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ABSTRACT
In an out-of-order issue processor, instructions are dynam-
ically reordered and issued to function units in their data-
ready order rather than their original program order to achi-
eve high performance. The logic that facilitates dynamic is-
sue is one of the most power-hungry and time-critical com-
ponents in a typical out-of-order issue processor.

This paper develops a cooperative hardware/software tech-
nique to reduce complexity and energy consumption of the
issue logic. The proposed scheme is based on the observa-
tion that not all instructions in a program require the same
amount of dynamic reordering. Instructions that belong to
basic blocks for which the compiler can perform near-optimal
sche- duling do not need any intra-block instruction reorder-
ing but require only inter-block instruction overlap. In con-
trast, blocks where the compiler is limited by artificial de-
pendences and memory misses require both intra-block and
inter-block instruction reordering. The proposed Reorder-
Sensitive Issue Scheme utilizes a novel compile-time ana-
lyzer to evaluate the quality of schedules generated by the
static scheduler and to estimate the dynamic reordering re-
quirement of instructions within each basic block. At the
micro-architecture-level, we propose a novel issue queue that
exploits the varying dynamic scheduling requirement of basic
blocks to lower the power dissipation and complexity of the
dynamic issue hardware.

An evaluation of the technique on several SPEC integer
benchmarks indicates that we can reduce the energy con-
sumption in the issue queue on average by 72% with only
5% performance degradation. Additionally, the proposed is-
sue hardware is significantly less complex when compared to
a conventional monolithic out-of-order issue queue, provid-
ing the potential for high clock speeds.

1. INTRODUCTION
Modern high-performance microprocessors are typically

centered around a sophisticated out-of-order execution core
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that can issue multiple parallel instructions each cycle. An
integral component of the out-of-order execution core is the
issue queue (IQ) which holds decoded instructions while
they await their operand values. In each cycle, the queue se-
lects a few instructions whose input dependences have been
satisfied and issues them to the function units. A large is-
sue queue is desirable since it allows the dynamic sched-
uler to examine larger portions of the instruction stream for
independent instructions. However, cycle-time and power
dissipation constraints restrict the actual size of the queue
that can be realized in hardware. The dynamic issue logic
is predicted to be a key limiting factor of clock speed in
future processors [21]. Furthermore, power dissipation and
energy consumption are first-order constraints in the design
of today’s microprocessors. Due to its highly associative na-
ture, the issue logic is one of the most power-hungry units
on the processor core today [12]. The power dissipation
of this hardware grows quadratically with processor issue
width and is projected to expend a significant portion of
the processor’s energy budget in future processors [17, 31].

This paper presents a cooperative hardware/software tech-
nique to mitigate the power and complexity bottlenecks in
the issue logic. The scheme proposed in this paper attempts
to harness the work done by the static compile-time instruc-
tion scheduler.

The instruction scheduling phase in the compiler reorders
and packages instructions into groups of parallel instruc-
tions. The function of the static scheduler is identical to
that of the dynamic hardware scheduler. Generally, static
schedules are of an inferior quality when compared to dy-
namic schedules since the compile-time scheduler is limited
by unknown memory latencies, unknown control flow, lim-
ited architectural registers, unresolved memory aliases, etc,
in the program. However, on examining several SPEC2000
benchmarks, we find that although portions of general pur-
pose programs suffer from the above impediments, a signifi-
cant number of basic blocks are free of any memory misses,
false-dependences or unresolved alias edges. Consequently,
the static schedules of these blocks are near-optimal, and are
not very different from their corresponding dynamic sched-
ules. A simple example is shown in Figure 1.

Consider the case where the compiler is unable to resolve
the addresses of two potentially independent load and store
operations statically (case 1 in the figure). The instruc-
tion scheduler adds a data-dependence edge between these
operations and forces them to execute sequentially. The dy-
namic scheduling issue logic however can dynamically disam-



Case 2: R15 & R24 are starting addresses 
of two arrays a & b; no aliasing problem

Case 1: R15 & R24 depend on input

data; Potential address aliasing;
cannot be resolved statically
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Cycle 5  
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.
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1. add R1, R1, R5

4. ldq  R9, 8(R24)
3. stq  R1, 0(R15)
2. sub R5, R2, R1

(a) Example Basic Block

Assumed operation latencies (b) Dynamic Schedule 

Cycle 1     Instr (1)  Instr (4)
Cycle 2     Instr (2)  
Cycle 3     Instr (3)  Instr (5)

(d) Compiler Schedule (Case 2)
ALU − 1 cycles,

(c) Compiler Schedule (Case 1)

LD/ST − 2 cycles

Figure 1: Illustrative Example. (a) Example basic block (b) Dynamic schedule (c) Compiler schedule when
the block has an unresolved memory dependence and (d) Compiler schedule when there are no unresolved
memory dependences.

biguate the addresses using run-time information to schedule
the load operation ahead of the store if they are indepen-
dent. The compiler-generated schedule (Figure 1(c)) is sig-
nificantly worse than the schedule achieved by the dynamic
issue logic (Figure 1(b)) for this case. On the other hand,
if we consider the case wherein the compiler is able to re-
solve the addresses statically (case 2), there is no difference
between the compiler-generated schedule (Figure 1(d)) and
the dynamic schedule. Thus, in blocks where the compiler
has perfect knowledge, instructions do not need dynamic re-
ordering and could potentially be issued in their statically
scheduled order. Furthermore, in today’s wide-issue pro-
cessors, it is not sufficient if the instructions within basic
blocks are scheduled perfectly. Instructions from different
blocks must be overlapped to fill the available issue slots.

Thus, we note that instructions in a program require two
forms of reordering namely intra-block reordering and inter-
block overlap. Blocks in which the compiler can perform
near-optimal scheduling do not need any intra-block reorder-
ing but require inter-block overlap to limit performance loss.
Blocks where the compiler is limited by artificial depen-
dences and memory misses will require both intra-block and
inter-block reordering. Based on the inherent reordering
requirement of the instructions in each basic block of the
program, this paper develops a novel Reorder-Sensitive in-

struction issue mechanism to reduce the energy consumption
and complexity of the issue queue. The proposed scheme
is a cooperative hardware/software scheme involving both
feedback-directed compiler analysis and micro-architectural
innovation.

