated objects

whose size varies between an upper and lower bound. It uses a

mark-sweep (MS) free-list for the old objects. This type of-c
lector is a popular high performance choice in modern vintoz-
chines. BG-MS significantly improves total throughput camgal

with RC due to the pointer tracking costs in RC. BG-MS has much

higher maximum pause times than RC due to full heap collestio

Total Time (sec)|| Max Pause Time (ms
benchmark|| BG-MS | RC BG-MS RC
_228_jack 7.2 12.7 185 72
-209._db 19.2 21.3 238 43

Table 1: Throughput and Responsiveness of High Throughput
(BG-MS) versus Highly Responsive (RC) Collectors

To resolve this dichotomy, we introduce a new generatiookl ¢
lector with a copying nursery and reference counting megpeee
that combines high throughput and low pause times. The keyrto
algorithm is a generalization of deferred reference cognfl9],
called Ulterior Reference Countidg A reference counting (RC)
collector computes the number of references to an objedtwéen
it falls to zero, RC reclaims the object. To improve perfonte,
deferred RC ignores frequent pointer mutations to the stackl
registers which eliminates most of their reference cogntoad.
Deferred RC must thus postpone all reclamation until it qudi
cally enumerates the stacks and registers.

Ulterior reference counting (URC) extends deferral toctdieap
objects and object fields by periodically enumerating thieteos
within them. URC divides the heap into logical partitionsRE
and non-RC objects. It uses an RC collection policy on the BC o
jects, and selects other policies for the non-RC objectsCdin
either enumerate the deferred pointers by tracing themy asimg
a write barrier to remember deferred mutated pointers. Tid bn
efficient collector with this mechanism, we want to (1) detez
fields of highly mutated objects and enumerate them quickiyg
(2) reference count only infrequently mutated fields.

1Dictionary definitions of ulterior include occurring latend lying
beyond what is evident.

Object lifetime and mutation demographics combine well to fi
these requirements. Young objects mutate frequently [Bagé
die at a high rate (the weak generational hypothesis [24, gji
objects mutate infrequently [29] and die at a slower rateesth
demographics favor generational collection, with a cogyétgo-
rithm for the young objects. Copying uses fast contigudusr(p
pointen allocation, ignores pointers among young objects, and is
proportional only to the number of live objects. The lesgfrent
mutation and high survival rate of older objects favor (1pace
efficient free-list allocator, and (2) a reference countioegection
algorithm which is proportional to the number of dead olgentd
pointer mutations.

We implement BG-RC, aybrid generationatollector that par-
titions the objects into a bounded copying nursery (BG) fawly
allocated objects, and an RC mature space for objects thaysa
nursery collection. BG-RC is a hybrid because it combinéfemdi
ent garbage collection algorithms into one collector. htawally
reference counts the mature space. It ignores nurserygooimi-
tations. BG-RC efficiently piggy backs reference countimgto
the enumeration of live pointers during the tracing and aupyf
surviving nursery objects into the RC space. After evensenyr
collection, it computes reference counts for the matureesgend
reclaims objects with no references. It uses a variant obBand
Rajan’s trial deletion to detect cyclic garbage in the RGceda).

We compare BG-RC with pure deferred reference counting (RC)
pure mark-sweep (MS), and a high throughput generationat-ma
sweep hybrid (BG-MS), implementing them all in Jikes RVM [1,
2] using JMTk [11], a new memory management toolkit for Java.
The hybrid collectors share implementations with their-hgbrid
counterparts. All collectors share common mechanisms aad a
efficient [11]. Our experiments thus compare policies nathan
implementation subtleties. The results demonstrate tiRE
matches throughput with the high performance BG-MS (on-aver
age 2% better in moderate heap sizes) but has dramaticalr lo
maximum pause times (a factor of 4 lower on average) on th&CSPE
JVM Benchmarks.

To our knowledge, Azatchi and Petrank implement the onlgioth
generational reference counting algorithm [6]. (Our warknide-
pendent and concurrent with theirs [13].) Their concurmeon-
moving collector uses free-lists in both generations. Uistinust
store every nursery object on a list, and then enumerate #tiem
rather than just the live ones. It achieves excellent pansest
but consequently has high space and time overheads whitifisig
cantly degrade total performance [6, 23]. Our contribugiare the
generalization of deferred reference countingterior reference
counting, a generational copying reference counting hybrid that
combines high throughput and low pause times, and expetahen
evaluation of the effectiveness of the collector and its jponents.

2. Background

This section presents the prior work on which this paperdsuil
We first discuss generational collection and then refereauaating
(RC). Section 6 discusses related work in concurrent, mergal,
and generational reference counting with a mark-sweepenurs

2.1 Generational Collection

This section discusses the motivation for generationdectibn,
the copying and mark-sweep algorithms, and defines thres typ
copying nursery organizations.

Generational algorithms exploit the low rate of object stalv
for new nurseryobjects using tracing [21, 30]Tracing identifies
dead objects indirectly—Dby tracing the live objects andudiog
those that it did not trace. The two broad approaches tonigaci

are copying and mark-sweep. A copying collector copiesiad! |
objects into another space. Its cost is thus proportionddeamum-
ber of live objects and pointers to them, and works well wheam f
objects survive. A mark-sweep collector marks live objeictsnti-
fies all unmarked objects, and frees them. Typically it wétform
the sweep lazily during allocation, so its cost is propardiato the
number of live objects and pointers to them, and the numbat-of
locations. Copying collectors use monotoriihp-pointey allo-
cation, and mark-sweep collectors deze-listallocation. Bump-
pointer allocation is faster, but requires copying collattwhich
incurs a space penalty. It must hold space in reserve foricgpy
Free-list allocation is slower, but needs no copy reservee-fist
allocation without compaction can lead to poor memory zdtiion
by scattering live objects sparsely through memory andeasing
page residency.

Because of the high mortality of nursery objects [30], ganer
tional copying collectors copy nursery survivors to an olgiener-
ation [3, 5, 12, 21]. Generational organizations repegtedllect
the nursery, and only collect the older generation when ftlis
A flexible-sizechursery consumes all the usable heap space, and
is reduced by the size of the survivors at each collection the
heap is full [3]. Since the nursery can grow to the size of thagh
nursery collection time is highly variable. #xed-sizenursery al-
ways fills the nursery, but never lets it grow bigger or smatan
a set size. It thus reduces the variability of the time toestlthe
nursery. Aboundednursery uses both an upper and lower bound.
When the heap is almost full, the collector reduces the murse
ing the variable-nursery policy until the nursery size tescthe
lower bound. This strategy reduces the number of full hedp co
lections compared to a fixed-size nursery, but has the saper-up
bound on nursery collection time. Our experiments show ghat
bounded nursery has higher throughput than a fixed-sizeeryirs
but not as good as a variable nursery. We use a bounded nursery
for all the generational collectors in this paper since wegdatboth
throughput and pause times.

Generational collectors perform well because they aremen-
tal and concentrate on the nursery which tends to have thesiig
object mortality. A copying nursery exploits low survivaltes and
ignores the frequent mutations of new objects. In currenege
ational collectors, the old space is either a copied spdessic
generational), or a mark-sweep collected space.

2.2 Reference Counting

To lay out the RC design space, this section overviews th&t-exi
ing mechanisms and optimizations from the literature. \\sedbe
methods for implementing deferral, buffering, and codlesof
reference counts. Previous work does not identify theseebas
orthogonal. To clarify the subsequent ulterior referencenting
discussion and summarize previous work, we follow with fafm
definitions of the reference counting actions.

Reference counting garbage collectors track the numbeginf-p
ers to each object by continuously monitoring mutations [1.
Each time a mutation overwrites a referencepgesore With a ref-
erence topatter, the collector increments the reference count for
Pafter, @and decrementppetore If @an object’s reference count be-
comes zero, the collector reclaims it. The collection warlpiio-
portional to the number of object mutations and dead ohj&uté
erence counting is attractive because the work of garbagetim
is spread out over every mutation, and is thus very increahent
However since one mutation can cause many objects to beaome u
reachable, its incrementality suffers unless the colldmboinds the
number of objects it collects by buffering some of the preoes
for the next collection [9, 19], or performs collection canently.

Reference counting has two disadvantages. Since coungs nev
goto zero in adead cycle, reference counting icootpleteand an
additional algorithm must reclaim cycles. (Section 3.224dibes
the solution we use for this problem.) Furthermore, traghken-
ery pointer mutation is expensive and seriously degraddsatoru
performance.

2.2.1 Mechanisms

Deferral. Deutsch and Bobrow introducdeferred reference
counting which only examines certain heavily mutated pompe-
riodically, such as register and stack variables [19]. Alfedred
RC has aeferral phaseén which reference counts are not correct,
and anRC phasen which they are. The deferral phase typically
corresponds to eutationphase, i.e., program execution. Deferred
RC trades incrementality for efficiency; it finds garbageddiy
ignoring intermediate updates.

Two approaches to deferring stacks and registers are: toe ze
count table [19] and temporary increments [7, 9]. In the dafe
phase of a zero count table (ZCT), the collector applieseef=
counts for undeferred pointers and records any whose coesttg
zero in the ZCT. In the RC phase, the collector scans thetezgis
and stack. It then frees any object recorded in the ZCT thabts
reachable from the registers and stack. In the temporargriment
approach, the collector applies increments at the beginofrihe
RC phase for every stack and register before examining bigéc
erence counts. At the conclusion of the RC phase, it thentise
a corresponding decrement for each of these incrementsvithic
applies at the beginning of the next RC phase.

