COOPERATIVE HARDWARE/SOFTWARE CACHING FOR
NEXT-GENERATION MEMORY SYSTEMS

A Dissertation Presented

by
ZHENLIN WANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 2004

Department of Computer Science

(© Copyright by Zhenlin Wang 2004
All Rights Reserved

COOPERATIVE HARDWARE/SOFTWARE CACHING FOR
NEXT-GENERATION MEMORY SYSTEMS

A Dissertation Presented

by
ZHENLIN WANG

Approved as to style and content by:

Kathryn S. McKinley, Chair

Charles C. Weems, Member

J. Eliot B. Moss, Member

Csaba Andras Moritz, Member

Doug Burger, Member

W. Bruce Croft, Department Chair
Department of Computer Science

To my parents, my wife, and my daughter

ACKNOWLEDGMENTS

| am deeply indebted to my advisor, Kathryn McKinley, for mesearch guidance as
well as moral support. She kindly adopted me when | joined E¥/six years ago and
could barely express myself in English. She has been anamudlisig advisor and | have
been sufficiently guided even when we only had remote cofiatiiree years.

| must thank Eliot Moss and Chip Weems for their leadershig\lh group. They
have been providing us an enjoyable research environmespeagial thank goes to Chip
who has been acting as my local advisor when Kathryn was as#mulmiles away. Both
Eliot and Chip served as members of my committee. | thank tfentheir thoughtful
suggestions and comments. | thank Eliot for his careful irepdf every detail of my
dissertation.

I'd like to thank all members of ALI group, particularly JasBurrill, Brendon Cahoon,
Steve Blackburn, Xianglong Huang, Steve Dropso, Chris idafin, Matthew Hertz, and
John Cavazos, whom | always come to for help on both techisisaés and English usage.
It is my pleasure to work with such a wonderful team. Also | divanks to Benyuan Liu,
Wei Wei, and Tian Bu whom | went downstairs to talk with whendsabored by research.

| enjoyed doing research with Doug Burger, Steve Reinhardt,Csaba Andras Moritz.
Their insights in system research inspired me and will bengficareer in the long run.
As my committee members, Doug and Andras also suggesteslajfetv technical updates
indispensable to my thesis.

| am grateful to Zhuoqun Xu who was my master thesis advis@hima. | built a solid
background in computer science during my work with him injidgi University.

| thank my parents who had always encouraged me to move on liagheer degree.

| cannot imagine a life without the big, warm family they hagated. | must thank my

wife, Ruihong, and my daughter, Maggie. | could not have ffiatsmy thesis without their

support, love, and forbearance.

Vi

ABSTRACT

COOPERATIVE HARDWARE/SOFTWARE CACHING FOR
NEXT-GENERATION MEMORY SYSTEMS

FEBRUARY 2004

ZHENLIN WANG
B.S., BEIJING UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kathryn S. McKinley

The memory system remains a major performance bottleneokotern and future
architectures. In this dissertation, we propose a hardsaiterare cooperative approach
and demonstrate its effectiveness. This approach combhieeglobal yet imperfect view
of the compiler with the timely yet narrow-scope context lod hardware. It relies on a
light-weight extension to the instruction set architeetiarconvey compile-time knowledge
(hints) to the hardware. The hardware then uses these bintake better decisions.

Our work shows that a cooperative hardware/software appraa(1) cache replace-
ment, (2) prefetching, and (3) their combination elimiisade tolerates much of the mem-
ory performance bottleneck. (1) Our work enhances cachaagement decisions using
compiler hints. The compiler detects which data will or witit be reused and annotates
loads accordingly. The compiler sets one bit (8vect-mebit) to denote a preferred evic-

tion candidate. On a miss, the cache replacement algoritefanentially replaces a cache

Vil

line with its evict-me bit set. Otherwise, it follows the LRislicy. The evict-me replace-
ment scheme improves cache replacement decisions ancediwdfin both L1 and L2
caches. (2) We also use compiler hints to direct aggressix@ware region prefetching
and content-aware pointer prefetching. The original SRRgguled region prefetching)
engine queues prefetching requests on every outstandingd<?and tolerates latencies at
the cost of dramatically increasing the memory traffic. GB&ded region prefetching)
enhances SRP by restricting prefetching to compiler-ntht&ads. Our compiler algo-
rithms effectively mark spatial reuses across the SPEC OPUbenchmarks, and thus
GRP achieves the performance of SRP with only one eightheo&tiditional traffic. (3)
The evict-me cache replacement scheme helps alleviateédbesBects of cache pollu-
tion introduced by useless region prefetches. The combmaif evict-me caching and
region prefetching further improves cache performancesétresults demonstrate signif-
icant promise for overcoming the memory bottleneck withperative hardware/software

techniques.

viii

TABLE OF CONTENTS

Page
ACKNOWLEDGMENT S .o e e e e el V..
AB ST RACT e Vil
LIST OF TABLES e e e e e Xiii
LISTOF FIGURES ... e e XV
CHAPTER
1. INTRODUCTION ..t e e e e e e aa 1
1.1 Our Hardware/Software Cooperative Approach 4
1.2 Guided Cache Replacement ittt e eieeenn. 6
1.3 Guided Region Prefetchingcco i 7
1.4 Combining Cache Replacement and Region Prefetching 9
1.5 Dissertation Organizationttt e 9
1.6 Summary of Contributions i 10
2. BACKGROUND AND RELATED WORK 13
2.1 MemoOry SYS M .. 13
2.1.1 Cache Architecture and Cache Miss Classification 13
2.1.2 DRAMArchitecture ... 15
2.2 Improving Cache Performance i .. 17
2.21 ProgramlbLocalityot e 17
2.2.2 Trace-based Cache Studies cuuuu........18
2.2.3 Cache Miss AnalysiSot e e 19
2.2.4 Hardware Enhancement of Cache Replacement.19
2.2.5 Page/Cache Coloring and Data Remapping 22
2.2.6 Improving Cache Locality—Program Transformations 23

2.2.7 Out-of-order Execution and Lock-up Free Caches................. 23

2.3 Prefetching Techniques. e e 24

2.3.1 Software Prefetching i 24
2.3.1.1 Software Array Prefetching. 25
2.3.1.2 Other Software Prefetching Technlques .27

2.3.2 Hardware Prefetching i 29
2.3.2.1 Scheduled Region Prefetching 30
2.3.2.2 Predictor-directed Stream Buffer31
2.3.2.3 Hardware Array and Spatial Prefetching 32
2.3.2.4 Hardware Pointer and Correlation Prefetching 35

2.3.3 Hardware/Software Cooperative Prefetching

3.5.4.2 Static and Dynamic Replacement Counts

37

2.3.4 Cache Replacement and Prefetching 40
2.4 Other Cooperative WOrkKo e e e 41
2.5 Scale Compiler Infrastructuret 42
. COMPILER-GUIDED CACHE REPLACEMENT 45
3.1 Problem Formulation 46
3.1.1 Cache Replacement Policies. ce...... 46
3.1.2 Perfect Locality Information: Trace based Repla@elm 47
3.1.3 ReUSe LeVEIS 48
3.1.4 Using Dependencesas Reuse levels.......................49
3.2 Cache Replacement Algorithms i, 53
3.2.1 Improving LRU Cache Replacement........................ 53
3.22 16-BitEncoding......... ... e 58
3.2.3 Evict-me: 1-BitEncoding............ ... i 63
3.2.4 Effectiveness of the Evict-me Algorithm 67
3.3 Hardware Implementation it 68
3.4 CompileriImplementation............... e 68
3.5 Experimental Results 70
3.5.1 Simple Scalar 2.0 and Experiments Settingc.. 70
3.5.2 URSIM and Experiments Setting...............coumueeeoo.. 72
3.5.3 Experimental Results Using SimpleScalar2.0 73
3.5.4 Experimental Results USingURSIMcccce....... 78
3541 MissRatesResults 78

79

3.5.4.3 Simulated Performance Results wew..81

3.5.4.4 A Less Aggressive Compiler Marking Algorlthm 82

3.6 Chapter SUMMArY e e e 82

4. COMPILER-GUIDED REGION PREFETCHINGt 84
4.1 Hardware Prefetching Engine iimmee .. 86
4.1.1 Scheduled Region Prefetchingo ... 86
4.1.2 Hardware Prefetching of Pointer-Based Structures.............. 89
4.1.3 GRP: Incorporating Compiler Prefetch Hints 90
4.1.3.1 GRP for Spatial Region Prefetching................ 91

4.1.3.2 GRP for Variable-Size Region Prefetching 92

4.1.3.3 GRP for Indirect Array References92

4.1.3.4 GRP for Pointer and Recursive Pointer References. .. 94
4.2 Encoding Compiler Hints e 94
4.3 Compiler Analysis Framework i iiimmmeinnnan. 96
4.3.1 Spatial Locality Analysisfor Arraysccuueienenaen.. 96
4.3.2 Spatial Locality Analysis for Pointer Dereferences.............. 99
4.3.3 Indirect Array Access AnalysSis ... i 99
4.3.4 \Variable-Size Region Analysis............ i, 100
4.3.5 Pointer and Recursive Pointer Analysis 100
4.4 Compiler Implementation. i 101
4.5 Experimental Evaluation i 101
4.5.1 Experimental Methodology innui.... 102
4.5.2 Comparison of Region Prefetch and Pointer prefegchin. 103
4.5.3 Comparison of Stride Prefetching, SRP, and GRP 105
4.5.4 Prefetching Accuracy, Coverage, and Memory Traffic......... 107
455 CompilerSensitivityo i e 109
4.5.6 Performance Improvement and Miss Reduction. 110
457 Case StUdIESt 111
4.5.7.1 RemainingL2 CacheMisses..................... 111

4.5.7.2 Discussion of Prefetching Accuracy..........c.....112
4.6 Chapter SUMMArYttt e e e 116
5. COMBINING CACHE REPLACEMENT AND PREFETCHING 118
51 L1PushScheme i i 119

Xi

5.1.1 Hardware DescCriptionttt e e 119
5.1.2 Resultsofthe PushScheme oo 120

5.1.2.1 PushPerformance................c.coiiiiiiannn. 120

5.1.2.2 Push Accuracyand Coverage121
5.2 Combination of Evict-me and Hardware Prefetching 123
521 PerformancCe e 124

5.2.2 CachePollutiono e 125

5.2.3 DISCUSSION . ..\ttt et et 126
5.3 Chapter SUMMaryco it et et e i e 127

6. CONCLUSION ... e e e e e 128
6.1 ContributioNs 128
6.2 Future Work 130
6.3 ConcludingRemarks. ... 132
BIBLIOGRAPHY .. e 133

Xil

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

LIST OF TABLES

Page
.. 8
LRU versus Prediction for a 2-way set-associative cache. 54
Encoding for 16-bitreuselevel o 59
Associativity extension by victimcache o i 77
Three cache configurations. e 78
Static and dynamic statisticsonevictme 81
Percent performance improvement by evict-me 81

... 86
Size distribution of pointed-to structurescooi i, 90
Compiler hints for representative referencesinloaps................. 91
Bounds of memory instruction displacementfields 95
Performance impact of using 12-bit displacementfield. 95
System parameters e 102
Number of compiler hints for each benchmark 103
GRP/Varversus GRP/FIX oo e 107

Prefetching accuracy, coverage, and memory traffic..................... 110

Level 2 miss characteristiCst e e e 112

Xiii

5.1 Performance impact of the L1 push scheme and placembaiepo.

5.2 Coverage and accuracy of the L1 push scheme, GRP/LRU plus
PUSh/MRU e

5.3 Coverage and accuracy of the other push schemes

Xiv

LIST OF FIGURES

Figure Page

1.1 Processor and memory performancetrend

1.2 Peak instructions per memory access of Intel family..................

1.3 Processor performanceoouiri i ia i

2.1 Conventional DRAM blockdiagramcciveuiiiiennn...

2.2 Predictor-directed stream buffer architecture

2.3 Scaledataflowdiagram e

3.1 Asimpleexample

3.2 Anothersample programi it immmm e,

3.3 Localitygraph e

3.4 Proof of claim 41. Claim 1 shows that there are no more thadistinct
references between tintgand timet;. 2. Claim 2 shows that if referendgi)
at timet; is not a hit for the Prediction algorithm, then at titgevhen
f(j) = f(i) is evicted, all references in the cache set should be actasse
least once between timgandt;. (a) If a reference in the cache set at titpe
was in set X, it must be accessed again before tithecause it has a reuse
level less than that of (j). (b) if a reference in the cache set at titpevas
not in X, then it must be recently accessed after tim®therwise, it must be
in set Y and should be evicted before the evictiorf ¢f) at timety. It will
then not appearinthecache setattimp.

3.5 Asampleloop nest ...

3.6 16-bitreuse-levelgeneration umuiiiii ..

3.7 Reuse levels for the sample program......... ... i,

XV

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Update function e e 62

Algorithms for computing data volumeinanest....................... 66

Algorithm for setting evict-metag............ .. oo ... 67
VPENIA . . 74
LIV . 74
Y 0] 01 75
TOMCALY ... e 75
WM . L 76
JACODI . . 76
Erlebacher 77
ATC2d . 77
Miss reduction by evict-me (Conf. 1)o omu i 79
Miss reduction by evict-me (Conf. 2) emu i 80
Miss reduction by evict-me (Conf. 3) e 80
Prefetch engine organization ceiei .. 87
Fortran array e 97
Cheap armay . ..o 97
CinduCtion POINTENo e 97
C reCUrSiVe POINTEEt e e e e e 97
Algorithm for generating spatialhints. 98
Algorithm generating pointer and recursive pointet$in............... 101
Performance gains from pointer prefetching 104

XVi

4.9 Code segmentin 183.equake (quake.C)...........coououiiinen...
4.10 Code segmentin 181.mcf (mcfutil.c)
4.11 Pointer vs. marked pointer prefetching

4.12 Performance gains from region prefetching and stnidéefching for
integerbenchmarks e

4.13 Performance gains from region prefetching and stnidéefching for
floating-pointbenchmarks e

4.14 Normalized traffic
4.15 Miss reduction versus performance improvemento oo
4.16 Code segmentin 168.WUPWISEottt iaaae e
4.17 Codesegmentin18l.mcf........ i
4.18 Code segmentin 300.twolf........ i
4.19 Code segmentin 188.ammpttt e
4.20 Code segmentin L75.Vpr ...ttt e

4.21 Code segmentin 256.bzip2

5.1 Evict-me and GRP

5.2 Cachepollution i e

XVii

CHAPTER 1
INTRODUCTION

In this dissertation we propose a hardware/software cabiperapproach to improve
computer system performance. We demonstrate that thisagipris very effective and
promising for the memory system, improving cache replacepgata prefetching, and
their combination.

Modern processor speed continues to outpace memory spgledRpsearchers project
the performance gap will be even larger in the next ten yegjrsHlennessy and Patter-
son [45] illustrate the trend of memory-processor speepladity as shown in Figure 1.1.
The figure is based on the assumption that processor perficemacreases 55% per year
from 1987 on, and 35% per year until 1986. In contrast, menspged shows only 7%
growth each year. This figure more or less reflects the reaflicpmmercial systems. Fig-
ure 1.2 shows the gap of an Intel family [37], where each bspldys the peak number of
instructions per memory access. It is easy to observe teat ik an exponential increase
of the bar height.

Both Figure 1.1 and Figure 1.2 describe the worst case doenarreality, a typical
commercial architecture relies on a memory hierarchy &vate memory bottlenecks. A
modern system usually contains two or more levels of cathgijrgy with the fastest Level
1 cache, which is closest to the CPU. Caches, which explogram locality, perform well
for some applications but are not always effective. Appices that have poor locality
or large working sets often show poor cache performanceer&emodern architectural
features, such as out-of-order execution and lock-up faebes, effectively hide the Level

1 latencies for many programs [17, 100], though not all. ®iteshniques, however, cannot

10000+

1000

CPU

Performance

100+

104

Memory

0861
186T
Z86T
£86T
86T
S86T
986T
186T
886T
686T
066T
166T
266T
£66T
66T
S66T
966T
166T
8661
666T
0002
1002
2002
€002
7002
5002

Figure 1.1. Processor and memory performance trend

hide the latencies of the Level 2 cache and beyond. Hundredgctes that result from
DRAM accesses cannot be tolerated, thus causing signifieaftrmance degradation. For
the SPEC CPU2000 benchmarks running on a modern high-peafae microprocessor,
over half of the time is spent stalling for loads that missha tevel 2 cache [69]. We
observe similar results in our simulations for a subset &SEPU2000 benchmarks and
sphinx a speech recognition application [68]. Figure 1.3 compé#ne performance of a
system with a configuration of a modern processor and a tiealiemory hierarchy with
two levels of cache versus a system with a perfect L1 cachem@dvith a perfect L2 cache
with the stacked bar for each benchmark. The benchmark®eegidy the size of the gap
between a realistic system and one with a perfect L2 cache.gébmetric mean of this
performance gap is 33.7%.

Despite an enormous amount of research, memory stalls meanehallenge to com-
puter performance. One reason is that past work does npieililoit the strengths of both
software and hardware. As we shall discuss in Chapter 2imxitechniques dominantly

lean towards either a pure software solution, such as laostormations and software

1400—.
1200—.
1000—.
800—-
600—.

400

Peak instructions during one DRAM access

200+

Pentinum (66MHZ) Pentinum-Pro (200MHZ) Pentinum Ill (1100MHZ) Pentinum 4 (2GHZ) Future CPUs

Figure 1.2. Peak instructions per memory access of Intel family

IPC
T
[T]
[1

I I I O Perfect L1
= Perfect L2
= Base

Figure 1.3. Processor performance

prefetching, or a pure hardware solution, such as the victioine and hardware prefetch-
ing. Even the limited amount of research on hardware/soéwaoperation that we dis-
cuss in Section 2.3.3 is typically restrained by the curhemtiware/software interfaces. In
this dissertation, we propose a novel hardware/softwappem@tive approach with a new
hardware/software interface to address the increasirfgrpeance gap between the main

memory and the processor.

1.1 Our Hardware/Software Cooperative Approach

Memory system performance can be improved with closer qatipa between soft-
ware and hardware. Software has the advantage of its glabalof the whole program,
which is obtained through static compiler analysis. Thatistknowledge is typically
coarse-grained and imprecise. For example, at compileitilseeasy to detect if an ar-
ray is accessed in a loop nest and reused in the following Besit is hard or impossible
to calculate exactly how many array elements are reusee iotbp bounds are unknown.
However, even this imprecise view can serve as valuableagagfor run-time decisions.
Run-time knowledge is typically precise but its scope isyMenited. The information
of the future execution at a point is unknown. Predictiomfrpast behavior is usually
restricted by a limited history because retaining a coneplastory of run-time status is
prohibitive due to its very high storage and retrieval cdf. combining the strengths of
software and hardware, the run-time system attains greateer to predict. Relying on
compiler prediction combined with current run-time steadnd limited history, the run-time
system can achieve high performance with relatively lowt.cd$is dissertation investi-
gates the memory system, but this approach can also be ugegrove instruction level
parallelism in a processor core and in other circumstances.

In the past, a limited amount of research has used a simitewiaae/software approach
to improve performance. As we discuss in Chapter 2, thatrekas typically specific to a
particular application domain and restricted by poor ifisiegs between hardware and soft-
ware. In most modern computer architectures, the hardsafte/are interface is limited
to simple load/store instructions. The compiler generatemory access instructions. At
run time, the processor sends requests to the memory sygtemtlue execution of these
instructions. It has no control beyond that. A memory retgestains an address used
to look up a value in the main memory or the cache. The requees dot specify more
details such as which slot the accessed data should sit iche st in order to exploit the

best cache performance.

Our work extends the instruction set architecture (ISAhvaitfew bits in the memory
instructions. The compiler encodes its global view of theolghproblem into these bits.
Combined with precise run-time status, the hardware isrgdthto use these bits to control
memory system behavior and thus is able to utilize systewuress better. This disser-
tation shows that this ISA extension is effective given ight-weight hardware support
and compiler implementation. However, as the memory-gemeperformance gap keeps
getting larger, we expect to need a richer interface, whashaonvey more information.

The cooperative approach can be applied to improve almesy @spect of the memory
system including cache replacement, data prefetching,anedisambiguation, and cache

coherence, to name a few.

1. Cache replacement. A typical cache replacement decisiarade based on run-
time history. Using the cooperative approach, the decisem be improved with

knowledge of the future access pattern detected statitaliyigh compiler analysis.

2. Data prefetching. Cooperative data prefetching careaetboth the accuracy of soft-
ware prefetching and the high performance of hardware fotafey. We can enhance
hardware prefetching with compile-time locality infornwat. We can depend on the
run-time status to schedule prefetch requests and the t@mmapalysis to select what

to prefetch.

3. Memory disambiguation. The interaction of the compiled ¢he hardware can sup-
ply us with a cost-effective run-time memory disambiguatiechnique to increase
parallelism of memory instructions. Specifically, comgil@e dependence testing
and alias analysis can speed up speculative execution dicpng if a RAW (read

after write) dependence exists between a store and a load.

4. Cache coherence. One application is to use the compiteatk if a read or write is

non-shared. This can reduce false sharing misses and spé¢edallel execution.

In this dissertation we focus on application of our appro@cbache replacement and
data prefetching, aiming to improve cache performance. cfoeae high cache perfor-
mance we can rely on 1) hardware advances, which reduce the pgnalty of cache
misses, 2) techniques to reduce cache misses, or 3) appsotxiolerate latencies [45].
Our cache replacement work falls into the second categadtyoan prefetching work into
the third. Our work emphasizes the importance of softwarelvare interaction to improve

memory system performance.

1.2 Guided Cache Replacement

To attain fast cache access times, current microarchiechave direct-mapped or low,
2 or 4-way, set-associative organizations [45, 47]. Th@iatrades off lower cache hit
rates for higher clock rates to achieve better total peréorce. In set-associative caches,
cache replacement policies determine which line to evicaaniss and will cause extra
misses when making poor decisions. Current cache replattepodicies typically rely
only on run-time knowledge to make replacement choices.s@lpolicies do not always
use cache memory effectively; i.e., even though the cachaificient capacity to retain
data that will be reused in the future, they do not retain,itl® 79]. Using a cooperative
approach, we propose a novel compiler and architecture amésain that uses compiler pre-
diction of future accesses to improve cache replacemeigidas directly. We particularly
focus on enhancing the widely used LRU (least recently ussggdacement policy.

Our new compiler mechanism guides cache replacements bytisely predicting
when data will or will not be reused. We encode the compiteetprediction into mem-
ory instructions. We develop a comparative model that uepgdence and array section
analysis to determine static locality patterns in a progrdamChapter 3, we first prove
that our model matches or improves hit rates when compareRtb We then present an
implementation that uses a single tag bit calledawiet-mebit. On a miss, the architecture

replaces a line with this bit set. Our compiler algorithm i@ggively marks data as evict-

me if the data volume accessed between its reuse is (or iicgseke reuse is) greater than
twice the cache size. The compiler can mark data aggregsirale, if all the data fits in
the cache, there will be no replacements. By applying thet-eue bit to both Level 1 and
Level 2 caches, we observe up to 21% simulated performangeuaments for current
technology on a selection of scientific benchmarks and 349& fiechnology prediction
for 5 years from now [3]. On average, we reduce simulatedwi@ttime on our bench-
marks by 5% to 16%, depending on the cache configuration. eTtessilts suggest that
run-time cache replacements can benefit from the static bengracle, which tells data

reuse patterns, to reduce cache misses and thus improal @esformance.

1.3 Guided Region Prefetching

The cache replacement techniques discussed in Sectioelp.®hreduce cache misses.
But they cannot eliminate them all. For example, they hdtfelon compulsory misses,
which are caused by the first run-time accesses in an apphcaPrefetching is a pop-
ular technique to tolerate memory latencies. Researclafs proposed a large number
of software and hardware prefetching schemes. Each of tiweselasses of prefetch so-
lutions have distinct advantages and drawbacks. Pure aaftprefetching is typically
highly accurate, but incurs run-time overhead and cansatiprefetches sufficiently far in
advance of a load to hide main memory access latencies [@9fvihre-only schemes can
prefetch spatial regions [23, 24, 54, 84, 92], pointer ch§B2, 53, 89], or recurring pat-
terns [66]. While these schemes can hide much of the main meaccess time, they can
also consume substantial amounts of memory bandwidth. addgional traffic does not
always degrade uniprocessor performance, but it incrgasssr consumption, and will
likely degrade performance on multiprocessors. Sinceloil-bandwidth will be the dom-
inant limiter of scalability for future chip multiprocesso(CMPs) [51], prefetch schemes

that consume bandwidth inefficiently will not be practicslhile some schemes throttle

traffic Performance gap
Speedup| increase| from perfect L2 (%)

No prefetching 1 1 34
Stride prefetching 1.15 1.09 24
SRP| 1.23 2.80 19

GRP 1.21 1.23 20

Table 1.1. Summary of prefetching performance and traffic

prefetching when the accuracy drops below a threshold, ttiy miss opportunities for
issuing useful prefetches and thus trade performance stgainuracy [36].

We propose an approach that builds on the strength of haedavet software prefetch-
ing, called Guided Region Prefetching (GRP). In GRP, sdjglaited compiler analysis
produces a rich set of load hints, including the presencebserace of spatial locality,
pointer structures, or indirect array accesses. A run-tigrelware engine, triggered by
L2 cache misses, generates prefetches based on the cosripiies. GRP thus benefits
from compiler analysis of application reference pattelng;—unlike traditional software
prefetching—the compiler is not required to generate oedate individual prefetch ad-
dresses. Because the hardware generates the prefetdassiun far ahead of the missing
references. Because the compiler guides it, the hardwaiema struggle to deduce future
references with complex pattern matching on prior accestsesd in large tables.

Table 1.1 shows a summary of GRP results using the geome&anrof the SPEC
CPU2000 benchmarks plephinx Without prefetching, the mean performance across the
benchmark suite is 34% lower than a perfect Level 2 cachédeSprefetching (using the
Sherwood et al. design [92]) provides a 15% speedup over efetphing. SRP, which
uses no compiler analysis, outperforms stride prefetching%, but consumes excessive
memory bandwidth, a 180% increase over a system with notprefg. GRP provides
near-equivalent performance to SRP but with substantiedly traffic, an increase of only
23% over no prefetching. This reduction in traffic saves poaved is more amenable to
multiprocessor systems, where additional traffic can tliyedfect performance. To sum-

marize, GRP as a cooperative prefetcher is able to make B&Ratdware-only prefetcher,

practical by using compiler guidance. On the other hands slsown in previous work [69],
SRP itself outperforms a state-of-the-art software pebiet The cooperative prefetcher

thus provides a cost-effective solution for high perforcean

1.4 Combining Cache Replacement and Region Prefetching

GRP is targeted to the Level 2 cache. Due to the complexitheptefetching engine,
it is impractical to implement a similar prefetching engfoethe Level 1 cache. As shown
in Figure 1.3, there is still a significant performance loae tb L1 stalls. Guided cache
replacements alleviate this problem. However, even am@bttache replacement policy
usually cannot eliminate all misses. Given the high préiieg accuracy of GRP, most
data prefetched to L2 will be used at L1. Accesses to theseaddlhe Level 1 cache are L1
misses and thus suffer the L2 latencies. To tolerate thésedi@s, we design a prefetching
engine between the Level 2 and Level 1 cache, which pushgwéfietched data into the
Level 1 cache. Our results show that pushing prefetchedintaighe L1 cache can further
improve memory system performance.