In the reorder-sensitive issue scheme, the compiler, with
the help of profile-guided hints, estimates the reorder re-
quirements of each block and classifies it as a low-reorder
required (LRR) block or a high-reorder required (HRR) block.
At the micro-architecture level, the scheme uses a low- com-
plexity, low-power, reorder-sensitive issue queue that ex-
ploits the varying reorder requirements of blocks in the pro-
gram. The proposed Reorder-Sensitive issue logic consists of
a FIFO-based low-reorder issue queue (LR Queue) that pro-
vides only inter-block overlap and a small fully associative
issue queue which provides both intra- and inter- block re-
ordering. In this scheme, each block in the program is issued
to a queue tuned to the block’s inherent reordering require-
ment. The low reorder queue uses the compiler-generated
schedules and is thus suited for LRR blocks. HRR blocks
are directed to the associative queue. As a natural conse-

quence of the block selection mechanism, we find that long
latency instructions such as load misses are isolated to HRR
blocks. These blocks thus have low instruction-level paral-
lelism (ILP). The associative queue thereby needs to support
only low issue widths and is significantly smaller and less ag-
gressive when compared to a conventional out-of-order issue
queue that allows all instructions. The resulting issue logic
is thus significantly lower in power and complexity when
compared to a conventional issue queue.

We develop an integrated compiler and microarchitecture-
level simulator framework called SPHINX to evaluate the
proposed technique. SPHINX integrates a detailed out-
of-issue processor simulator that is largely based on Sim-
plescalar’s sim-outorder [4] simulator with the Trimaran [32]
compiler framework. SPHINX also includes power models
derived from Wattch [3] for the different hardware structures
in the processor. Our results show that the reorder-sensitive
scheme can reduce both complexity and power of the issue
queue without a significant impact on performance.

The remainder of the paper is organized as follows: In
Section 2, we give a brief summary of prior work in the
area of complexity and energy-effective issue queue design.
The details of the proposed reorder-sensitive issue scheme
are provided in Section 3. Our experimental framework is
explained in Section 4. In Section 5, we present an evalu-
ation of the proposed scheme. We present brief concluding
remarks in Section 6.

2. RELATED WORK
The scheme proposed in this paper leverages the compiler

to reduce the complexity and energy consumption of the
dynamic scheduling logic. There are several key benefits of
engaging the compiler.

One important advantage is that the compiler can config-
ure resources more effectively at smaller granularities when
compared to run-time hardware techniques. The run-time
energy saving schemes typically lower the energy consump-
tion in the issue queue by adapting the size of the queue
based on the dynamic requirements of the program [2, 6,
8, 10, 13, 14, 22, 28, 29]. These techniques usually sample
measurable metrics such as IPC or issue queue occupancy
to estimate program computational demand and to guide
adaptation. To ensure accuracy in detecting changes in com-
putational demand, the sampling intervals are usually quite
large [10, 22, 13]. In contrast, compile-time approaches can
adapt at smaller intervals [14, 28, 29]. For example, the tech-



niques suggested by Unsal et al. [28] and Valluri et al. [29]
perform compiler-controlled adaptation at loop boundaries.
Jones et al. [14] resize the queue at at basic-block bound-
aries using compiler hints. The scheme proposed in this
paper reuses static schedules at basic block granularities to
save power and reduce complexity.

Similar to the scheme proposed in this paper, our previ-
ous work also suggested a technique that can harness com-
piler generated schedules [29]. In the Hybrid-Scheduling
scheme, instructions belonging to well-structured regions of
programs such as loops bypass the dynamic scheduling logic
and issue directly in their statically-scheduled order, i.e., in
a VLIW fashion. Unlike the low reorder issue mode pro-
posed in this paper, the low power VLIW mode provides
no support for dynamic reordering. The Hybrid-Scheduling
approach is therefore only applicable for regular programs
such as media and floating-point where a significant portion
of the available instruction-level parallelism (ILP) is visible
and exploitable at compile-time [29]. General-purpose inte-
ger programs on the other hand, contain short basic blocks
and require some dynamic reordering between basic blocks
to limit performance loss. The reorder-sensitive scheme pro-
posed in this paper is thus particularly suited for general-
purpose programs.

Previous techniques have suggested reusing schedules cre-
ated by the dynamic issue logic [11, 20, 27]. In these schemes,
schedules previously created by the dynamic issue logic are
issued directly to the function units without any dynamic
reordering. However, the disadvantage of these techniques
is that large cache-like structures are required for capturing
the schedules at run-time. The scheme proposed by Talpes
et al. also requires a significantly larger physical register
file [27]. Seng et al. [25] suggest a technique to reduce power
by using an in-order queue and an out-of-order issue queue
for critical and non-critical instructions respectively. The
scheme does not reuse compiler schedules or support. In-
structions are steered to different issue queues based on dy-
namic critical path analysis. The TRIPS architecture also
simplifies the issue logic and takes advantage of compiler
knowledge to place instructions on a grid of ALUs [5]. How-
ever, the impact of this simplification on power and energy
consumption is yet to be evaluated.

Another direction of related research focuses on designing
complexity-effective issue queues. A majority of the pre-
viously proposed techniques reduce complexity of the issue
queue by limiting the number of candidate instructions to be
considered for issue [1, 7, 9, 18, 19, 21, 23, 16]. These tech-
niques typically consist of a pre-scheduling phase wherein the
data-dependences of instructions are analyzed. Instructions
are typically held in a separate buffer and are considered for
issue in their approximate data-flow order [1, 7, 9, 18, 19, 23,
16]. In some cases, after the pre-scheduling phase, instruc-
tions are steered to different low-complexity FIFOs based on
their dependences with older instructions in the queues [1,
21, 23]. While these techniques alleviate the complexity of
the issue logic, they often require extra hardware and/or the
addition of a few pipeline stages. An advantage of employing
the compiler is that it exposes mechanisms to simplify the
hardware beyond what is achievable with dynamic schemes.
In the proposed Reorder-Sensitive issue scheme, since the
necessary analysis is performed statically, we shift the bur-
den to the compiler and thereby eliminate the need for any
auxiliary hardware resources or pipeline stages. To the best

of our knowledge, our work is the first to suggest a compile-
time approach to reduce the complexity of a conventional
out-of-order issue queue.