Buffering. RC algorithms need not perform RC increments and
decrements immediately, but can buffer and process theen lat
Buffering only effectavhenan increment or decrement is applied,
not whetherit is applied. Because deferral introduces periodicity,
the RC phase is a natural point to apply buffered counts. dabut
and Bobrow suggest placing all reference counts in a singferb
and then processing the buffer in the RC phase [19]. Bacoh et a
place increments and decrements in separate buffers [7H&ir
approach avoids race conditions in a concurrent settingg R@
phase applies all increments (buffered and temporary)réefoy
decrements, thereby ensuring that no live object ever haea r
ence count of zero. This mechanism replaces the ZCT.

Coalescing. Levanoni and Petrank [23] observe that the period-
icity of deferred RC implies that only the initia and finalos
values of pointer fields of heap objects are relevant; thieciolr
can safely ignore intermediate mutatians. . 0. We call this op-
timization coalescing Levanoni and Petrank describe coalescing
with respect to remembering mutated pointer fieklst§ [23], but
the implementation remembers mutated objects [6, 25].

In their implementation, coalescing uses the differenetaden
before and after images of mutated objects and uses theetiiffes
to generate increments and decrements. It records poietds fi
of each mutated object just prior to its first mutation, anenth
at collection time, compares values with the current stiateo-

ducing a decrement and increment for each changed fields. For

large but sparsely mutated objects, this mechanism imokEege
space overhead for which they propose a mechanism simitarto
marking to remember regions of memory rather than objects.

2.2.2 RC Formal Definitions

The following three definitions provide a concise formaliemRC
actions.

Mutation event. A mutation eventRCM(p) generates an incre-
ment and decrement for the before and after values of a mu-

tated pointer, i.e.RC(Ppeford--» R Pafter) ++. An RCM(p)
may be buffered or performed immediately. R&€M(p) se-
ries to the same pointgrmay be coalesced, yielding a single
RCM(p) for the initial p; and finalps values.

Retain event. A retain eventRCR p) for p, temporarily retains
o regardless of its reference courRCR p) can be imple-
mented through a zero count table (ZCT), or by generating a
temporaryincrement foro.

Deferral. A pointer p is deferredif no mutation event tg gen-
erates alRCM(p). The correctness of reference counting is
only guaranteed if for all deferred pointeps, the collector
issues a retain eveRCR p) preserving.

Ulterior reference counting is independent of particutdrthe ref-
erence counting mechanisms for deferral, buffering, araleso-
ing, and is compatible with both Bacon et al. and Levanoni and
Petrank’s implementations. For our stop-the-world gaebagjlec-

tor implementation, we use Bacon et al.’s increment andesheent
buffers, coalesce with a new object remembering mechartiain t
performs decrements for original mutated field targets aedek
ments for their final targets, and retain deferred stack agisters
using temporary increments and corresponding decrements.

3. Ulterior Reference Counting

This section describes the two primary contributions ofghper:
1) a generalization of deferred reference counting for lodggcts,
which we call ulterior reference counting (URC), and 2) aaete
instance of a generational URC collector that achieves high
throughput and low pause times.

3.1 Generalizing Deferral

This section separates and defines deferral and collectilicigs

in a URC heap. It introduces three URC deferral mechanisms fo
heap pointers. We define a new RC event, callethtagrate event
that transitions heap pointers from deferred to non-deteriwe
begin with an abstract example URC heap organization tititesd

in Figure 1, to clarify the basic design choices.

Figure 1(a) shows an abstract view of deferred referenceteou

ing in which all stacks and registers are deferred, and tap be-
jects are not. Figure 1(b) illustrates a simple URC confitjons

—| Registers
defer/ g RC
O
Y

RC space

(a) Classic deferred reference counting

—| Registers |—_j
RC defgr/ 9 \lgnore ignore

o RN \
,/defer or RC\: y

N

() v

RC space non-RC space

(b) A simple instance of URC

Figure 1: Deferred and Ulterior Reference Counting

that generalizes over basic deferral by splitting the heap RC
and non-RC spaces. In this example, the collection policyte
non-RC space is unspecified. The collector can defer or ot th
pointers from non-RC to RC space, and it must remember th-poi
ers in the other direction (RC to non-RC space) for correxstne

field. The collector then enumerates each field in a remem-
bered object and issuestain events for pointers to reference
counted objects.

Field and object remembering make different trade-offspdates

As with many garbage collected systems, a URC collector has 0 & given object's fields are sparse and/or the object ie/dield

mutator phase and a collection phase. The URC mutator phase i
cludes a URC deferral phase in which mutations to non-dederr
pointers cause mutation events and mutations to deferredep®
do not. The URC collection phase includes a URC phase and othe
collection activities. These definitions mirror the onestfe defer-
ral and RC phases in Section 2 for a classic whole heap ROsyste
The figure does not depict an important URC feature in whieh th
collector may transition an object from deferred to noredefd.
For example, our generational URC collector moves surgiviars-
ery objects into the RC space and triggers the appropridteefu
mutation events. Aimtegrate evenperforms this transition during
collection as follows.

Integrate event. An RC integrate everRCI(p) changes a deferred
pointer po to not-deferredby generating an increment for
and for all future mutation events [the collector generates
a mutation evenRCM(p).

There also may be circumstances in which the collector wiants
transition a highly mutated object in RC space to non-RCephc
this case, the collector signals to the deferral phase missuing
mutation events. In either case, the collector can move Ibfexcb

or not. This choice dictates how to identify RC and non-RC ob-
jects and pointer fields. Physically partitioned spacesiegscted

in Figure 1, can use addresses, whereas other organizesiquise
object tags.

3.1.1 Deferral Policies

A deferral policy determines foeach pointerwhether or not to
perform mutation events. The collection policy determifoegach
objectwhich collection algorithm is responsible for collectingln
practice only synergistic choices will attain good perfarroe, but
in principle they are distinct.

The URC deferral phase ignores pointer updates to certait-po
er fields within heap objects. The design challenge is to enata
the deferral set efficiently during the collection phase. pésent
three approaches to this enumeration (1) trace all defégled, (2)
maintain a list of deferred mutated poinfezlds and (3) maintain
a list of objectscontaining one or more deferred mutated pointer
fields.

Trace Deferred Fields. URC may piggy backetain or integrate
events onto the enumeration of live objects by a tracing col-
lector, essentially for free. Our URC generational implame
tation uses this mechanism for a copying nursery, promoting
survivors into the RC space, and issuintggrateevents for
each promoted pointer. Alternate organizations couldeissu
retain events for survivors and continue to defer these point-
ers. These organizations require that the collector trice a
live deferred pointer fields just prior to every referencerte
ing phase.

Record Mutated Deferred Fields. The URC deferral phase can
record all deferred pointer fields that point to a reference
counted object. Similar to stacks and registers, the doltec
then enumerates each field, issuingtin event for each.

Record Mutated Deferred Objects. The URC deferral phase can
record the object containing a mutated field instead of the

remembering is more efficient. Both mechanisms can prevent d
plicates, and thus absorb multiple updates to the same Kelgp-
ing track of remembered objects takes one bit per objectissthds
more space efficient than tracking fields.

3.1.2 Collection Policies

The collection policy choses which algorithms to apply toickh
collection set Collection sets may be defined as spatial regions
of the heap (as illustrated in Figure 1) or as logical stat®eis
ated with each object. Section 2 enumerates the policy eboic
for the RC components. The key factor in the choice of non-RC
algorithm is the extent to which it will accommodate effidieie-
ferral. A copying nursery collector easily accommodatesehu-
meration of surviving objects and the piggy backing of inédg
events. With multi-generational collectors or Beltway]jl&n ul-
terior reference counting algorithm on the oldest genenatould
defer mutations within all lower generations with a mixtoferac-

ing and object/field recording.

3.2 A Generational RC Hybrid Collector

In this section, we describe a specific instance of an ultedb
erence counting collector that achieves high throughpdt law
pause times. We call this collector BG-RC because it is Gener
tional with a Bounded copying nursery and uses Referencat€ou
ing in the mature space. (Section 2.1 defines bounded.) The me
chanics and implementation of this collector work for anpyo
ing nursery (fixed-size, variable, or bounded), but for diaity we
limit the discussion to BG-RC.

BG-RC divides young and old objects and is thus generational
Itis a hybrid because it uses different policies for the geatiens.
In the nursery, it uses bump-pointer allocation and copyivitec-
tion. Copying performs well on nursery objects, since maest a
short-lived. A bounded nursery size controls the worst cass-
ery collection time and the copy reserve space overheatielolt
generation, BG-RC uses a free-list allocator with a refegeqount-
ing collector that has collection costs proportional torthenber of
dead objects and pointer updates. Since old objects havetdmet
mortality and few pointer updates, it performs well. BG-R&eats
mutations to the nursery, stacks and registers.

We now present our collector organization, mechanics, aité w
barrier in more detail. To control worst case pause timegnegsent
a number of techniques based on work estimates to limit the ti
for any particular collection.

3.2.1 Organization and Mechanics

BG-RC has two generations: the young nursery space and the ma
ture RC space. During mutation, a write barrier a) generates
mutation events, and b) records pointers into the nurserg Gther
portions of the heap. For mutation eventsnatated object buffer
records each mutated non-nursery objects. The write bagrie
described in more detail below. The mutator allocates ih® t
bounded nursery using a bump pointer and copies nurseriwstsv
into the mature RC space. The mature space allocator uses a fr
list segregated by size class [22, 31]. (See Section 4.3 toem
details.)