Typically, the Level 1 cache size is much smaller than theeL@&vcache. Pushing
data into L1 introduces cache replacements and can poHatedche. In Chapter 5, we
examine the impact of the LRU and MRU placement policies.tHarmore, we combine
guided cache replacement with L2 region prefetching anddta gushing. By marking a
cache line agvict-me the compiler optimistically predicts that the cache liné not be
reused in the near future. The side effects of an unusedtpnede pushed line are reduced
if it replaces an evict-me line. We find that compiler-guidepdlacement helps reduce the

cache pollution of the push scheme by roughly half.

1.5 Dissertation Organization
We organize this dissertation as follows. In Chapter 2, weflgrcover some back-

ground material and discuss related work. We introducechastations for the memory

hierarchy and survey related techniques for toleratindiedatencies. We focus on the
literature targeting cache replacement policies and dafafghing that are directly related
to this dissertation. Finally, we introduce the Scale cdenghfrastructure in which we
implemented all our compiler algorithms.

In Chapter 3, we describe our cooperative cache replacestgithms. We present a
theoretical model in which we formulate our algorithms. Weve that the algorithms will
generate hit rates at least matching LRU. We then presenintplementation techniques.
In one implementation, we use an impractical 16-bit hint édedmine an upper bound
of our approach. We then focus on a one-bit (evict-me) implaiation and present the
compiler analysis to generate this bit.

In Chapter 4, we introduce guided region prefetching andpaomit with hardware-
only region prefetching and stride prefetching. We presesdries of compiler algorithms
generating various compiler hints. We use these hints taméregion prefetching and
pointer prefetching. We show that our locality analysisuffisient to catch most spatial
reuses, so GRP is able to match the performance of SRP bute&RP’s bus utilization
to a practical level.

In Chapter 5, we first design a new prefetching engine, whigshps to the Level 1
cache the data prefetched into the Level 2 cache . We thehigyiush scheme, guided re-
gion prefetching, and guided cache replacement togetheisidv that the three methods
interact well to improve performance further. We also obsé¢hat guided cache replace-
ment can alleviate the pressure on cache replacementucegddy pushed data.

We conclude this dissertation in Chapter 6 by discussingeh®aining problems and

possible future work, and listing other applications of cooperative approach.

1.6 Summary of Contributions

We make the following contributions in this dissertation:

10

1. Emphasizing the importance of hardware/software catjoer. There is only a lim-
ited amount of work that uses software/hardware collabmrdb attack the memory
wall problem. Within the research area, we emphasize theitapce of the flexibil-
ity of using ISA extension to enrich the interface betwedivgare and hardware and
propose practical applications of the extension. We devala implement a series
of compiler algorithms to manipulate the new ISA. We use $atauis to explore the

effectiveness of the compiler hints on performance andidraf

2. A new cache replacement policy: We are the first to use thpseific static compiler
hints to direct run-time cache replacements. We describ@wame-based compile-
time analysis to generate compiler hints and propose aigaacaiche architecture
implementation based on a one-bit extension to the ISA adldesa We find that this
new replacement policy is able to cut misses and often aehimuss rates close to

optimal. Its performance depends on cache parameters pntddata set sizes.

3. A new region prefetching technique: Our work distingesskiself from previous re-
gion prefetching work in its compiler control. We use coraphints to help hardware
decide when to exercise prefetching and what is the ap@tepprefetching region
size. We find that compiler-guided region prefetching mesctine performance of

hardware-only region prefetching while reducing bus tc&ffia practical level.

4. A thorough study of region prefetching and pointer pidfetg: Our work thor-
oughly studies the interaction between region prefetclimg pointer prefetching.
We find region prefetching outperforms pointer prefetchimgiost cases, and their

combination does not lead to a performance improvement.

5. Astudy of the interaction between cache replacement gefdtphing: We study how
a cache replacement policy can affect prefetching effigie@ar results show that a
well-tuned cache replacement policy can reduce the siéetsfbf prefetching, such

as cache pollution.

11

We show that our cooperative approach is an effective dimeédr addressing the mem-
ory wall problem. Through its applications for cache replaent and data prefetching, we
demonstrate that compile-time analysis is able to supgyoes information that the hard-
ware can exploit to improve memory system performance. @mther hand, the run-time
status tracked by hardware is critical for fully exploitingmpiler hints. The limitation
of this approach lies in its dependence on the ISA extensime she budget on ISA bits
usage is very tight, particularly for RISC architecturesweéver, our work suggests it is a

cost-effective way to improve memory system performance.

12

CHAPTER 2
BACKGROUND AND RELATED WORK

This chapter provides background material and discustssdevork. It first describes
the most pertinent knowledge on how modern memory systenls armad how our tech-
niques benefit from state-of-the-art technologies. It tbencentrates on related work in
cache replacement, cache miss characteristics, and sgmefetching techniques. We em-
phasize our contribution in both its underlying methodglagd its breakthroughs in solv-
ing existing problems in memory systems. We also includeief bitroduction to Scale,
the compiler infrastructure we use to implement all of thenpder analyses described in

this dissertation.

2.1 Memory System

In this section, we first address the role of the memory hidgain modern systems. We
then focus on those recent advances in cache, DRAM, andgsoceore architectures that
are most related to memory system performance and the harawaoftware techniques

discussed in this dissertation.

2.1.1 Cache Architecture and Cache Miss Classification

As latencies for accessing main memory keep growing, nunsgerhniques have been
proposed and implemented to bridge the gap. Most of thebaitpoes concentrate on the
memory hierarchy. A typicainemory hierarchyonsists of register files, several levels of
caches, the main memory, and the disk. The levels of a memergrbhy usually follow

aninclusionparadigm: all data in one level can be found in the level beldWwigher level

13

(closer to the CPU) is faster but smaller than lower levelené&ally, the literature refers
to all the levels between the CPU and the main memomgaakes We refer the reader to
an early survey by Smith [98] for a comprehensive introdutto cache design and some
techniques used to improve cache performance.

A blockor aline is the minimum unit of information that can be present in taehe
(hit in the cache) or nonfissin the cache). The restrictions on where a block can be placed
in a cache create three categories of cache organizatiogsch block has only one place
it can appear in the cache, the cachdirect mapped|f it can be placed anywhere in the
cache, the cache fsilly associative If it can be placed in a restricted set of places, the
cache isset associativeln a set-associative cachesetrefers to a group of places each of
which a block can be mapped to. A fully-associative cachebsaconsidered as a special
set-associative cache where the whole cache is a single set.

The memory hierarchy will speed up execution if accessedeaserved at the upper
levels qits). Otherwise, it will suffer the longer latency due mmissego the higher lev-
els. Hill and Smith classify cache misses into three caiegocompulsory conflict or
capacity[48]. A compulsorymiss is the first access to a cache linecaacitymiss occurs
when the cache size is too small to hold all the cache lineseated by a program. With
sufficient capacity, aonflictmiss occurs when multiple cache lines are mapped to the same
set in the cache, and the program subsequently referen@scéed line. One can use the
least recently used (LRU) replacement policy and a fullyoesdive cache to define the
three types of misses [46, 48, 67]. A capacity miss happemrs\atdata item that is reused
cannot be kept even in a fully associative cache. A conflissroccurs when a reused data
item canbe kept in a fully associative cache, but is evicted due tatdichcache associa-
tivity or a poor cache replacement decision in a given caoméiguration. Using the LRU
replacement policy makes statistics on different categasf cache misses simpler. Stricter

statistics following the original definition require optatrcache replacement. Sugumar and

14

Data O Data In/Out ¢

RTD/VVRO Buffers

! Column Decoder

RAS O— clock & — [[]

% O— Refresh Ckiry----- - _ ‘ Sense Amps/Word Drivers ‘

... Bit Lines ...

Column Address |
Buffer

Memory
Array

Row Address
Buffer

addres

Row
Decoder

Figure 2.1. Conventional DRAM block diagram

Abraham suggest a measurement using optimal cache remat§h2] as we discuss in

Section 2.2.2.

2.1.2 DRAM Architecture

Main memory is typically organized as DRAM (Dynamic RandormcAss Memory).
Figure 2.1 illustrates a conventional DRAM. The term DRAMpiis that an access to
any randomly chosen location requires about the same anobdinte. However, this is
not the case since DRAM manufacturers have created sevaraDiRAM architectures
to respond to the memory wall problem. DRAM is conventionpaliranged as a matrix of
“cells”. The memory accessing address is divided imtmvaaddressand acolumn address
which are then decoded to access the memory array. A datasasequence consists of
arow address strob€éRAS signal followed by one or moreolumn address strob@€A9
signals. The data in the storage cells of the decoded roweadds moved into a bank of
sense amplifiers durinBAS In the followingCAS the decoded column address selects
data from the amplifiers.

In a conventional DRAM, there is only oi@ASfollowing eachRAS In fast page mode
DRAM, multiple CASsignals are allowed, and the amplifier set is callguhgeor a hot

row. This DRAM is thus designed to exploit more spatial localiye refer the reader to

15

Cuppu et al. [34] for characteristics of a list of represemaDRAM techniques such as
Synchronous DRAM (SDRAM) and Rambus DRAM (RDRAM).

Cuppu et al. [33] experiment with the performance effecthef system-level parame-
ters of a DRAM system, such as the number of memory channaist §izes, queue sizes
and organizations, turnaround overhead, memory contnadlge protocol, and algorithms
for assigning request priorities and scheduling requestamiically. They find that concur-
rency in the primary memory system is very important, evemfeniprocessor, and support
for concurrent transactions improves performance by riyugliactor of two. They sug-
gest that improving concurrency by subdividing the memary imto multiple channels is
risky, as it relies on the ability of the application to sustie level of concurrency equal to
the number of channels, otherwise the extra channels lisathuFrom this point of view,
the intra-channel concurrency is safer to exploit thanrint@nnel concurrency. Taking
advantage of the Rambus design, Region Prefetching, asgedpy Lin et al. [69], is-
sues prefetches only when a free channel is available arsdatinids channel contention
with regular memory accesses. Our prefetching technigae extension of this work and
includes this optimization.

McKee et al. [76] find DRAM performance is largely dependenttbe the order of
accesses for streaming type workloads. They propose arsheffer and a memory sched-
uling unit between the CPU/Cache and main memory. The cemgétects streams and
generates stream access instructions. The memory sahgduit is able to reorder the
streaming accesses and the regular requests from cachéssaadhe accesses to main
memory in an optimal order. The “optimality” comes from leethit rates to hot pages
in modern DRAM systems. Generally, the access time of a pégs h factor of two
to three faster than a page miss. Modern DRAM designs, suSD&AM and Rambus
DRAM, make the access pattern and scheduling of main mentmgsaes more critical
to the overall performance of the hierarchy. Varying cadmacements and prefetching

policies change the data stream into and out of main memaoiyg. niot the focus of this

16

dissertation to discuss the effect on main memory; howdxah of our techniques aim
to reduce the number of main memory accesses. Region prigfgttakes direct advan-
tage of the Rambus DRAM design. The prefetching requestpravgtized based on the

availability of free channels.

2.2 Improving Cache Performance

In this section, we first introduce concepts of program libgato which almost all
cache improving approaches can be related. We list severatdtical studies of cache
replacement policies. Then we discuss research on cackehasacteristics. We focus on
hardware and software enhancements for improving caclierpemnce and cache replace-
ment algorithms. We single out related work in data prefetgland discuss it separately
in Section 2.3. We conclude with some recent work on datapgimg and cache coloring,

and their impact on our work.

2.2.1 Program Locality

The performance benefits of a memory hierarchy stem fsmgram locality The clas-
sical notions of locality found in programs atemporal locality—if an item is referenced,
it will be referenced again soon; asgatial locality—if an item is referenced, an adjacent
item will tend to be referenced soon [45]. When a programlaihgood locality, we ex-
pect most data will be available in the higher levels of thenory hierarchy; and thus we
will avoid the longer latencies of the lower levels.

To improve cache performance, we can either improve prodoaality, exploit pro-
gram locality better, or hide latencies of accessing dath moor locality. Examples of
improving program locality are loop transformations, sastoop tiling and loop permuta-
tion. Our work on cache replacement policies is an exampéxploiting program locality.

Region prefetching exploits spatial locality and hidestaies.

17

2.2.2 Trace-based Cache Studies

A lot of theoretical cache work depends on having a compledgram trace. Although
our work does not depend on traces, some theoretical réseativates it. The notion of
a program trace also facilitates our introduction to notagiof data reuse.

Belady [10] pioneered research on replacement policiestmparing random cache re-
placement, LRU, and an optimal algorithm. His researchioaity targeted virtual memory
page replacement, but the overall logic applies well to eaelplacement. Given the trace
of page accesses, the optimal algorithm should alwaysaefte page with the largest
reuse distance. feuseof an access is the next access to the same addResse distance
is the number of distinct accesses between an access araises. rBelady proposed an
optimal page replacement algorithm, called the MIN aldponit given the entire program
access sequence. Our cache replacement policy is inspiréek lmptimal cache replace-
ment policy. Rather than relying on the whole program traeeinstead use static compiler
analysis to predict the reuse distance.

Sugumar and Abraham [102] use Belady’s algorithm to chareet capacity and con-
flict misses. They present three techniques for fast sinmlaif optimal cache replace-
ment. Using a limited lookahead strategy, they are ablenalsite multiple optimal caches
with a one-pass scan. They also propose a tree-based fslbciative cache simulation
and a partial inclusion scheme for simulating multiple sstogiativities. They find that
the optimal miss rate is up to 70% lower than those under an p8ligy for 9 selected
benchmarks. A simulatosim-cheetahimplemented all these techniques. Sim-cheetah is
the version adapted for SimpleScalar, a simulation toolvgetise in this dissertation [15].

Temam [103] extends Belady’s optimality result by simuétansly exploiting spatial
and temporal locality. By considering both types of lodedit the study evaluates the po-
tential benefits of future memory optimizations and prosideperformance upper bound
for higher memory levels. Burger [13] uses the MIN algorittmobtain a formal lower

bound of the amount of bus traffic that a cache may produce.

18

All the studies discussed above seek to understand cachacttvastics rather than to
implement a real cache and related algorithms. Althoughtloeworetical model in Sec-
tion 3.2.1 is also based on static traces, we apply it to aceedie using compiler analysis.
In Chapter 3, we also compare our algorithms to the optimethegolicy using Sugumar

and Arbraham'’s simulation techniques [102].

2.2.3 Cache Miss Analysis

Ghosh et al. [39] suggest a set of miss equations for prgcisellyzing cache misses
for individual loop nests. Their framework enables compdtyorithms to find optimal
solution for transformations like blocking, loop fusiomdapadding. It also helps when
reasoning about how different transformations work togeth

Chatterjee et al. [22] set up a set of Presburger formulalsdcacterize and count cache
misses. Chatterjee’s model is powerful enough to handlesifeptly nested loops and
various non-linear array layouts.

Both models could probably be extended to suggest evictignsalculating cache
misses when applying different eviction schemes. Theyectly drive optimizations by
comparing the number of misses between runs of the programpited with different op-
tions. Our work uses heuristics and is less precise for amitheal nest, but computes or
estimates the data volume between nests and between r@usetter cache miss analysis

could improve our results.

2.2.4 Hardware Enhancement of Cache Replacement

Direct-mapped first level caches have been popular becddiseiolow hit cycle time.
They can yield good system performance, even though setiasise caches have lower
miss rates [45, 47]. Due to rapid increases in miss cyclelpesamany recent architec-
tures use at least 2-way set-associative L1 caches, eegCdimpaq Alpha 21364 and Sun
SPARC 2. To attain fast access time to L1 caches in futurentdojies, processors will

probably have small L1 caches with a low degree of assotiafR]. We observe that the

19

industry is starting to deliver 3-cycle L1 caches. Someigctures trade higher associa-
tivity with a simpler cache replacement policy. For examfie IBM RS/6000 7043 has a
64K 128-way Level 1 cache that uses random replacement.

In Chapter 3, we propose avict-mecache to enhance cache replacement. Each line
is tagged with a bit called thevict-mebit. A line with the evict-me bit set is preferred for
eviction on a cache miss. The hardware mechanisms of anreeidache do not increase
cycle time and are effective only on set-associative cgdleesthe hit time is unchanged.
The replacement logic on a miss considers one more bit. Ouk thes to achieve both
fast hit cycle time and low miss rates.

The evict-me bit is similar to, but not the same as, the Alpbaictinstruction, which
evicts a cache line immediately and thus cannot toleratedomgion [58]. The evict in-
struction is designed to help maintain cache coherendenrtian to enhance locality. Our
approach works for variable cache and data sizes becauga/bah the data do not all fit
in the cache will the replacement algorithm use our inforamatThe Alpha’sprefetch and
evict-nexinstruction loads the line to the Level 1 cache and evicts the next miss to the
cache set [58], but we instead tag actual loads, not spacif@efetches.

Numerous dynamic or hardware techniques have been propmesdlice cache misses
or alleviate cache pollution to improve hit rates, e.g., 32, 54]. The victim cache was
originally designed to enhance direct-mapped caches [B4$. a small fully-associative
buffer between the Level 1 and 2 cache, which stores repatado reduce conflict misses
that occur close together in time. The evicted L1 cache Ikehanges with the hit line in
the victim buffer. The victim cache is probabilistic, rathiean predictive.

Wong and Baer [112] enhance LRU with a temporal bit for eadhedine. Temporal
bits act oppositely to our evict-me bits: they specify linegetain rather than lines to
evict Wong and Baer determine temporal bit settings using pngfiir an online hardware
history table. The temporal bit of a cache line is reset whenline is hit. To avoid a

marked dead line polluting the cache, the temporal bit of R line is reset when a non-

20

LRU line is evicted. Rivers et al. [87] use a (hardware) dibdecunit, similar to a history
table, to track reuses at run time and to categorize accetssrgoral/non-temporal and
cacheable/non-cacheable. A non-cacheable access byphssmche to avoid pollution.
Lai et al. [66] use a hardware history table to predict wheache block is dead and which
block to prefetch to replace the dead one. Our techniquesisthan static compiler analysis
and does not require substantially additional hardware.

Hannnor and Reinhardt [43] present a practical, fully asdve, software-managed
secondary cache. Their system consists ahdirect index cachéllC) and a replacement
algorithm,generational replacementhe IIC’s tag array is organized as a hash table and
each tag entry contains a pointer to the data block, whichesttie cache fully associative
because the pointer can legally point to any block in theeaelannor and Reinhardt group
cache blocks into a small number of prioritized pools. Thitnsre-managed generational
replacement promotes and demotes cache blocks on a missdifepen their recent ref-
erence history. The software replacement algorithm aelieviss rate reductions from 8
to 85% compared to a 4-way LRU. Hannor and Reinhardt use acétitmanagement to
reduce the complexity of the hardware implementation of tthesign. Their replacement
algorithm totally relies on run-time history and does nat agy compiler-time analysis.

McKee et al. [77] use a stream buffer for stream-like datayjpalss the cache. They
rely on the compiler to detect stream array accesses andagerseespecial instruction to
start a stream at run time. We mark stream datavas-me but our technique works on
cache replacement directly and does not require an extfarbuf

The Intel IA-64 provides instructions to control cachin§3Non-temporal loads/stores
bypass the cache to avoid cache pollution due to streamitag dhe IA-64 supports lo-
cality hints used by prefetch, load, and store instructimneontrol placements of cache
lines in either aemporal structureor a non-temporal structure The hints do not direct
cache replacement, but our compiler analysis could sp#ugynon-temporal instructions

and locality hints. We do not explore that application irsttlissertation.

21

2.2.5 Page/Cache Coloring and Data Remapping

Coloring is an approach to classify pages and cache lines used td ws$es run-
time decisions. On-line page coloring and other mechantgusease paging, but are too
expensive for higher levels of the memory hierarchy. Fomgxa, Early Eviction LRU
(EELRU) [96] dynamically chooses to evict the LRU page or éfemost recently used
page. The reference history determimgshe early eviction point but is too expensive
to store and use for caches. This approach eliminates tagege misses in a fully as-
sociative memory, whereas our technique removes conflissesifor caches, using static
compiler control.

Some work uses cache coloring or data remapping to imprasteecaffectiveness and
reduce conflict misses due to poor mapping [12, 18, 29, 91HeCat al. [18] use profiling
to build aTemporal Relationship Grapfi RG), which shows a metric of cache interference
among stack (local variables), global variables, heapabdjeand constants. Using TRG,
they propose an algorithm to decide the placement of ea@ctbin order to reduce cache
interferences.

Sherwood et al. propose a hardware and a software approaeluce cache misses
by reordering pages in cache [91]. The software approachiges a color mapping at
compile time for code and data pages, which can then be usédebgperating system
to guide its allocation of physical pages. The hardware @ggr works by adding a page
remap field to the TLB, which is used to allow a page to be reradpp a different color in
the physically indexed cache while keeping the same phlysacge in memory. Bugnion et
al. implement a similar software page coloring approachfalti-processor systems [12].
They use compiler analysis of access patterns to direct jpleeating system to allocate
physical pages.

Chilimbi and Larus [29] use generational garbage colleditamplement cache-conscious

data placement. They reorganize objects at garbage dotidanhe to improve data local-

22

ity and thus cache performance. Chillimbi et al. [27, 28¢tain provide a more detailed
analysis and an implementation using an extension of mealtwyation functions.
Compared to cache coloring, our cache replacement algwitiny to reduce cache
misses at a finer level, i.e., cache sets. Even in coloredesaciur algorithms can most
likely still help reduce cache misses. A program with immalocality will leave a smaller
space for our cache replacement to improve. However, thie stanpiler analysis will still
help as long as the data movements for locality improvengmisot destroy those static

properties.

2.2.6 Improving Cache Locality—Program Transformations

Researchers have also proposed loop and data transfonshédiamprove data local-
ity by moving temporal reuses closer together in time andrtgoducing spatial local-
ity [1, 55, 78, 111]. These algorithms do not directly impeaeplacement decisions and
thus are complementary to our work. Region prefetchingctvlive describe in Chapter
4, sometimes benefits from improved spatial locality intreetl by loop transformations.
Region prefetching itself exploits spatial locality. Itlixshow better prefetching accuracy
and improved performance when combined with loop transédions. We leave this com-

bination as future work.

2.2.7 Out-of-order Execution and Lock-up Free Caches

An out-of-order execution processor core is able to hideesoathe latencies through
a combination of dynamic scheduling and a lock-up free c46Be14]. The processor
executes instructions when the operands become avaiktblerithan in the order that the
program specifies. Out-of-order processors exploit itivn level parallelism by allow-
ing other instructions to execute when an instruction stallthe processor waiting for a
resource. Out-of-order processors use a fixed-size ingirueindow from which instruc-
tions may be executed. In order to preserve program sersatiie processor typically

retires or commits the instructions in order. The amountatéricy that an out-of-order

23

processor is able to tolerate depends upon the amount oictisn level parallelism (ILP)
and the size of the instruction window. Most high performeommercial processors
support out-of-order execution, including the Alpha 21288, 59], MIPS R10000 [115],

PowerPC, and Intel Pentium [49].

2.3 Prefetching Techniques

In this section, we focus on the most pertinent aspects ofatige body of literature
on software and hardware data prefetching, along with thallamumber of previously
proposed hybrid schemes. Typically we refer to prefetcheapniques using compiler-
generated explicit prefetching instructionssadtware prefetchingCertainly the prefetch-
ing instructions need to be implemented in hardwatardware prefetchingon the other
hand, does not require special compiler support. In contitagenerates prefetching re-
qguests at run time based on run-time state. Hardware/s@fte@operative prefetching

uses both run-time state and static compile-time knowleédglrect prefetching.

2.3.1 Software Prefetching

In this section we first address some general issues assevith software prefetch-
ing, its strengths and weaknesses. Then we survey the majirimthis area.

Software prefetching relies on non-blocking prefetchringions that bring the indi-
cated block of memory into the cache, much like a load insisac Conceptually, the
latency of a given load instruction is hidden by insertingrefgtch with the same effec-
tive address into the instruction stream sufficiently faadvance of the load. Because the
compiler inserts prefetches only for loads guaranteed tmroor very likely), software
prefetchaccuracyis typically high. In practice, the compiler faces two keylénges in
data prefetchingselectionandscheduling

Because prefetch instructions occupy instruction cacheespipeline slots, and data

cache ports, the compiler mustlecta subset of the loads for which to generate prefetches.

24

Accurate compile-time identification of the loads that w#luse cache misses at run time
is complex, requiring both knowledge of hardware paransdi@che block size, capacity,
and associativity) and sophisticated code analysis (@gletermine the volume of other
data accessed between references to a particular blogk39182, 113].

The compiler also faces the difficult challenge of schedytive prefetches sufficiently
early to hide the memory latency, but not so early that ussdite are needlessly evicted.
To find that point, the compiler must estimate cache missitiés and run-time instruc-
tion execution rates [62]. The compiler is further consteal in that it cannot schedule
a prefetch until it can compute the effective address. While constraint is not signifi-
cant for arrays [16, 82], it limits compiler-based greedynper prefetching [17, 72, 88].
Jump pointers bypass this limitation by identifying recsgveral links ahead in the struc-
ture, but require much more sophisticated analysis, dynamilates, and the addition of
a jump pointer to each object [17, 72, 88]. Other approachefeich pointer arguments
at call sites [71], and decouple prefetches from the maignam using a separate thread
context [31, 61, 74].

Despite these challenges to software prefetching, the tengmalyses themselves are
usually sufficient to detect where prefetching opportesitexist. The difficulty largely
arises from the lack of run-time information so that pref@ig can be issued on time. Our
guided region prefetching technique also depends on cemailalysis and most of our
algorithms are similar to or derive from past work in softev@refetching. However, our

technique distinguishes itself by exploiting run-timeamhation as well.

2.3.1.1 Software Array Prefetching
Software array prefetching typically focuses on arrayneiees in loops of scientific
applications. It generates software prefetching insibastfor likely future array refer-

ences.

25

Callahan, Kennedy, and Porterfield [19] present a simpleygprefetching algorithm
that first detects loop induction variables. The algoritigerts a nonblocking prefetching
instruction for an array reference by incrementing the aticdn variable in the array in-
dices bys. It denotes a referencziterations away if the coefficient of the loop induction
variable is 1. Based on the observation that one loop iaratsually consumes sufficient
computing time, they then just prefetch one iteration al{sadl), which significantly im-
proves hit rates. This strategy has been revisited as melaterycy continues to increase:
prefetching one iteration ahead is often too late.

Klaiber and Levy suggest prefetching data into a separdferboalled afetchbufferto
avoid polluting the cache [62]. They analyze the impact ef@iching distance and manu-
ally insert prefetching instructions into selected Livenaloops using their analysis. They
use the average memory access time per access as a perfermaasurement and show
a significant speedup for numeric applications. Two non-eniecrapplications, quicksort
and binary search, present performance improvements rbvbasatic and are dependent
on relatively larger data set sizes.