3. THE REORDER-SENSITIVE INSTRUC-
TION ISSUE MECHANISM

Figure 2 presents a high-level view of the proposed scheme.
The reorder-sensitive issue scheme has both software and
hardware components. At the software-level, the scheme
uses a compile-time analyzer that evaluates the quality of
schedules generated by the static scheduler, estimates the re-
ordering requirement of instructions within each basic block,
and classifies blocks as LRR or HRR blocks. At the hard-
ware level, there are two separate low-power, low-complexity
queues for the two types of blocks. Blocks are directed to
different queues based on their reordering requirement. We
first discuss the software component of the scheme.

Function

Low

High

File
Units

Phys.

Decode/RenameFetch Data Cache

Queue

Queue

Blocks
LRR

HRR
Blocks

Register

Reorder

Reorder

Figure 2: High-level view of the proposed reorder-
sensitive instruction issue mechanism

3.1 Estimating the Inherent Reordering Re-
quirement of Basic Blocks

For a given block of instructions, even the most advanced
static schedulers fail to produce optimal schedules in the
presence of the following impediments: (a) false-dependences
(b) unresolved memory aliases and (c) non-uniform load la-
tencies. Instructions within such blocks will have to be re-
ordered dynamically to hide pipeline stalls. This section de-
scribes in detail how the compiler, with the help of profile-
time statistics, evaluates the impact of each of the above
constraints on the schedule quality of each basic block.

3.1.1 Impact of Anti- and Output- Dependences on
Static Schedules

Due to the limited number of available architectural reg-
isters, the register allocator often assigns the same register
to independent instructions. This reuse of registers results
in anti- and output- dependences, which in turn limits the
instruction scheduler’s reordering opportunities. Dynami-
cally scheduled processors do not suffer from this limitation
since they are able to employ dynamic register renaming
to remap architectural registers to hardware physical regis-
ters. With register renaming, each instruction entering the
pipeline is assigned a new physical register. The number
of hardware physical registers in a processor is considerably
higher than the number of architectural registers exposed to
the static scheduler (more than twice). Elimination of false-
dependences allows the out-of-order issue scheduler greater
flexibility in selecting instructions for issue each cycle.

The degradation of the schedule quality due to false regis-
ter dependences can be estimated by comparing the length
of the critical path in the block and the actual schedule
achieved by the static instruction scheduler. The critical
path is computed by considering only true dependences and



hence is the minimum schedule length of the block. If the
anti- and output- dependence edges impact the schedule,
the length of the schedule for the block (Sched len) will be
larger than the critical path (CPmax). Such a block will
clearly require dynamic reordering support. The degrada-
tion in schedule quality caused by anti- and output- depen-
dences (SDfd) can be estimated as:

SDfd =
Sched len − CPmax

CPmax

∗ 100 (1)

Note we conservatively assume that with a large enough
physical register file, the dynamic issue logic can remove all
the false dependences.

3.1.2 Impact of Unresolved Alias Edges
When the compiler is unable to resolve the addresses of

two memory operations, it adds a dependence edge between
the operations and forces them to execute sequentially. A
given static schedule may perform poorly compared to its
equivalent dynamic schedule if dependences that do not oc-
cur during the actual execution of the program are respected
by the compiler.

To estimate the impact of alias edges on the static sched-
ule, we collect profile information of all the memory depen-
dences within a block that occur during program execution.
For every pair of memory operations that are dependent
each time they occur during execution, we convert the mem-
ory dependence edge to a true data-dependence edge during
the computation of the critical path. The critical path then
reflects this true memory dependence. Consequently, Equa-
tion 1 estimates the potential schedule degradation due to
both false data dependences and false memory dependences.

3.1.3 Impact of Cache Misses
Load misses pose a serious performance bottleneck to in-

order issue of instructions since it is difficult for the compiler
to find sufficient instructions in a single basic block to fill
all the issue slots, particularly in today’s superscalar proces-
sors with wide issue and large cache miss latencies. To esti-
mate the cost of cache misses (SDcm), we profile the average
number of L1 misses (L1misses) and L2 misses (L2misses)
per block. Hence, the estimated performance degradation is
given by:

SDcm =
L1misses ∗ L1eff cost + L2misses ∗ L2eff cost

CPmax

∗ 100 (2)

The effective cost in Equation 2 represents the fraction of
the cache miss latency that the out-of-order issue logic can
hide. The effective cost is different from the actual latency
of a cache miss. It is a complex function of miss latencies,
issue queue size, issue width and available ILP in the pro-
gram. For example, larger issue queues can potentially hide
a larger fraction of the miss stalls. In our experiments, we
empirically identify the effective cost of a cache miss seen
by an instruction in the LR queue.

3.1.4 Selecting and Annotating LRR Blocks
To select blocks, the compiler sets certain threshold values

for acceptable schedule degradations. A block is selected as
an LRR block if both SDfd and SDcm are less than their re-
spective threshold values FDth and CMth. Similar to Jones
et. al., [14], we assume that the compiler annotations are

conveyed to the hardware using marker instructions. We
need one marker instruction for each basic block. We as-
sume that the marker instructions are flushed after decode
and do not enter the rest of the pipeline. Figure 3 shows a
complete summary of the compile-time analysis.