A collection is triggered whenever the nursery is full. Thes
ery phase includes scanning roots, processing the modifigdto

Stacks
defer//" Registers "N\gnore

|
RC++, RC+sY remse/t/_\ 4 Bump pointer
—_] Al
/ RC Ci J:£ % }L N
Boot Image & Immortal RC - space Nursery
(a) During mutator activity
Bump pointer
= \‘: =
= :E RC++
Boot Image & Immortal RC - space Nursery

Figure 2. The Organization of a Hybrid Generational URC
Collector

buffer, tracing the nursery, and copying and integratingery sur-
vivors into the RC space. For each object in the modified dbjec
buffer, the nursery phase enumerates the objects to whacdirits.

It generates an increment for each referent object, and stask
live referent nursery objects. The nursery scan traces ffase
objects and the roots, finding and copying all live nurserjects
using breadth-first order [16].

When the collector encounters an un-forwarded (not yetszhpi
nursery object, it copies the object to the mature space and e
queues it for scanning. As it scans each surviving ohbjedtper-
forms anintegrate evenfor each of its pointer fieldss, generating
an increment for the referent. Each time BG-RC encountersdan
or young live object directly from the root set, rittains the ob-
ject by generating an increment, which it offsets by a deergm
during the next collection, making the increment temporévien
the nursery collection is complete, all objects reside artrature
space. In the RC phase, BG-RC then applies all of the buffered
increments, followed by the decrements. It frees objecth veif-
erence count zero, and recursively decrements the couniteiof
children. During the decrement phase, BG-RC identifiesedecr
ments whose target did not go to zero as cyclic garbage caiedid
and periodically collects them using a variant of Bacon &t &ial
deletion algorithm [7, 9], which we summarize in Section3.2

We arrange virtual memory such that the nursery is in high mem
ory, the mature space in middle memory, and the Jikes RVM boot
image and immortal space in low memory. Figure 2(a) illussa
our heap organization during mutator activity. Notice thams in
the mature space which are buffered, and that there areer@nee
counting operations on the stack or registers or the nuicarng
mutation. The boot image and immortal space are not defesced
BG-RC logs mutated objects in these spaces. It could deéseth
objects with the mechanisms described in Section 3.1.% £8e-
tion 4.3 for more discussion of the boot image and immortatsp

Figure 2(b) shows the heap just after a nursery collectioarwh
all objects are in the mature space and all reference connis i
into the old space are buffered. For example, Figure 2(a)vsla
pointer from the top right old space object to a young obj&bis
pointer causes the collector to promote and integrate tjgebinto
the fourth slot in the right most mature space block, as shiown

Figure 2(b). The integrate event includes the RC incremé&he
RC phase of the collector may now commence and correctlg free
any object in RC space with a zero reference count.

3.2.2 Write Barrier

The write-barrier remembers pointers into the nursery from the
non-nursery spaces (RC, immortal and boot image spacesg)esid
eratesmutation event§RCM(p) for mutations to pointer fields
within the non-nursery spaces. Our barrier is an object reme
bering coalescing barrier.

Each time the program mutates a pointer field within an object
that is not yetogged the barrier logs it. Logging records the ad-
dress of the mutated object in a modified object buffer antbbaif
decremenfor each field with a referent object in the RC space. At
collection time, the collector processes the modified dlijetfer
and for each object, generatesiacrementfor each referent object
in the RC space.

Because the barrier generates a decrement for the iniliz¢va
and the collection phase generates an increment for thevihads,
this mechanism achieves coalescing. If, while processimpdi-
fied object, the collector finds that a final value points it turs-
ery, it retains the referent object. This logging mechamsniorms
a fixed amount work that is proportional the number of fieldha
mutated object. It performs unnecessary work for sparselgtim
fied objects. In contrast, Levanoni and Petrank performeszithg
by using a snapshot of the initial value of the object duringation
and at GC time compare the initial and final values of each,field
only generating a mutation event if the values differ [23jelF ap-
proach can generate fewer mutation events, but requirepyaafo
the unmutated object.

Figure 3 shows the Java code for our barrier that is corract fo
concurrent mutators. (The collector itself is not concairje By
ensuring that nursery objects are initialized so they appehave
been logged at birth, we avoid logging these heavily mutated
jects. We use zero to denote thesGeD state to avoid explicitly
initializing nursery objects.

In Figure 3, thefast path(lines 1-8) simply performs the store
(line 7) if the source object has already been logged. Sinzst m

private void witeBarrier(VM Address srcQoj,
VM _Addr ess srcSl ot,
VM _Addr ess t gt Qbj)
throws VM Pragmalnline {
if (getLogState(srcoj) != LOGGED)
witeBarrierSlowsrcj);
VM _Magi c. set Menor yAddr ess(srcSl ot ,

}

private void witeBarrierSl oW VM Address srcQbj)
throws VM PragnmaNol nline {

12 if (attenptToLog(srcObj)) {

nodi fi edBuf fer. push(srcbj);

enuner at ePoi nt er sToDecBuf fer(srcObj);

set LogState(srcQoj, LOGGED);

tgtObj);

16 }
17 }

private bool ean attenpt ToLog(VM Address obj ect)
throws VM Pragmalnline {

21 int ol dState;

22 do {

23 ol dState = prepare(object);

24 if (oldState == LOGGED) return false;

} while (!attenpt(object, ol dState,

return true;

BEI NG_LOGGED)) ;

Figure3: BG-RC WriteBarrier

mutated objects are mutated many times, stwev pathis infre-
quently taken. For this reason, we inline the fast path arckfthe
slow path out of line [14].

The test on line 5 of the fast path performs an unsynchronized
check of two bits in the object header to see if the state is not
LocGeD. Line 12 of the slow path eliminates the potential race gen-
erated by the unsynchronized check. This approach avojuEnex
sive synchronization in the fast path while maintainingeoiess.
The code irat t enpt ToLog() (lines 19-27) returns true if it success-
fully changes the object’s state froom.OGGED to BEI NG _LOGGED,
otherwise it returns false. It spins while the stateasNG_LOGGED,
and proceeds only once the object’s stateasceD. We use a con-
ditional store implemented with Jikes RVM’s prepare andraftt
idiom (lines 23 and 25). If the barrier is successful in apéing
to log, it performs the logging operations (lines 13 and lefplke
setting the log state t00GGED.

3.2.3 Controlling Pause Times

Nursery collection and reference counting times combirgeter-
mine pause times. Nursery collection time is proportiowaihe
number of surviving nursery objects and pointers in to theseuy.
In the worst and pathological case, the pause could incliidars-
ery objects surviving. A large nursery size can thus degpadese
times. The nursery size should not be too small either sinise t
will lead to more frequent collections, which diminishee #ffect
of coalescing in RC and gives nursery objects less time tolflie
too many objects survive, it will place unnecessary loadhenald
generation. We measure these effects and see both in ouapreg
in Section 5.4.

A program may mutate heavily and thus generate large amounts

of RC work while performing little allocation. In order to bnd the
accumulation of RC work between collections, we limit thevath

of meta data The meta data includes the modified object buffer and
the decrement buffer, which grow each time an object is Idgge
However, a write barrier is not typically a GC safe point, dmas

is not an opportunity to trigger collection. We extende@3iRVM
with an asynchronous GC trigger and set it when a meta data all
cation at a non-GC-safe point fills the heap or exceeds the data
limit. The next scheduling time slice then triggers a cditat. We
found that the collectors were very robust to this triggéhaigh

the pure RC needs a much more generous allowance (4MB) than

the object and objects reachable from it gray and decrentiesits
reference counts. At the end, all of the gray roots with efee
count zero are cyclic garbage. It then recursively freesdlobjects
and their children with zero reference counts. For non-agelob-
jects, it restores the reference counts and color.

In our RC implementation, we do not perform cycle detectibn a
the end of every RC phase. We instead adyde detection trigger
to decide when to perform cycle detection. As the availakel@ph
space falls toward a user-defined limit, we perform cyclecksin
with increasing probability. We use a limit of 512KB, penfung
cycle detection with probability 0.125 when available heppce
falls below 4MB, 0.25 at 2MB, 0.5 at 1MB, and 1.0 at 512KB.
Alternative implementations could express this limit agaction
of the heap size.

4. Methodology

This section first briefly describes Jikes RVM and JMTk which
are publicly availablgand include BG-RC and all other collectors
evaluated in this paper. We then overview the additiondéctirs,
how they work, and a few implementation details. A more thgto
explanation of the implementation is available elsewhé&dg.[As

we point out in the previous section, all of these colleckirare

a common infrastructure, and reuse shared components. éffe th
present the characteristics of the machine on which we dexall
periments, and some features of our benchmarks.

4.1 JikesRVM and JIMTk

We use Jikes RVM (formerly known as Jalapefio) for our experi
ments with a new memory management tool kit IMTk. Jikes RVM
is a high performance VM written in Java with an aggressivié op
mizing compiler [1, 2]. We use thEast build-time configuration
which precompiles key libraries and the optimizing compiénd
turn off assertion checking in the VM. We use the adaptivemiten
which uses a baseline compiler and based on samples, rdesmpi
hot methods with an aggressive optimizing compiler [4]. l#tces
the most realistic load on the system, but suffers from bdiig. A
consequence of Jikes RVM'’s Java in Java design is that thesVM’
optimizing compiler uses the allocator and write-barrigedfied
by the collector, and thus the collector changes the VM.

Together with Perry Cheng at IBM Watson, we recently devel-
oped a new composable memory management framework (JMTK)

BG-RC (512K) because it generates a lot more meta data gince i ¢, exploring efficient garbage collection and memory mamagnt

does not defer the nursery.