Mowry, Lam, and Gupta [82] present a thorough evaluation iamalementation of
software prefetching. They also show simulated executmg.t Their algorithm inserts a
prolog loop to prefetch for the first several iterations. It also gyates arepilogloop to
avoid prefetching non-existing array references. Theppse the simple formuldl /s| to
calculate prefetching distance, wheris the prefetching latency argds the shortest path
through the loop body. Their results show a speedup of upaotarfof two. They conclude
that prefetching into cache directly performs impressivell, without the disadvantage
of sacrificing cache size to the fetch buffer that Klaiber aedy propose [62].

In his dissertation [75], McIntosh introduces cross-loepse analysis to reduce useless
prefetches. Given two adjacent loop nests, some data se@axessed in the second nest
are probably accessed by the first nest and stay in the caaietdgh implements compiler

analysis to detect these reuses and disable useless pesfatthe second nest.

26

Cahoon and McKinley [16] present a unified compile-time gsial for software pre-
fetching both arrays and linked structures. Their data floalysis detects loop induction
variables in array accesses and schedule prefetches for &eross a series of array-based
Java benchmarks, their technique reduces execution tir28%yon average.

Two reports evaluate software prefetching on commerc@atgssors using the HP PA-
8000 and the PowerPC. We also notice that the Alpha compagrsbftware prefetching
implemented. Santhanam, Gornish, and Hsu [90] evaluate/aa data prefetching on
the HP PA-8000, a 4-way superscalar processor. They rdpiihteraction of data pre-
fetching with loop unrolling and array padding. They alsoyide a detailed analysis of
prefetching distance with consideration of memory lateswoy the number of outstanding
misses the processor allows. Santhanam et al. presenisrebaiving a 26% speedup on
the SPECfp95 benchmark suite. Bernstein et al. [11] des@ibompiler implementation
for data prefetching on the PowerPC architecture. ThepfoNMowry’s approach but the
only transformation they apply is loop unrolling [82]. Thesovide actual execution times
for the SPECfp92 benchmarks and Nasa7 kernels. Improvementir on only three of

the fourteen SPECfp92 programs and six of the seven Nasaélker

2.3.1.2 Other Software Prefetching Techniques

In this section, we survey related prefetching techniqoesiriked data structures and
those suitable for general data correlations rather thnregular array accesses.

Early pointer prefetching work proposed by Lipasti et all][uses a compile-time
heuristic, calledSPAID(speculatively prefetching anticipated inter-procetldesieferences),
for prefetching pointer arguments at call sites. Their expents use a trace-driven statis-
tical model. They report the best performance when preiiegcbne argument at a call.
Since the work is restricted to prefetching arguments, trexall performance effect is

limited.

27

To address latencies in general pointer-based applictiak and Mowry [72, 73] de-
sign three prefetching schemegseedyprefetching history pointerprefetching, andlata-
linearizationprefetching. They use type declarations and control flowyarsato detect
recursive traversal. In particular they check pointer ueslan loops and recursive calls.
We use the same technique to mark recursive pointer refesen®ur guided pointer pre-
fetching. The greedy prefetching scheme prefetches akir@ng pointed-to nodes except
the immediately following one. History-based prefetchings to build jump pointers on-
the-fly during the first traversal. Data-linearization etehing maps linked structures into
sequential memory locations so the prefetcher can enjoyrag-bke prefetching context.
Experimenting on the Olden benchmarks, they show up to 45%édp with greedy pre-
fetching, which outperforms SPAID in all but one case.

Cahoon and McKinley [17] describe a data flow analysis to ge@refetches for Java
code. They investigate greedy prefetching and jump pointefetching and find inter-
procedural analysis is critical for detecting recursive&ures in Java.

Luk [74] uses a pre-executing thread to prefetch data fonthm thread for simulta-
neous multi-threading (SMT) processors. He presents a ib@ngmalysis, though it is not
implemented, to generate pre-execution code and add atistns in the main code to ini-
tiate and stop the pre-execution. His technique shows a p&¥dsip over non-prefetching
and a 19% improvement over state-of-the-art software fmieifey.

Another approach uses profiling to detect which data to priefeThe profiling-based
technique has the advantage of detecting those irregularadaess patterns that are hard
for the compiler to find. However, like all profiling-basedsmes, it suffers from training
cost and generality.

Chilimbi and Hirzel [30] present a dynamic prefetching teicjue relying on run-time
sampling. Their technique is divided into three phasesfilprg, analysis and prefetch-
ing, and hibernation. The profiling phase gathers a tempefatence profile. The second

phase analyzes the profile and dynamically injects prefegcbode. The program en-

28

ters the hibernation phase when there is no profiling or amain action. Since all the
processes depend on software instrumentation and thetgiriefg requires no more than
regular prefetching instructions, we still classify theghnique as software prefetching.
Wu [113] uses profiling to detect stride patterns in irregelade. His analysis is effi-
cient at collecting both frequency and stride in the samélprg pass. The compiler uses
the stride profiling to generate prefetching instructionss observes up to 59% speedup

for SPEC CPU2000 benchmarks.

2.3.2 Hardware Prefetching

The converse approach to software prefetching is hardeslseprefetching, in which
the hardware predicts prefetch addresses by observing gagonés run-time behavior.
Since prefetches do not incur overhead in the processdi; itise hardware need not be
as selective about issuing prefetch operations. Recerkt staws that simple dynamic pri-
oritization techniques eliminate most memory bandwidthtention and cache pollution
problems [69]. However, unlike the compiler, the hardwaae ho direct knowledge of fu-
ture memory references; the key challenge in hardwaredhasdetching is determining a
reasonable set of predicted addresses to use as prefefetstalardware prefetching thus
suffers relative to software prefetching in both accurdmgcéuse the predictions may be
wrong) and coverage (because some addresses may requiogrthiger’s scope to predict).

Many hardware prefetchers exploit only spatial localitygfptching one or more sub-
sequent blocks on a cache miss [35, 54, 98]. More sophisticethemes detect non-
unit stride access patterns, such as Chen and Baer’s reéepeediction table (RPT) [23]
and Palacharla and Kessler’s stride stream buffers [84jeCdpproaches exploit pointer-
based access sequences, as with correlation-based anov\pagietching [4, 21, 53], or a
broader class of patterns, using dead block informatioh [&@other approach involves de-

coupling data structure traversal from the computatiomguspecialized pointer-traversal

29

hardware [89] or dedicated pre-execution hardware [5].eRehers have also proposed
memory-side prefetching to reduce latencies betweentptefe [50, 99, 114].

Most pertinent to this work are two previous papers. Firstdptor-directed stream
buffering, proposed by Sherwood et al. [92], unifies stridleasn buffers and Markov pre-
fetching into a single, consistent hardware prefetchiaghwork. In Section 4.5, we com-
pare the GRP scheme to the stride stream buffers schemesimdg,the Markov predictor
consumes too much state to be practical. Second, Cooksky3&]aropose a stateless ap-
proach to pointer prefetching, foregoing explicit idectiion of pointer traversal patterns
and simply prefetching any referenced memory value thatidoe reasonably interpreted
as a memory address. Our hardware schemes are also statédessd that for our bench-
marks, GRP with spatial hints usually performs better orgame as pointer prediction
with or without pointer hints.

In the end, all hardware schemes are forced to trade covéoagecuracy (or vice
versa), and focus either only on structured access pattetrnish can be predicted with
high accuracy (forgoing coverage of less structured aqua$srns), or consume significant
bandwidth with incorrect prefetches in an attempt to cogesistructured references.

The relative strengths and weaknesses of hardware andasefpwefetching are com-
plementary and thus suggest a combined hardware/softywareach. An ideal scheme
would exploit the compiler’s knowledge of future referepegterns, and use a low-overhead
channel to convey this information to a hardware prefetgkimgine, which could then gen-
erate and schedule appropriate prefetches based on dymdarimation regarding cache

miss events and resource availability.

2.3.2.1 Scheduled Region Prefetching
GRP, discussed in Chapter 4, uses and compares with Lirsdtaidware-only region
prefetching technique [69]. We discuss in this section thgmcontributions of their work

and leave the experimental comparison to Chapter 4.

30

Scheduled Region Prefetching exploits spatial localitya gfrogram by prefetching a
region on an L2 demand miss. Lin et al. find that a 4K byte regina delivers good per-
formance. Prefetching such a big region exerts pressuresomary buses. This work uses
several sophisticated scheduling and prioritization apgines to counteract this pressure.
A prefetched cache line is put into the LRU slot to reduce egmtilution. A prefetching
request is dequeued from the prefetching queue followiaddht-in-first-out (LIFO) pol-
icy. This prioritization guarantees that the most receefgich request is served first and
also maximizes DRAM page locality. A prefetching requestigs to a regular L2 miss
and is issued only when a memory channel is free. This ensluaéshe regular memory
request is served first. These scheduling techniques redacesgative effects of poor ac-
curacy but do not entirely eliminate prefetches that fetsbless data. GRP significantly

improves the accuracy using compiler hints.

2.3.2.2 Predictor-directed Stream Buffer

Sherwood, Sair, and Calder [92] combine a stride and a Maskedictor to prefetch for
Predictor-Directed Stream Buffe(BDSB). The stride predictor is able to exploit spatial lo-
cality in stride-intensive code, whereas the Markov prexdiis targeted to pointer-intensive
code. The basic architecture is as shown in Figure 2.2.

We choose this prefetcher to compare with region prefegcimnChapter 4 because
it accommodates a set of hardware enhancements to imprefetqiring accuracy and
avoid stream buffer thrashing. Following Jouppi’s orididesign [54], each stream buffer
contains a FIFO buffer queue. A hit to a stream buffer wileftee head entry of the queue
of the buffer and the buffer will then allow a new prefetch.cimtrol accuracy, Sherwoord
et al. further add a priority counter to each stream bufféreii prefetcher increments the
counter when there is a hit and decrements it when there iss. niihe prefetcher uses
the counter to decide which stream buffer performs the neediption or prefetch. The

prefetcher relies on a PC-based history table to generdtala for each stream buffer. It

31

to data cache and MSHRS

| load info
[(PC, address)
‘ from write—back

L stage
N 9‘ tag ‘ cache bIocl# comparator‘
N store predicted | Stride
[tal cache bloc comparator 7 stride in streaing .
B =ltag | g P | L buffer on Predictor
] | H allocation .
last | Last Prodicted m if address not strid
] new las as reaicte L :
address ~ | Address Stride predlcable, store
I in markov
\ E / | last address
markov Markov
MUX_ [<pit u
] € Predictor
markov address if hit, return
—| LI~ predicted
stride address — address

from/to next lower level of memory
Figure 2.2. Predictor-directed stream buffer architecture

generates a new stride when there are two misses in a rowtxdithe same stride. Each
table entry stores aamccuracy counterwhich is incremented every time the load’s update
address matches the prediction.clonfidence allocatiomode, the prefetcher allocates a
new stream buffer only when the value of an accuracy coustgreater than that of it
corresponding priority counter. Then the stream buffehwiite lowest priority yields to
the new stream built upon the stride table entry.

Compared to PDSB, GRP prefetches data into the Level 2 cadatlg It avoids the
hardware cost of accuracy control by using compiler hintethBhe stride prefetcher in
PDSB and GRP exploit spatial locality. It would be intenegtio see if the compiler hints

in GRP can drive PDSB and eliminate part of PDSB’s hardwaceracy control.

2.3.2.3 Hardware Array and Spatial Prefetching

Hardware prefetching schemes add extra hardware in ordeefetch and do not re-
quire additional software support. This section discussiesed work exploiting spatial lo-
cally, particularly in arrays. Hardware prefetching heip$¥oost application performance
without re-compiling. Most hardware prefetching targetag-based scientific code to ex-

ploit spatial reuses. It could also exploit spatial reusestoer data structures since the

32

technique is dynamic and automatic. We discuss hardwarggr@refetching in Section
2.3.2.4.

Gintele [40] suggests a simple one block lookahead prefeggdtheme: if ling is ref-
erenced, only lineé+ 1 is considered. This scheme successfully reduces missesion
frame computers. The simplicity of the scheme helps attanhigh hit cycle times of
caches. Smith [97, 98] points out that it is not feasible tplamther choices that re-
guire more complicated hardware implementations. Howeasecache latencies increase,
more aggressive hardware prefetchers become practicaterebsary. Smith concludes
that treating the prefetched lines differently in the LRWeme has little effect, although
Lin et al. [69] observe significant performance impact in ggrassive prefetch for modern
architectures.

To control the number of useless prefetches, Gintele [40p@ses a variant of one
block lookahead prefetching, calledgged prefetching A tag bit associated with each
cache line is set to one whenever the line is accessed. Aeybliought to the cache by
a prefetch operation retains its tag as zero. When a tag ekangm 0 to 1 (i.e., when
the line is referenced for the first time after prefetchinglemand fetched), a prefetch is
initiated for the next sequential line. After initiatinggdetching, the tag bit is reset.

To avoid cache pollution by prefetched lines, Jouppi [54pmses prefetching into a
separate buffer, called tlstream buffer A stream buffer consists of a series of entries, each
consisting of a tag, an available bit, and a data line. A peéfes initiated by a cache miss.
The lines following the missed line are then fetched intosineam buffer. A cache lookup
will also check the stream buffer and move the hit entry ih ¢ache. In a single-stream
design, a miss to the stream buffer will reset the buffer. bitaway stream buffers, a
miss to all buffers causes a reset to the least recently RiUjlbuffer. Multi-way stream
buffers are useful for data references that contain irdeed accesses to several large data
structures, nearly doubling the performance of a singeastrbuffer and removing 43% of

the overall misses.

33

Palacharla and Kessler [84] enhance Jouppi’s stream bu&dt with two techniques:

a filtering scheme, used to reduce memory bandwidth requirements, anodemne that
enables non-unit stride prefetching. The filter allocate®wa stream buffer only when a
miss to cache blockis followed by a miss to cache blodk- 1. Then the stream buffer
will prefetch cache block+ 2, i+ 3, and so on. Physical address space is dynamically
partitioned and a stride is detected in each partition if $ivwles among three consecutive
misses in a partition are the same.

Chen and Baer [9, 23, 26, 24] use a PC-based reference jpoedable (RPT) to de-
tect strides. Each entry consists of four fieldd4ag, a prev-addt astride and a two-bit
state Thetagfield corresponds to the PC value (the address of the load/ststruction).
The prev-addrrecords the memory address that the load/store instruptieviously ac-
cessed. Thetrideis the difference between the last two generated addreBsesly, the
statebits control when to initiate a prefetch and when to disabéeprediction. Chen and
Baer propose three schemes to generate a prefetching atése=d on the RPT. The basic
scheme uses the current PC to look up in the RPT and prediddress. The so-called
lookahead reference predictidachnique uses a pseudo-PC callddak-Ahead Program
Counter(LA-PC) that remain® cycles ahead of the regular PC. It predicts an access sev-
eral iterations away. Theorrelated reference predictioscheme further helps to handle
stride change across loop levels. They conclude that @&étbchemes are very effective in
miss reduction but that the lookahead prediction schemessib terms of overall cost and
performance.

Sherwood and Calder [92] implement a similar RPT table inlmoation with a Markov
predictor. They also introduce more hardware control torove prefetching accuracy. We
discuss Sherwood and Calder’s work separately in Sectth@.2.and we compare it with
region prefetching in Chapter 4.

Johnson et al. [52] propose a run-time spatial locality cteiea mechanism. They use

a hardware table to keep track of spatial locality dynanycdlhe fetch size can be varied

34

depending on the spatial locality of fetched data. Theilwwlps reduce cache pollution
caused by fetching large blocks unnecessarily.

Following Johnson et al, Kumar and Wilkerson [65] us8patial Footprint Predictor
(SFP) to predict which portions of a cache block will get emlidefore getting evicted.
SFP predicts the neighboring words that should be prefdtohe cache miss. Their eval-
uations show an average 18% miss reduction and a signifiednttion in the bandwidth

requirement.

2.3.2.4 Hardware Pointer and Correlation Prefetching

Array prefetching takes advantage of spatial co-locatibarmay elements. The pre-
fetching address can be determined from the previous aslde#sg a constant increment.
For applications with linked structures, and irregularesscpatterns such as indirect ar-
ray references, this simple prediction does not work. Is ggction, we first describe
correlation-based prefetching where the prediction i€tam general reference correla-
tions. We then discuss the hardware-only techniques tleasfon linked structures.

Charney and Reeves [21] were the first to publish the restitsreelation prefetching.
They use gair cacheto store ancestor-descendant reference pairs insteadesftpzhild
pairs. They study different combinations of bits from thstinction and the data addresses
of L1 miss references, which serve as a lookup index. Theyfald that the combination
of a stride prefetcher and a correlation-based prefetalmeiges a significant improvement
in prefetch coverage over using either approach alone.

Alexander and Kedem [4] usedistributedprediction table to predict the next prefetch
address. The table is indexed by the current miss addredgaah entry consists of multi-
ple predicting addresses. It predicts bit-line accessas Bnhanced DRAM and prefetches
individual bit lines from the DRAM to the SRAM array. This nfemism should work for

irregular data accesses such as linked structures althtbagiuthors run experiments only

35

on a set of scientific applications. Their results show a ntlbaa 40% performance im-
provement on 2 of 8 benchmarks while the effect on the otlsarsodest.

Joseph and Grunwald [53] use a Markov prefetching tabledfeprh data into on-chip
prefetch buffers in parallel with the Level 1 caches. Thekdartable records the transition
probabilities for one miss address to a set of possible suigse missing addresses. The
follow-up entries are organized using an LRU policy to awtaring the real probabilities.
To predict the next Level 1 miss, the size of the Markov tablefithe same magnitude
as the Level 2 cache, which makes the scheme impracticakfee|l2 prefetching. Joseph
and Grunwald evaluate the effectiveness of their Markodigter using commercial work-
loads that contain mostly unstructured references. Cosapiar stream buffers and stride
prefetchers, the Markov prefetcher shows better coverageding more bandwidth and
sacrificing accuracy.

Roth and Sohi [88] combine jump-pointer prefetching androd prefetching, which
use the pointers in the original unmodified program. Theypse four schemegjueue
jumping full jumping chain jumping androot jumping They describe three implemen-
tations for each scheme: software, hardware, and softhathi/are cooperation. Queue
jumping is jump-pointer prefetching applied only to the ¢khone” structures that con-
tain nodes of just one type. Full jumping prefetches botH'tlaekbones”, and the “ribs”,
which are the nodes pointed to from the backbone nodes. dulbing relies on having
jump pointers to both the “backbone” and the “rib” nodes. i@hamping eliminates the
jump pointer to “ribs” by applying jump-pointer prefetclgino “backbones” and chained
prefetching to “ribs”. Root jumping starts with chainedfetehing from a root without re-
quiring any jump pointers. It particularly targets smalghiy dynamic pointer structures.
On a suite of pointer intensive programs, Roth and Sohi'gjpoeinter prefetching reduces
memory stall time by 72% for a software implementation, 83#dooperative, and 55%
for hardware, producing speedups of 15%, 20%, and 22% resglgc Our pointer pre-

fetching scheme, discussed in Chapter 4, does not generdtesa jump pointers. The

36

performance improvement of our scheme is thus less signifitean that of Roth and
Sohi’s.

Cooksey et al. [32] present@ntent-awarepointer prefetching scheme, which is es-
sentially the same as the one we designed and implementedrecently as described in
Chapter 4. A fetched cache line is scanned word by word tatiétée value falls into the
heap range and thus looks like a pointer. The prefetchingerigen uses this value as an
address to prefetch. Thminter chasingscheme continues prefetching by chasing pointers
in prefetched cache lines. Cooksey et al. show a speedupgebita subset of real-world
applications, while we find that this technique is mostlysuhed by region prefetching

on selected SPEC2000 benchmarks.

2.3.3 Hardware/Software Cooperative Prefetching

The limited previous work in this area has either exploiteefgtching for restricted
classes of access patterns, or provided an interface thniiy general and complex. Gor-
nish and Veidenbaum [42] let software select the number ofigoous blocks to prefetch
upon a miss, whereas Chen and Baer [24, 25] use the comps#apdy address and stride
information to augment a reference prediction table. Skegujt and Dubois use a trap han-
dler to trigger prefetching using similar information [9%arlsson et al. [56] usprefetch
arraysto enable a hardware engine to perform a generalized vasfayreedy and jump-
pointer prefetching. Zhang and Torrellas [117] use the aenfo mark blocks in memory
as belonging to contiguous spatially local regions or cointg indirection pointers. Their
scheme requires additional bits in main memory and sigmifisapport in the memory
controller. Roth and Sohi’s [88] cooperative jump pointegfptching uses the hardware
to build data dependences among linked data structure badigelies on the software to
trigger chained prefetching. Finally, fully programmaplefetch engines provide flexibil-
ity but require significant memory system support and hateyabdemonstrated that the

required compiler support is realistic [99, 109, 114].

37

Extending Smith’s one block look-ahead (OBL) technique] [98ornish and Veiden-
baum [42] use compiler support to seleqtrafetching degre€PD), i.e., how many lines
ahead to prefetch. A software prefetch instruction is edeelrto specify its prefetching de-
gree and an additional field in each cache line is reservebte the degree. When cache
line | is accessed, line+ degreél) is prefetched. Gornish and Veidenbaum’s original
work aims to shared-memory multiprocessors, although teehniques can be applied to
uniprocessor systems as well. They show performance ireprent over OBL with their
technique on three kernels. It will be interesting to sedd& technique applies to more
general applications.

Zhang and Torrellas [117] rely on compiler support, progreenfeedback, or program
directives to direct a prefetching scheme, catlieeimory binding and group prefetching
system call is inserted in the source code to specify a grétipun time, the system call
marks the group in memory using two additional bits per mgnfine, anN bit and aB bit.
The next memory line is in the same group whenihait is set. TheB bit is set on group
boundary lines. When a line is accessed in the main memay,etimaining lines in the
same group will be prefetched. Zhang and Torrellas alsoge®@an additional bit, called
the P bit, to support pointer prefetching. RrefetchLinksystem call is used to set tire
bit and build a link in agroup translation table An entry of the group translation table
consists of the virtual address of the link and its physidalrass. An L2 miss in a group
will trigger group prefetching. If thé bit of a line in the group is set, a prefetch on the
linked group is started using the physical address refiéngen the group translation table.
Using their prefetching, some of the irregular Splashsclgsplications [94] run 25-40%
faster.

As an extension to the reference prediction table (RPT), [2Ben later on [25] pro-
poses a programmable prefetching engine. Chen'’s prefgtemgine differs from the RPT
in that the tag (PC), address, and stride information arplegby the compiler rather than

being dynamically detected. Before entering into a loogriesare filled into the prefetch-

38

ing engine using a run-ahead instruction. The prefetchmggne functions are much like
the RPT once programmed.

Skeppstedt and Dubois [95] use the compiler to generatgdgnadler to start the pre-
fetch engine. The trap is triggered by an L2 miss and stagfefohing using the compiler-
supplied information such as stride and count. This tealmtgkes advantage of compiler
support with less instruction overhead than software prkiieg.

VanderWiel and Lilja [109] add &ata Prefetch Controlle(DPC), an external general
processor, to prefetch data from the Level 2 cache. DPC &®ds own program, which
is generated by the compiler through extracting referetrgams from the original pro-
gram. A producer-consumer relation is built between DPCthrdnain processor: DPC
prefetches a new block into the Level 1 cache only after aipusly prefetched block has
been accessed by the processor. VanderWiel and Lilja shaiwhiis software/hardware co-
operative technique outperforms pure software prefetchimd pure hardware prefetching
using a reference prediction table.

Karlson, Dahlgren, and Stenstrom [56] usprafetching arrayto tolerate latencies in
short linked data structures. They insert a number of jumptpcs in each node to enable
prefetching all possible nodes at the number of iteratidresd equal to the prefetch dis-
tance. The jump pointers are stored together as an arraysdftware approach, which
needs one instruction for each array element, yields higtnuntion overhead. The hard-
ware approach requires a new instruction specifying the hddress and the length of the
prefetching array. The instruction, when executed, witjger the prefetching engine to
prefetch on each address in the array.

Solihin, Lee, and Torrellas [99] use a User-Level Memoryelad (ULMT) running on a
general processor in main memory, either in the memory obbatrchip or a DRAM chip.
The thread performs correlation prefetching in a style lsinto the Markov prefetcher
proposed by Joseph and Grunwald [53]. The correlation tabjest a simple memory

structure. UMLT can be customized by the programmer or aysie a per-application ba-

39

sis. Their approach achieves an average speedup of 1.3mhéselected applications and
a speedup of 1.46 when combined with a conventional proces$e sequential prefetcher.

Yang and Lebeck [114] add a programmable processor, a pngfgtengine (PFE),
at each level of the memory hierarchy. They use software tectiéinked structures and
generate code to feed the prefetch engines. The prefetchesngereference the pointers
and push the data to the upper level of the memory hierarchy.

Compared to other cooperative schemes, GRP combines thatades of both soft-
ware and hardware prefetching in a scheme that is simpleffgatige. It conveys so-
phisticated compiler analysis results by associating geai hints with loads, which an
aggressive, simple, and general hardware prefetcher adgesvhen necessary. Thus, the
pertinent compiler analysis is communicated to the hardwathout requiring extensive

static lookahead, software guarantees, or high instmucterhead.

2.3.4 Cache Replacement and Prefetching

There is limited research on combining cache replacemetfit pvefetching. Lai et
al. [66] propose a hardware-only technique to predict wheache line is dead so new
data can be prefetched into the line. We rely on software tine@rediction.

Evict-me takes an opposite approach as compared to hardwersoftware data pre-
fetching, which tolerate latency [9, 54, 69, 82, 84]. Datefetching tries to fetch data
which will be used in the near future in order to reduce misgjiees. Evict-me tags in-
stead predict which data will and will not be used in the nature, and keep the data in the
cache that will be used. Evict-me tags do not bring new datetire cache and thus do not
have the bandwidth and other overhead of prefetching. tfrefey pollutes caches when
it brings in useless data. Evict-me tags can help allevisenegative effects of hardware
prefetching. In Chapter 5, we show that the combination aftewe tags and hardware

prefetching can further improve performance.

40

2.4 Other Cooperative Work

As we have discussed in this chapter, many researchers inegtigated improving
cache performance. The limited amount of hardware/soéwaoperative work is typi-
cally restricted by the hardware/software interface. A owmn method used in previous
research is to add a few special instructions or a small ceclos to initiate some hard-
ware actions or to pass static compiler knowledge [25, 42.138]. An extreme in this
direction is software-managed cache as proposed by Mdri&t. ¢80, 81]. Some oth-
ers use an independent program or thread to control préfigtélardware [99, 109, 114].
These mechanisms do not need hint bits in every memory st&iny but typically do not
have the ability to adapt to the run-time states of memorgsses.

Through ISA extensions, we encode hints in every memoryungon and provide a
method to make hardware/software collaboration systenaaiil effective. The compiler
hints we use are mosthazy, i.e., their actions are adaptable and dependent on rum-tim
hardware states. We emphasize interactions between sefama hardware. To achieve
this, the hints need to show batlirectivity andadaptability. By directivity, we mean that
the hints tell the hardware what to do. For example, a loadkethasevict-medenotes
a preferred eviction of the cache line that the load accesBgsadaptability, the hints
sometimes need to be subordinate to other run-time actiemsexample, a load marked
asspatialtriggers a region prefetching in GRP only when the load caasd_2 miss.