Profile Collection Phase

for each basic block {
record L1 miss rate, L2 miss rate;
record pairs of dependent memory operations;

}

Profile Analysis Phase
for each basic block {

for each ’always_occurs’ memory edge {

}

Compute CP_max, SD_fd, SD_cm; 
if (SD_fd < FD_th && SD_cm < CM_th)

Select block as LRR block;
else

Select block as HRR block;

}
Annotate block with marker instruction;

convert to true dependence edge;

Figure 3: Block selection algorithm

3.2 Reorder-Sensitive Issue logic
The previous section showed how the compiler identifies

blocks that require less dynamic scheduling. In this section,
we present an issue queue design that exploits the varying
requirement of basic blocks to significantly alleviate the com-
plexity and power of the issue logic. The proposed Reorder-
Sensitive issue logic has two types of queues: namely, the
LR (low reorder) queue and the HR (high reorder) queue.

The LR queue consists of several FIFO buffers, with each
buffer as wide as the average ILP available in a basic block.
At run-time, each new LRR block is directed to one of these
buffers. For each LRR block, a FIFO is selected in a round-
robin fashion. Instructions can be written only into the tail
pointer of each buffer and can only be read from the head
of the queue. In each cycle, instructions from the heads
of the FIFOs can be selected for execution. Since there
are multiple queues, instructions from different LRR blocks
can be overlapped (Figure 4). Instructions in each basic
block are therefore issued in their statically scheduled or-
der but are overlapped with instructions from successive
basic blocks (Note, the LR queue is conceptually similar
to the region-slip-enabled issue buffer proposed by Spadini
et al. [26]. Their proposed mechanism uses a FIFO-based
issue buffer that allows a block’s schedule to ‘slip’ into the
schedule of a previous block. However, the disadvantage
of the region-slip buffer is that it is a monolithic structure
requiring a large number of entries and ports, making the
power consumption of the buffer excessively high.).

The number of FIFOs in the LR queue required will be dif-
ferent for different architectures and can be chosen at design
time based on the extent of overlap seen during execution
for the target workloads. For example, on examining several
SPECint benchmarks executing on an 8-way conventional
out-of-order issue processor with a 128-entry issue queue,
we found that in nearly 70% of execution cycles, instruc-
tions are issued from at most three consecutive basic blocks.
Thus, three FIFO buffers can capture a significant portion
of the required inter-block overlap between LR blocks.

The HR queue in the reorder-sensitive issue scheme caters
to instructions that require full dynamic scheduling and hence
is fully associative similar to the conventional out-of-order is-
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sue queue. We observe that in the block selection algorithm,
blocks with a large number of cache misses are automatically
deemed as HRR blocks. In consequence, we find that the
available ILP in these blocks is limited. The HR buffer can
thus be small and have a less aggressive issue width.

In each cycle, instructions are selected from either the
out-of-order issue queue or the heads of the FIFOs for exe-
cution. The total number of instructions issued in each cycle
is limited to the issue width of the processor.

The complexity of the reorder-sensitive issue logic is sig-
nificantly lower than a conventional broadcast-based fully
associative issue queue. The inherent complexity of the LR
queue is inherently low since it is FIFO based. There are
no complex CAM structures or global signals for instruction
wake-up. Unlike the conventional issue window where re-
sult tags need to be broadcast to all the entries, in the LR
queue, register availability only needs to be fanned out to
the heads of the FIFOs [21]. Further, since each block in the
program is classified and annotated by the compiler, there
are practically no extraneous hardware structures required
for steering instructions to different queues. Also, since the
instructions in the LR buffers are issued in their statically-
scheduled order, there is no extra prescheduling phase usu-
ally required in other dependence-based schedulers. The
complexity of the wakeup logic in the HR queue is also sig-
nificantly lower since the issue width of the queue is small.
Since the HR queue is small and the number of FIFOs is
not high, the arbitration logic has to select from a smaller
number of candidate instructions compared to conventional
scheme. Thus we see that both the LR queue and HR queue
are small and simple structures. The power dissipation of
the reorder-sensitive issue logic is consequently significantly
lower than a conventional out-of-order issue queue.

4. EXPERIMENTAL SETUP
We develop an integrated compiler and microarchitecture-

level simulator framework called SPHINX to evaluate the
proposed technique. An overview of the framework is pre-
sented in Figure 5.

4.1 The SPHINX framework
SPHINX integrates a detailed out-of-issue processor sim-

ulator that is largely based on Simplescalar’s sim-outorder
simulator with the Trimaran 2.0 [32] compiler framework.
Trimaran provides a rich support structure for developing
state-of-the-art optimizations geared towards high perfor-
mance architectures. We also incorporate power models de-
rived from Wattch [3] in the simulator to estimate power.
The SPHINX framework thus provides a unified platform

for exploring a range of software and hardware techniques
for low power. We briefly describe each of the modules in
the framework.

IMPACT

ELCOR

OOO simulator

Simulator Results

Profile Analyzer

HPL−PD Machine

Description

Parameters
Compiler

Power Models

Simulator
Parameters

+

EMULIB

Modified Trimaran Modules

Our Additions

to CodegenProfile Stats

CODEGEN

C Program

Existing Trimaran Modules

Figure 5: SPHINX compiler/simulator framework

IMPACT and ELCOR are the Trimaran front-end and back-
end phases respectively. Trimaran is built around a param-
eterized ILP architecture called HPL-PD. A machine de-
scription language, called HMDES, allows the user to de-
velop a machine description for the HPL-PD processor in
a high-level language, which is then translated into a low-
level representation for efficient use by the compiler. The
HPL-PD machine description includes detailed formats of
the rich set of instructions support by the HPL-PD archi-
tecture. Several machine description aspects can be varied
including the register file type and size, number and type of
function units, operation latencies etc. We use the machine
description language to define a contemporary superscalar
processor. Table 1 shows some of the important high-level
HMDES parameters and their values. The code generator
(CodeGen) module converts the program from its interme-
diate program representation into instructions that can be
executed on a virtual HPL-PD machine. We implement the
instrumentation code for profiling memory dependences and
cache misses per block within this module. The emulation
library (Emulib) of Trimaran contains an interpreter and a
set of emulation routines for the HPL-PD virtual machine.
We use the interpreter to generate a trace of instructions
that feed into our detailed out-of-order issue simulator.