When a reference counted object is freed, the collectoredecr
ments the counts of each of its descendants, and if theitt coaps
to zero it frees them. In the worst case, the whole heap coaldtd
once. The trial deletion cycle detection algorithm we uségpms
a similar transitive closure which could be considerabla@worst
case even without a cycle. To limit the time spent perfornihig
work, a parameter specifiegimne capwhich curtails the recursive
decrement or trial deletion when the time cap is reached.dived
that if the time cap is too low, some programs may be unable to
reclaim cyclic garbage. We experiment with these triggerSéc-
tion 5.4.

3.2.4 Cycle Detection

The current BG-RC implementation uses a variant of the synch
onous trial deletion algorithm from Bacon and Rajan [9]. @erg
collection, their algorithm creates a candidate set ofakcycle
roots from all the decrements which do not go to zero. It clor
these objectpurple and puts them on a list. At the end of a RC
phase, it examines elements of this list. If a purple objéithas a
non-zero reference count, it computes a transitive closoi@ing

algorithms [11]. IMTk separates allocation and collecfiolicies,
then mixes and matches them. It shares mechanisms suchtas wri
barriers, pointer enumeration, sequential store buffersemem-
bered sets, and RC increments between algorithms. The heap i
cludes all dynamically allocated objects, inclusive of pnegram,
compiler, and itself (e.g., the collector meta data sucheazem-
bered sets). It contains efficient implementations of aldhllec-
tors we study [11], and hybrids share the non-hybrid comptme
Because of the shared mechanisms and code base, our exgsrime
truly compare policies.

4.2 Collectors

We compare BG-RC to several other collectors. We first surizmar
and categorize each collector, then justify our selectond,discuss
each in more detail.

RC: The coalescing, deferred reference-counting collectes ose
policy on the whole heap: a free-list allocator and a collec-
tor that periodically processes the modified object buffet a

Zntt p://ww. i bm coni devel operwor ks/ oss/jikesrvnt .

coalesced increment and decrement buffers, deletingtsbjec explore that option here. Since MS is a whole heap colledsor,
with a reference count of zero. maximum pause time is poor and its performance suffers fiem r

. . . eatedly tracing objects that survive many collections.
BG-RC: The generational reference counting hybrid uses a bound- P y g ob) y

ed copying nursery and promotion into a RC mature space,

as described in the previous section. 4.2.3 BG-MS: Generational Copying/Mark-Sweep

This hybrid generational collector uses a bounded copyingary
MS: The mark-sweep collector uses one policy on the whole heap: and the above mark-sweep policy for the older generationME5
a free-list allocator and a collector that traces and mavks | allocates using a bump pointer and when the nursery fillst tiig#
objects, and then lazily reclaims unmarked objects. gers a nursery collection. It scans and copies all of thehadale
nursery objects into the mature space. Classic copying-spate
collectors divide the heap into two equal size pattsspaceand
from-spacdq16]. They allocate into to-space, and copy into from-

BG-MS: The generational mark-sweep hybrid has a bounded copy-
ing nursery, and promotes survivors to a MS mature space.

We categorize these collectors as follows. Teeerationalcol- space. From and to-space are equal in size since all objeaks ¢
lectors divide the heap into a nursery and old generatiorcathelct survive. For the same reason, BG-MS reserves a copy spaezeof f
each independently (BG-MS and BG-RC). Tiwhole heapcol- blocks at least equal to the nursery size in the MS space. When

lectors (MS and RC) scavenge the entire heap on every dolkect this size drops below the nursery upper bound, the collegtor
with one policy. Thehybrid collectors use multiple policies. BG- duces the nursery size as does BG-RC. BG-MS triggers a fap he
RC and BG-MS use the same copying nursery. All the collectors collection when the bounded nursery drops below its lowemio
use the same free-list for either the mature space (BG-R®&nd (256KB) or when the application explicitly requests a GCGdtlgh
MS) or the entire heap (MS and RC) with either reference-tingn System gc()). The write barrier only remembers pointers from the

or mark-sweep collection. Section 4.3 describes the satgddit mature space to the nursery. By exploiting the generatibgal
free-listimplementation in detail. pothesis, BG-MS mitigates the drawbacks of MS for throughpu

We choose BG-MS as our high performance comparison point and average pause times, but occasional full heap collexticve
because in our experiments, it is comparable to pure copyemng up maximum pause times.

erational and better than whole heap collectors [11]. Téssllt is . .

consistent with use of similar collectors in a variety of thiger- 4.3 Implementation Details

formance JVMs. We include the full heap MS collector to rédvea This section includes a few key implementation details &loe
the uniform benefits of generational collection. We fix thefe free-list allocator, the large-object space, object hesdiee bound-

size in our implementation to ensure fair comparisons. BEohef ed nursery, inlining write barriers and allocation seqespahe
the comparison collectors, we now describe their collectiech- boot image, and immortal space.
anisms, collection trigger, write barrier, and space anktover- All of the collectors use a segregated fit free-list allocdR2,
heads. 31] either on the whole heap or on the mature space. The heap
. is divided in toblocksof contiguous memory. Each block has a
4.2.1 RC: Reference Counting free list and contains only one size class. The allocatdgass
The pure deferred reference-counting collector organizesen- new block to a size class when no block contains a free obfect o
tire heap with the free-list allocator. The RC algorithmsiad of the right size. It changes the size class of a block only when t
the same mechanisms as BG-RC. It however only defers cauntin block is completely free. We use a range of size classesasimail
the registers, stacks, and class variables (statics). Tiie lbar- but smaller than the Lea allocator [22]. We select 40 sizesdsa
rier generates mutation events for mutations to heap abjesihg with the goal of worst case internal fragmentation of 1/8e Fize
the logging mechanism. Our experiments trigger a collactifber classes are 4 bytes apart from 8 to 63, 8 bytes apart from 627to 1

each 1MB of allocation, or due to a pause time trigger. Ctlhec 16 bytes apart from 128 to 255, 32 bytes apart from 256 to 511,
time is proportional to the number of dead objects, but theatou 256 bytes apart from 512 to 2047, and 1024 bytes apart fror@ 204

load is significantly higher than the generational collesgince it to 8192. A word is 4 bytes, so small, word-aligned objectsaget
logs all mutated objects. exact fit. Blocks contain a single size class and range infsize
512 bytes for the smallest size class to 32KB for the largest.

4.2.2 MS: Mark Sweep All objects 8KB or larger are separately allocated into @éar
The mark-sweep collector organizes the entire heap witlgeese object space (LOS) using an integral number of pages. The gen
gated free list. MS triggers collection when the heap is félbr erational collectors allocate large objects directly itz space.
each block, MS keepsraarkbit map. During a collection, it scans During full heap collections, MS and BG-MS scan and collbet t
the reachable objects, and marks them as reachable byysetior- large objects. RC and BG-RC reference count the large abgct
responding bit in itsnarkbit map. If any block contains no marked each collection.
objects, the collector frees the whole block. It swekgasly. The The standard Jikes RVM object header size is 2 words, with an
first time the allocator uses a block after a collection, gsuthe additional word (4 bytes) for reference counting. Thus REBG-
mark bit map to construct a new free list for the block (unmedrk RC need additional space in the RC free-list. As an optinumat
objects are free). BG-RC eliminates the header in the nursery, and adds it ohnw

Tracing is proportional to the number of live objects, anmitsi performing integration of nursery objects into the RC space
it is performed lazily, reclamation is proportional to thenmber As our default BG-RC and BG-MS configurations, we use a
of allocations. The space requirements include the liveabj nursery upper bound of 4MB, and a lower bound of 256KB. For
bit maps, and fragmentation due to both mismatches betwieen o0 RC, we trigger a collection every 1MB, or when one of the avlle
ject sizes and size classes (internal fragmentation), &stdbd- tion triggers applies. For BG-RC, we use a time cap of 60ms, a
tion of live objects among different size classes (extefragmen- meta-data limit of 512KB, and a cycle detection limit of 512K

tation). Some MS implementations occasionally performkmar JMTk measures free space in completely free pages. In BG-MS
sweep-compaction to limit external fragmentation, but wendt and BG-RC, the bounded nursery size starts at its upper béitnd

Allocation [[Write barrier | Modified objects i RC increments I RC decrements i

benchmark || alloc [MSmin T alloc:MS || total [remset]] RC [BG-RC] % [RC [BG-RC] % [RC [BG-RC] % 1l
_202_jess 403MB 16MB 25:1 || 28.63 | 0.16% || 8.58 0.01 | 0.09% || 25.68 0.23 0.91% || 25.07 0.40 1.59%
_213_javac 593MB 26MB 23:1 20.78 | 2.41% || 8.96 0.71 | 7.97% || 13.52 2.26 | 16.74% || 10.25 4.32 | 42.12%
_228_jack 307MB 14MB 22:1 10.44 | 7.23% || 8.75 0.01 | 0.13% 5.21 0.09 1.67% 4.84 0.29 6.01%
_205_raytrace 215MB 18MB 12:1 7.35 0.98% || 7.04 0.03 | 0.47% 3.10 0.11 3.61% 2.09 0.16 7.78%
_227_mtrt 224MB 21MB 11:1 8.49 1.00% || 7.32 0.04 | 0.59% 3.43 0.15 4.41% 2.22 0.22 9.78%
_201_compress 138MB 17MB 8:1 153 | 0.71% || 0.25 0.00 | 0.49% 0.41 0.01 2.67% 0.21 0.01 5.77%
pseudojbb 339MB 46MB 71 23.31 3.66% || 8.45 0.24 | 2.80% || 11.12 0.98 8.81% 9.40 3.36 | 35.72%
_209_db 119MB 20MB 6:1 35.03| 0.52% || 3.85 0.00 | 0.06% || 10.92 5,50 | 50.33% || 10.11 552 | 54.58%
_222_mpegaudio 51MB 12MB 4:1 9.79 | 0.23% || 0.89 0.01 | 0.89% 1.56 0.03 2.00% 0.73 0.04 5.15%
mean 265M B 21IMB 131 16.15 1.74% 6.01 0.12 | 1.96% 8.33 1.04 | 12.50% 7.21 159 | 22.05%
geometric mean 216MB 20MB 111 11.89 | 0.98% 3.98 0.02 | 0.50% 4.86 0.22 4.62% 3.53 0.38 | 10.66%

Table 2: Benchmark Allocation Characteristicsand Write Barrier Events (in millions)

the end of each collection, it sets aside half of the free esfzec
copy reserve and the other half is available to the nursévg.cbl-
lectors set the nursery size to be the smaller of the nursaumd
(4MB) and the free mature space. At the start of each caliecti
BG-MS estimates nursery survival using a conservativei\girgs-
timate (80%). If the collection may cause the next nursezg &
fall below the lower bound (256KB), BG-MS performs a full lpea
collection.