Only a few researchers take approaches very similar to bAH84 uses compiler hints
to direct loads to temporal or spatial cache structures [B8Jour knowledge, we haven'’t
seen any effective compiler and hardware to support thigde3o save energy, Unsal et
al. [108] mark scalar loads and drive them to a separate sacile. They later on add more
compiler control by encodingaot line registerindex into memory instruction [105, 106].
A hit to the hot line registers will enable extraction of a wagex to address directly a
cache line in a set-associative cache and thus save energyoling tag array lookup.

This work targets single-level cache in embedded systenitehél et al. [110] describe a

41

Fortran

IL
F77 Front End IL to AST
toC
C
C Front End L

l CFG

T

Alias CFG
Analysis Assemblyl
language

Figure 2.3. Scale data flow diagram

similar technique. Ashok et al. [7] extend Unsal et al.shtr@que [105] to support com-

plex program structures, different levels of speculateomd multi-level memory systems.
Unsal et al. [107] rely on the compiler to predict IPC (insttans per cycle) and mark
the instructions at which the IPC estimation is low. Theyesle energy savings by throt-
tling the issue logic on marked instructions. Similar to approach, all these work uses
the compiler to generate hints and need a small amount ofbitsiin memory instruc-

tions. The results of these work, including ours, show thedrtance and effectiveness of

software/hardware cooperation.

2.5 Scale Compiler Infrastructure

Now we introduceScale the compiler infrastructure in which we implement all our
compiler algorithms. Scale is developed by the Architexzturd Language Implementation
Laboratory of the Department of Computer Science of the &lsity of Massachusetts,
Ambherst, and the University of Texas at Austin. Figure 2istrates data flows in Scale,
where the nodes show actions or compilation phases and ¢fes stlow inputs and outputs
of the nodes.

A source program in C or Fortran is first transformed to arrmealiate language using
the EDG Front End developed by the Edison Design Group. Towt fend completes

syntax and semantic checking, including complete errocking. Diagnostics always

42

display the source line with a caret indicating the exacitmwsof the error. The front
end translates source programs into a high-level, trestsired, in-memory intermediate
language. The intermediate language preserves a greatfdeairce information (e.g., line
numbers, column numbers, original types, original nameBich is helpful in generating
symbolic debugging information. Implicit operations ireteource are made explicit in
the intermediate language, but constructs are not otheradded, removed, or reordered.
The intermediate language is not machine dependent (edipes$ not specify registers or
dictate the layout of stack frames).

The in-memory intermediate language is transformed intéeh (Common Language
Encoding Form) abstract syntax tree (AST). The Clef AST wia®f nodes that arypes
such as “integer” and “real’declarationssuch as variables and procedurespressions
such as arithmetic operations and allocations,saattmentsuch as if-then-else and loop.
High-level optimizations and annotations, such as loowlling and inlining, can be ap-
plied to the Clef AST.

Along with control-flow analysis and lowering, Scale traorsfis the Clef AST to a
high-level and low-level mixed intermediate representatcalledScribble This transfor-
mation lowers most arithmetic operations to a set of binaryrary operations. At the
same time, it keeps some high level representation to taelfurther compiler analyses
and optimizations. For instance, an array reference iesgmted in its high-level form,
where all its shape and subscripts are still maintained edisas its low-level form, which
consists of a set of statements to calculate the refererdressl The high-level form is
critical for dependence analysis, which serves as a basimdny other transformations
and analyses.

Scale performs an alias analysis on Scribble based on $tmels pointer analysis
technique [101]. It then transforms the Scribble form wiiasannotations into th8ingle
Static Assignmen{SSA) form, where each use of a variable is reached from oné/ o

definition.

43

We apply dependence testing and a set of optimizations ablfker Our dependence
testing is based on the Omega library [86, 104]; we use itsrilgns and interfaces. Scale
currently supports sparse conditional constant propagatiopy propagation, partial re-
dundancy elimination, global value numbering, scalaraeg@ment, loop permutation, loop
unrolling, and loop inlining.

Scale has a back end that targets the SPARC V8, Alpha, ansl [BjipSAs. The back
end includes register allocation, code generation, ancesesaembly level optimizations
such as peep hole optimization.

All of the compiler algorithms discussed in this thesis anplemented in Scale, mainly
in one optimization phase and the back-end code generagpically, compiler analysis
on Scribble form generates hints annotated via Scribblesniod’he back end interprets
the annotations and encodes the hints into assembly itisinec We rely on the native
assembler and linker to generate executable binaries. ¥veube simulators to interpret

the compiler hints.

44

CHAPTER 3
COMPILER-GUIDED CACHE REPLACEMENT

This chapter describes how the architecture and the congaifework together to im-
prove cache replacement decisions. We use compiler hirdgdot cache replacements
and follow the hardware-only policy when hints are not aafali.

Typically, cache replacement policies rely on access hjigtodecide which cache line
to evict on a cache miss. These policies sometimes perfolirbegause programs often
exhibit good locality. However, it is unavoidable for suathemes to make poor choices
frequently. Figure 3.1 gives an example. Notice that array &cessed in nest 1 but not
in nest 2. Whenever there is a cache miss in the first nest, @ferpio evict an element
of array B because it will not be reused. However, LRU ran&mg from least to most
recently used, i.e., A, B, C. Assuming that the cache sizditdebigger than 2*N, LRU
will evict most of A even in a fully associative cache. A beteplacement algorithm keeps
both A and C and reuses them in nest 2.

Without additional assistance, it is infeasible for thedweaare to foresee future ac-

cesses and make optimal choices [10, 103]. In this chapeediscuss a compiler-guided

SUBROUTI NE TEST(N)
I NTEGER A(N), B(N), C(N)

DO11 =1,N
(1) = A(1) + B(I)
ENDDO

DO21 = 1:N

A(l) = 1) * 5
ENDDO

END

Figure 3.1. A simple example

45

cache replacement policy. Our new compiler mechanism guidehe replacements by
selectively predicting when data will or will not be reusetfe encode the compile-time
prediction into memory instructions. We develop a compaganodel of locality that uses
dependence and array section analysis to determine statiity patterns in a program.
This locality information, which we formulate asuse levelsis conveyed to the run time
to direct cache replacement. We prove that the cache reptatealgorithm using reuse
levels will at least match LRU in hit rate. We then describéabit encoding of reuse lev-
els, and a practical one-bit encoding caléadct-me We implement our compiler analysis
in Scale and simulate our proposed architecture in URSIM&intpleScalar. By apply-
ing the evict-me bit to both Level 1 and Level 2 caches, we olesep to 21% simulated
performance improvements for current technology on a seleof scientific benchmarks,
and 34% for a technology prediction for 5 years from now [3]n &erage, we reduce
simulated execution time by around 5% to 16% depending onablee configuration. Our
results show that our technique works together well withcivi cache although neither

technique subsumes the other.

3.1 Problem Formulation

In this section, we briefly review cache replacement pdiceache organizations that
exploit them, and ideal replacement algorithms. We intoedour reuse notation and then
present a new compiler algorithm that predicts localityhita loop nestifitra-nes) and

between loop nestenter-nesj.

3.1.1 Cache Replacement Policies
As we have discussed in Section 2.2.4, it is generally predeto have a low associa-
tivity cache to attain both high hit rate and low hit cycleelaty. For a low associativity

cache, a good cache replacement policy is critical. Moderhitectures typically rely on

46

one of two replacement policies: random and LRU. The randdmerse evicts a random
line from a cache set on a replacement.

LRU and its approximations are the most widely used replacgipolicy. On a cache
miss, the least recently used line is evicted. LRU tries &pkibie recently referenced data
in cache and expects those data will be referenced again dooa real cache design,
LRU can be implemented with a set of bits encoding the useketache line in a set.
Abstractly, we can treat a cache set as a stack whose bottibra cendidate for eviction.
On a cache hit, the hit line is moved the top of the stack andelag¢ive position of the rest
lines are unchanged. On a cache miss, the bottom is evicted aaw line is push to the

top of the stack.

3.1.2 Perfect Locality Information: Trace-based Replacerant

To use locality to direct cache replacement, we need a qatiméi representation. Con-
sider the following quantitative definition of temporal &ity [85]. Thetemporal locality
of a data reference attimieis TL=1/(Thext— T), WhereTnexiS the time of the next access
to that particular address. We can similarly define spatiedlity as follows. Thespatial
locality of a data reference at tinfeis SL= 1/(Thext— T), WhereTnext is the time of the
next access to the same cache block.

In this work, we assume the minimum unit of communicatiomls&tn main memory
and the cache is a block: whenever any part of a block causéssathe architecture loads
the entire block. Thus, in our model, temporal locality igpacal case of spatial locality.
If we know the temporal and spatial locality of each datanexiee in a program trace, then
the optimal replacement algorithm replaces the data tratrdwse furthest in the future,
i.e., the data with the smallest value ¥k [10]. Of course, computing L andSLrequires
a complete trace, which is not available at run time and iossjble to know exactly via
static program analysis. To control cache replacementatiplwe need a new method to

describe locality. In the following section, we introdube hotion ofreuse levelwhich is

a7

a measure that is comparative rather than absolute. We kiwewn Isow to compute reuse

levels using dependences.

3.1.3 Reuse Levels

Assume that we have a complétace of a program: the series of memory references
in the program in execution order, i.@; 1), b(2),..., by(n). The subscripts are the block
addresses which determine the references. The block agdresthe references need not
be distinct, of course. Theuse levels used to approximate the locality of each reference.
Rather than describe a specific distance from the curreerteneée to the next reference to
the same block, reuse levels describe a range of time in wihéhext reference will occur.
Formally, the locality of reference(j),1 <i < n, is a ses € Sy, where
Sh={[n+1,+o]}U{[],K |1<j<k<n}and[j,kl={],j+1,..,k}. Herenis the total
number of memory references in the trace. Appareftly; 1, 4] is the range out of the

bound so no reference is in this range.

1. If sis[n+1,+eo], then blockbf(i) will not be referenced again after thgreference;

ie., f(i)y£f(l)foralll,i<l <n.

2. If sis[j,k] for somej,k, i < j <k <n, thendt, j <t <k, such that the next reference
to blockby jy is theti, reference in the trace, i.ef(i) = f(t), andf(t) # f(I) for all

i<l <t.

Then we call the setthereuse levebf by ;). Note that a reference can have multiple
valid reuse levels as long as the conditions listed abovesatisfied. To compare

reuse levels for references, we define three relationg,o0R, ~, and:-.

i,j] < [n+1,+] forall 1<i<j<n

i < [kl if j <k
i~ [k 1] it [i,iIn[kI]#e
i - [k if k1] < [i, j]

48

Theorem 1.0nly one relation holds for any two elementsdn

Proof. By definition.

Theorem 1 shows that reuse levels are comparable. Intiyititéwo blocks conflict,
we want to replace the block whose reuse level than that of the other block. When two

reuse levels are to each other, we use access history to break ties (as doep LRU

3.1.4 Using Dependences as Reuse Levels

This section explains how to combine dependences with tbe iteration space to
produce reuse levels. We briefly introduce some basic cescémlata dependences and
dependence testing. We then describe bounded regulaorseetind the locality graph
construction using dependence testing and regular sectve finally extract reuse levels
from the locality graph.
Data Dependence and Dependence Testing
The theory ofdata dependenceas originally developed for automatic vectorizers. 1t is
applicable to a wide range of optimization problems sucheaalfelization and loop trans-
formations. We say that a data dependence exists betweeretarencesR1 andR2, if

they access the same location in memory. There are four tffksta dependences [64]:

1. True dependendgead after write, RAW) occurs whedRlwrites a memory location

thatR2later reads.

2. Anti dependencéwrite after read, WAR) occurs wheR1reads a memory location

thatR2later writes.

3. Output dependendevrite after write, WAW) occurs wheR1writes a memory loca-

tion thatR2later writes.

4. Input dependencéead after read, RAR) occurs wh&1i reads a memory location

thatR2later reads.

49

All the four types of dependences denote thagwseof R1occurs aR2 Data depen-
dences thus imply temporal locality where the two refersrafea dependence access the
same location. It is an obvious extension to detect spattallity by relaxing the condition
from “same location” to “same cache line” or “adjacent locat.

We are patrticularly interested in array references in loeptsy which account for
most references in scientific applicatiori3ependence testing the method used to de-
tect whether dependences exist between two array referencae loop nest. Typically,
we say that alependencexists between two array references if they access the same a
ray and the same element. The latter condition suggestadmes of the two references
be equal to each other at each dimension. Formallyy labd be vectors oh integer
indices that correspond tovalid loop index values of an-level loop nest. There is a de-
pendence between two-dimension array referenceg f1(i1,...,in), ..., fm(i1,...,in)) and
A(91(i1,.-sin), e, Om(f1,...,in)) if fj(a) =g;(B) for all 1 < j < manda is lexicographi-
cally less than or equal §8. The goal of dependence testing is to solve those equatons t
determine if two references are dependent or independedlistAnceor adirection vector
can be used to characterize a dependence. Given a depetffidendterationa to 3, the

distance vector i — a, and the direction vectd = (dj, ..., dy) is defined by the following

equation:
< if aj < Bj
di=1{ = if a;=8
> if o> B

Much research has been conducted on solving dependendseguand detecting de-
pendences [41, 86]. In our compiler, we use the Omega tegt\{&Suse data dependences
to construct the locality graph described later in thisisectIn the graph, a dependence
vector serves as@use vectgrwhich denotes the reuse of a reference. The graph is then

used to generate reuse levels to direct cache replacement.

50

Bounded Regular Sections

We use the dependence testing as discussed above to dated véthin a loop nest. To
detect reuses between distinct loop nests, we use boungi@dreections [44] to describe
the access range of a reference in a loop nest. The dessriptdrounded regular sections
(BRSD) are vectors of elements, each of which is a tripletripldt describes an access
range in a dimension, consisting of a lower bound, an uppendoand a step (stride). The
bounded regular section for A(1,J) in both loop nests in FegR12is2:M—-1:12:N—1:

1]. The descriptors support union and intersection operstidhere is a reuse between two
references in distinct nests if the intersection set offBRSDs is not empty.

Locality Graphs

We build alocality graphbased on reuse. The graph describes temporal and spagikthyoc
within each loop nest and across loop nests. An edge congeitio references in the
same loop nest has as its label teese vectgrwhich is the dependence vector of the
dependence between the two references. An edge connestingeterences in distinct
loops has as its label the intersection of the two BRSDs aaddhse vector. Figure 3.3
shows the locality graph for the sample program in Figure ®l2ere for simplicity we
omit B(I+1,J) and B(l1,J+1). In Figure 3.3, the first elemehtaeuse vector denotes the
inter-nest reuse direction. If it is=", the reuse is in the same nest. Ifitis” then the
dependence is inter-nest. Now the vedter, <, >) from B(I-1,J) to B(l,J-1) denotes an
intra-nest input dependence and a temporal reuse acrodsabp.

Reuse Levels

We can rely on reuse vectors as predictors of access pati&msan use those vectors as
reuse levels if we also add information that describes tlaive position between inde-
pendent references. We can either track the loop iterasibns time or dynamically keep
the reuse levels up to date as different instances of a referexecute. Now a reuse level is
a set of loop iteration points, which consist of run-time nogyprreferences. For example,

we can use the direction vectors shown in Figure 3.3 as rewsts|with the following

51

PROGRAM Si npl i fi edJacaobi
PARAMETER (N=1000, M=1000)
REAL A(N. M, B(N, M

DO | =2 M1
AL, J) = (B(1-1, J)+B(1+1, J)+B(I, J-1)+B(l,J+1))/4
ENDDO

DOJ =2, N1

DOl =2, M1
B(l, J) = A(l, J)
ENDDO
ENDDO
END

Figure 3.2. Another sample program

/tem%:g})

spatial(=,=,<) spatial(=,=,<)
B(,J-1) in N1 B(-1,) in N1
C [2:M-1,1:M-2] [L:M-2,2:N-1] c e

inter-loop [2:M-1,2:N-2]
temporal (<,=,>)

spatial(=,=,<)

AllJ]in N1
2:M-1,2:N-1]

inter-loop [2:M-2,2:N-1]

inter-loop [2:M-1}2:N-1] temporal (<,>,=)

temporal (<,=,=)

spatial(=,=,<) AlLJ] in N2 spatial(=,=,<)

[2:M-1,2:N-1] [2:M-1,2:N-1]

Figure 3.3. Locality graph

semantics. The B(l,J-1) has a self spatial reuse with diestector(=,=,<). We say a
reference has self spatialreuse if the same reference accesses the adjacent memary loc
tion in the future. The direction vector by itself means thisra spatial reuse due to a later
reference to B(l,J-1) itself in the same nest, the sameakioer, but a later | iteration. As a
reuse level, the direction vector means the iteration gdiom the next | iteration through
I=M-1. Specifically, given the loop iteration atb and 3=4, the run-time instance of refer-
ence B(l,J-1) is B(5,3), whose reuse leyel =, <) means it has a reuse between iteration

|=6 and iteration +M-1 under 3=4. To illustrate our idea, let’s ignore the spatial reuse

52

vector of B(I-1,J). Now reference B(I-1,J) has only a tengboeuse with vectof=, <, >)
which means the reuse is in later J iterations. Note that=, <) < (=,<,>) because
(=,=,<) suggests a reuse in the same J iteration. So when B(5,3) dm) BOnflict, our
cache replacement policy will choose the cache line of B(#4vict. We now describe

cache replacement algorithms that use reuse levels.

3.2 Cache Replacement Algorithms

In this section, we show how to improve cache replacemensides in an ideal case
and then within the context of realistic cache organizatioRirst, we develop a general
framework that is guaranteed to match or improve hit rates bRRU given sufficient hard-
ware support. We then present a simple but practical onerloibding, called thevict-me

bit, that indicates when a cache block is a good choice fdacepent.

3.2.1 Improving LRU Cache Replacement

Our first cache replacement algorithm, the Prediction @lgor, uses the access order
of a reference and its reuse level to direct replacementsi@ena program tradef(sll)’b,
bf<(S§)’2>,..., bf<(an),n>, whereby ;) is theii, block accessed by addres§), and< s;,i > are its
reuse level and access order respectively. We define eorefatin the setQ, = {< s5,i >
,S € Sn, 1 <i<n},asfollows:

<s,i><a<s,j>if (5 <sj) or(s ~sjandi > j).

Each<reuse level, order pair is an element o€),. Note that the second condition
of the definition follows the LRU cache replacement polichieh evicts the line the the
smallest access order..

Theorem 2. For each pair of elements i@,, < s,i > and<sj,j >, i # j, either
<S§,I>a<s),] >0r<s, | >a<s,i>.

Proof. By definition[]

53

Step/order 0 1 2 3

block 1 ri<[3,4,1> r1<[3,4,1> rl1<[3,4,1>
PREDICTION block 2 r< [5,6],2> r3<[5,6],3>
miss/hit miss miss miss
block 1 ri ri r3
LRU block 2 r2 r2
miss/hit miss miss miss
Step/order 4 5 6

block1 ri<[21,28,4> r2<][10,12,5> r2<[10,12,5>
PREDICTION block2 r3<[5,6,3> r3<[56],3> r3<[1012,6>

miss/hit hit miss hit

block1 r3 r2 r2
LRU block2 rl1 rl r3

miss/hit miss miss miss

Table 3.1.LRU versus Prediction for a 2-way set-associative cache

The Prediction algorithm updates a reference’s order antkiise level in the cache
on every access. Think of a cache set as an ordered list framieshto largest by the
< ordering of the<reuse level, order pairs. Initially every reuse level i:1+ 1,], and
on a reference, the architecture sets the reuse level ispeésified. Whenever there is a
miss, the Prediction algorithm choose to replace the lastiiith the largestreuse level,
order> pair. When a reference changes the cache lirgsuse level, order pair, we
change its position in the list. We compare it to the othengen the list from first to last
until the< ordering of the line is smaller than that of the next elemant then insert the
line before this next element. Although theordering is not a partial order (because it
is not transitive), the definition of the Prediction algbnt and the list ordering algorithm
guarantees that there is a deterministic ordering of theafier each cache access; i.e.,
Theorem 1 and 2 are sufficient to ensure that the Predictgorighm is totally specified.

The following example illustrates the algorithm. Assumena-tvay set associative

341> _<[56,2> _<[56,3> _<[21284> _<[1012,5
cache and a simple program tragg>""”, a7 202> a7 503> o524 4ol1012,5

aT310 12 6> ..., all of whose elements are mapped into a single cachdise¢ r1, r2, and

r3 are references to distinct blocks in main memory. Theaunof the cache is shown

in Table 3.1. In step 3, LRU replaces r1, which leads to a nmstep 4. However, since

54

< [3,4],1> << [5,6],2 >, the Prediction algorithm replaces r2 instead. In this gdenit
performs better than LRU.

Theorem 3. For the same cache configuration (same cache size, same dé¢@eso-
ciativity, and same block size), at each reference poitihefe is an LRU hit, there is also
a Prediction hit.

Proof of Theorem 3. The proof is based on the trace we defined at the beginning of
Section 3.2.1.

Say that we are working onva&way set associative cache. Assume, for contradiction,
that at referencete)]f(?)’i> there is a miss for the Prediction algorithm and a hit for LRU.
Let bfaj)’j> be the nearest reference to the same block address WwkereWe know that
f(i) = f(j). In the following proof we let; denote the time when thig, reference is
accessed and assume that after tishethe access completes. We hayve At < tj,1 for
all i. We first show that there are no more thauwlistinct references between tiryeand
timet;. We then show that if referenddi) is not a Prediction hit at timg, all references
in the set whert (j) is evicted are accessed between tinand timet;. This introduces
contradiction since now there are at least 1 distinct references between timjend time
t; considering the reference causing the eviction of refexdig¢).

Claim 1: There are no more thardistinct references mapped into the same set between
by}~ andb; ' inclusive.

To simplify the discussion, assume that each block in a ssgeésl from 1 tov by the
access order. The block with the smallest order value hasvatiee one with the largest
order value has age 1. With the LRU algorithm, the block wgbw is evicted when there

f(sjj)’j> is brought into the cache, its age is 1. Assume for

is a miss. At the time wheb
<8j,j>

f(j)
bf<(?)’i> are mapped into the same set. All thaseeferences are older thamj), so each

contradiction that at least distinct references different froto ;) betweenb and

reference will increase the agelofj) by 1. Thus, when we access te- 1;, reference,

bt(j) has agev. The access to the, reference will evicbs j), and no reference will bring

55

[e
f)= m is accessed l.m is evicted jm = f(i) = f(j)

at time t. attime t, is accessed
] attime t;
All these references In rj'l M1
set X will be accessed
set X

again before time t

| fim1

L__ ,rjinl o
All these references in
set Y will be evicted
before time setY .

k rj,w Eviction +7 rk,w
cadidate
jm = kw

i
ime j K i

Figure 3.4. Proof of claim 2(1. Claim 1 shows that there are no more thadistinct references
between time; and timet;. 2. Claim 2 shows that if referenci(i) at timet; is not a hit for the
Prediction algorithm, then at timg when f(j) = f(i) is evicted, all references in the cache set
should be accessed at least once betweentjimedt;. (a) If a reference in the cache set at titpe
was in set X, it must be accessed again before tjrhecause it has a reuse level less than that of
f(j). (b) if a reference in the cache set at titpavas not in X, then it must be recently accessed
after timet;. Otherwise, it must be in set Y and should be evicted befa@@iction off (j) at time

tx. It will then not appear in the cache set at titpé

by (j) back becausla]f(?)’i> is the most recent reference to blduk;). This contradicts the
LRU hit atb{ 3~ .

Next assume that there is an age between aasisociated with each block in the list
defined for the Prediction cache in Section 3.2.1. The agttsedilocks are consistent with
the ordering of the list. The: reuse levelorder > pair of the block at age 1 is smallerdn
ordering than the pair of the next block in the list, and so on.

Say now thabyj) has agemat timet; -+ At. Because we have a missttq?(?)’i> at time
t;, there exists a referen¢1?<(sl‘<‘)’k> at timety, for somej < k < i , which is also a miss and
bt (j) has agav when the referenclef(sl'(‘:ll’)kf1> completes.

Claim 2: All addresses in the cache set at tifppg + At are referenced at least once

between time; andt;.

56

We sketch the following proof in Figure 3.4 where the two ®gBow the cache set
content and the cache lines are ranked by their ages witHdestas the candidate for the
next eviction.

Letrj1,rj2,....rm=1,rjm..,rjwbe the block addresses in the cache set at tjmét
andryq,rg2,...,N'kw be those at timg_1 + At, where the second subscript denotes the age
of the corresponding address. We know that=riw = f(j). LetU ={rj 1,rj2,...,rjm-1}N
{1, Tk, oo oo T -

First, all addresses i8= {ry1,2,-.-,-,'kwy —U must be accessed between titye
andty_1 + At. Assume, for contradiction, that € Sis not accessed during this period.
Thenr; € Smust be accessed before titpeand must be in the cache set at titnsince
itis in the cache set at tintg_1 + At. Then since is notin setX = {rj 1,rj2,...,ljm-1}
because it is ir§, it has an older age than that bf;, at timet; +- At. No reference can
change this relationship unless the two references theasale accessed again between
timet; 4 At andt,_;. Note thatbf(j) has agev at timet,_1 + At. r; must be evicted before
time ty_; since it is older. Then it cannot be in the set at titng + At, contrary to the
assumption.

Second, all references lh must be accessed between timendt. Notice that all
references in U have: reuse levelorder > pairs< than that ofbs(j) at timet; + At just
after by j) is brought into cache. Since the orders of these referemeeless than, by
the definition of relationq, they must have smaller reuse levels which means they will be
accessed before the next referencbfl@), which occurs at timég.

The references in the-block set at timey_1 + At are distinct. Furthermore, the refer-
encebs) is distinct from the blocks in the set since itis a miss. Thaltoumber of distinct
references mapped into the set between tinaadt; are at leastv+ 1. Contradiction[]

Theorem 3 tells us that the Prediction algorithm is at leagicand as the LRU algorithm

at any reference point. So if we can find a reuse level for egfelnence point, we expect to

57

improve upon the LRU algorithm. In Section 3.1.4 we have ghtivat dependence vectors

combined with loop iterations can predict reuse distances.

3.2.2 16-Bit Encoding

The Prediction algorithm makes replacement decisionsthaseeuse levels. In Sec-
tion 3.1.4 we discussed how to obtain reuse levels for eaay aeference. To use reuse
levels at run time, we assume an extended ISA that has exsrifobsetting the reuse levels
in each cache line on loads and stores, and a cache that shese bits (we discuss other
implementation options in Section 3.3). The Predictiormatym sets corresponding cache
tag bits when a memory instruction with tag bits is execufigue algorithm then chooses
a line for eviction based on the value of the cache tag bitd &td history bits. The 16-bit
method we describe here is not practical for an implemeoridiut lets us explore more
fully the accuracy of our reuse information and encoding. aeode here the reuses in
each loop nest and the reuses between two adjacent nestmtdremest reuse, we con-
sider only adjacent loops, because most inter-nest migses between two adjacent nests
[79]. We use a 16-bit annotation because the simulator wesugports at most a 16-bit
annotation. This encoding gives us a loose upper bound oteohinique. Looking for a
better encoding is left to future work. Figure 3.6 shows dgoathm for computing these
bits. Table 3.2 lists the function of each bit, where bit 1his most significant bit. The
encoding assumes that the deepest level of a loop nest isieh vghappropriate for most
applications. We assume that for each routine there is aalitbop enclosing the whole
routine. The virtual loop is at level 0. For each level, wedawspatial bit and a temporal
bit. The bit for a reference at lodpis set if the reference has reuse across iterations or
reuse in the current iteration. Bit O is set when the comgider determine the reuse levels
of a reference. Bits 5 through 1 are reserved for refererege sthich we will define later.