We model a detailed out-of-order issue superscalar simu-
lator (OOO Simulator) within SPHINX. The simulator is a
heavily modified version of Simplescalar’s sim-outorder sim-
ulator. We modified the simulator to support HPL-PD in-
structions. Further, the Register Update Unit (RUU) in
sim-outorder is replaced with a separate issue queue and
physical register file. We also incorporate the branch pre-
dictor and cache modules used in sim-outorder in SPHINX.
The power/energy estimates in the simulator are based on
the suite of parameterizable power models in Wattch 1.0 [3].
The profile analyzer implements our block selection algo-
rithm. It examines the profile statistics collected and iden-
tifies LRR/HRR blocks. This information is then provided
to the CodeGen module so that the blocks can be annotated
with the appropriate marker instructions.

1Although we support predication in our framework for com-
pleteness and for future research, none of our benchmarks
used predicated instructions, mainly because we use basic-
blocks not hyperblocks.
2BTR registers are accessed only by special prepare-to-
branch (PBR) in the HPL-PD architecture. PBR instruc-
tions are typically used for provide hints regarding branch



Table 1: High-Level HMDES parameters

Feature Attributes
Integer GPRs 32

Floating Point GPRs 32
Predicate Registers1 32

Branch Target Registers2 16
Rotating Registers None
Control Registers None
Function Units Similar to

Table 2

Table 2: Baseline Processor Configuration

Feature Attributes
Issue Units IQ/LSQ - 128/64 entries

128 physical registers
Fetch/Decode/Issue/Commit width - 8

Cache 32KB 4-way L1 Dcache (2-cycle hit)
Hierarchy 32KB DM L1 Icache (1-cycle hit)

512KB 4-way L2 (20-cycle hit)
Memory 150 cycles memory latency

Branch Pred. 4K Gshare 22 cycles extra
misprediction latency

Function 6 integer ALUs, 2 FP ALUs Units
4 integer multiply units 1 FP

multiply units,2 load/store units

4.2 Benchmarks
The scheme is evaluated for several SPEC95 and SPEC2000
integer benchmarks. We particularly target the integer pro-
grams since they are less amenable to compile-time opti-
mizations due to the presence of hard-to-predict branches,
pointer-intensive memory accesses and extensive use of func-
tion and library calls. The benchmarks used in the study are
shown in Table 3. We use true profiling for the evaluation,
i.e., the input data used by the compile-time analyzer to
classify blocks is different from the input set used to evaluate
the proposed technique. MinneSPEC reduced inputs [15]
are used where applicable. For vortex, we skip the first 100
million instructions and simulate one billion instructions.

5. EXPERIMENTAL EVALUATION
This section presents a detailed evaluation of the reorder-

sensitive issue scheme. We first present the power dissipa-
tion and performance results.

5.1 Power and Performance Results
The baseline out-of-order issue processor has an 8-wide,

128 entry issue queue. The configuration of the baseline pro-
cessor is detailed in Table 2. We choose a reorder-sensitive
configuration to match the characteristics of typical general-
purpose programs. We measured the degree of overlap in the
SPEC integer benchmarks. Table 4 shows the maximum dis-
tance between instructions issued in one cycle in terms of the
number of basic blocks. We observe that in nearly 75% of
execution cycles, instructions are issued from at most four
consecutive basic blocks. Thus, we use four 3-wide 8-entry
FIFO buffers. We restrict the width of each FIFO to three
entries, since in most blocks, the ILP was not higher than 3.
Having 8-rows of 3 instructions each in each row provided
24-entries in a FIFO. In contrast to the baseline processor,
75% of the entries are thus in FIFOs. The remaining 25% of

prediction to the target architecture. The BTR file contains
only replicates of values that are already held in the general-
purpose register (GPR) file and does not extend the GPR
file in any way.

the entries are in a 4-wide, 32-entry associative issue queue.
This is significantly less aggressive and smaller when com-
pared to the baseline issue queue.

Table 4: Instruction overlap from different blocks
# of blocks ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 8

% cycles 52.6 61.4 70.1 74.7 79.7 82.7 100

Table 5 shows the percentage of instructions issued from
the LR queue. We set the block selection thresholds at
5%(FDth) and 0.1%(CMth). In Section 5.2, we present an
evaluation of the technique for different threshold values.
We observe that on an average, 30% of the instructions are
issued from the LR queue.

Figure 6, 7 and 8 show normalized execution time, issue
queue energy consumption and total energy consumption
of the reorder-sensitive scheme with respect to the baseline
out-of-order issue queue. Note, the energy and cycle-time
overheads for fetching marker instructions are included in
all our results.

Table 5: Percentage of instructions issued from the
LR queue in the reorder-sensitive issue scheme

compress gzip li mcf parser vortex vpr AVG
32.34 37.45 21.64 33.63 19.39 19.35 45.40 30.20

We observe that the baseline reorder-sensitive issue scheme
dramatically reduces the issue queue energy consumption by
72% on average. Several factors contribute to the overall
energy reduction. First, as seen in Table 5, nearly 30% of
the instructions are issued from the LR FIFOs. The FIFOs
consume low power since they require very few ports. In
our scheme, we assign two write ports to each FIFO since
the fetch width of the processor is twice that of the FIFO
width. Further, since instructions are issued only from the
head of the FIFO, it needs only one write port. The 32-
entry HR queue in the reorder-sensitive architecture is also
significantly smaller than the baseline 128-entry issue queue.
More importantly, the issue width of the HR queue is half
that of the baseline issue queue. The HR queue thus has
significantly fewer number of ports than the baseline 8-wide
issue queue. The number of dispatch (i.e., writing to the
issue window) ports on the HR queue is the same as in the
baseline queue since the fetch width of both configurations is
the same. However, the issue and wakeup (result-broadcast)
ports are only four each. All the above factors contribute
towards reducing the power of the reorder-sensitive issue
logic. Large savings in the issue queue also lead to consid-
erable overall power savings. The total power savings seen
in the reorder-sensitive scheme is close to 18% as shown in
Figure 8.
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Figure 6: Normalized execution time