For all of the generational collectors, we inline the wii@srier
fast path which filters out mutations to nursery objects dndt
does not record most pointer updates [14]. In the refereauate
ing collectors, the slow path generates decrements andfieabdi
object buffer entries. In BG-MS, the slow path inserts reriberad
set entries. The pure mark-sweep collector has no writédnaw/e
inline the allocation fast path for all collectors.

The boot image contains various objects and precompilasseta
necessary for booting Jikes RVM, including the compileasst
loader and other essential elements of the virtual mach8im-
ilarly, IMTk has an immortal space that the VM uses to allecat
certain immortal objects and which must not be moved. None of
the JMTk collectorscollect the boot image or immortal objects.
MS and BG-MS trace through the boot image and immortal ob-
jects during full heap collection. RC and BG-RC just assumesl|
boot images are live which is essentially true. (The souode dor
Bacon et al.'s RC implementations reveals the same linitd#]).

4.4 Experimental Platform

We perform all of our experiments on 2 GHz Intel Xeon, with BSK
L1 data cache, a 16K L1 instruction cache, a 512KB unified L-2 on
chip cache, and 1GB of memory running Linux 2.4.20. We run
each benchmark at a particular parameter setting six time:sise
the second fastest of these. The variation between runwjstal
we believe this number is the least likely disturbed by oHystem
factors and the natural variability of the adaptive compile

45 Benchmarks

Table 2 shows key characteristics of each of our benchmales.
use the eight SPEC JVM benchmarks, @sgudojbb, a slightly
modified variant of SPEC JBB2000 [27, 28]. Rather than rugnin
for a fixed time and measuring transaction throughpsgudojbb
executes a fixed number of transactions (70000) to genefededa
garbage collection load. The SPEC JVM benchmarks are rineat t
default size of 100.

Thealloc column in Table 2 indicates the total number of bytes
allocated by each benchmark. The next column indicates the m
imum heaps in which the benchmarks can run using MS collector
The heap size is inclusive of the memory requirements ofdap-a
tive compiler compiling the benchmark. The fourth columdiin
cates the ratio between total allocation and MS minimum Iséagp

giving an indication of the garbage collection load for eaehch-
mark. This ratio shows these are reasonable, but not greahbe
marks for garbage collection experiments. We order the lbenc
marks according to this ratio.

The write-barrier columns show for a 4MB nursenytal-the
number of times the write barrier is invoked, i.e., all instrented
stores; anadem setthe fraction of those stores that point from ma-
ture space into the nursery. These counts are all expresseaith i
lions.

The final nine columns indicate the number of entries made to
the modified object, increment, and decrement buffers by RC a
BG-RC for each of the benchmarks. Section 3.2.2 explains how
the collectors generate these entries. These results stadvby
excluding nursery objects from the reference counter, wieae
its load dramatically, a factor of 50 with respect to the rfiedi
objects on average.

These measurements indicate part of both the time and memory
overheads of the different collectors for their meta datéctvin-
cludes the remembered sets and RC buffers. Most programs do
not mutate the old objects heavily, and thus reference dewer
than 10% of writes. However, botl209_db and_213_javac write
many pointers in the mature space, and thus put a relativgly h
load on the reference counter in BG-RC.

5. Results

This section compares mark-sweep (MS), reference cou(fag

and their generational hybrids (BG-MS & BG-RC) with respiact
throughput and responsiveness. The results show BG-RCinets m
better responsiveness, and matches and can sometimes Geat B
MS on throughput in moderate heaps. We include a limit stady i
which we measure the cost of reference counting over nucsgyy
lection, and find it is very low. In addition to maximum paused,

we present bounded mutator utilization [12, 17] to reveattibr
many short pauses group together to reduce mutator efficiend

find this problem does not occur for BG-RC. Section 5.3 exgslor
the effect of the heap size on throughput. In moderate amyg lar
heaps, BG-RC matches BG-MS. In small heaps, BG-MS performs
better. Section 5.4 shows the sensitivity of BG-RC due t@tians

in the nursery size, time cap, and cycle collection trigger.

Table 3 compares throughput and responsiveness of thedbur ¢
lectors in a moderate heap. The default collection trigémrthese
results are a nursery of 4MB for BG-RC and a time cap of 60ms
and cycle detection limit of 512KB for RC and BG-RC. We use a
more frequent trigger of 1MB of allocation for RC to make itmo
responsive. We relax the time cap on a number of benchmarks fo
RC so that it will complete some cycle detection and run to-com
pletion. These results are printed in italics in Table 3. uBot
two states the heap size, which is X5ninimum heap size for all
benchmarks excepgiseudojbb (1.6 x) and -213_javac (2.6 x).

heap | BG-MS MS BG-MS BG-RC RC
used time || norm] max || norm | max || norm | max [norm | max
benchmark|| MB sec|| time | pause|| time | pause|| time | pause| time | pause
_202_jess 24 6.2 1.91 182 1.00 181 0.99 44 2.36 131
_213_javac 68 134 | 1.01 | 268 1.00 | 285 1.00 68 1.78 | 580
_228_jack 21 7.7 1.52 184 1.00 185 0.94 44 1.66 72
_205_raytrace 27 751 1.31 | 203 1.00 184 1.03 49 1.71 133
_227_mtrt 32 83| 129 | 241 1.00 | 180 1.04 49 1.75 | 130
_201_compress 25 11.6 || 0.98 160 1.00 175 0.88 68 0.93 72
pseudojbb 74 20.0 || 1.00 | 264 1.00 | 281 1.00 53 1.33 | 297
_209_db 30 19.2 || 1.01 | 238 1.00 | 244 1.01 59 1.11 43
_222_mpegaudio 18 10.3 || 1.05 185 1.00 178 0.96 43 1.14 121
mean 35 11.3 1.23 214 1.00 210 0.98 53 1.53 175
geometric mean 31 104 || 1.20 211 1.00 206 0.98 52 1.47 130

Table 3: Throughput and Responsivenessof MS, BG-M S, BG-RC, and RC at a Moder ate Heap Size

These benchmarks contain very large cycles and requiregarlar
heap to prevent trial deletion in cycle detection from exiagutoo
frequently in combination with cycle detection preemptihre to
the time cap. This artifact is due to our synchronous cydeali®n
algorithm. Bacon et al. point out the difficulty of colleagicycles
in 213 _javac as well [7].
Column three in Table 3 contains the total execution time®f B

MS, and columns four, six, eight, and ten normalize to thiseti

low-maintenance older objects (Table 2), even though itamesd-
ditional space overhead of a word for each object.

Table 4 illustrates the throughput of the two generatiord ¢
lectors in a large 512MB heap. At this heap size, BG-MS doés no
scavenge the mature space in any of the benchmarks, and exthi
periment, BG-MS only collects the nursery on callsytet em gc() .
The performance of BG-MS thumly includes the cost of nursery
collections. By contrast, BG-RC continuously collects thature

Columns five, seven, nine, and eleven give the maximum pausespace, regardless of heap size. The difference in perfarnbe-
times. Some of the benchmarks can run to completion at thesetween BG-MS and BG-RC in Table 4 therefore quantifies the-addi

heap sizes without requiring BG-MS to perform a mature spate
lection, however the SPEC benchmarks ag& em gc() to clear

tional cost of continuous RC collection over nursery onlifexiion
as very modest. The overhead is at worst 8%, and on average onl

the heap at the start and end of each benchmark, at which point3%.

the collectors perform a whole heap collection. BG-MS tfaree
performs at least one full heap collection in each of theselbe
marks. If, instead BG-MS performs only a nursery collection
eachsystem gc(), it improves by 2.3% on average, with a peak
improvement of 7% Q02_jess) and in the worst case a degreda-
tion of 7% (205_raytrace). The improvement is largely due to the
absense of full heap collections, which is unrealistic. RG€on-

5.2 Pause Times

BG-RC has low maximum pause times. In fact, Table 3 shows that
it has much better maximum pause times than pure RC becasse it
exposed to less load. In particular, cycle detection capisgdems

as evidenced by the?13_ javac result. Without cycle detection,
RC pause times go down. However, since we trigger RC more fre-

tinuouslycollects the mature space, as do the full heap collectors, gyently than BG-RC (every 1MB of allocation rather than gver

RC and MS.