The temporal bit of loop level also functions as an inter-nest temporal reuse bit for

a nest whose outermost loop is at levell. Consider loof at levell whose loop body

58

Bit | Function

15 | temporal bit for level 4
14 | spatial bit for level 4
13 | temporal bit for level 3 (inter-nest bit for level 4)
12 | spatial bit for level 3
11 | temporal bit for level 2 (inter-nest bit for level 3)
10 | spatial bit for level 2
9 temporal bit for level 1 (inter-nest bit for level 2)
8 spatial bit for level 1
7 temporal bit for level O (inter-nest bit for level 1)
6 spatial bit for loop level 0

5 sign of reference step (1:negative, 0: positive)
4

0

-1 | reference step
reuse level tag

Table 3.2.Encoding for 16-bit reuse level

L: DOi =1l:u:s
N1: DOil =11:ul:s1
... R...
ENDDO

N2: DOi2 =12:u2:s2
... R...
ENDDO
ENDDO

Figure 3.5. A sample loop nest

consists of two nest®y1 andN2, as shown in Figure 3.5. RefererRén N1 has an inter-
nest reuse iMN2. Its inter-nest bit for level 4 1 is set because the outermost loop of nest
N1 is at levell + 1. The same bit also serves as the temporal bit for lewehich means a
reference has reuse in the the current or futuiterations. These semantics are the same
as the semantics of the inter-nest bit, which means the rsurs¢he current iteration.

Figure 3.7 shows the program in Figure 3.2 with 16-bit reesels, which are listed
in hexadecimal form. We use reference B(l+1;obes3> @S an example to explain our
algorithm. B(1+1,J) has both spatial and temporal reuset level 2 (the | loop), so the
1G4 and 11, bits of its reuse level are set to 1. B(l+1,J) has temporaeeui loop level 1

(the J loop), so the;Rbit is set to 1. It also has inter-nest reuse and the outerimogtof

59

reuselLevel Generation()
{
for each perfect nest whose outernost loop is at level j {
for each array reference r in the nest {
if (r isnot in the locality graph)
conti nue;

reuseLevel = 0;
for each loop at level i enclosing the reference r {
if r has tenporal reuse across the loop iterations
/* including the current iteration */
bit (6+2*i) of reuselLevel =1

if r has spatial reuse across the loop iterations
/* including the current iteration */
bit (5+2*i) of reuselLevel =1

if r has inter-nest reuse then

bit (4+2*i) of reuselLevel = 1;
}
bits 5-1 of reuseLevel = referenceStep(r);
bit 0 of reuselLevel = 1;

reuse level of r = reuselLevel

Figure 3.6. 16-bit reuse-level generation

the nestis at level 1, so thg, bit is set to 1. Bit O is set because compiler knows all reuses
of the reference.

Note that in our encoding, we try to put all reuse levels of feremce together. A
static reference usually has different reuse levels fdediht loops or nests. For instance,
in Figure 3.2, A(l,J) in nest 1 has spatial reuse across tlo@p.| It also has inter-nest
temporal reuse. We need two reuse levels for the referentaeinXime, we should always
first use the smallest reuse level in theordering. In fact, this mechanism is implicitly
shown in our encoding where we assign more significant bileéper loops.

Now the Prediction algorithm can make cache replacemenmsidas based simply on
the values of reuse levels associated with each cache tiakwvays evicts the cache line
with the smallest reuse level. A special case is that whemdhse level of a cache line

is 0, the eviction is based on its access order as in LRU. Har@xplementation is more

60

PROGRAM Si mpl i fi edJacob
PARAMETER (N=1000, M=1000)
REAL ACM N), B(M N)

DO J =2, N1
DO | =2, M1
A(l, J)<0X0483> = (B(l-1, J)<0X0683>+B(|+1, J)<0X0e83>+
B(l, J-1)<0X0483>+B(I,J+1)<0X0683>)/4
ENDDO
call update(?2)
ENDDO

call update(1)
DOJ =2, N1
DOI =2, M1
B(I, J)<0X0403>
ENDDO
call update(2)
ENDDO
call update(1)
END

A(l, J)<0X0403>

Figure 3.7. Reuse levels for the sample program

aggressive than the formal definition of the Prediction atgm in Section 3.1. In the
implementation, we keep each cache set in its LRU orderingeMthere is a miss in a
set, the last line of the set is replaced if its reuse leve] wgtiich means that compiler does
not know its reuse level. Otherwise, the algorithm choolkedihe with the smallest reuse
level.

The reuse level of a reference usually does not span the ghoblspace of the refer-
ence, particularly for spatial reuses. In the locality grapown in Figure 3.3, given, for
example, a cache line size of two words and A(1,J) is aligmetthe cache line for all J, we
notice that spatial reuse of A(l,J) occurs only when | is dfldie know the starting address
of each array reference, loop unrolling can produce arryeaces with and without spa-
tial locality. Our implementation uses another method sohee this problem. At run time,
we know the cache block size and exactly where a memory bloltbh& mapped into a
cache line. This information and the access pattern of ay aeference are usually enough
to decide if there is spatial reuse. For example, for A(l,8)just mentioned, we know the

next access to array A is A(l1+1,J). Hence we can be sure thtaeineference A(l,J) will

61

update(int |)

for all reuse levels associated with each cache bl ock {
renove those predicting reuses for level I|;
}
} /* end update */

Figure 3.8. Update function

have no spatial reuse across the | loop if it is mapped intdasteword of a cache line.
For a given array reference whose indices are all affine sgpes, the compiler discovers
the pattern of spatial reuse and encodes it into the comelsipg instruction. Formally, we
consider only arrays with the least significant index in thirf of ax | + b, wherel is the
loop induction variable, andandb are constants. We also assume that the loop step of the
induction variabld is a constans. Let p be the word position of the reference in the cache
line, | be the cache line size, be the element size in number of words, anes be the
reference steplf axsis positive, the reference has self-spatial reuse wher —axsxe.

If p> —axsxeandaxsis negative, the reference also has self-spatial reuseila®im
techniques resolve group-spatial reuse. A referencgiuagp-spatialreuse if there exists
another reference that accesses an adjacent location Tdterreference step is encoded
into reuse levels using bits 5 through 1. Obviously, in Feg8r7, B(1+1,J)’s reference step
is positive and its value is 1, so bits 5 to 1 are set to valua bther words, bits 5 to 2 are
set to zeros and bit 1 is set to 1.

In our implementation, we insert an update() function asshim Figure 3.8 at the
exit of each loop. The function expires those reuse levelsdhe no longer valid. The
update() function in Figure 3.8 can help to reduce the sifeetsf of misprediction for both
spatial and temporal reuse, because it expires the predliofireuse in a loop after the
execution of the loop. If only a small percentage of preditsi are not correct, they will
expire sooner or later, and will not affect the miss rate tacim In the example code, we
notice that temporal reuse of B(l-1,J) exists for all J exdsgN-1. The mispredictions at

J=N-1 are insignificant and the update() function betweenwwo nests will expire them.

62

For our encoding, the implementation of update(l) needstth® temporal and spatial bit
at levell to 0. In Figure 3.7, note that after the | loop finishes its exien, update(2) is
executed, which sets bit 10 and bit 11 of all reuse levels tlt 8xpires the prediction of
reuses across the iterations of loop I. Similarly, updatekpires the prediction of reuses
across the iterations of loop J in the first nest, but the ptexfi of inter-nest reuses is kept

alive.

3.2.3 Evict-me: 1-Bit Encoding

The Prediction algorithm can be implemented by encodingedevels into memory
instructions. In Section 3.2.2, we discussed a 16-bit eingpdvhich serves as a useful
upper bound on compiler accuracy. However, using 16 auyilés for each cache line
will increase the time to determine which line to replace ar&y consume too much area.
For an 8K Level 1 cache with 32-byte cache lines, 16 extramisid contribute about 5%
to the cache area.

There are two ways to address these problems. One is to imptetine policy in
lower-level caches, where the cost of extra reuse levelbitisthe comparison latency are
relatively low. For example, a 256K Level 2 cache with 12&ebgache lines only needs
to devote 1.5% additional area to annotations. The otherisvery simplify the model. A
16-bit encoding implies up to'2 reuse levels. The evict-me tag denotes two reuse levels,
s1 (no reuse) andp (reuse). We combine it with LRU bits as we discussed in Se@ia.1.
The one-bit Prediction algorithm acts as follows. If theotvne bit of a block is set, the
replacement algorithm will choose that block to replace aniss. Otherwise, it follows
the LRU policy. The compiler generates special-purpostungons to set evict-me bits
and thus explicitly to control cache replacement.

This one-bit encoding suggests that we classify reusersietinto two levels, such that
a distance vector in one level is always less than one in tier devel. A simple and very

conservative algorithm tags these array references thatralocality in a loop nest and

63

are not reused in any following nest. Assume the total nurobrem-time memory accesses
in a routine of a nest is. In the nest, the algorithm uses two reuse levgJss [1,n| for
references with reuses in this nest or subsequent nests; anggh+ 1, 4| for references
with no reuses in the same subroutine. Following the dedimiin Section 3.1, we have
[1,n] < [n+1,+]. A more aggressive algorithm follows Theorem 4.

Theorem 4. In a w-way set-associative cache, if the number of distinct esfees
mapped into the same set between a reference and its reusatisrghamw, then evicting
the first reference in the next replacement will not degradeowverall LRU hit rate.

Proof of Theorem 4. Let's say we are working on &-way set associative cache
and a program trac®. We focus on a specific cache s€t Assume that sub-trace
b?(l), b?(z), . b?“(n) is the largest subset af mapped into set” in its original order.by;,
is theiy, block mapped inta’, and its block address ifi). s is the evict-me tag going
with the access. In particulasg,= 0 means it is a regular access= 1 means the block’s
evict-me tag gets set after this access. The evict-me tadplofclt is set only when its next
reuse is more thaw distinct references away, inclusive.

Now we prove that for any acceb%m in the sub-trace, if LRU results in a hit, then

there is a hit for evict-me at this access. Assume that we etRU hit at b?j Let

(i)
accesia?(i) be the closest reference to bldgek;) wherei < j. Since itis an LRU hit, we
know there are no more thamdistinct references in the sub-trace betwb% andb?"(i
(we showed this in the proof of Theorem 3). Nan= 0 follows from the evict-me tag
assignment condition. Singe= 0, the evict-me algorithm can at most increase the age of
bty by 1 at each following reference. So at accle%il), the age obs ;) should be less
thanw. The evict-me algorithm thus leads to a hib(s;i{j). O

We can design an algorithm which sets the evict-me tag wheesamg a reference
without reuse, or with reuse if it is sufficiently far away. Arately counting the number
of distinct references mapped to a specific cache set is isitjesat compile time when

the iteration counts and sizes of arrays are unknown. Noweitan determine the total

64

data volume between a reference and its reuse across loty) aed it is greater than
twice the cache size, then we predict it will not be reusedd; that the number of distinct
references mapped into a set between the two referencesenglieater than the degree of
associativity. This intuition implies that Theorem 4 holds

We estimate these sizes at compile time. If the loop bountizeafiest are all constants
and available at compile time, we combine them with the BR®R®mpute the exact data
volume. Figure 3.9 shows our algorithm. The pseudo-codgcbes data volume in a loop
nest. The data volume of a nest is the total size of the distimay elements in the nest.
The algorithm first unions all regular sections of each amag then sums the volume of
the union.

When the loop bounds of a nest are unknown, we use a simplestietinat assumes
that the data volume of a nest is greater than two times thelllezache size if it contains
more than one level of loop nesting.

Following Theorem 4, we can use the cache size as a bounduse fevels. With the
single evict-me bit, we have two reuse levels, [1, cachd sizé [cache size + Ty]. We'd
like to evict the line whose reuse distance is greater thandlhe size because even a fully
associative cache cannot exploit the reuse. Our heuristising data volume of twice the
cache size is derived from this intuition. We use twice theheasize with consideration
that the volume of the evict-me lines is also included. Adregigorithm would calculate
only the total volume of non-evict-me references.

Figure 3.10 presents a more aggressive algorithm for sigglut references without
temporal or spatial reuse in a nest. It never marks refesemdth temporal intra-nest
reuse. It sets the evict-me bit for those references whasergpans more than two times
the cache size, or when the data volume is unknown, whosmgepth is 2 or more, or
if the reference has no temporal reuse with the adjacent ifetste reference has spatial
locality at any loop level, the compiler still marks it as@&wvine, such that the architecture

will exploit it before marking it for eviction. In the progna in Figure 3.2, we set the

65

i nt conput eVol une(Loop 1)
{
int volune = 0;
/* first conpute regular sections for each reference */
for (each array reference Ain the |oop) {
conmpute A's bounded regul ar secti on;

}

/* estimate total volune */

for (each array A accessed in the |oop) {
U = union of all regular sections of the references to the array;
vol unme += vol uneOf Regul ar Secti on(A, U) * elenentSize(A);

}
return vol ume;
}
i nt vol umeOf Regul ar Section(Array A, Regul arSection r)
{
[* let r = (I[1]:u[1]:s[1], ..., I[n]:u[n]:s[n]) */
/* dinmensions of array A are (d[1], d[2], .., d[n])

and array Ais in rowngjor order */

int volume = 1;
for (i=1; i<=n; i++) {
volunme *= (u[i]-I[i]+1)/s[i];

}
return vol une;

}

Regul ar Secti on Uni on(Regul ar Section r1, Regul arSection r2)

{
[* let rl = (11[2]):ul[1]:s1[1], ..., I1[n]:ul[n]:s1[n]) */
[* let r2 = (12[1]:u2[1]:s2[1], ..., I2[n]:u2[n]:s2[n]) */
Regul arSection r = (I[1]:u[1]:s[1], ..., I[n]:u[n]:s[n]);

for (i=1; i<=n; i++) {
[[i] mn(la[i], 12[i])
uli] max(11[i], 12[i])
s[i] ged(s1[i], s2[i])
}

/* gcd is the greatest common divisor */

return r;

Figure 3.9. Algorithms for computing data volume in a nest

evict-me tags of A(l,J) in both nests, the tag of B(l,J-1) #shl, and that of B(l,J) in

nest 2, because these four references have no temporas r@udehe total data volume

66

set Evi ct MeTag()
{

for each | oop nest {
conput e nest vol une;
for each array reference r in the nest {
if (r has no temporal reuse in this nest) {
if (nest volune > 2 * cache size)
mark r evict-ne;
el se if (volunme unknown && nest |evel >= 2)
mark r evict-ne;
else if (r has no tenporal reuse with the next nest)
mark r evict-ne;
if (r has spatial reuse)
set reference step;

Figure 3.10. Algorithm for setting evict-me tag

of each nest (near 810°) is greater than twice the cache size. We are able to mark very
aggressively because the evict-me bit is only examined oiisg, when the architecture
needs to replace something.

In our implementation, we encode the spatial locality infation of a reference into
the memory instruction and let the hardware detect it at ime.t The encoding method
is described in Section 3.2.2. We use five bits to encode fleeerece step. For a refer-
ence with evict-me tag marked by the compiler, if it also heetisl locality, the run-time

environment waits to set the bit until after the spatial esisscomplete.

3.2.4 Effectiveness of the Evict-me Algorithm

The evict-me algorithm is sensitive to both program accasems and cache configu-
rations. For a specific program with a specific input, evietdnits can be very effective in
one cache configuration but help little in another. Take ke program in Figure 3.1 as
an example. Assume that N is 4K, the word size is 4 bytes, anst#rting address of array
Ais aligned to a 16K boundary. In a 32K 2-way Level 1 cache)All), and C(I) will all
map to the same set for each I. In this case, annotating Bi{) tiwe evict-me bit will help

reduce inter-nest misses. However, in a 64K 2-way Level heaarray A and B will map

67

to different cache areas and thus evict-me will perform #xdlbe same as LRU. Given a
complicated application that contains many loops and miffeaccess patterns, evict-me

will yield better cache replacement for some and not othautsiand cache configurations.

3.3 Hardware Implementation

A simple implementation of evict-me in the ISA is to providduplicate set of memory
instructions that set the evict-me tags and are otherwisesdme as the original set. We
believe that the widening performance gap between mematyparmcessor speeds must
eventually be reflected by additional instructions in tha t8at help compensate for this
gap. Hence, adding a new set of load and store instructiotigettSA is one step in this
direction, and a simple step. However, our 1-bit evict-m@aeement functionality can
also be implemented without changes to the ISA in some &oites. For instance, on
the Alpha 21264, we can first use the “prefetch and evict*nestruction to set the evict-
me bit and then perform a register load or store [58]. Thidementation needs two loads
or stores to set an evict-me bit and thus suffers relativifiarency.

We use five extra bits in each memory instruction that the dlempets to resolve
run-time spatial locality (see Section 3.2.3). An alterrehardware implementation is to
use a new instruction to store the 5-bit constant into a speegister. The next memory
operation will access the special register to detect dpatise. The compiler can use loop

unrolling to avoid any extra instructions.

3.4 Compiler Implementation

We implemented our compiler analyses in Scale, a compifeastructure developed
by our research group. We gave a brief description of Scaention 2.5. Our analyses
described in Section 3.1 and Section 3.2 are performed ahlderthe intermediate rep-

resentation in Scale. For our experiments, we apply alll@vis scalar optimizations in

68

Scale. We do not apply loop transformations because thentad¢! in Scale to determine
when to apply them is still immature.

We write Scale in Java and implement each optimization adelass of an abstract
class,Optimization We treat our cache replacement analyses as a special pgtiiom and
implement them in two classes. One is used to generate mé@@nnotations and the other
is for the 16-bit encoding. We put them in the last phase ofitéyel optimizations and
transmit the annotations directly to the back-end. Thécalisteps before cache replace-
ment analyses involve building a loop structure for eachiney detecting loop invariants
and loop induction variables for each loop, applying depewd testing on loop structures,
and constructing regular sections for each loop. Loop siras are built during control
flow analysis in the early stage of Scribble constructione Témaining steps are applied
immediately before we conduct cache replacement analysesp invariant and loop in-
duction variable detection are two prerequisite steps &peddence testing. Although
some other optimizations, such as scalar replacementcalsdependence testing, Scale
has to do the testing again because the optimizations precx replacement analyses do
not incrementally maintain the dependence graph. Thetsmeiof the dependence graph
follows the design proposed by Kennedy et al. [57].

Our cache replacement analyses traverse the loop straaifieach routine, check lo-
cality using the locality graph generated by the depend@steng, and estimate data vol-
ume based on regular sections. We annotate each load @gpreggesponding to an array
reference in a loop with a 1-bit or 16-bit reuse level, depegadn the encodings. When
the back-end generates C code or assembly instructionsd@rnotated load expression,
it will output the annotations as well. For C code, we outna &nnotations using inline

assembly. For assembly code, we use unimplemented instra¢d convey the hints.

69

3.5 Experimental Results

We use nine benchmarkd.ivl8, Vpenta Erlebacher and Jacobiare loop kernels.
Swim Tomcaty andAppluare from SPEC95Arc2dis a Perfect benchmark aigppspis
from the NAS Benchmarks. We selected benchmarks that hdwhhigs rates or loop nest
structures with inter-nest misses, and that run througttoonpiler.

To study our cache replacement algorithms and their intieres with other miss re-
duction techniques comprehensively, we use two simulat®mspleScalar 2.0 [15] and
URSIM [116]. Scale outputs annotated SPARC assembly forlVR#d C code for Sim-
pleScalar. Although a later version of sim-outorder (a $atar in SimpleScalar tool set)
is able to simulate the performance impact of caches, we tshww cycles because the
cycle count in SimpleScalar 2.0 is accurate only when the ongrsystem is lightly uti-
lized [8]. Early on, when we implemented our replacementillgms, our collaborators at
the University of Utah extended RSIM by adding a more dedaiemory systems. Since
memory system performance is our major interest, we insisadJRSIM to simulate the
performance effect of our algorithms. Below we first introduithe two simulators and

parameters we use. We then present simulation results.

3.5.1 Simple Scalar 2.0 and Experiments Setting
The SimpleScalar tool set is a suite of computer simulatowist that provide both

detailed and high-performance simulation of modern migvopssors [15]. The suite con-
sists of a set of simulators: sim-fast, sim-safe, sim-cashe-cheetah, sim-profile, and
sim-outorder. Sim-fast is only a functional simulator vaiti time accounting. It assumes
no cache and executes each instruction serially. Sim-shafe ehecks for memory align-
ment and memory access permissions. These two simulatonms.enh faster than the others
in the tool set due to their simplicity. They are particwarkseful for generating traces and

simulating basic functions.

70

Sim-cache and sim-cheetah are cache simulators that dom&itier the effect of cache
performance on execution time. However, both simulatgyenteaccurate miss counts of a
single-level cache, ignoring the interactions in the mgnmaerarchy. Sim-cache simulates
three replacement policies: LRU, Random, and FIFO. Sinedieimplements LRU and
MIN, the optimal cache replacement algorithm originallgposed by Belady [10]. In our
experiments, we use both simulators to report miss ratesal¥¢eimplement an 8-entry
fully associative victim cache [54]. The victim cache is piosied between the first and
second-level cache. On a Level 1 cache miss, the archigechecks the victim cache.
When there is a hit to the victim cache, the hit entry is exgeanwith the replaced victim
in the Level 1 cache, otherwise the replaced victim is pwt the victim cache. The victim
cache is implemented in sim-cache, but we use the optimal rais from sim-cheetah.

Sim-profile is a functional simulator that can generate itkgtgprofiles of instruction
classes and addresses, text symbols, memory accesse)dwaand data segment sym-
bols.

Sim-outorder is the most complicated and detailed simuldatsupports out-of-order
issue and execution. The register update unit (RUU) scheem®aireorder buffer to rename
registers automatically and hold the results of pendingructions. The reorder buffer
retires completed instructions in program order. The msoealso contains a load/store
gueue to support speculative execution. Store values aceglin the queue if the store is
speculative.

PISA (portable instruction set architecture), the indiarcset architecture in the Sim-
pleScalar Toolset 2.0, is derived from the MIRSISA. Later versions of SimpleScalar
support other ISAs, for example, the Alpha ISA as we use inp@rad. PISA provides
a 16-bitannotefield in memory instructions. We use the field to encode reagels$ or
evict-me tags. Typically, a field annotation is in the formwf6:4(7) $6, 4(%7), which

sets bit 4 to bit 6 in the annotation field to 7.

71

The reuse levels or evict-me tags are annotated in Scribl@egh the annotation tool.
The back-end translates Scribble to C with annotations usedevels or evict-me tags.
The annotations are implemented as special inline assangiiuctions. The C code with
assembly inline is then compiled using the modified versiogco in the tool set. Gee in
the tool set generates PISA binaries. We updated sim-caahsim-cheetah to interpret

the annotations.

3.5.2 URSIM and Experiments Setting

We use URSIM developed at the University of Utah to simulategerformance im-
pact of the evict-me cache [116]. URSIM is an extension toNMRZNn execution-driven
simulator for instruction level parallelism (ILP) basedastd-memory multiprocessors
and uniprocessors [83]. It simulates a state-of-the-arbborder processor, lock-up free
cache, and multi-bank memory. Although URSIM models a wupssor or shared-memory
multiprocessor, we use the uniprocessor configurationg dile key features of the pro-
cessor model include superscalar execution, out-of-csdeeduling, register renaming,
dynamic branch prediction, non-blocking loads and stosgeculative load execution,
superpage-supporting TLB, precise exceptions, and exgishdows. The key memory hi-
erarchy features include two levels of cache, multiportettigipelined L1 cache, pipelined
L2 cache, multiple outstanding cache requests, and memtastéaving. URSIM extends
RSIM by adding a more complicated memory system. URSIM stp@®ynchronous
DRAM (SDRAM) and Rambus DRAM where hot pages and channelesdittn are mod-
eled.

The URSIM processor model is close to the MIPS R10000 CPUamphtation [115].
A major difference between URSIM and the R10000 is that URSKdcutes the SPARC
instruction set, which uses a register window mechanismtiigaR10000 does not imple-
ment. URSIM models the R100Gx:tive list register map tableandshadow mappers

The active list holds the currently active instructionsresponding to theeorder buffer

72

or instruction windowof other processors. The register map table maps logicaltezg

to physical registers. Shadow mappers store the registprtaide information to allow
single-cycle state recovery on branch misprediction. TR&SIM instruction pipeline con-
tains five stages: fetch, decode, issue, execute, and cemplee fetch and decode stages
process instructions in program order, but the issue, é&eand complete stages may pro-
cess the instructions out-of-order. Instructions gragluatorder after passing through all
five stages, which enables URSIM to implement precise eimept

URSIM allows many of the processor and memory features toobhégurable at sim-
ulation time. We configure URSIM to fetch and graduate a maxmof four instructions
per cycle. Our processor configuration contains two ALUg) B#PUs, and two address
generation functional units. URSIM uses a two-bit historgrizh predictor that contains
up to 512 counters. URSIM uses eight shadow mappers, whgthats the number of
outstanding branches to eight. The L1 cache is write-thomgh a non-allocate policy.
The L1 cache has two ports, which means that two accessesscanaoncurrently. The
L2 cache is write-back with a write-allocate policy. The L&hbe maintains inclusion of
the L1 cache.

Scale generates SPARC assembly code with annotated lw&difsstructions for UR-
SIM. The evict-me tag and reference step of a memory instnu@re encoded into an
unimplemented SPARC instruction. We put the marking ircdtomn before the memory
instruction. We updated the URSIM preprocessor to mergetimaplemented instruction
into the memory instruction following it. We thus avoid atiloinal instruction overhead at
run time. We updated URSIM to accept the special load/stmtetctions and perform the

corresponding replacements.

3.5.3 Experimental Results Using SimpleScalar 2.0
In Figures 3.11 through 3.18, we show the miss rates of LRUW) kRh victim cache,

evict-me, evict-me with victim cache, and the 16-bit Prédit algorithm, on 2-way and

73

16 O LRU

E = LRU+Victim
14 &= Evict-me
1 3 Evict-me+Victim
173 = Prediction
10 = MIN

Miss Rate (%)
=
w

ORNWAUID~N®©
bbb

K@) 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.11.Vpenta

O LRU

= LRU+Victim

= Evict-me

34 @ Evict-me+Victim
= Prediction

= MIN

Miss Rate (%)

sk 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.12.Liv18

4-way set associative caches. We also give the miss ratee N algorithm, which is
the optimal miss rate without considering write-backs [1The cache sizes range from
8K to 64K by powers of two and the cache line size is 32 bytesolerve that evict-me
caching provides up to 45% improvement in the number of reigs¥pentafor a 4-way
64K cache. This result is significant considering the minmohiectural support we need.
We improve the miss rates &wim Tomcaty Liv18, andJacobiby 10-20% in the best
casesAppsp Arc2d andErlebacherimprove by 5-6% in the best cases. Evict-me caching
never degrades the miss rate, although the mispredictienmentioned in Section 3.2
might cause a degradation.