Figure 6 shows the performance results of the reorder-
sensitive scheme. The performance degradation seen by the
base reorder-sensitive issue (ros in the figures) scheme is



Table 3: Benchmarks and inputs. Minnespec reduced input sets used where applicable.
Benchmark compress gzip li mcf parser vortex vpr
Profile Input train minnespec test minnespec minnespec test minnespec

Set train train train train
Inputs for 220000 q 2131 minnespec train minnespec minnespec ref minnespec

Perf. Evaluation ref ref ref ref
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Figure 7: Normalized issue queue energy

8%. Our block selection heuristics are guided by localized
estimates we make at the basic block level. Dependences
between basic blocks, especially, between LRR blocks and
HRR blocks are critical but are not captured by localized
heuristics. When a cache miss is serviced, the instructions
waiting on the data can issue immediately if they are either
in the out-of-order issue queue or in the heads of FIFOs.
However, if there many dependences between LRR blocks
and HRR blocks with cache misses, it is unlikely that we
will find all the dependent instructions at the heads of the
FIFOs.
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Figure 8: Normalized total energy consumption

Based on this observation, we provide a further improve-
ment to the reorder-sensitive scheme, wherein for each HRR
block with a large number of cache misses, we direct a few
subsequent consecutive blocks into the out-of-order issue
queue irrespective of whether they are set to be LRR blocks
or HRR blocks. This helps capture the immediate depen-
dences between LRR blocks and HRR blocks with a large
number of cache misses (note all HRR blocks need not have
high miss rates; some blocks are classified as HRR blocks
due to false dependences).

The number of blocks redirected to the HR queue is con-
trolled by a simple saturating counter whose maximum value
can be determined and set for each benchmark. In Table 6,
we show the average distance between dependent instruc-
tions in number of basic blocks. We observe that nearly all
(97%) the data dependences between instructions extend to
approximately 3 basic blocks. Hence, the value of saturat-
ing counter can be in the range of 1-3 blocks, ensuring that
almost all dependences between HRR and LRR blocks are
captured in the HR queue. Figure 6, 7 and 8 include the
performance, issue queue energy savings and total energy
savings of the reorder-sensitive scheme for different values of
the saturating counter. We find that allowing one additional
block improves performance in many benchmarks. Increas-
ing the counter value to 2 is sufficient to capture almost all

dependences and improves performance further. The bench-
mark mcf particularly shows a good improvement. Since mcf
has an extremely poor cache hit rate, a significant fraction of
dependences are critical in this benchmark, A bigger counter
value captures more dependences and hence performs bet-
ter. Increasing the counter value to 3 and beyond begins to
provide diminishing returns. In fact, increasing the counter
value to a very large value begins to negatively impact per-
formance and issue queue energy since now too many blocks
are diverted to the small HR queue leading to increased
dispatch stalls in the pipeline. Figure 6 shows that the over-
all performance degradation reduces from 8% to 5.9% for
2 blocks and to 5% for 3 additional blocks directed to the
HR queue. The percentage of instructions issued from the
LR queue reduces slightly from 30% to 26% on an aver-
age (for 2 blocks) and to 25% for 3 blocks. Note that even
for the best saturating counter value, there is performance
loss in the reorder-sensitive scheme. This is because of two
main reasons: (a) the LR queue has a limited number of
FIFOs, it does not provide the ideal amount of inter-block
overlap. Additionally, (b) not all of the HRR blocks are
low ILP blocks. Some blocks that do not suffer from cache
misses are also directed to the HRR queue. These blocks
are unnecessarily penalized by the low issue HR queue.

Table 6: Dependence distance in terms of number
of basic blocks

# of blocks = 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 7 ≤ 10
% dependences 83.6 92.6 96.0 97.5 98.4 98.7 99.9

In Figure 9, we compare the reorder-sensitive scheme with
4 and 8-wide conventional queues for varying issue queue
sizes. The results demonstrate that reorder-sensitive config-
urations can consistently achieve high performance (within
5% of an 8-wide out-of-order issue queue), while consum-
ing significantly lower energy (close to a 4-wide out-of-order
issue queue).

5.2 Evaluation of the Block Selection Heuris-
tics

To compute the estimated schedule degradation due to
cache misses (SDcm), the compiler requires good estimates
for the miss hiding capability of the out-of-order issue logic
(Section 3.1.3). In Figure 10 shows how the effective L1 and
L2 miss costs can be empirically identified.

We observe that if we assume very small estimated costs,
a larger percentage of blocks qualify as LRR blocks and
hence a larger number of instructions are issued from the LR
queue. However, the performance loss is also prohibitively
high, indicating that we are underestimating the miss hid-
ing capability of the out-of-order issue logic. As we progres-
sively increase the assumed costs we find that the perfor-
mance degradation and the number of instructions issued
from the LR queue decrease. We note that assuming an L1
miss cost in the range of 20-30 cycles is a reasonable esti-
mate for the L1 cost, since increasing the estimate beyond
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Figure 9: Performance and energy results of dif-
ferent ROS and conventional issue queue configura-
tions for varying queue sizes. For the ROS schemes,
queue size corresponds to the HR queue size.

this does not dramatically decrease the performance loss. If
we assume that the average IPC of integer programs on an
8-way machine is 3, a 30-cycle cost can be roughly inter-
preted as the o-o-o issue queue being able to hide about half
the L1 miss latency (10 cycles) with 3 instructions being is-
sued each cycle. Note that if we were executing in a fully
in-order machine, where it is impossible to hide any stalls
due to cache misses at run-time, the cost would have been
much higher. However, since the LR queue allows some de-
gree of overlap of instructions, the effective cycle-time cost
is lower. Another interesting observation from the figure is
that the block selection heuristic is largely insensitive to the
L2 miss cost. This is because the number of L2 misses are
considerably lower than the number of L1 misses. We fix
the effective L1 miss cost and L2 miss cost to 30 cycles for
all the experiments in the paper.