5.1 Throughput

Table 3 shows that BG-RC delivers excellent throughput irod-m
erate heap, at best 12% fast&?q1_compress), at worst 4% slow-

4MB), RC’s higher pause times also reveal that a copyingemyrs

is a good idea—much better than using RC or MS on the young
objects. Since BG-MS performs full heap collections for cfll
the benchmarks, it attains the expected poor maximum pause t
behavior due to the mark-sweep of the full older generatidis

er (.227_mtrt), and on average around 2% faster than BG-MS. The 4hieves similarly poor max pause times. BG-RC always aebie

full heap collectors perform worse, and often much worse thair
hybrid generational counterparts. BG-MS improves over MS b

more than 50% on two of the benchmarks. The generational col-

lectors are designed to exploit the typical space and tirhender

of young and old objects. The space and allocation-time radva
tages of a bump-pointer free-list hybrid benefit both BG-M a
BG-RC. The collection-time advantage of a copying nursésyg a
benefits both hybrids. The fact that older objects are ugumail-
tated much less frequently benefits BG-RC.

A comparison of MS and RC in Table 3 confirms the conven-
tional wisdom that the trade-off between lower collectione and
higher mutator overhead inherent in reference countingslem
average to a substantial reduction in throughput. How&Erper-
forms better than MS and BG-MS a201_compress because it
couples a low allocation to live ratio with infrequent minat to
its data as shown in Table 3. Mutator time measurements oonfir
this explanation on a variety of heap sizes in Section 5.3.a®n
erage however, the absence of a concurrent cycle detedtor of
causes RC to be unresponsive. BG-RC dramatically limitexts
posure to this trade-off by using reference counting onlghhe

a much lower maximum pause time than BG-MS, a factor of 4 on
average, and at worst 8ms above its 60ms time cap.

best || BG-MS | BG-RC
time norm norm
benchmark| sec time time
_202_jess 5.7 1.00 1.07
_213javac || 12.2 1.00 1.08
_228_jack 7.1 1.00 1.02
_205_raytrace 8.0 1.00 0.97
227 _mtrt 8.1 1.00 1.05
_201_compress 9.9 1.00 1.01
pseudojbb || 19.1 1.00 1.05
_209.db || 18.6 1.00 1.04
_222_mpegaudio 9.8 1.00 1.00
mean || 10.9 1.00 1.03
geometric mean || 10.1 1.00 1.03

Table 4: Limit Study of Throughput Using 512MB Heap for
BG-MSand BG-RC

0.8 | ”j~"‘ i
07} i

06 |]

BMU

05| S E
04 1
03t £ E
02| ef 1

01} FoT i

10 100 1000

Pause (ms) (log)

(a) -228_jack

10000

BMU

10

100
Pause (ms) (log)

(b) pseudojbb

1000 10000

Figure 4. Bounded Mutator Utilization (BMU)

Although maximum pause time is an important measure of re-
sponsiveness, a tight cluster of short pauses may be justnaagd
ing to an application’s progress as a single longer pausenda
sure this effect, we modify Cheng and Belloch’s minimum muta
tor utilization (MMU) methodology which measures the fiantof
time in which the mutator does useful work in a given periadt, b
is not monotonic [17]. We use bounded mutator utilizatioM{B
which plots a poinfw, m) on a BMU curve if, for all intervals (win-
dows) of lengthw or more that lie entirely within the program’s
execution, the mutator utilization is at least BMU curves are
monotonically increasing, where theintercept is the maximum
GC pause for the run, and the asymptatigalue is the overall
throughput (fraction of time spent in the mutator). The BMuhe
then identifies the maximum period that the application’'sator
fraction requirement will not be satisfied.

For example, in Figure 4(a), i228_jack requires at least 20%
of the CPU at all times (BMU= 0.2), it will experience a pause
of around 50msec from BG-RC, around 190msec from BG-MS,
and about 75msec from RC. These BMU graphs illustrate that BG
RC performs very well, both in terms of responsiveness, wher
it exceeds RC and BG-MS, and in terms of throughput, where it
matches BG-MS at thg-intercept. The BMU graphs for the other
benchmarks are very similar. RC would undoubtedly be more re
sponsive if it were a concurrent implementation, and itedghput
would improve with extra CPU resources dedicated to the ¢ddsk
RC collection (which is common practice in RC implementasip

5.3 Sensitivity to Heap Sizes

Figures 5, 6, and 7 show the impact of heap size on GC time,-muta
tor time, and total time for all four collectors. As the totaap size
increases, BG-RC and BG-MS both increase their mature space
size. BG-RC triggers young and mature space collectionsa@ue

a full nursery, full heap, pause-time control, or user teiggl GC.
Whereas BG-MS triggers a nursery collection when the nyriser
full, and a full-heap collection when the mature space it dul
when the user triggers a GC. Thus as the heap gets bigger, 8G-M
does fewer collections of the mature space.

These graphs indicate the trade-offs the respective totkec
make between GC and mutator efficiency. Unsurprisinglygtme
erational collectors spend less time in GC on average. Beth a
have better average mutator times, which reflects the bexfefit
locating with a bump pointer to the nursery which is usuabipa
70 bytes of IA32 instructions as opposed to allocating toe fr
list which is 140 bytes of IA32 instructions in our implemation.
This difference is similar in other implementations [5, 2@]. In
addition, copying can have a positive impact on locality byne
pacting survivors into the mature space. This effect is ndost
matically evidenced in227_mtrt in Figures 6(e) and 7(e), where
at about 1.2x minimum heap size, BG-MS performs around 25%
better than any other collector. This result is repeatahtd ex-
amination of the collection log shows a single full-heapexdion
after the main data structure is built must lead to signifitacality
improvements in the mutator.

As the heap shrinks, each of the collectors must do more work
and total throughput degrades until they are unable tofgdtie
application’s requests. BG-RC tends to degrade more rathidh
BG-MS in very small heaps because the pause-time guidginees
vent it from reclaiming cyclic garbage promptly.213_javac is
most sensitive to this effect, and does not execute to cdiople
until the heap grows to almost 2:6 the maximum live size, as
explained above.

With respect to mutator time, MS performs best and BG-MS
often performs somewhat better than BG-RC. Although BG-RC
does match BG-MS frequently, and they are usually within 5% o
each other. RC mutator time is often worse than the othexs, an
is much worse for benchmarks such_265_raytrace, _228_jack,
and_213_javac. With respect to GC time, BG-RC performs signif-
icantly better than BG-MS on large and moderate heaps, ekmep
pseudojbb which performs a large number of mutations. In this
case, the low ratio of maximum live size to total allocatioaans
that MS or BG-MS perform few full heap collections.

5.4 Collection Triggers

Table 5 varies the collection triggers described in Sestidi2.3
and 3.2.4 to explore their effects on total and maximum p&ose
Our base line configuration uses a nursery size of 4MB, a tape ¢
of 60ms, and a cycle detection trigger of 512KB. We execuge th
benchmarks in the same heap sizes listed in Table 3.

Generally, smaller nursery sizes lead to lower throughphich
is unsurprising. Reducing the nursery size to 2MB tendkeggrade
responsiveness compared with a 4MB nursery. Because aesmall
nursery filters fewer mutations and less garbage, it ineedse
pressure on the RC mature space. Two of the benchmarks were
unable to run to completion with this configuratior?{3_javac
andpseudojbb). Increasing the nursery size to 8MB also degrades
responsiveness compared to 4MB, due to the increase inrpurse
collection time. For example, the poor maximum pause time fo
_209_db is due to a high nursery survival rate aft@09_db con-
structs a large long-lived data structure.

The impact of the time cap is as expected. A small time cap

Heap size (MB)

Heap size (MB)

Heap size (MB)