We note that the 16-bit Prediction algorithm can further iaye miss rate in some
cases. For example, fdfpentaat 64K andTomcatvat 16K, it achieves more than a 20%

improvement even when compared to a 4-way evict-me cachs.r@sult means that there

74

24 O LRU

= LRU+Victim

= Evict-me

= Evict-me+Victim
= Prediction

= MIN

Miss Rate (%)

) 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.13.Appsp

= LRU

= LRU+Victim

= Evict-me

3 Evict-me+Victim
= Prediction

= MIN

Miss Rate (%)
o kN ®w A O O ~N ® ©
I f L | N . 1 L | N

K 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.14. Tomcatv

is still some room for the compiler to improve, although weeltve that the one evict-me
bit is sufficient in most cases. In some cases, such dadobiand some configurations for
Vpenta the miss rates of evict-me and Prediction are pretty clogptimal (MIN). There
is still a large gap in the other cases. We think a better angddr the 16-bit algorithm
can come very close to optimal.

Both the evict-me and the 16-bit Prediction algorithm pn¢sggnificant improvements
in certain cache configurations but very minor ones in oth@enerally, The evict-me and
the Prediction algorithm reduce conflict misses. When tleheasize is very big, there
are few conflicts available for them to resolve. When the easike is very small, the
conflicts become so intense that no replacement algorittmaoavell. The improvement
is sensitive to the degree of associativity and cache lipe, fiecause those factors affect

the distribution of conflict misses. Increasing the degiffessssociativity can reduce conflict

75

O LRU

= LRU+Victim

= Evict-me

3 Evict-me+Victim
mm Prediction

= MIN

Miss Rate (%)
OFNWAUID~NOOORNWAUIT~NOXOORNUWAUICIOXOORNW
nnbasdsbaslasasdsbasbabsdasbasbssbasdssbasiustessosbasbosbusdsedobusboalon

8@ 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.15.Swim

5. O LRU
= LRU+Victim

= Evict-me

= Evict-me+Victim

m Prediction

= MIN

Miss Rate (%)

8K(2) 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.16.Jacobi

misses and also give the evict-me algorithm and the Predietigorithm more flexibility.
We expect the evict-me and Prediction algorithms to inadhsir relative performance,
as compared to LRU, in proportion to the increase in the degfeassociativity when
associativity is small.

Victim caches eliminate many misses Tomcatvand Swimwhen the cache size is
small. However, inJacobi the victim cache has no effect at all, but evict-me caching
shows a 16% improvement at 8K. A further observation is thatwo strategies can work
together. For example, Mpenta the miss rate is reduced from 8.9%, when applying victim
cache only, to 6.4%, when applying both. The victim cachedsffioutperforms evict-me
on some programs but putting the two strategies togetheyal@ominates using only one

of them.

76

O LRU

= LRU+Victim

= Evict-me

= Evict-me+Victim
= Prediction

= MIN

Miss Rate (%)

) 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.17.Erlebacher

44 O LRU

= LRU+Victim

= Evict-me

34 @ Evict-me+Victim
= Prediction

= MIN

Miss Rate (%)

) 16K(2) 32K(2) 64K(2) 8K(4) 16K(4) 32K(4) 64K(4)

Figure 3.18.Arc2d

We further investigate the performance of the victim cachelbserving the status of
the victim cache when there is a hit to it. We keep track thelmemof lines in the victim
cache that are from the same cache set in the Level 1 cache lai fine. In particular, we
are interested in those lines that are older than the hiféaieted from the Level 1 cache
earlier than the hit line). Let thassociativity extensiobe the total number of such cache
lines divided by the total number of accesses to the victicheaTable 3.3 lists the statistics
for Tomcatvand Swim where the victim cache performs extremely well at 8K and .16K

Usually a largerassociativity extensiomeans a lower miss rate. In a coarse estimation,

2-way 4-way

Program 8K | 16K | 32K | 64K | 8K | 16K | 32K | 64K
TOMCATV | 1.98| 1.30| 0.22| 0.05| 2.14| 2.18| 0.24| 0.00
SWIM 1.81| 1.66| 0.04| 0.05| 2.81| 2.65| 0.14| 0.00

Table 3.3. Associativity extension by victim cache

1

Conf. 1 Conf. 2 Conf. 3
Level 1 8K, 2-way | 32K, 2-way| 64K, 4-way
32 byte cache line
Level 2 | 128K, 2-Way| 256K, 4-way | 512K, 2-way
128 byte cache line

Table 3.4.Three cache configurations

assuming thessociativity extensiors e, the miss rate of a Level 1 cache of sgw®ith
associativitya plus a victim cache is similar to that of a Level 1 cache whas®eaiativity
isa+ eand size i§a+ e) /axs. ForTomcatvandSwim the associativity extension is much
bigger at cache sizes of 8K and 16K than at 32K and 64K. Thisreifice reflects the huge

improvement in miss rate at 8K and 16K for the two benchmarks.

3.5.4 Experimental Results Using URSIM

In practice, evict-me can be turned on/off in both levelsh&f tache. We apply three
Level 1 and Level 2 cache combinations of sizes and assatidi as shown in Table 3.4.
The three configurations share the same cache line size emtikss. The Level 1 cache
line size is 32 bytes and the latency 2 cycles. The Level 2ectinb size is 128 bytes and
latency 8 cycles. The latency for memory access is betweemd&00 cycles, depending
on the state of the machine; this range reflects the sopdtisticof the accurate memory
model. We also examine all of our benchmarks using a 5 yeamwsae projection where
the Level 2 latency is increased to 20 cycles and the memargsadatency is 200-500

cycles. These projections come from Agarwal et al. [3].

3.5.4.1 Miss Rates Results

Figures 3.19 through Figure 3.21 show the normalized mies raf the three cache
configurations when evict-me replacement is turned on ftr bevel 1 and Level 2 caches.
We list the LRU miss rate at the top of each bar. For exampl€ginfiguration 1, the miss
rate of Applufor LRU at Level 1 is 9.43%. Evict-me reduces the miss rate by2 We

state the miss rate of the Level 2 cache as the Level 2 misgdediby total accesses rather

78

1.44 0.86 4.45 0.64 2.07 121 1.20 1.85 23.63 4.15
100+ 9.43 3.93 10.17 3.44 10.21 8.82 49.06 19.33 36.19 16.73

95
90
85
80
75
70
65
60
55
50
45
40
35
30

e
- L2

Normalized Miss Rate

Q@z&
RS
Q
&
&
‘:\
“&
¢
N
2

Figure 3.19.Miss reduction by evict-me (Conf. 1)

that by the misses of the Level 1 cache. We use this repregenta show the combined
effects of evict-me on the two levels of cache. The miss redudn the Level 2 cache
comes not only from better replacements in the Level 2 casledf,i but also from better
Level 1 replacements, which reduce the traffic between tbecaehes.

We observe a significant miss reduction for both levels oheacAs we discussed
in Section 3.2.4, evict-me can be very effective in one camdiguration but less so in
others. ForApplu the miss rate at Level 1 is reduced by 21.13% in Configuratidmt
only 1.37% in Configuration 2. For certain cache configuregjove reduce the miss rate
of Applu, Swim andTomcat\by about 50%. Overall, the miss reduction ranges on average

from 10% to 20%.

3.5.4.2 Static and Dynamic Replacement Counts

Table 3.5 shows static and dynamic statistics on evict-rge ¢end their effect on re-
placements for our programs. The second column is the peof@mnotated instructions
among all static load and store instructions. We mark 25%@fmemory instructions on
average at compile time. The numbers in the remaining coduane collected under the
cache configurations of a 64K L1 4-way cache and a 512K L2 2-eeethe (Conf. 3),

with evict-me caching on in both caches. The third and thle Gifilumns are the percent of

79

137 0.58 4.28 0.64 1.97 1.07 119 1.28 21.24 3.74
100+ 6.26 2.34 8.59 239 7.86 8.08 11.76 9.38 29.04 9.62

95
90
85
80
75
70
65
60
55
50
45
40
35
30

e
- L2

Normalized Miss Rate

Y
Y
Q

&
&

%, \S}%;)5/5 %@/) ‘7‘@,
% % %o

&
N

Figure 3.20.Miss reduction by evict-me (Conf. 2)

1.14 0.16 1.32 0.51 1.55 1.06 117 0.72 19.15 2.98
1004 492 173 7.24 2.27 7.6 7.03 7.4 7.76 28.22 8.25
954
904
854
804
2
g 754
8 704
s o
§ 65 - 2
T 60
E
S 55
504
454
40
354
30
Y, Y, % % % G S, % % /2
%, %, (al) (3 2, 2 %,))
% 5% 2% o%/} %, £ % % "% % %
)

Figure 3.21.Miss reduction by evict-me (Conf. 3)

cache accesses in which we set the evict-me bit in the Leveti2acaches respectively.
The fourth and the sixth columns show the percent of replacésnwhere the evict-me bit
changes the replacement decision as compared to LRU’si@®cis changes 4% to 24%
of the decisions inthe L1, and 0 to 15% in the L2. These chadge®t correspond well to
changes in miss rates because one change can result inl segegahits, or no additional
hits. For example, evict-me removes many misseJdéoncatvandSwimbut alters 13% or
fewer L1 replacement decisions. The changes to Level 2aeplants are on average very
low which means that the L2 miss reductions also come frortebkfl replacements and

more L1 hits that yield less traffic between the caches.

80

Static Dynamic (Conf. 3)

evict-me| L1 evict-me| L1 Repl. | L2 evict-me | L2 Repl.

Applu 12.05 13.81 6.66 30.41 3.44
Appsp 8.93 9.06 15.04 24.46 9.61
Arc2d 25.96 20.61 4.29 36.30 14.86
Erlebacher] 25.36 12.64 12.62 15.68 13.16
Jacobi 50.00 33.95 24.10 56.36 2.35
Livl8 43.82 30.01 21.61 53.31 1.42
Swim 20.95 21.51 8.30 53.35 0.21
Tomcatv 9.52 4.89 13.03 4.98 0.57
Vpenta 35.05 15.69 11.71 25.57 3.51
| Average | 25.74] 18.02] 13.04] 33.38] 5.46]

Table 3.5. Static and dynamic statistics on evict-me

8K L1, 128K L2 (Conf. 1) 32K L1, 128K L2 (Conf. 2) 64K L1, 512K L2 (Conf. 3)
Current Pred. Current Pred. Current Pred.
Program L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2

Applu 10.58 | 0.37 11.30 31.91| 0.24| 3.92 4.17 34.21 | 10.08 | 10.04 11.74 25.86
Appsp 0.32 2.57 2.60 8.50 0.27 5.22 4.93 16.65| 0.19 0.55 0.49 2.53

Arc2d 0.00 | 4.89 4.81 7.93 | 0.00 | 21.97 21.59 30.22 | 0.00 | 9.87 9.48 26.03
Erle. 0.48 1.10 1.20 3.27 | 0.66 1.10 1.46 4.67 | 0.37 1.37 1.48 5.92
Jacobi 2.05| 4.85 5.17 11.88 | 0.00| 5.19 0.79 1.89 157 | 0.00 1.40 2.18
Livl8 0.32 1.17 1.50 2.26 135| 0.64 2.17 2.67 212 | 0.48 2.54 2.78

Swim 10.57 | 1.48 9.48 11.30 | 11.46| 1.72 11.23 11.68 | 6.59 | 0.00 6.53 6.38
Tomcatv| 0.66 | 1.98 2.45 701| 572| 3.23 7.30 13.60 | 7.66| 0.00 7.62 16.05
Vpenta 0.00 | 11.03 5.51 583 | 0.31| 32.00 21.91 2498 | 0.21 | 20.03 21.21 23.07

Average | 2.78 | 3.27] 489] 009] 222] 833 839] 1562] 3.20] 470] 6.94] 12.31]

Table 3.6.Percent performance improvement by evict-me

3.5.4.3 Simulated Performance Results

Table 3.6 shows the performance impact of evict-me. Thencofititled “L1” and “L2”
show performance improvements when the evict-me cachihgmed on for the Level 1
cache only and for the Level 2 cache only, respectively. Tdlerons titled “L1+L2" are
the improvements when the evict-me caching is turned on dbin baches. For current
technology, we see reductions in execution time of 4.89%9%, and 6.94% on average
for the three configurations. We see larger improvementsnnlated cycle time, 9.99%,
15.62%, and 12.31%, for technology predicted for 5 years fnow, when the gap between
processor speed and memory speed will be larger. Usuallgmaderage, the performance
improves most when evict-me caching is turned on in bothesicWWe see more contribu-

tion from the Level 2 cache in most cases, because the gagbetive access time of the

81

Level 2 cache and memory is relatively larger than the gaydset the two caches. In our
experience, out-of-order execution often hides L1 cactentaes, but not L2 [70].

An interesting case igpenta which improves the most with evict-me turned on only in
the Level 2 cache for configurations 1 and 2. When evict-ma is doth caches, the Level
1 evict-me cache replacements change the access pattém lofvel 2 cache, and in this
case, reduce its effectiveness. Swim the opposite is true; the Level 1 cache dominates
the evict-me performance improvements because the Levetd mate is very high and

evict-me reduces it by 19%-56%.

3.5.4.4 A Less Aggressive Compiler Marking Algorithm

We also investigate a slightly more conservative compilgorgthm for setting the
evict-me bit. We use the same algorithm as in Figure 3.10emxwe change the test
for the nest level> 2 to be> 3, and thus mark fewer references as evict-me. With this
algorithm, our results are unchanged Jaicobi Liv1l8, andVpentabecause the compiler
computes the data volume precisely. Bgplu, Appsp andArc2d this more conservative
algorithm is slightly better, but fofomcatvand Swim it does not set enough bits, and the

original is much better.

3.6 Chapter Summary

This chapter develops a theoretical model for static coeAjaihe analysis to direct
cache replacement algorithms and prove that it is at leagi@d as LRU. This work opens
a new path for reducing cache misses by using compiler tontaprove replacement de-
cisions. We present and implement a 16-bit and a 1-bit (ewiE) version of our algorithm.
We demonstrate that the 1-bit evict-me algorithm is prat&nough to implement in cur-
rent set-associative caches, and in multiple levels of #ethe hierarchy. Furthermore,

our simulation results show that the evict-me algorithmsistently improves performance

82

through reduced miss rates when compared with LRU and isteféeon multiple levels of
the cache.

We conclude that both the compiler hints and the run-timéhysused by the LRU
policy play critical parts in our unique evict-me cache emgment algorithm. We have
shown that our compiler hints are predictive and therefarelwelp the hardware to make
better run-time decisions. However, the compiler hintshesgristics and thus are neither
complete nor perfect. It is not guaranteed that each cadledvegys contains an evict-me
line when a conflict occurs. In this case, the LRU policy wake over.

A better cache replacement policy can help reduce unnagessaflict misses. The
remaining misses still hurt cache performance. The nexitehavill describe a cooperative
prefetching technique that effectively hides much of thenmoey latency of misses that

cannot be avoided.

83

CHAPTER 4
COMPILER-GUIDED REGION PREFETCHING

This chapter introduces a new prefetching technique. Tdridware/software coopera-
tive technique uses compiler hints to enhance an aggresardsvare prefetching engine.
The prefetching requests are initiated by the demand mésse®ll as the compiler hints.

Cooperative cache replacement reduces cache misses lsuta@togliminate them. To
improve cache performance further, we can rely on latenigrance techniques such as
data prefetching that hides latency by prefetching dataviibbe used in the near future
so the future access can be a hit. However, the prefetchstiesuffers miss latencies. A
large number of software and hardware prefetching schemesleen investigated. Most
of them rely on either pure software direction or pure hamwaechanisms but rarely on
both. In this chapter we describe a new cooperative prefegdiechnique: guided region
prefetching (GRP). GRP builds on the strengths of both harevand software prefetch-
ing. In GRP, a sophisticated compiler analysis produceshaset of load hints, including
the presence or absence of spatial locality, pointer strast or indirect array accesses.
A run-time hardware engine, triggered by L2 cache missesemgges prefetches based
on the compiler’s hints. GRP thus benefits from compiler gsialof application refer-
ence patterns, but—unlike traditional software prefetghithe compiler is not required
to generate or schedule individual prefetch addressesauBedhe hardware generates the
prefetches, it can run far ahead of the missing referencesause the compiler guides it,
the hardware need not struggle to deduce future referentesamplex pattern matching

on prior accesses stored in large tables.

84

Using previously proposed techniques [69], the GRP harewaafetching engine keeps
uniprocessor bus contention low by prefetching only whenrttemory bus is otherwise
idle, and keeps cache pollution low by loading prefetchastime LRU set of the L2 cache.
Without compiler support, this prefetching hardware igefifve at improving performance,
but consumes copious bandwidth. Through GRP, the compilems the hardware of ap-
plication reference patterns, enabling the hardware ttefmte only when it is likely to be
effective. We evaluate compiler hints that mark loads wiith following hints: spatial-
prefetch the spatial region around a loatze-how many lines to fetch on a spatial refer-
ence;pointerprefetch by following the pointers in the load’s cachelieursive-prefetch
this pointer data structure recursively. RBizehints, the compiler can encodevariable-
size regionthat specifies how much to prefetch based on enclosing loapds instead
of using a fixed value. The compiler also generates indinedfefching instructions which
trigger prefetching a set of references using an indiracioay.

We also propose a pointer prefetching technique that agigedg prefetches blocks
pointed to by a pointer-like word in a fetched cache line.shork was also implemented
concurrently by Cooksey et al. [32] who refer to this schesweoaitent-aware prefetching
We use this notion for our further discussion. We find regioefgiching generally per-
forms better than pointer prefetching and putting themtlogredegrades performance due
to excessive memory traffic.

This cooperative GRP hardware/software interface imgake high performance of
the previously proposed scheduled region prefetching J$&9 by over 10% on two of
the SPEC2000 benchmarks, and matches the performance obrSRI@ rest. Table 4.1
shows a summary of the GRP results using the geometric mearshdw GRP both with
(GRP/Var) and without (GRP/Fix) variable-size region ptehing. Without prefetching,
the mean performance across the benchmark suite is 33.7&6 than a perfect Level 2
cache. Stride prefetching (using the Sherwood et al. d§S&jy provides a 15% speedup

over a system with no prefetching. SRP, which uses no comailalysis, outperforms

85

traffic | Performance gap
Speedup| increase| from perfect L2
No prefetching 1 1 33.72
Stride prefetching 1.147 1.09 23.99
SRP| 1.226 2.80 18.75
GRP/Fix | 1.216 1.62 19.42
GRP/Var| 1.212 1.23 19.69

Table 4.1. Summary of prefetching performance and traffic

stride prefetching by 7%, but consumes excessive memorgviidth, a 180% increase
over a system with no prefetching. GRP provides near-etgnv@erformance to SRP but
with substantially less traffic, an increase of only 23% owarprefetching. This reduction
in traffic saves power and is more amenable to multiprocesgiems, where additional
traffic more often directly affects performance. Both SRHE &RP still incur a 19% gap
versus a perfect L2.

In Section 4.1, we describe the hardware implementatiohefégion prefetcher and
content-aware pointer prefetcher. In Section 4.2, we dsowr hint encoding methodol-
ogy. In Section 4.3, we present a set of compiler analysagyreerate hints to direct the
two prefetchers. We then discuss our compiler implementati Section 4.4 and experi-

mental results in Section 4.5

4.1 Hardware Prefetching Engine

The GRP hardware prefetching engine builds on the schedetgdn prefetching de-
signed by Lin et al. [69]. We extend the original design wittotcapabilities. First, we
add support for aggressive prefetching of pointer-baststeuctures. Second, we add the

ability to prefetch indirect array references under sofen@ntrol.

4.1.1 Scheduled Region Prefetching
Scheduled region prefetching (SRP) aggressively expasial locality by attempting
to prefetch large (4 KB) memory regions on each L2 cache néi8k [The two negative

effects of aggressive prefetching—memory bus contentr@hcache pollution—are ad-

86

Prefetch

Engine
Prefetch L2 Cache
Queue Controller L1 Cache
Prefetch Access MSHR
Prioritizer Prioritizer S

)

1) X
Bank Rambus Channel >
State Rambus Controller) . X

Rambus Channel >

Figure 4.1. Prefetch engine organization

dressed directly by reducing the priority of prefetches ienmory bus request scheduling
and in replacement decisions, respectively. Unlike masfigbching schemes, which must
maintain high prefetch accuracy to avoid degrading peréoree, SRP can identify and
access prefetch candidates liberally without degradingraoessor performance.

Figure 4.1 shows the memory system with the SRP engine tirasfour experimental
baseline. The access prioritizer is the central componfahedSRP prefetching engine. It
forwards requests to the memory controller whenever théralber indicates that a mem-
ory channel is idle. The prioritizer forwards prefetch resis only when there are no
outstanding demand misses from the L2 cache. Demand miasesnhcounter contention
only from prefetches that the memory controller has alraasiyed, and not from prefetch
candidates buffered in the prefetch queue. The miss statodlihg registers (MSHRS)
track all outstanding accesses, regardless of type.

On an L2 cache miss, the prefetching engine allocates a niewienthe prefetch queue
representing the aligned memory region containing the ssexk block. Each prefetch
gueue entry contains the base address of the region, a bdrvadicating the prefetch

candidate blocks in the region, and an index field, whichtifies the next block within

87

the region to prefetch. On the first miss to a region, the enmiitializes the bit vector to
identify the blocks not already present in the L2 cache, atslthe index field to indicate
the next prefetch candidate block after the miss block. dsatiese new entries to the head
of the queue, giving them priority over older, and thus taflicless relevant, entries. The
gueue is a fixed size (32 in these experiments), and old srftileoff the bottom. On a
miss to a region already in the queue, it clears the bit cparding to the miss block, sets
the index field to the next prefetch candidate block aftentg miss block, and moves the
prefetch bit vector entry to the head of the queue. In thiskwee use a base region size of
4 KB and a cache block size of 64 bytes, resulting in a 64-lutoreand a 6-bit index field.
Once the controller prefetches all the candidates, it deales the entry.

Although the access prioritizer practically eliminatesfpenance loss from useless
prefetches due to bandwidth contention, prefetching cédinpstiute the cache by over-
prefetching. We address this issue by placing prefetch&din#he lowest priority position
of the replacement scheme. The controller puts prefetchtdid the LRU position of the
pertinent cache set, and moves a block to the MRU positionibinis referenced explicitly
by the CPU. As a result, useless prefetches im-avay associative cache can displace at
most onenth of the useful data in the cache. (We use a 4-way set assectaiche in our
experiments.) The drawback is that the controller occadipmeplaces potentially useful
prefetched data before they are referenced; however,quework [69] shows this effect
to be insignificant. As a final optimization, the queue isqurefetches first to those DRAM
banks that already have the needed page open.

Scheduled region prefetching is highly effective at exjpigispatial locality to improve
performance [69]. However, it has two shortcomings addesy GRP. First, SRP does
not provide any direct support for non-spatial referendéepas. We add a pure hardware
pointer prefetching mechanism to address this issue (se®f&.1.2). We also add an
indirect array scheme that requires compiler support (setich 4.1.3). However, for the

SPEC benchmarks, we find that spatial prefetching works disasgointer schemes—

88

even for pointer-intensive benchmarks—because of thelaedayout programmers use
and memory allocation patterns for pointer data structusezond, SRP can produce co-
pious amounts of excess memory traffic. Although this uselesfic does not reduce
uniprocessor performance due to SRP’s prioritizationriegles, it consumes energy, can
cause contention with useful prefetches, and may reduderpgnce in a multiproces-
sor environment. We thus use compiler hints for spatial ardtpr accesses to gain both
lower bandwidth and higher accuracy. We describe the GR&éWaae modifications and

hints below in Section 4.1.3, and the compiler analysidfilseSection 4.3.

4.1.2 Hardware Prefetching of Pointer-Based Structures

As discussed in Section 2.3, hardware prefetching for poibased structures is chal-
lenging. Instead of using complex hardware to recognizatpoiraversal patterns or store
pointer correlations, the base pointer prefetching schgmeedily generates a prefetch for
any fetched value that falls within the ranges of legitima@ap memory addresses. The
implementation performs a simple base-and-bounds chea tiee start and end addresses
of the heap. In the Alpha ISA, pointers are aligned 8-bytdtiest thus the engine must
check only eight values out of each 64-byte cache block.

Once the controller identifies a datum as a possible poialaeyit translates the virtual
address to a physical address and forwards the address $RtPgrefetch queue, which
allocates a region-style entry for the prefetch. We germsrahis mechanism to chase
recursive pointers by scanning prefetched lines for adeésesnd generating additional
prefetches.

Because these pointer dereferences frequently do notiespdtial locality, the pre-
fetching engine sets only two bits in the entry’s prefetchviecctor, indicating the block

containing the prefetch address and its immediate suacéshah prefetches data struc-

1Cooksey et al. [32] describe a similar but more efficient pminest using bit masks, and apply it to
prefetching in the more challenging IA32 environment.

89

Benchmark # of Cache Blocks

1 2 > 2
164.gzip 100.0%
175.vpr 99.8% | 0.2%

177.mesa 80.1%| 9.7% | 10.2%
179.art 100.0%
181.mcf 25.3% | 74.7%
183.equakeg 100.0%
186.crafty | 100.0%
188.ammp | 41.4% 58.6%
197.parser| 98.9%| 1.1%
254.gap 100.0%
256.bzip2 | 100.0%
300.twolf | 100.0%
sphinx 94.0%| 5.6% | 0.4%

Table 4.2. Size distribution of pointed-to structures

tures that span two cache blocks). The statistics shown lite T2 list the static size
distribution of pointed-to structures in 13 C benchmarksame using. The numbers are
collected for the compiler marked pointer/recursive loadswve will discuss in Section
4.1.3. The sizes are measured by the number of cache blodiseob4. Excepammp
the pointed-to structures in all other benchmarks are dantiy one or two blocks in size.
This suggests that it is sufficient to prefetch only two be&r pointer prefetching if we

do not consider implicit spatial locality.

4.1.3 GRP: Incorporating Compiler Prefetch Hints

This section describes the compiler hints used by GRP toawgpthe precision of L2
spatial and pointer prefetching. The GRP compiler annstiat&d instructions with hints
predicting whether spatial or pointer-based prefetchdksbei useful. In this study, the
compiler conveys the hints with a duplicate set of memorgrutsions from unused Alpha
opcodes as discusses in Section 4.2. The memory systemgatepahe load’s hint bits
through the memory hierarchy with any resulting requesileld.3 presents the five hints
and shows typical representative code snippets for eaclsuvidenarize the changes to the
hardware for each hint below, and then describe the pointecsirsive pointers, and the

indirection hardware in more detail.

90

recursive
code in loop| spatial indirect pointer pointer size
aff v v
afblil] v v
*p; p+=C Vv
p—f v
p = p—next Vv

Table 4.3.Compiler hints for representative references in loops

A spatial hint indicates that a reference is likely to exhibit spatadality. GRP

initiates a spatial prefetch only when the L2 miss is marksatial.

e A sizehint combined with a loop upper bound indicates how many edctes to

prefetch.

e An indirect hint indicates that the program is using an array to indexcarsgarray.
On an indirect L2 miss, GRP generates sets of prefetches loasthe base address

and the index values.

e A pointerhint indicates that the reference is to a structure thatasnsione or more
other pointers that the program is likely to follow. If theeeence is an L2 miss,
GRP scans the returned block for pointer values and gesepagéetches only for

those values.

e A recursive pointerhint indicates not only that the reference is to a structbed t
contains other pointers, but that the program recursiv@lgws these pointers. On a
recursive pointer L2 miss, GRP scans the returned data fotgyozalues, generates
prefetches for these addresses, and continues generadfetcpes on the subsequent

n levels into the recursive data structure. (We nse6 in our experiments.)