The compiler selects LRR blocks based on statically com-
puted estimates of the schedule quality degradation due to
false dependences (SDfd) and memory misses (SDcm). The
compiler classifies a block as an LRR block if its estimated
schedule degradation due to false dependences and mem-
ory misses (SDfd and SDcm) are less than their respective
threshold values (FDth and CMth). Figure 11 presents an
evaluation of the sensitivity of our selection policy to varying
threshold values. We also show the percentage of dynamic
instructions that are issued from the LR queue and the cor-
responding performance degradation for different FDth and
CMth values for the benchmark compress. (We show the
sensitivity analysis for one benchmark, all other benchmarks
show largely similar trends.)

Larger threshold values indicates willingness to tolerate
a larger performance loss. With large threshold values the
compiler selects more blocks for issue in the LR queue. Since
the LR queue is extremely simple and consumes lower power
when compared to the HR queue, we can operate in a power-
savings mode by setting large threshold values. Alterna-
tively, we can set lower thresholds and operate in a more
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Figure 10: Performance degradation for different
L1-L2 miss costs (averaged over all benchmarks).
Costs expressed as X1-Y1, where X1 is the effective
L1 miss cost and Y1 is the L2 miss cost in cycles.
CMth is fixed at 5%.
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performance-sensitive mode. The actual performance degra-
dation observed is lower than the estimated performance
degradation (indicated by the threshold values). The rea-
son for this is that the estimate is computed assuming the
blocks will be issued in a strictly in-order fashion. However,
since we provide some degree of overlap between blocks in
the LR queue, and instructions from the heads of the FIFOs
can issue in any order, we hide a good percent of the stall
cycles.

An interesting observation from Figure 11 is that even
when we set both thresholds to 0, there are a significant
number of instructions (30%) that are selected for issue in
the LR queue. This indicates that a large number of blocks
do not contain any false dependences nor do they experience
any memory misses. For these blocks, expending energy to
reorder instructions in an out-of-order issue queue is wasteful
since the compiler can generate good quality schedules. The
reorder sensitive scheme thus provides us with the ability to
harness compiler-generated schedules for these blocks.

5.3 Discussion
The reorder-sensitive scheme uses profile-directed feed-

back to select LRR blocks. We also evaluated the perfor-
mance of the scheme for a ‘compile-only’ approach, i.e.,
when static analysis alone is used for selecting blocks with
low reorder requirements. Table 7 shows these results. For
this experiment, all blocks without load instructions and
false register dependences are chosen as LRR blocks. We
observe that the percentage of LRR blocks drops to ap-
proximately half of those with profile-based information (see
Table 5). Consequently, the performance of the compile-
only scheme is lower. Profile information thus helps sig-
nificantly improve the performance of the reorder-sensitive
issue queue. However, as with any profile-based approach,
the performance of the scheme depends on how closely a
program’s actual run-time tendencies match those seen dur-
ing specialization. Although in our experiments, we observe
that the degradation is not significant even when the in-
put data is different from the profile input, it is desirable
to have a protection mechanism when the input data devi-
ates from the profile or a profile is not available. Unforeseen
cache misses are particularly hazardous since the LR queue
is quite limited in its capacity to hide the miss penalty.

Table 7: Percentage of instructions issued from the
LR queue and performance degradation of compile-

only reorder-sensitive issue scheme

Benchmarkcompress gzip li mcf parservortex vpr AVG
% LRR 16.42 15.3110.39 23.87 12.77 4.64 21.27 15.5
instrns
% Perf. 3.1 7.68 9.66 5.01 8.13 5.13 8.28 6.7
Degrad.

One attractive solution is to implement the reorder sen-
sitive scheme within a hardware or software dynamic opti-
mization framework [24, 30]. The dynamic optimizer could
monitor the behavior exhibited by the running application
and dynamically tune the heuristics to continually divert
blocks with cache miss rates to the fully-associative queue
which is better equipped to handle misses.

Another approach is to add some global loop-level or pro-
cedure level control over our localized issue policy. Prior
work has shown that it is possible to predict the IPC of

a program statically with reasonable accuracy using simple
compile-time analysis [28]. During execution of the pro-
gram, we could dynamically monitor the IPC of important
program hotspots. If the observed IPC is significantly below
estimated IPCs, the system can disable the reorder-sensitive
issue mode and use the default conventional out-of-order is-
sue queue.

6. CONCLUSIONS
This paper presents an instruction issue mechanism that

exploits compiler-generated schedules to lower complexity
and power of the issue queue. The proposed reorder-sensitive
issue scheme recognizes that all instructions and all blocks
in a program are not equal; some blocks are inherently easy
to schedule statically, whereas others are not. We describe
the compiler analysis required for identifying blocks with
distinct dynamic scheduling requirements. At run-time, the
scheme uses a small conventional issue window in conjunc-
tion with simple FIFO queues and basic blocks are directed
to the appropriate issue queue based on their characteristics.
We present a detailed analysis of the proposed architecture
and the compiler heuristics employed. Our results show that
we are able to save up to 72% of the issue queue energy and
18% total energy with only 5% performance degradation.
Further, the proposed issue hardware is less complex when
compared to a conventional out-of-order issue queue, pro-
viding the potential for much higher clock speeds. Another
key contribution of this work is the SPHINX framework.
With the ever increasing cycle-time and power constraints,
it is becoming increasingly important to exploit every avail-
able avenue in a computer system to aid the processor. The
SPHINX tool thus provides a unified platform for exploring
future compiler and micro-architecture-based solutions for
energy- and complexity-effective processors.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous review-

ers for their valuable comments. Many thanks also to Ro-
dric Rabbah, Ramdas Nagarajan and Nitya Ranganathan
for their help with the Trimaran framework. This research
is partially supported by the National Science Foundation
(NSF) under grant numbers CCF-0429806, CCR-0311829,
ITR CCR-0085792, CISE infrastructure grant EIA-0303609,
by DARPA F33615-03-C-410, by IBM Center for Advanced
Studies (CAS) awards and an IBM SUR grant.