20 30 40 5 60 70 8 90 100 20 40 60 80 100 120 140 160 20 3 40 50 60 70 80
10 \ — T T T T v 145 10 - - T T v S— T 10 T - - - - 5
9 BG-MS --—-- 9 BG-MS —--- 9
\ BG-RC 14 BG-RC ——]9 45
RC g RC 8
e Ll 1% ¢ 1 ¢
s {2 3 57 17557 5 3
o 6 2 6 2 0 6 2
N N 1y F = 25
= k ,,,,,, 415 z \ z \
8 \\ s ‘\ K 3 \ 15
2 \\ 11t 2 ——] 2 2 e — 1
J S R I F— Jos ;L L A L L " 1 L B — h h L L
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) 202 _jess (d) 213 javac (9) -228_jack
Heap size (MB) Heap size (MB) Heap size (MB)
i 20 30 40 50 60 70 80 90 100 110 20 40 60 80 100 120 20 30 40 50 60 70 80 90 100
7 T T T T T Yea—— 4 10 T T T v 14 T a— T T T v —
9 : BG-MS ---- 9 BG-MS ———— o 45 L BG-MS ———-
; BG-RC —— 35 BG-RC —— T BG-RC —— 1
8 i RC 8 RC Ja 12) RC
g 7 . 1 8 7 ~435 g 5 =
F \ g = g Z 10 $ 0.8 9
s | {2 £ s 25 £ & e e
E 4 o E 4, \ 2 8 E 6 e o
s A L 415 S \ S 0.4
3 1, 3 b \ 15 4
2 2 1 0.2
e e e
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(b) _205_raytrace (e) -227_mitrt (h) -201_compress
Heap size (MB) Heap size (MB) Heap size (MB)
50 100 150 200 250 20 40 60 80 100 120 © 10 20 30 40 50 60 70
10 — l . . . PYR— 0 : : . e — , T : T . y—
9 - BG-MS -~~~ 9 bt BG-MS -—-- . 3 9 it BG-MS ---— 712
L \ BG-RC 128 I BG-RC ' BG-RC ——
Ll RC ! RC 8 RC
2 M e ! 12 ¢ ’=. :
= 2 o E T g F 7 ‘ .. g
3 6 g S 8 efoifd 2 2 86 S 08 &
3 {15 £ B i £ 3 L £
N 5 Y = N 5 R F & 5 DR =
5 B 11 3 b B)
3 3 = 1 3 0.4
: 108 : e L 2 02
' > s 4 5 T s« s e o
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) pseudojbb () 209_db (i) 222_mpegaudio
Figure5: GC Timeasa Function of Heap Size
default Nursery Size Time Cap Cycle Detection Trigger
(4,60,512) 2MB 8MB 30ms 120ms 256KB 1IMB
benchmark || time | max|| time | max|| time | max|| time | max|[time | max|| time | max|| time | max
_202_jess 1.00 | 44 1.05 | 41 1.01 | 43 1.00 | 45 1.01 | 44 1.00 | 43 1.02 | 67
_213_javac 1.03 | 69 1.00 | 79 1.03 | 46 1.05 | 130|| 1.02 | 44 1.04 | 63
_228_jack 1.01 | 45 1.08 | 72 1.01 | 44 1.01 | 44 1.00 | 44 1.00 | 45 1.06 | 75
_205_raytrace 1.02 | 69 1.09 | 71 1.00 | 62 1.02 | 48 1.05 | 120(| 1.00 | 50 1.07 | 67
_227_mtrt 1.03 | 51 1.06 | 76 1.00 | 79 1.01 | 48 1.01 | 50 1.02 | 50 1.05| 75
_201_compress 1.01 | 61 1.02 | 67 1.01 | 59 1.02 | 44 1.00 | 80 1.00 | 59 1.01 | 62
pseudojbb 1.03 | 53 1.00 | 72 1.05 | 51 1.03 | 76 1.02 | 53 1.04 | 64
_209_db 1.00 | 59 1.01 | 47 1.00 | 115|| 1.00 | 59 1.00 | 60 1.00 | 59 1.00 | 59
_222_mpegaudio 1.01 | 65 1.01 | 68 1.01 | 63 1.00 | 44 1.01 | 114|| 1.00 | 44 1.01| 70
mean 1.02 | 57 1.05 | 63 1.00 | 68 102 | 48 1.02 | 80 1.01 | 50 1.03 | 67
geometric mean 1.02 | 57 1.05 | 62 1.00 | 66 102 | 47 102 | 74 101 | 49 1.03 | 67

Table5: BG-RC Sensitivity to Variationsin Collection Triggers (defaultsare 4M B nursery, 60mstime cap, and 512K B cycle trigger)

reduces the pause time, and does not degrade performanee. Ho that reducing opportunities for the cycle detector to figrctwill

ever since some of the collection (such as the nursery tlfgds exhaust the heap faster. We chose our default setting (5L&KB

compulsory, the collector could not honor the 30ms time tap, allow BG-RC to operate in a similar range of heap sizes as B&-M

lowering the cap did reduce pauses times on most benchmarks. Increasing opportunities for cycle detection increasestiobabil-
Lowering the cycle detection meta-data limit leads to lette ity that the trial deletion algorithm will try to reclaim Ige struc-

throughput and responsiveness. However, since this empati tures and produce long pauses, which is why we see maximum

was conducted at a moderate heap size, it does not exposacthe f pause time growing with the cycle detection limit.

Heap size (MB) Heap size (MB) Heap size (MB)

20 30 40 50 60 70 80 920 100 20 40 60 80 100 120 140 160 20 30 40 50 60 70 80
16 T T T T T T Ve 14 T . . T v — s 14 . : . . . rg— \
15 el S 1.35 Bome.— {145 135 Fre
° RC PR RC 2 g5 RC
£ 158 ¢ 1™ g 1”3
g s 8 1ms $ 5% ¥
% 13 17§ 2 12 13 £ % 12 18 £
-TE 1 165 g % 115 +4125 § T:, 115 175 g
S 16 S 11 412 S 11
v FIR SENC— 1128 L 17
1 e L j11 N
4 5 6 1 1 2 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a)-202_jess (d) -213_javac (9) 228 _jack
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 80 90 100 110 20 40 60 80 20 30 40 50 60 70 80 90 100
14 T T T T T T T T T T 19 T T T 14 T T T T T T T T T
MS -ooeee 110 MS -oooe J13
135 gg:gg oo 18 135 Egigé I
N ReT 10 . 17 RCG 495 N RC 4125
E 13 £ . 19 £ 13
= lss § L 16 e 12 8
% 1.25 - \ﬁ, % 485 % % 1.25 \ﬁ,
E . E 3 e 18 E 2 12 115 E
H 17 &8 8t {75 5 3 1 <
< 115 g £ talbot] s g g 115 1 g
£ - Il g £
S 11 175 = g bt] :35 = 5 11 {105 =
1.05 | B PN T 17 11 l‘““ 6 1.05 47_,1_ > /(\\r—u i /_ = T 10
1 L h L L L 1 L ‘1 L L L L L 55 1 i L L L ! 1495
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(b) _205_raytrace (e)_227_mtrt (h) 201 _compress
Heap size (MB) Heap size (MB) Heap size (MB)
50 100 150 200 250 20 40 60 80 100 120 10 20 30 40 50 60 70
14 T T T T T 14 — T T T T T 14 T T T T T T
MS oo MS oo 124 MS -
135 NS T 135 L 135 BoMS —--- 113
2 13 Re . e 13 Re 1% 2 13 Re 1125
E T F T F °
g 125 1,8 & 125 128 5 12 {12 §
= o = 3 = [
% 1.2 721;% % 12 21'5 % 1.2 A 115 E
% 115 § % 115 4 20 § % 115 411 §
£ 420 3 E s E s
S 11 S 11 119 S 11 105
4119
1.05 1.05 = I R T ez 1.05 10
4118
g i gl doco] el S 1
1 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) pseudojbb (f) -209_db (i) -222_mpegaudio
Figure 6: Mutator Timeas a Function of Heap Size
6. Related Work Bacon, Cheng, and Rajan claim the best utilization to dadesary
This section describes related work in concurrent and inere short pause times for a concurrent real-time collector [Bheir
tal collection. Concurrent collectors sacrifice throughfmr low collector is mostly non-moving and incremental. Dedicgrsep-
pause times, where as ulterior reference counting camachigh. arate CPU to the task of collection can mitigate such siganitic
This section also compares our work with Azatchi and Petsank Overheads but hurts total throughput [7, 9, 26]. In confrag
concurrent generational reference counting collector. do not target real-time applications and do not collect corently
with the mutator, but achieve throughput matching a highqgoer
6.1 Incremental and Concurrent Collection mance collector. We consider solutions that do not requid-a
Other incremental approaches include MOS, real-time, andwr- tional CPUs.
rent collectors. The mature object space (MOS) colleciaces . | .
and copies objects, incrementally packing connected tbjee 6.2 Generational Reference Counting
gether [20]. It achieves completeness without full heapectibns In parallel with our work [14], Azatchi and Petrank add gextiems
and can be configured to be highly incremental, yielding lewse to asliding-viewconcurrent reference counting collector [6, 23].
times. However, completeness comes at a performance nostisi Their generational collector uses a free list for all olgecThey
potentially copies objects nhumerous times before it idiestthem shapshot all mutated objects between collections. Sincgenu
as garbage. objects are scattered throughput the heap, the algorithst keep
Concurrent tracing collectors [15] use a special write ibatio a list of all of them to collect them separately. During a nursery

accommodate interference by the mutator in the tracinggphas collection, the collector marks all live nursery objectsd aweeps

Heap size (MB)

20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 140 160 20 30 40 50 60 70 80
3 T T T T T T T T 2 T T T T T T T T T T T T T T
| MS --ooe- MS oo 124 2 MS -
L BG-MS -~~~ BG-MS ——-- L7 : BG:MS =t 12
Ay BG-RC 116 BG-RC —— BG-RC
i RC 18 RC 420 16 RC
25 : 1 q11
o E o
£ ; 5 2 £ 15
= | g FE 16 g Tk 9
] | 18 3 8 3 14 10 8
8 2 i o 3 e =2 @
T | £ © b E £
£ | E E 14 F E 131 =
5 | 110 5 S \ 49
z z 416 = 12 ‘\
15 S . \\
T o N K (S
5 18 v N 4
R | 14 11 8
N\ T e iz et
s 6 L) - —
1 2 3 4 5 6 1 2 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a)-202_jess (d) -213_javac (9) 228 _jack
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 8 90 100 110 20 40 60 80 100 120 20 30 40 50 60 70 80 90 100
T T T T T T T T T T T T T T T 115 T T T T T T T T T
: MS ---oeee ; MS oo 117
L7 : BG-MS -~ L7 | i L7 BG-MS -~
: BG-RC —— 12 B BG-RC BG-RC —— | ¢
16 § RC 16 y RC 4105 16 RC
2 1s B 411 g 15 \ 410 g 15 418
s b g E dos5 T F g
3 14 : & 3 14 & 3 14 S)
N 410 o N v 49 o 2 [
® K E ® v £ © \ £
E 13 o 13 el 4gs F E 131 118 F
- N = .
g \) E PN 2
12 \ 1° 12 b 48 12 o 112
[i .
175
11 b4 - g 11 fohi 11 411
. gl i 17
P RV — il PR 1 410
1 2 3 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(b) _205_raytrace (e)_227_mtrt (h) 201 _compress
Heap size (MB) Heap size (MB) Heap size (MB)
50 100 150 200 250 20 40 60 80 100 120 10 20 30 40 50 60 70
T T T T T T T T T T T T T T T T T T
MS oo MS oo MS -
L7 BG-MS ---- L7 BG-MS ---- 30 L7 BG-MS ----
BG-RC —— 30 BG-RC BG-RC 16
1.6 RC 16 [RC 16 RC
|28 ; 128 115
g 15 g 15 g 15
E lxs3 E ; 126 g3 F {1 g
T 14 & B 14l e B 14 a
2 e £ :\ Joa g 5 113 g
E 13 424 & E 13p-d £ E 13 S
S S g <]
2 E \ 12 z 412
1.2 22 12 -y L 1.2 [
L[i b 111
11 420 11 - 20 11 -
L S L L PSP 1 e 10
1 2 3 4 5 6 1 2 3 4 5 6 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) pseudojbb (f) -209_db (i) -222_mpegaudio

Heap size (MB)

Heap size (MB)

Figure7: Total Timeasa Function of Heap Size

the remainder. Their reclamation is thus proportional ehtire
nursery size, rather than the survivors as in a copying nurge
copying nursery performs better. While processing theemyriog,
the collector reference counts survivors as it promotesith€he
basic concurrent design attains excellent pause timetertibain
Bacon et al. [6, 7]. The sliding view reference counting ector
performs occasional concurrent mark-sweep collectioreotiect
cycles.