4.1.3.1 GRP for Spatial Region Prefetching
SRP prefetches a region on any demand L2 miss. GRP filtereassptefetches by

indicating which load/store is a candidate for region pietfng. It initiates a region pre-

91

fetching request only when the L2 miss is marlggétial Contrary to a spatial hint is a
non-spatialhint, which causes the prefetching engine not to prefetch onss. The neg-
ative non-spatial hint is helpful in places that the compalealysis cannot reach, such as
library calls. We find that using a positive spatial hint idfisient for the selected SPEC

benchmarks.

4.1.3.2 GRP for Variable-Size Region Prefetching

GRP by default prefetches the same fixed region size as SR#e Hpatial reuse of
a reference does not span the default region size, prefetetmstes bandwidth. We en-
hanced GRP to allow the compiler to control region sizes ééenences in singly nested
loops. The compiler computes the loop upper bound for thegmy induction variable
and conveys the bound to the hardware using a special itistnud he compiler encodes
a coefficient for each spatial reference in the loop. On a,ihgsprefetch engine uses this
bound and the coefficient to calculate the region sizkapg bound< coefficient value
The region size is rounded up to the nearest power of 2 andtased the bit vector of the

prefetching request.

4.1.3.3 GRP for Indirect Array References

Two of the benchmarks from the SPEC2000 suigr @ndbzip2 incur a significant
number of misses due to indirect array references of the &jhiji]] . References ta are
not amenable to spatial prefetching unlesdafievalues are clustered, which cannot be de-
termined statically. Pointer prefetching for these rafess is ineffective since the desired
addresses are computed, not contained in memory as poiriespecialized extension
to GRP targets these patterns. A sinigjidirect prefetchinstruction conveys both a base
address&a[0]), an element sizes{zeof(a[0]), and an index array addres&i(i]) to the
prefetching engine. The prefetch engine reads the cackbk btmtainingo[i] and, for each
word in the block, generates a prefetch address by addingctied value t&a[0] . GRP

then forwards these addresses to the prefetch queue, aspoititer prefetching scheme.

92

Currently, we assume the index array element sszze0f(b[0]) is 4, which is typical on
most systems, although the element size could be includinimstruction if necessary.

The indirect prefetching instruction can take the genemahfof a memory instruction
asindirectpref$a, d(). We implement it with the store instructiostl_c, which is used
only in parallel applications. Note that our compiler gextes assembly code. We rely on
the native compiler and linker to generate the executabig necessary to treat an indirect
instruction as a store, since otherwise the peephole giion in the native assembler
may remove a useful memory instruction because the indimstituction could introduce
false redundancy.

The compiler can process a more general form of indirecteafse such ag[c*b[i]+f]
wherec andf are constants known at compile time. We discuss our comgiigerithm in
Section 4.3.3. The only extra work is computing the displaeet in the indirect prefetch-
ing instruction, which will bec*sizeof(a[0]) We can ignore the impact &fif it is small,
i.e.,a[c*b[i]] will most likely sit in the same cache block ag*b[i]+f] . Whenf is large,
the compiler can compute the base addressad8] + f * sizeof(a[0]) . This calculation is
loop invariant and thus can be moved out of loop. We do notémmgint this option in our
compiler.

The indirect prefetching scheme is distinct from the othechanisms proposed in this
chapter because the information is encoded as a separateciim, not as a hint on an
existing load. Although the introduction of an explicit feeh instruction adds overhead,
the number of such instructions is small, and each one gsenp to 16 prefetches (one
for each index within a cache block of the indirection arram alternate implementation
could use a single instruction prior to a loop nest to set Heeladdress, and an additional
hint bit on theb[i] loads to trigger the indirect prefetches. This approachldvoeduce ex-
ecution overhead at the cost of limiting an application &f@iching one single indirection

array concurrently per base address/indirect hint pair.

93

4.1.3.4 GRP for Pointer and Recursive Pointer References

GRP uses the same mechanism as SRP for pointer and recwiiter pints. However,
GRP applies the mechanism only to a pointer hint miss, and &pHes it repeatedly to
the resulting prefetched lines for recursive pointer hints

We implement GRP for pointer and recursive pointer hintsdigirag a three-bit depth
counter both to the L2 MSHRs and to the prefetch queue enwiesntrol pointer and
recursive pointer prefetching uniformly. GRP initializé& counter on an L2 miss: for
pointers it sets the value to one, and fagcursive pointersit sets the value to six. Thus
the only difference between pointer prefetching and reeensointer prefetching is their
initial counter value.

When GRP fetches a pointer-hinted missing line, it staggthinter prefetching engine
on the returned line. The engine checks the counter. If &lie,at stops queuing prefetches.
Otherwise, it decrements the counter, and queues prefefoh@ointers in the returned
line. The engine thus terminates after one level for poggerd six levels for recursive
prefetching. We prefetch two cache blocks for each poirdsed on our statistics that the
typical structure size in the SPEC benchmarks is less thdoy@$ (one L2 cache block in
our configuration) as we have discussed in Section 4.1.2.bleaks are sufficient to cover

structure alignment.

4.2 Encoding Compiler Hints

This section describes encoding of our compiler hints amgetformance impact. We
duplicate a whole set of Alpha memory instructions usings@auopcodes. This simulates
one additional bit in the opcode of each memory instructiticty denotes if this instruc-
tion is a regular memory instruction or a compiler-marked.ofio encode compiler hints,
we use the four most significant bits from the 16-bit disptaest field. We use three bits
to denote if a load is marked apatial pointer, or recursive one bit each. We use this en-

coding to compare pointer prefetching, SRP, and GRP. Faahblarsize region prefetching

94

Benchmark All Insts Marked Insts
low up || low up
164.9zip 0 111 0 111
168.wupwise| O 8 0 8
171.swim 0 112 0 0
172.mgrid 0 144 0 0
173.applu 0 144 0 8
175.vpr 0 232 0 76
177.mesa 0 | 10148 0 | 10145
179.art 0 56 0 56
181.mcf 0 600 0 576
183.equake 0 84 0 0
186.crafty 0 262 0 262
188.ammp 0| 2200 0| 2200
197.parser 0 104 0 104
254.gap 0 336 0 336
256.bzip2 0 16 0 16
300.twolf 0 88 0 88
301.apsi 0 120 0 8
sphinx -8 548 0 548

Table 4.4.Bounds of memory instruction displacement fields

Benchmark| #mem | #out-of-range| #marked out-of-rang¢ code size|| performance

insts insts insts || increase (%)|| impact (%)
177.mesa | 26777 1181 202 0.7 023%
sphinx 6335 21 0 0 -0.03%

Table 4.5. Performance impact of using 12-bit displacement field

(GRP/Var), we use three bits to encode region size and rese bit for evict-me, which
makes a total of 4 hint bits.

Taking 4 bits away from the displacement field reduces thecatfe range of the dis-
placement field. Table 4.4 lists the upper and lower boundkeotlisplacement fields for
all memory instructions and for compiler-marked instraos only. We observe that a 12-
bit displacement field is sufficient for all but 2 benchmasghinxandmesaif we use the
12 bits to represent an unsigned displacement, which gs@srange from 0 to 4095. As
shown in Table 4.5, less than one half percent of total mermstyuctions use displace-
ments out of this range. Faphinx none of them are marked and only a very small number

are marked ilmesa

95

We measure the worst case performance impact of using Iiispiacement field by
eliminating the displacement fields from allit-of-rangememory instructions irsphinx
andmcf Given a memory instructiond $1, d($2), whered is greater than 4095 or less
than 0, we inserida $2, d($2) in front andlda $2, —d($2) behind, and remove from
the memory instruction. Note thita $2, d($2) is an arithmetic operation that allows a
16-bit immediate field and changes the value2fo r2+d. The new set of instructions is
semantically equivalent to the original memory instruatidhe 12-bit version bloats the
code size slightly fomesaby 0.7% and shows no change &phinx We run the original
executable and the new executable using 12-bit displaceieéis five times each on an
Alpha 21264 machine and choose the fastest execution tone tine five runs. The new
code is negligibly slower fosphinxand slightly faster fomct The variation is within the
measurement noise level. We conclude that using 12-bitadisments has little impact for

the 18 benchmarks.

4.3 Compiler Analysis Framework

This section describes the analyses for the five classesitdf gpatial size indirect,
pointer, recursive pointerthat guide the L2 prefetching engine. We implement thesé an
yses in the Scale compiler and use them to generate theseahitttmatically for both C

and Fortran programs.

4.3.1 Spatial Locality Analysis for Arrays

In GRP, the compiler predicts which misses truly have splaitality, examining arrays
in Fortran and C, and spatial pointer accesses to strudtuf@sThe compiler uses locality
analysis to mark references with the spatial hint annataéiod the compiler back-end aug-
ments the special load instruction with a spatial hint. Trefgich engine then prefetches
only misses with marked spatial references and does nattphefnisses without spatial

marks. We describe our array analysis and then our spaiidgo@nalysis.

96

T ** buf;

buf = malloc(...):

integer a[NNJ[M, B[N buf[i] = malloc(...);

do j=1, m -

do i=1, n for (i=0; i<m i++)
coeali,j)... for (j=0; j<n; j++)
co.c(b(i),j)). .. oo buf[i][J]

Figure 4.2. Fortran array Figure 4.3.C heap array

struct t {
T f;
struct t * next;
T*p’ *S, }
. struct t *a;
for (; p<s; p+=c) {

[* if Tis aprimtive type */ while(...) {
B o B ooa ->fl g
/* if Tis a structure */ a = a->next;
B B Ca
} }
Figure 4.4.C induction pointer Figure 4.5. C recursive pointer

We augment prior work that statically detects spatial libgdly extending dependence
testing [78, 111]. Dependence testing first finds inductiamables and then detects when
the spatial dimension (the row in C, the column in Fortranddgsessed as a function of
the index variable, and whether it is the inner or outer ngstevel. The dependence
testing detects locality only foaffine subscription expressions, i.e., linear functions of
loop induction variables. Our approach marks referencéls gither inner or outer loop
spatial locality. The typical array reference with spatoaality is accessed in its spatial
dimension in an innermost loop. For example, we mafig) in Figure 4.2, assuming
column-major Fortran storage. The compiler also marksyarveath spatial locality that
cross larger distances within a deep nest or between twe (etgr-nest reuse We use
the Level 2 cache size as our upper bound on the distance spttal reuse we mark,
assuming that the Level 2 cache has sufficient set assatjativavoid conflict misses and

exploit the reuse.

97

generate_spatial _hints()

{
/* recogni ze induction variabl es including pointers*/
i nducti on_variabl e _recognition();
/* perform dependence testing */
dependence_testing();
for (each loop) {
/* generate basic spatial hints */
for (each nmenory reference r in the loop) {
if (r is an array reference) {
if (r has spatial reuse in the enclosing innernost |oop)
mark r spatial;
el se {
conpute r’s reuse di stance when appli cabl e;
if (reuse distance < the Level 2 cache size)
mark r spati al
}
}
if (r is aloop induction pointer)
mark r spatial
}
/* propagate spatial hints for |oop induction pointers */
do {
for (each nenory reference r) {
if (r is aloop induction pointer)
mark *r as spatial
else if (r is a->f && a is marked as spatial) {
mark a->f as spati al
}
} while (no new hints generated);
}
}

Figure 4.6. Algorithm for generating spatial hints

If the compiler determines the loop bounds and step sizesntcompute the reuse
distances accurately at compile time. For arrays with apatira- and inter-nest locality,
it computes the reuse distances. It marks as spatial ajl eefarences with spatial locality
with a known distance less than the Level 2 cache size. Wheeadimpiler does not know
the reuse distances statically due to symbolic loop boundsiacertain executions paths,
it estimates the reuse distance based on the nesting letkedbop. The compiler is
conservative when reuse distance is unknown: we mark aereferas spatial only if its

spatial reuse is in the innermost enclosing loop.

98

The above analysis works well for Fortran arrays and heagysarn C if the array
elements are referenced as subscript expressions. Weehaealh arrays in C using the
same analysis. In Figure 418yf is a heap array with typ&**. In addition to detecting the
obvious spatial reuse &iufli][j] whenj is an loop induction variable, the compiler is able

to find the spatial reuse duffi][ax j + b] whena andb are constants.

4.3.2 Spatial Locality Analysis for Pointer Dereferences

To prefetch pointer references that show spatial locadisyjllustrated in Figure 4.4,
the compiler performs loop induction variable recognit@mnpointers that are repeatedly
incremented by a constant. The typen Figure 4.3 and Figure 4.4 does not have to be
a primitive type. We treat pointgr as a special integer, and insert spatial hints«pior
p — f, if constantc is small. Our analysis of L2 cache misses shows that aimiospatial
reuses in C code are covered by regular spatially local aefayences along with the cases
in Figure 4.3 and Figure 4.4.

Figure 4.6 summarizes the algorithm used for generatingadfpants for both arrays
and spatial pointer accesses. The first part of the algoritts@rts the spatial hints for
arrays and loop induction pointers, and the second parggetps spatial hints to the uses
of loop induction pointers. This algorithm is intra-proceal and flow insensitive, and it

marks only references enclosed in loops.

4.3.3 Indirect Array Access Analysis

The compiler also detects and marks indirect array accessels a(b(i), j) in Figure
4.2. In particular, it looks for access patterns in the fofma@x* b(i) +) wheres ande
are constants, anidis a loop induction variable. Dependence testing deteessfiatial
reuse ob(i) in the standard way. We add a simple analysis that detects akequentially
accessed array is used as an index into another araytliis example), and generates an
indirect prefetch instruction using the addres$@f and the base address of ar@yas

described in Section 4.1.3.3.

99

4.3.4 Variable-Size Region Analysis

The compiler detects and marks array references withimsinegted loops for variable-
size region prefetching. For an array access with a patteaflo«i + c) and an array
element size o, the compiler encoddsx e into a three-bit value such thaix < 7 and Z
is closest tdox e. We reserve the encoding value 7 for fixed-size region prbiiet). The
compiler marks the upper bound of the loop induction vagabTl'he two hints are used to

control the region size as described in Section 4.1.3.2.

4.3.5 Pointer and Recursive Pointer Analysis

As with spatial locality, the compiler can improve the a@my of hardware-based
pointer prefetching by restricting it to misses on a load tiield from a structure that
contains a pointer or recursive field. We mark a field refeeeaspointerif a pointer field
from the same structure is accessed in the same loop. We nparikizr update to bee-
cursiveif it updates itself in a loop with an object of the same dafzetyFor example, in
Figure 4.5,a is updated with itsnextfield, which points to a structure of the same type,
struct t This idiom analysis simply identifies pointer updates in@g that use a field with
the same type and marks them as recursive pointer updates.

We mark pointer accesses with the spatial hint for referenoearrays of pointers.
For example, Figure 4.3 shows an array referemaii|, whose access pattern results in
a spatial hint from the compiler. Furthermore, edxti[i] points to a heap array, so the
compiler marks it with the pointer hint as well. GRP will thegse the address to prefetch
the pointed-to array.

The algorithm to generate pointer and recursive pointesregice hints is shown in
Figure 4.7. It is complementary to the spatial marking atpar for pointers shown in

Figure 4.6.

100

generate_poi nter_hints()

{

for (each field access) {
if (a pointer field fromthe same structure
is accessed in the sane | oop)
mark the field access as pointer;
if (the field access updates a recurrent pointer)
mark the field access as recursive pointer;
}

for (each array reference narked as spatial} {
if (the reference points to a heap array)
mark the reference as pointer;
}

}
Figure 4.7. Algorithm generating pointer and recursive pointer hints

4.4 Compiler Implementation

The Scale compiler infrastructure inserts the prefetcksi]. In the previous chapter,
we discussed compiler implementation of our cache replac¢aigorithms in Scale. The
implementation strategy for compiler hints for prefetahia similar. By default, we turn
on all scalar optimizations available in Scale. After thesaventional optimizations, we
apply our prefetching hint analysis and cache replacemmaiysis just before the back-end
code generation phases. The hints are attached to the mamtinctions as comments.

We post-process the annotated assembly code to generataldgdiles containing
compiler-hinted instructions. We then use the native céenpind linker to generate the

executable.

4.5 Experimental Evaluation

In this section, we compare the performance benefits of SRIB, @nd unified stride
prefetching for the SPEC CPU2000 benchmarks, and one adaitbenchmarksphinx
We demonstrate that GRP provides a compelling balance bathigher performance and
increased memory traffic among the three prefetching tectesi. We demonstrate the ef-
fectiveness of the compiler generated size informatiod,tha sensitivity of our results to

the compiler’s heuristic for computing the useful distanEspatial locality. We conclude

101

Processor Core 1.6 GHZ, 4-way, 64-entry RUU
L1 cache split 64K, 64-byte block, 2-way, 8 MSHRs, 3 cycles
L2 cache 1M, 64-byte block, 4-way,

8 MSHRs and 8 prefetching MSHRs, 12 cycles
Memory Rambus DRAM, 4 channels, 800M HZ

Table 4.6.System parameters

with case studies and a discussion of the characteristiteeaemaining benchmarks for
which GRP does not eliminate main memory accesses as a sagmiource of perfor-

mance loss.

4.5.1 Experimental Methodology

We simulate program binaries on a version of sim-outordg} \fiith scheduled region
prefetching (SRP) [69] added to the simulator. We added #énéware pointer prefetching
mechanisms, and modified the simulator to accept compitgs laind schedule prefetches
accordingly if the binaries contain the hints. The systemfigoration is shown in Table
4.6. We use the Alpha-ISA and configure the simulator as a H8, @-way issue, 64-
entry RUU (reorder buffer), out-of-order core with 64K 2ynsplit Level 1 caches and a
unified 4-way 1MB Level 2 cache. This cache hierarchy is coratwith an effective 800-
MHz, 4-channel Rambus memory system. The L1 and L2 latersce8 and 12 cycles,
respectively. Each cache contains 8 MSHRs. For SRP, thetphéfig queue size is 32 and
uses LIFO scheduling. The stride predictor [92] uses a 44vistpry table with 1K entries.
There are 8 entries in each of 8 streaming buffers sharingdpigtery table. Finally, we
use the SimPoint [93] tool set to select a representativergijgoint beyond the program’s
initialization phase. We simulate for 200M instructionsrfr that point. Previous work
shows this simulation method catches statistical sigmifieaf program execution [69, 93].

We use the 17 SPEC CPU2000 C and Fortran benchmarks that akes iBftastruc-
ture is able to compile correctly, plsphinx a speech recognition application [68]. Table
4.7 lists these benchmarks, along with statistics on menmstyuctions and the number

and type of compiler hints generated. The second columrasmthe total number of

102

Benchmark | mem insts| spatial | pointer| recursive| ratio(%) || indirect
164.9zip 1873 433 268 0 37.1 9
168.wupwise 507 152 0 0 30.0 0
171.swim 250 115 0 0 46.0 0
172.mgrid 314 232 0 0 73.9 3
173.applu 1491 858 0 0 57.5 0
175.vpr 4230| 1001 682 74 33.8 84
177.mesa 26777| 4532| 4419 76 32.8 9
179.art 1016 732 278 0 77.6 0
181.mcf 845 168 287 201 60.8 0
183.equake 1679 597 473 0 51.3 7
186.crafty 11702| 1994 736 0 21.6 5
188.ammp 6271 | 1043| 1158 0 33.2 5
197.parser 4090 915 932 1263 70.2 2
254.gap 29781| 5102 | 11243 0 52.6 36
256.bzip2 698 279 59 0 48.3 14
300.twolf 12397| 2080| 2577 1398 45.1 38
301.apsi 3225| 1001 0 0 31.0 0
sphinx 6335| 2211| 1129 364 46.8 106

Table 4.7.Number of compiler hints for each benchmark

static memory reference instructions. Columns 3 to 5 shemnthmber of instructions the
compiler marks aspatial pointer, andrecursive Note that the compiler can mark an in-
struction bothspatialandpointer. Column 6 lists the percent of static memory operations
with hints, and Column 7 shows the static number of indirgefgich instructions. We
do not present further results forafty in subsequent results because its L2 miss rate is

negligible (0.4%).

4.5.2 Comparison of Region Prefetch and Pointer prefetchig

In this section, we present the effects of both hardwaretpoind recursive pointer
prefetching. We show that explicit pointer prefetchingesgrally subsumed by aggressive
spatial prefetching (SRP or GRP). We then discuss the effeimpiler pointer hints.

We apply pointer prefetching alone to all benchmarks, whickurprisingly has little
effect on the Fortran benchmarks. Eight C benchmarks shogréfisant performance
improvement, notably a 47.8% boost fequake a 15.2% increase foncf and an 16.8%
improvement fossphinx as shown in Figure 4.8. Pointer prefetching outperformB SRy

for twolf andsphinx by 2%. In all other cases, SRP performs much better thartgraon

103

24 @ Perfect L2

= Base

¢ = Pointer

& 3 Recursive

= SRP

=3 SRP + Pointer

gap vpr twolf parser mcf sphinx equake art mean

Figure 4.8. Performance gains from pointer prefetching

for (i = 0; i < ARCHnodes; i ++)
for (j =0; j <3; j++)
disp[disptplus][i][j] = disp[disptplus][i]l[j] /
(Mi][j] + Exc.dt / 2.0 * (i][j]);

Figure 4.9. Code segment in 183.equake (quake.c)

recursive prefetching. Applying SRP and pointer prefetghtogether gives little benefit
and sometimes degrades performance due to much higher lhaéonsumption, which
can result in fewer successful prefetches.

For equake the performance gain is not from pointer structure traaless expected.
It stems instead from prefetching arrays of pointers fromhieap arrays. Figure 4.9 is
a typical loop inequake The heap arraylisp, is declared aslouble ***disp. A miss
to disp[disttplus][i] will trigger pointer prefetching from the surrounding elents in the
same cache line, which point to heap arrays suctiggdisttplus][i+1][] . Region pre-
fetching hides the latency of this kind of access very well smbsumes pointer prefetching
in this case.

In mcf the performance gain comes from a loop that sequentiaditsea field in each
object in a heap array as shown in Figure 4.10. Pointer mtafey happens to prefetch
the objects accessed later. Region prefetching also Hgdatiency of this kind of access

which is essentially sequential.

104

for(node = root, stop = net->stop_nodes;
node < (node_t*)stop;
node++)
node- >mark = 0;

Figure 4.10.Code segment in 181.mcf (mcfultil.c)

GRP with pointer and recursive hints shows performancesgamilar to SRP for seven
of the eight benchmarks, but with lower average memory trafi shown in Figure 4.11.
We show the IPC in each set of bars for each benchmark antidigtaffic normalized to
the base above each set. On average, the marked pointerespleeiorms 2% worse than
the hardware-only pointer scheme. The gap between themynoostes frommcf where
SRP/Pointer gains 15% over the base while GRP/Pointer shitysmprovement. Note
that SRP/Pointer gains in the loop as shown in 4.10. Our dempointer analysis does not
mark node—markaspointer since the loop does not contain any pointer field references.
For equake GRP/Pointer performs as well as SRP/Pointer. Our comaiggrithm marks
disp[disptplus][i] aspointer.

GRP/Pointer causes less traffic increase, 20% compared%#of@5SRP/Pointer on
average. The traffic increase caused by pointer prefetahi®RP is not as dramatic as
that caused by region prefetching, as we shall discuss itidBe¢.5.4. This is because
pointer prefetching prefetches only two cache blocks fahegaotential pointer. Thus, a

false pointer in this pointer prefetching scheme does nes hauch penalty.

4.5.3 Comparison of Stride Prefetching, SRP, and GRP

In this section, we compare stride prefetching with SRP aR&®&RP uses all the com-
piler analyses, including variable region sizes. The enthisfsection compares variable
and fixed region sizes, and finds that variable size regioetpleihg decreases bandwidth
requirements for 3 programs.

Figures 4.12 and 4.13 show the performance of SRP, GRP, add ptefetching for

integer and floating point benchmarks, respectively. Intncases and on average, SRP

105

] 1.01 1.40 1.64 1.49 1.01 1.08 1.00 1.15 1.20
3 _- 1.36 1.49 2.18 1.49 1.01 1.21 1.00 1.37 1.35

= Perfect L2

mm Base

= Pointer

mm Makred Pointer

IPC

2 P %,

2 %o % % % % K

. (2
o %, Ss. %

Figure 4.11.Pointer vs. marked pointer prefetching

and GRP both perform better than stride prefetching. Forelhmarks, SRP improves
performance to within 10% of a perfect L2 cache. Baim GRP performs over 10%
better than SRP due to its lower traffic. It also outperforiR®3orart andammp Due to
indirect prefetching, GRP is 4% faster than SRPWwip2 Forgzip mcf parser, andgap,
the IPC of GRP is at least 2% less than that of SRP. A typicalaeas that the compiler
misses opportunities to exploit locality outside of loops.

Although we detect indirect references in 11 benchmarldirent prefetching shows
significant speedups for onlypr andbzip2 For vpr, the indirect references show high
spatial locality. SRP thus performs as well as GRP, but wtb @additional traffic.Bzip2
is one of the benchmarks where SRP does not perform well. WWitinect prefetching,
the gap from a perfect L2 cache is reduced to 12.5% from 15v@¥h,only 15% of the
memory traffic of SRP.

In terms of both performance and memory traffic, GRP usingreabke region size
(GRP/Var) and a fixed region size (GRP/Fix) differ in onlygdibenchmarksnesabzip2
andsphinx Table 4.8 shows that fanesaandbzip2 both strategies deliver roughly the
same performance while GRP/Var results in much less tréffin GRP/Fix, as we discuss

in Section 4.5.4. Fosphinx GRP/Var has 5.8% lower performance than GRP/Fix, but

106

_ = Perfect L2

B Base
. &ﬁ

@ Stride
gzip gap twolf vpr bzip2 parser mcf sphinx mean

IPC

=3 SRP
=3 GRP

Figure 4.12. Performance gains from region prefetching and stride frieiieg for integer
benchmarks

GRP Traffic || Region Size Distribution (%
Var Fix 2 4 8 64
mesa | 1.11| 6.55| 90.3| 95| 0.1 0.1
bzip2 | 1.47| 4.97| 76.8| 22.4| 0.0 0.8
sphinx | 2.09 | 11.66| 82.9| 1.0| 16.1 0.0

Table 4.8. GRP/Var versus GRP/Fix

benefits from an 82% traffic reduction. The compiler cannatrgatee that there is spatial

locality, so it chooses small prefetch regions, and missesesopportunities.

4.5.4 Prefetching Accuracy, Coverage, and Memory Traffic

Although SRP and GRP provide comparable performance, SR8uotes much more
bandwidth than does GRP. Figure 4.14 shows the normalizedamyetraffic for the three
prefetch schemes. SRP increases memory traffic from 2% totarfaf 25.5 times over
no prefetching. GRP generates a mean of only 23.0% additicafic compared to no
prefetching, versus a SRP’s mean increase of 180%. GRPhelies over 20% of the total
memory traffic for ten of the seventeen benchmarks as compar8RP, and over 50%
for six benchmarks. The traffic for stride prefetching is 1l&4s than GRP, but stride

prefetching achieves only 69% of the performance improveniat GRP does.