8. REFERENCES
[1] J. Abella and A. Gonzlez. Low-complexity distributed

issue queue. In Proceedings of the 10th annual
International Symposium on High Performance
Computer Architecture, Feb 2004.

[2] R. I. Bahar and S. Manne. Power and energy
reduction via pipeline balancing. In 27th International
Symposium on Computer Architecture, Jul 2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In 27th International Symposium on
Computer Architecture, Jun 2000.

[4] D. Burger and T. M. Austin. Evaluating future
microprocessors: The simplescalar tool set. Technical
report, Dep. of Comp. Sci., Univ. of Wisconsin,
Madison, 1997.



[5] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin,
L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G.
McDonald, and W. Yoder. Scaling to the end of silicon
with EDGE architectures. In IEEE Computer, July
2004.

[6] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose,
P. Cook, and D. Albonesi. An adaptive issue queue for
reduced power at high performance. In Workshop on
Power-Aware Computers Systems, held in conjunction
with ASPLOS, Nov 2000.

[7] R. Canal and A. Gonzlez. A low-complexity issue
logic. In Proceedings of the 14th International
Conference on Supercomputing, pages 327–335, 2000.

[8] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss.
Combining software and hardware monitoring for
improved power and performance tuning. In Workshop
on Interaction Between Compilers and Computer
Architecture (INTERACT), Feb 2003.

[9] D. Ernst, A. Hamel, and T. Austin. Cyclone: a
broadcast-free dynamic instruction scheduler with
selective replay. In Proceedings of the 30th annual
International Symposium on Computer Architecture,
pages 253–263, Jun 2003.

[10] D. Folegnani and A. Gonzalez. Energy-effective issue
logic. In 28th International Symposium on Computer
Architecture, Jun. 2001.

[11] M. Franklin and M. Smotherman. A fill-unit approach
to multiple instruction issue. In 27th Annual
International Symposium on Microarchitecture, 1994.

[12] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
considerations in the design of the Alpha 21264
microprocessor. In Design Automation Conference,
pages 726–731, 1998.

[13] A. Iyer and D. Marculescu. Run–time scaling of
microarchitecture resources in a processor for energy
savings. In Kool Chips Workshop, held in conjunction
with MICRO–33, 2000.

[14] T. Jones, M. O’Boyle, J. Abella, and A. Gonzalez.
Software assisted issue queue power reduction. In
Proceedings of the 7th annual International
Symposium on High Performance Computer
Architecture, 2005.

[15] A. KleinOsowski and D. J. Lilja. Minnespec: A new
spec benchmark workload for simulation-based
computer architecture research. In ACM Computer
architecture letters, 2002.

[16] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan,
and E. Rotenberg. A large, fast instruction window for
tolerating cache misses. In Proceedings of the 29th
annual International Symposium on Computer
Architecture, pages 59–70, Jun 2002.

[17] S. Manne, A. Klauser, and D. Grunwald. Pipeline
gating: Speculation control for energy reduction. In
25th International Symposium on Computer
Architecture, pages 1–10, Jun 1998.

[18] P. Michaud and A. Seznec. Data-flow prescheduling
for large instruction windows in out-of-order
processors. In Proceedings of the Seventh International
Symposium on High-Performance Computer
Architecture, Feb 2001.

[19] E. Morancho, J. M. Llaberia, and A. Olive;. Recovery
mechanism for latency misprediction. In Proceedings

of the 2001 International Conference on Parallel
Architectures and Compilation Techniques, Sept 2001.

[20] R. Nair and M. E. Hopkins. Exploiting instruction
level parallelism in processor by caching scheduled
groups. In annual International Symposium on
Computer Architecture, 1997.

[21] S. Palacharla, N. P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In 24th
Annual International Symposium on Computer
Architecture, Dec. 1997.

[22] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing
power requirements of instruction scheduling through
dynamic allocation of multiple datapath resources. In
34th International Symposium on Microarchitecture,
pages 90–101, Dec 2001.

[23] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A
scalable instruction queue design using dependence
chains. In Proceedings of the 29th annual International
Symposium on Computer Architecture, pages 318–329,
Jun 2002.

[24] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and
A. Mendelson. Power awareness through selective
dynamically optimized traces. In Proceedings of the
31st annual International Symposium on Computer
Architecture, page 162, 2004.

[25] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing
power with dynamic critical path information. In 34th
Annual International Symposium on
Microarchitecture, Dec. 2001.

[26] F. Spadini, B. Fahs, S. Patel, and S. S. Lumetta.
Improving quasi-dynamic schedules through region
slip. In Proceedings of the International Symposium on
Code generation and Optimization, pages 149–158,
Mar 2003.

[27] E. Talpes and D. Marculescu. Power reduction
through work reuse. In International Symposium on
Low Power Electronics and Design, 2001.

[28] O. S. Unsal, I. Koren, C. M. Krishna, and C. A.
Mortiz. Cool-fetch: A compiler-enabled IPC
estimation based framework for energy reduction. In
ACM Computer architecture letters, 2002.

[29] M. Valluri, L. John, and H. Hanson. Exploiting
compiler-generated schedules for energy savings in
high-performance processors. In Proceedings of the
2003 International Symposium on Low Power
Electronics and Design, 2003.

[30] V.Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In
Proceedings of Programming Language Design and
Implementation, 2000.

[31] V. V. Zyuban and P. Kogge. Inherently lower-power
high-performance superscalar architectures. In IEEE
Transactions on Computers, pages 268–285, Mar.
2001.

[32] TRIMARAN: An Infrastructure for Research in
Instruction-Level Parallelism
http://www.trimaran.org/