Our work introduces the tracing deferral mechanism for heap
objects. Both papers discuss slot and object logging defand
measure variants of object logging. The major quantitaikean-
tage of our approach is the combination of space and time effi-
ciency, yielding a much higher throughput collector codplégth
low pause times. For example, since we use a copying nursery,
we achieve the fastest possible allocation time, and coendian-
ning and reclamation time proportional to survivors. Wedlave
significantly less space overhead.

In this paper, we compare performance with BG-MS which com-

bines the best of copying and mark sweep, using bump-paafter
location and a space efficient mark-sweep free list for Itved
objects. Previous [5] and concurrent [11] work shows thatBB&
performs better than a variety of other collection algonih in-
cluding other generational collectors. MS, which we alstide,
is a widely used algorithm but it performs poorly on throughp
and pause time. Generational collection on average traeksrne
to collect the nursery, but it does not remove the need fohkdp
collection. In the worst case, all these collectors musspauhile
the collector traces the entire, full heap.

Beltway collectors [12] generalize over classic copyingeye-
tional collectors by adding incremental collection on ipeledent

beltswhich are analogous to generations. Beltway configurations

outperform generational copying collectors, but have rarbdi-
rectly compared to BG-MS [12]. We believe that a generalirat
of ulterior reference counting as the last belt is a Beltwaryfigu-
ration that could perform better than the results here.

7.

Conclusion

The tension between responsiveness and throughput is stéomly
ing problem in the garbage collection literature. Until nawllec-
tors either exhibited good throughput performance or gesgan-
siveness, but not both. BG-RC carefully matches allocagiod
collection policies to the behaviors of older and younggecide-
mographics, and thus delivers both excellent throughpdtgamod
responsiveness. The key to this result is an algorithm taeigl-
izes deferred reference counting to safely ignore mutatiomurs-
ery objects and thus significantly reduces the referencetiouu
load. Future collectors could improve on these results withe-
mental or concurrent dead cycle detection for large strastiand
an adaptive algorithm that selects a more appropriateatoliéor
highly-mutated but long-lived objects.

8.

Acknowledgements

We want to thank IBM Research and in particular Perry Cherly wi

whom we designed and implemented JMTk. Without JMTk and

Jikes RVM, this work would not have been possible. We alsnkha
Michael Hind, David Grove, and David Bacon for their support
Finally, we thank our respective research groups for ttesidback
and encouragement.

9.
(1]

(2]

(3]

[4]

(5]

(6]

[7]

REFERENCES
B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith
T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and

M. Mergen. Implementing Jalapefio in JavaPimceedings
of the 1999 ACM SIGPLAN Conference on Object-Oriented

(8]

9]

[10]

[11]

[12]

Programming Systems, Languages & Applications, OOPSLA [13]

'99, Denver, Colorado, November 1-5, 199®lume 34(10)

of ACM SIGPLAN Noticepages 314-324. ACM Press, Oct.
1999.

B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P. Chen
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio
virtual machinelBM System JournaB39(1):211-238,
February 2000.

A. W. Appel. Simple generational garbage collection éamt
allocation.Software Practice and Experience
19(2):171-183, 1989.

M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapefio JVM.GODPSLA’00
ACM Conference on Object-Oriented Systems, Languages
and Applications, Minneapolis, MN, USA, October 15-19,
200Q volume 35(10) oACM SIGPLAN Noticepages
47-65. ACM Press, October 2000.

C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collectors. In
Languages and Compilers for Parallel Computing, 14th
International Workshop, LCPC 2001, Cumberland Falls, KY,
USA, August 1-3, 2001 ecture Notes in Computer Science.
Springer-Verlag, 2001.

H. Azatchi and E. Petrank. Integrating generations with
advanced reference counting garbage collectors. In
International Conference on Compiler Construction
Warsaw, Poland, Apr. 2003. To Appear.

D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and

S. Smith. Java without the coffee breaks: A nonintrusive
multiprocessor garbage collector.Pnoceedings of the ACM
SIGPLAN’01 Conference on Programming Languages

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

Design and Implementation (PLDI), Snowbird, Utah, May,
2001, volume 36(5), June 2001.

D. F. Bacon, P. Cheng, and V. T. Rajan. A realtime garbage
collector with low overhead and consistent utilization. In
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New Orleans,
Louisisana, January 15-17, 200@lume 38(1) ofACM
SIGPLAN NoticesACM Press, Jan. 2003.

D. F. Bacon and V. T. Rajan. Concurrent cycle collection i
reference counted systems. In J. L. Knudsen, editor,
Proceedings of 15th European Conference on
Object-Oriented Programming, ECOOP 2001, Budapest,
Hungary, June 18-22/0lume 2072 of_ecture Notes in
Computer Sciencgages 207—-235. Springer-Verlag, 2001.
E. D. Berger, B. G. Zorn, and K. S. McKinley. Building
high-performance custom and general-purpose memory
allocators. InProceedings of SIGPLAN 2001 Conference on
Programming Languages Design and Implementatipages
114-124, Salt Lake City, UT, June 2001.

S. M. Blackburn, P. Cheng, and K. S. McKinley. A garbage
collection bakeoff in a Java memory management toolkit
(JMTK). Technical Report TR-CS-03-02, ANU, Mar. 2003.
S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock
In Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation,
PLDI'02, Berlin, June, 2002volume 37(5) ofACM
SIGPLAN NoticesACM Press, June 2002.

S. M. Blackburn and K. S. McKinley. Fast garbage coliect
without a long wait. Technical Report TR-CS-02-06, Dept.
of Computer Science, Austrailian National University, Nov
2002.

S. M. Blackburn and K. S. McKinley. In or out? Putting
write barriers in their place. IRroceedings of the Third
International Symposium on Memory Management, ISMM
'02, Berlin, Germanyvolume 37 ofACM SIGPLAN Notices
ACM Press, June 2002.

H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly palrall
garbage collectiorSIGPLAN Notices26(6):157-164, 1991.
C. J. Cheney. A non-recursive list compacting algonith
Communications of the ACM3(11):677-8, Nov. 1970.

P. Cheng and G. Belloch. A parallel, real-time garbage
collector. InProceedings of the ACM SIGPLAN'01
Conference on Programming Languages Design and
Implementation (PLDI), Snowbird, Utah, May, 20@blume
36(5) of ACM SIGPLAN Noticegpages 125-136. ACM
Press, June 2001.

G. E. Collins. A method for overlapping and erasure sifdli
Communications of the ACM(12):655-657, Dec. 1960.

L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collect@@ommunications of the ACM
19(9):522-526, September 1976.

R. L. Hudson and J. E. B. Moss. Incremental garbage
collection for mature objects. In Y. Bekkers and J. Cohen,
editors,Proceedings of the First International Workshop on
Memory Management, IWMM’'92, St. Malo, France, Sep,
1992 volume 637 olLecture Notes in Computer Science
Springer-Verlag, 1992.

R. E. Jones and R. D. Lin&arbage Collection: Algorithms
for Automatic Dynamic Memory Managemeitiley, July
1996.

[22]

(23]

[24]

[25]

[26]

[27]

D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

Y. Levanoni and E. Petrank. An on-the-fly reference ¢mgn
garbage collector for Java. IRCM Conference Proceedings
on Object—Oriented Programming Systems, Languages, and
Applications pages 367—-380, Tampa, FL, Oct. 2001.

H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objedBommunications

of the ACM 26(6):419-429, 1983.

E. Petrank. Private communication, July 2003.

T. Printezis and D. Detlefs. A generational
mostly-concurrent garbage collector.Pnoceedings of the
International Symposium On Memory Management (ISMM),
Minneapolis ACM Press, Oct. 2000.

Standard Performance Evaluation Corporat®RECjvm98
Documentationrelease 1.03 edition, March 1999.

[28] Standard Performance Evaluation Corporation.

SPECjbb2000 (Java Business Benchmark) Documentation
release 1.01 edition, 2001.

D. StefanovicProperties of Age-Based Automatic Memory
Reclamation AlgorithmdPhD thesis, University of
Massachusetts, 1999.

D. M. Ungar. Generation scavenging: A non-disruptivghh
performance storage reclamation algoritk@M SIGPLAN
Notices 19(5):157-167, April 1984.

P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical reviem. |
H. Baker, editorProceedings of International Workshop on
Memory Management, IWMM'95, Kinross, Scotlaadlume
986 ofLecture Notes in Computer Scien&pringer-Verlag,
Sept. 1995.