107

— = Perfect L2
m Base

IPC
|

@ Stride
M 0= SRP
0O GRP

mesa apsi ammp wupwise mgrid applu equake art swim mean

Figure 4.13.Performance gains from region prefetching and stride fuoefieg for floating-
point benchmarks

Compared to GRP/Fix, GRP (GRP/Var) cuts memory traffic $icgmtly for three
benchmarks while showing the same traffic for the othersleTal8 lists the three bench-
marks and their traffic increase compared to no prefetchirgpiumns 1 through 3. The
subsequent four columns show the distribution of prefeigiequests by region size (no
requests with regions of 16 or 32 blocks). We observe that/@&mprefetches only one
additional block (region size = 2) in most cases, due to tha gpatial locality of these
references.

Table 4.9 shows both prefetching accuracies and coveragindothree prefetching
techniques that we implemented. We use the percentageti@uircL2 misses as a metric
for coverage. On average, SRP provides the best coveragh@amabrst accuracy. Stride
prefetching trades the lowest coverage with the highestracg. GRP obtains the best of
both worlds: an accuracy that is closer to stride prefetght coverage closer to that of
SRP.

Since the normalized traffic in Figure 4.14 does not refleztthsolute bandwidth con-
sumption of each benchmark, we also list the actual memaiffidr in bytes, of each

benchmark in Table 4.9. On average, SRP consumes 99.8% neonenybandwidth over

108

]l 255 14.0 3.9 15.9 9.7 11.9

O Stride
@ SRP
O GRP

Normalized Traffic

2 B, L % 2 Y 2 2, %, N
R v e TRy, %, %, %
S

& 2 p: % & 9 S,
A (o) 0y, %, 9 Zd 4,)
. /5,,)+ 2y, % % %

Figure 4.14.Normalized traffic

the no-prefetching system. GRP and stride prefetchingym®dn 18.3% and a 10.1%

increase in memory requests, respectively.

4.5.5 Compiler Sensitivity

We explored the sensitivity of our results to the compildigydoy implementing both
more and less aggressive variants of the scheme descritiettion 4.3. The more ag-
gressive policy marks a reference gmatial even if its reuse distance is greater than the
L2 cache size. The more conservative scheme marks a reéeasspatial only when its
reuse sits in the innermost loop. Compared to our default @By, the aggressive policy
degrades performance by 2% overall and increases traffio lagditional 5%. It degrades
swimandart by 8% and 4.4% each compared to the default. The consenstheme
shows little effect on memory traffic compared with GRP, lauses performance losses of
an average of 5% across the benchmark suite. Compared teféndtdscheme, it degrades

appluandequakeby 14% and 34%, respectively.

109

Benchmark Base Stride SRP GRP
Miss Rate | Traffic || Cov. | Accu. | Traffic || Cov. [Accu. | Traffic || Cov. [Accu. | Traffic
mesa 9.3 51k 60.9 93.2 53K 29.3 0.8 1305K 43.5 70.1 56K
apsi 25.0 85K 79.2 99.8 85K 96.4 95.8 86K 88.8 97.6 84K
gzip 25.3 182K 65.2 99.8 183K 76.3 94.4 192K 0.0 91.2 182K
gap 46.8 179K 66.7 99.6 179K 97.6 86.3 202K 52.8 99.3 179K
ammp 15.3 594K -7.8 23.1 982K -7.8 0.9 8340K 0.7 27.5 665K
wupwise 73.1 486K 42.5 75.4 553K 96.3 60.2 788K 96.2 61.6 772K
mgrid 43.9 504K 77.9 89.9 544K 87.5 80.7 597K 85.6 81.7 589K
vpr 40.2 730K 15.9 85.5 749K 86.3 27.6 2820K 76.4 49.4 1399K
twolf 12.6 1125K 0.0 27.3 1167K 15.9 4.2 | 17878K 3.2 28.7 1575K
bzip2 22.4 1163K 8.4 85.7 1186K 27.2 5.3 | 11255K 37.1 51.6 1713K
parser 33.4 1450K 67.4 75.0 1756K 77.5 447 2804K 56.0 82.5 1625K
mcf 61.6 | 43901K 51.0 80.5 | 49284K 24.7 53.9 | 65263K 5.4 51.1 | 52656K
sphinx 65.9 1208K 12.6 27.3 1449K 42.8 4.7 | 14429K 21.7 20 2521K
applu 58.0 2578K 62.6 95.7 2631K 96.9 89.0 2810K 96.9 89.2 2806K
equake 59.8 3628K 75.6 99.2 3649K 96.3 86.9 4127K 95.2 95.3 3790K
art 44.4 | 20229K 17.3 99.7 | 21189K 8.6 40.6 | 28632K 20.9 78.0 | 23031K
swim 57.8 7861K 34.6 70.8 8966K 67.3 65.2 | 10249K || 68.2 96.5 8021K
[average || 40.9 | 5057K || 429 78.1] 5565K]| 59.9 | 49.5] 10105K [| 49.9 | 68.9 | 598IK |

Table 4.9.Prefetching accuracy, coverage, and memory traffic

4.5.6 Performance Improvement and Miss Reduction

An X percent total miss reduction does not necessarily restieisame performance
improvement in modern architectures. However, we obsdratpgerformance improve-
ment is still a function of miss reduction by adding two vates: the base performance
and the improvement space. Using guided region prefetcisran example, we can pre-
dict the IPC of GRP given the base IPC without prefetchingtaedPC under a perfect L2
cache. Given an application, let its base IP(Ba&nd the IPC with a perfect L2 cache be
L. Assume that GRP causesXmpercent miss reduction. Then we predict the IPC of GRP,
P, to beB+ (L —B) *X/100, i.e., the IPC increment is proportional to the miss ctidu.
Figure 4.15 verifies our model. Let the moeetor be | (P — G)/G| whereG is the IPC of
GRP. Two bars for each benchmark show the IPC with GRP andrétigted IPC using
our model. We list the error, as a percentage, on the top &f setc On average, this model
yields only 1% error. For only three benchmanksf sphinx andswim is the model error
greater than 5%. This result suggests that we can predifdrpgance gain by using just

miss reduction if we know first how much performance loss is thuthese misses.

110

] 04 0 0 0.1 0 0.3 0.4 0.6 0.6 0.9 2.8 18.9 6.6 12 23 4.6 16.9 11

O GRP
= Model

IPC

2 B L 9% P S SR NS
& ¥ B %b %% %% By %
(S

2,))
L /’>o,« '04//.) %,

Q >) 2,
% 4 >)
8. % %48 K 2

Figure 4.15.Miss reduction versus performance improvement

4.5.7 Case Studies
In this section, we discuss the remaining benchmarks winere s still a significant
L2 gap after region prefetching. We study each specific baack on where region pre-

fetching gains or loses performance and where it deliveis or low prefetching accuracy.

4.5.7.1 Remaining L2 Cache Misses

Seven of the benchmarks show a gap of greater than 15% be®erand a perfect
L2 cache. We list them in Table 4.10, with a description of kbg causes of the misses,
obtained by analyzing the source.

With its more accurate prefetching, coupled with indirextessses and pointer prefetch-
ing, GRP is able to bringzip2andammpunder 15% but the gap remains lar@vimhas
a low IPC due to pathological array conflicts. We can previeat benchmark from being
memory-bound by manually applying loop distribution anddgermutation [20]. We ob-
serve thatrt is bandwidth bound. While GRP reduces traffic and increasdeimance
over SRP by 10.7%, the performance gap is still large. Latgehes and wider channels
improveart appreciably. Fosphinx the hash table lookup usually touches only a small

number of adjacent hash slots in a short loop. Prefetchas gamply too late to tolerate

111

Benchmark|| GRP Performance Gap (%) L2 Miss Caused Ratio (%)
171.swim 38.32 transpose array access 92.08
179.art 56.07 bandwidth 24.26

transpose heap array accgss 35.92
181.mcf 63.94 tree traversal 60.70
188.ammp 15.18 linked list traversal 88.64
256.bzip2 15.89 indirect array reference 49.68
300.twolf 22.40 | linked list and random pointers 35.37
sphinx 31.28 hash table lookup 28.79

Table 4.10.Level 2 miss characteristics

the latencies. Finallyncfandtwolf contain heavy traversals of short linked lists and tree
data structures, making them poor matches for the GRP pgneéetching or spatially-

based schemes.

4.5.7.2 Discussion of Prefetching Accuracy

Even for GRP, the accuracy is low for several benchmarkshithgection, we discuss
case by case where SRP or GRP gains and loses prefetchirrg@ccu

In the simulator, we track down the PC values (code loca}iovigere the prefetch
engine issue prefetches. We then categorize the numbeswddsprefetches and useful
prefetches based on PC values. By mapping those valuesd#uok source code, we are
able to figure out which memory references cause high or l@feprhing accuracies.
References in library calls or outside of loops

Our compiler algorithm does not analyze library calls foats locality. It also skips
references not enclosed by loops. Two benchmagks and parser, are affected. SRP
improves the IPC ofjizipfrom 2.01 to 2.09. The prefetches are predominantly fromaiyp
calls tomemcpy() Our compiler does not touch the libraries. This is the omgdhmark
where prefetching in a library call dominates the IPC gairslightly different scenario is
seen inparser. SRP beats GRP by 15.9%. The useful prefetches that GRPsmesside
in one function call, which contains no loops. The compilars does not generate any

hints for the references in the function. However, the fiorcts frequently calledvithin

112

DO 190, L = 1,

K
IF(B(J, L).NE ZERO) THEN
TEMP = ALPHA*DCONJG B(J, L))
DO 180, | =1, M
1, dJ)=0C1,Jd) +TEMPA I, L)
180 CONTI NU

END | F
190 CONTI NUE

Figure 4.16.Code segment in 168.wupwise

loops. Detecting spatial reuse in these functions regeixpensive and complicated inter-
procedural analysis.
Arrays with linear indices

For arrays whose indices are linear expressions of loopctnmuvariables, compiler
spatial locality analysis can predict the reuse patteryy veell. SRP usually generates
high prefetching accuracy too. Fargrid, apply, andapsi, SRP enjoys more than 89%
prefetching accuracy due to the substantial spatial lgcalithese benchmarks. The two
prefetching schemes provide almost the same IPCs and meratiny.

An exception occurs iswimandart. GRP improves the prefetching accuracy from
65% to about 96% foswimand from 40% to 78% foart. The unused prefetches originate
from accesses to transposed two-dimensional arrays. G&Bsathis by predicting that
the reuse distance is too large to be exploited by regiorefuiaing

The 32% of useless prefetchesnapwisecome mostly from the array reference A(l,L)
in the code segment shown in Figure 4.16. The compiler matkk)Awith a spatial hint.
We suspect the low accuracy is due to self-interferenceicbnfisses among those refer-
ences tAA[1 : M, L] and the prefetches triggered by them.

Linked structures

Figure 4.17 shows a code segment from mcfutilimot The referencesode—basicarc
andnode—basicarc—costexhibit significant spatial locality based on our statstiSRP
for the two references exhibits more than 50% prefetchirq@cy, and the useful pre-

fetches at the two points account for a significant portioavarall useful prefetches. This

113

whil e(node != root)

{
whi | e(node)
i f(node->orientation == UP)
node- >pot enti al = node- >basi c_ar c- >cost
+ node- >pred->potenti al ;
el se /* == DOMN */
tnp = node;
node = node->chil d;
}
}

Figure 4.17.Code segment in 181.mcf

for(netptr = dinptr->netptr; netptr; netptr = netptr->ntern) {
ol dx = net ptr->xpos;
if(netptr->flag == 1) {
newx = netptr->newx;
netptr->flag = 0;
} else {
newx = ol dx;

}

*costptr += ABS(newx - new_nean) - ABS(ol dx - ol d_nean);

}
Figure 4.18.Code segment in 300.twolf

is becauseodeandnode—basicarc both point to sequential heap arrays, and the linked
list structure is built contiguously in memory. Our compitetects the link structure here
but of course does not mark the referencespadial An opposite case is itwolf. Figure
4.18 shows a typical code section. The loop traverses adifikeand the loop body is
short. Unlikemcf, the list does not show much locality and SRP suffers lowgtoging
accuracy with little performance improvement.

Another interesting linked structure is shown in Figured4 It is a code fragment from
rectmm.c inammp The referencé¢*atomlist)[i].who)—serialaccounts for a large portion
of overall misses and the prefetching accuracy of SRP heanadsr 1%. Due to the list
indirection ofi = (*atomlist)[i].next and the pointer reference serial, the reference has

little spatial locality. The excessive prefetches gersgtdty SRP at this point hurt perfor-

114

for(j=1; j< (*nodelist)[inode].innode -1 ; j++)
{

i = (*atomist)[i].next;

if(((*atomist)[i].who)->serial > al->serial)
{ (*atomall)[imax++] = (*atomist)[i].who;}
}

Figure 4.19.Code segment in 188.ammp

for (from edge=0;from edge<from num edges; from edge++) {
to_node = rr_node[from node] . edges[from edge] ;
to_rr_type = rr_node[to_node].type;

Figure 4.20.Code segmentin 175.vpr

mance. GRP does not mark this referenceetial and gains a little performance over
SRP. The indirection makes it difficult to predighoin future iterations. By instrumenting
the source code, we find the probability*@itomlist)[i].next = i+1 is 61.4%. It is possible
to fetch just(*atomlist)[i+1].who and prefetch the structure thaho points to. However,
this prefetch helps little in the L2 cache because the lodpashort and prefetching one-
iteration ahead is too late. We are interested in checkingtldr this is more effective in
L1.
Array references through indirect arrays

Indirect array references are a typical reason for low peafeg accuracy irvpr and
bzip2 Figure 4.20 shows a code fragment from checkgraph.c invpr. The prefetching
accuracy of referenae _nodeto_nodé.typeis less than 20%. Our compiler does not mark
it as spatial. However, the absolute number of useful preét at this point is also signifi-
cant. SRP shows an 8.8% better IPC compared to GRP withawagrefetching turned
on.

Figure 4.21 shows a different case: the indirect array eefsgquadrant[a2update]
does not show much spatial locality. Indirect prefetchieguces the misses at this point by
nearly 60%. Note that the compiler needs to follow use-aiito figure out thaa2update

is defined by an array referenzptr[bbStart + j], which is itself marked aspatial

115

for (j = 0; j < bbSize; j++) {
I nt 32 a2update zptr[bbStart + j];
U nt 16 gVal (U nt16)(j >> shifts);
quadr ant [a2updat e] gval ;
i f (a2update < NUM OVERSHOOT BYTES)
guadr ant [a2update + last + 1] = qgVal;

Figure 4.21.Code segment in 256.bzip2

4.6 Chapter Summary

Purely compiler-based prefetching techniques have difficnanaging the large laten-
cies of modern main memories. Previous work shows that agiyeehardware prefetching
addresses this issue effectively for applications witttiapbbcality, at the cost of poten-
tially significant increases in memory bandwidth consunfsithe number of processors
per chip increases, this bandwidth will become increagipgecious.

This chapter shows that a cooperative approach betweenileotbpsed analysis and
hardware-based aggressive prefetching provides benefitparable to aggressive hard-
ware prefetching with much lower traffic. Compiler techrequidentify accesses that
clearly possess spatial locality. Rather than use thignmition to attempt to schedule
software prefetches—with the resulting complicationsroipling timely prefetches while
minimizing instruction overhead—our system simply pash&s access-pattern informa-
tion to a hardware prefetching engine. The engine then geeprefetches for the L2
cache with low overhead. Compared to pure hardware prefgicthe compiler analysis
saves bandwidth by avoiding useless prefetches to addregtbdittle locality.

We also extend the hardware prefetching engine to addrestepbased applications
by aggressively prefetching any datum that appears to bardaepo We see significant
traffic benefits from having the compiler indicate pointed aacursive-pointer loads al-
though it is not as dramatic as for region prefetching. FerSREC2000 benchmarks, the
aggressive spatial locality analysis subsumes pointéefatees for most benchmarks, due

to spatially local layouts of pointer-connected objectthwespect to large regions. Even

116

sphinx which we chose for its sparse irregular pointer behaviengifits very little from
pointer prefetching. It still remains to be seen whethes thenomenon will dominate
the benchmarks that other researchers have used to shompbgance of greedy pointer
hardware prefetching [32].

With solely the spatial and indirect hints, the GRP comfiilardware prefetch frame-
work eliminates most L2-related stalls across the SPEC200@, with comparatively
modest increases in traffic. The remaining three benchntiaaksre limited by L2 memory
system performance are either bandwidth bowmt) or contain many irregular linked-lists
and/or tree traversalsncf twolf), where memory-side prefetching may help. For the rest
of the SPEC2000 suite, however, the GRP approach elimipaiescal memory accesses
as a performance bottleneck while making significantly neffieient use of the system
bandwidth than similarly aggressive prefetch engines.

Stride prefetching generates less traffic than GRP but wgthifscant performance loss.
It also depends on a set of hardware features to control @acgand thus introduces more
hardware complexity than SRP or GRP. GRP is thus the mosteffesttive design com-
pared to SRP or a stride prefetcher. Using compiler hintsR &Rluces the bus utilization
of SRP to a practical level while retaining its high perforroe. Since an L1 cache perfor-
mance gap remains, we will discuspashscheme built on GRP in the next chapter. We

also discuss the combination of evict-me, GRP, and the dedfa {zchnique.

117

CHAPTER 5
COMBINING CACHE REPLACEMENT AND PREFETCHING

Cooperative cache replacement and region prefetchingipttove cache performance.
One reduces cache misses and the other tolerates misseatdnahis chapter, we discuss
how these two techniques can work together. We observe thetter cache replacement
policy can reduce the side effects of useless prefetches.cdimbination can further im-
prove performance although region prefetching leaves ambry small space for improve-
ment.

Region prefetching targets the L2 cache. Using compilashguided region prefetch-
ing achieves high prefetching accuracy. This accuracy sidandata prefetched into the
L2 cache result in hits that serve the L1 misses. It is possidt a prefetched line arrives
in the L2 cache before an L1 miss. In that case, we can hideopane L1 latency by
pushingthe prefetched line into the L1 cache. The pushing schemg®new pressure on
cache replacement to both levels of cache. The pressureedrtbache comes from the
additional write-backs due to the additional L1 replacetseaused by the pushes. Differ-
ent cache placement policies and replacement policiesittaar alleviate or aggravate this
pressure. In Section 5.1, we discuss an implementatioregbiish scheme and the effects
of different cache placement policies. In particular, wenpare pushing data into LRU or
MRU slots, where LRU is the conservative choice and MRU waldffective only when
the line is used quickly.

The compiler-guided evict-me cache can be combined wittonggrefetching and the
push scheme. The evict-me cache replacement policy carrédilice pollution resulting

from prefetching. It reduces cache misses and is thus astiedgo region prefetching

118

techniques, which tolerate latencies. Since region prieést are triggered by on-demand
misses, reducing the L2 misses by using evict-me will alsloice total prefetches as well
as total memory traffic. However, the combination does naessarily bring additional
performance gains if region prefetching has already hiddese same latencies. In Section

5.2, we examine how well the aggressive region prefetchimpesict-me work together.

5.1 L1 Push Scheme
In this section, we discuss our data push scheme, which pyskeéetched L2 cache
lines into the L1 cache. We first describe the hardware impleation. We then experi-

ment with various combinations of two different cache ptaeat polices: MRU and LRU.

5.1.1 Hardware Description

We implement the push engine in the L2 cache controller.dtgare hardware scheme,
but it is implicitly driven by the compiler if the L2 prefeten is compiler-guided. Aoull-
basedprefetcher would follow a request-service-response tist, the prefetches sends
a request to the next lower level of the memory hierarchy.|®Wwer memory will then send
the data back when it is ready. A push-based prefetcher @asinit needs only a response
process: when a prefetched block in the lower level is redudyprefetcher simply pushes
it to the higher level. In our design, the push stream shacesranon response queue with
the regular responses. The L2 cache line size is usually matleamthan the L1 cache line
size. When the L2 cache line is bigger, we break an L2 cacledito units of L1 cache
line size and push all the units into the L1 cache.

Following the default LRU cache replacement policy, a pdstreprefetched line will
evictthe LRU line in a set and be loaded into the MRU slot. Bynipalating the LRU bits,
we can make the new line reside in the LRU slot, the MRU slogtber positions in the

set. Previous work, which does not use compiler guidanaysithat keeping L2 prefetch

119

lines in the LRU slots yields the best performance [69]. Iot@ 5.1.2, we examine the
impact of the MRU and LRU placement policies.

One major concern about this push scheme is address tiansliat our implementa-
tion, the L2 cache is physically indexed and the L1 cacherisaily indexed. We need to
translate a physical address to a virtual address whenmaHine into the L1 cache. The
translation can be done using an ITLB (inverted translatok aside buffer). In contrast
toa TLB, an ITLB is a small cache indexed by physical page eskis and each entry con-
tains a virtual page address. Since the L2 prefetching mnegjice is aligned and no bigger
than a page size, all requests of a region sit in a single gdgs ensures that all pushes of
a region typically yield no more than one ITLB miss.

An alternative technique is to keep track of the virtual @ddes of L2 prefetches. We
can extract the virtual page address from an L2 demand missgidn prefetching request
is enqueued with this address. When a prefetch is issueghréfietching MSHR for the
prefetch will keep the virtual address and the push engineuse this address when the

data is ready for pushing.

5.1.2 Results of the Push Scheme
For our experiments, we use the same set of benchmarks agptetid, which involve
16 Spec CPU2000 benchmarks asphinx The system configurations, including cache

and memory settings, are also the same.

5.1.2.1 Push Performance

Table 5.1 shows our results with the L1 push scheme. For eacthimark, the left-
most five columns list the benchmark name and the IPC for tise lbase, perfect L1
cache, perfect L2 cache, and GRP using the default LRU plestpolicy (GRP/LRU).
The rightmost five columns are percentage performance wepnents over GRP/LRU.
On average, the placement policies of the prefetched orgulises have a very small im-

pact on performance. The worst case, GRP/LRU plus Push/iRWithin a half percent

120

IPC Improvement over GRP/LRU (%)
Base | Perf | Perf | GRP/LRU || GRP/MRU | GRP/LRU | GRP/MRU | GRP/LRU | GRP/MRU
L2 L1 Push/LRU | Push/LRU | Push/MRU | Push/MRU
gzip 1.98 | 2.05 | 2.09 1.98 0.00 0.00 0.00 0.00 0.00
wupwise | 2.29 | 2.74 | 2.90 2.71 0.18 3.21 3.17 3.54 3.35
swim 0.70 | 2.34 | 3.04 1.51 0.80 -3.64 0.66 -1.92 2.12
mgrid 242 | 295 3.08 2.88 0.00 3.19 0.83 3.44 0.90
applu 141 | 2.36 | 2.67 2.30 0.52 8.34 8.69 11.42 11.82
vpr 1.62 | 1.97 | 2.09 1.89 -0.05 2.01 1.37 2.70 1.85
mesa 252 | 257 | 261 2.53 0.12 -0.16 0.08 -0.28 0.00
art 0.55| 1.44| 2.18 0.70 -6.70 5.85 -6.28 6.85 -6.42
mcf 0.15| 0.74| 2.01 0.22 12.44 0.00 12.90 -0.46 12.90
equake 1.01 | 1.76 | 1.96 1.69 0.65 8.24 8.72 9.07 9.43
ammp 1.83 | 2.11 | 2.39 1.83 -0.33 0.05 -0.33 0.05 -0.38
parser 1.32 | 1.80 | 2.13 1.54 -0.32 3.89 4.15 3.82 4.08
gap 2.78 | 2.96 | 2.98 2.87 0.00 0.24 0.24 0.24 0.24
bzip2 1.26 | 1.59 | 1.83 1.40 0.07 0.36 0.79 0.57 0.93
twolf 1.23 | 1.59 | 2.06 1.23 -0.41 0.08 -0.41 0.00 -0.41
apsi 259 | 268 | 2.70 2.67 0.00 0.23 0.23 0.23 0.23
sphinx 1.36 | 2.25 | 2.64 1.45 -1.45 1.66 -0.07 1.72 -0.07
[mean [1.33]2.01] 2.40] 1.62 | 0.27 | 1.93] 1.95] 2.35 | 2.28

Table 5.1.Performance impact of the L1 push scheme and placementgmlic

of the best case, GRP/LRU plus Push/MRU. Compared to GRP/IGRP/MRU shows
little improvement or degrades performance for all imdf where it improves the perfor-
mance by 12%. GRP/MRU performs 6.7% worse than GRP/LRWfgralthough it still
improves over the base by 18%. The gap between GRP/MRU and ®RRor art comes
from a short bandwidth-bounded loop where the prefetches slaort reuse distances and
placing them into the LRU slots causes less pressure on tlvad¢t® when the prefetches
are useless.

The push scheme brings us an additional 2% performance waprent over GRP/LRU.
The best combination, GRP/LRU plus Push/MRU, offers an 1E¥fopmance boost for
apply, 9% forequake and 6% forart. For four benchmarksyupwise mgrid, applu, and

equakethe combination of GRP and data pushing is able to beat agidr? cache.

5.1.2.2 Push Accuracy and Coverage

Push accuracyis the number of used pushed lines divided by the total nurober
pushes. A pushed line is used if it is hit before its evicti@ince the push scheme is
built upon the region prefetcher, we use the miss reducti@m GRP as a measurement

of coverage. Table 5.2 lists the L1 and L2 miss rates of GRB/liiRthe leftmost two

121

GRP/LRU GRP/LRU + Push/MRU

Miss Rate Coverage Accuracy

L1 L2 L1 L2
gzip 1.03| 0.21 0.00| 0.00 71.96
wupwise || 1.74| 0.02| 67.82| 16.67 52.17
swim 11.23| 2.80| 48.17| -43.37 95.71
mgrid 0.91| 0.07| 82.42| -11.43 86.68
applu 3.58| 0.10| 87.71| -86.73 88.09
vpr 2.24| 0.13| 3527| 2.29 36.46
mesa 0.35| 0.02| -11.43| -4.76 3.45
art 4959 1790 11.72| 6.69 59.48
mcf 51.87| 22.71| -1.08| -0.04 9.53

equake 8.38| 0.11| 67.78| -14.02 84.49
ammp 454 0.46| -0.44 1.09 13.56

parser 509 0.50| 25.93| -5.58 78.63
gap 0.29| 0.08| 48.28| -9.33 98.6
bzip2 5.26| 0.48 8.56| -6.95 42
twolf 9.03| 0.89| -0.55 0.34 5.89
apsi 0.22| 0.01| 40.91| 0.00 65.23

sphinx 3.64| 1.43]| 15.11 1.82 16.13
average || 9.35] 2.82] 30.95] -9.02] 53.42|

Table 5.2.Coverage and accuracy of the L1 push scheme, GRP/LRU pligN?RE)

columns. The miss reduction of GRP/LRU plus Push/MRU is showthe middle two
columns and the rightmost column lists its push accuracgaBge the L1 miss reduction
affects the raw L2 miss rates, the L2 miss rates shown in dlie tare L2 misses ovail
data accesses. The push scheme is able to reduce L1 misseleést 40% for 7 bench-
marks over GRP and up to 87% fapplu Although the average miss reduction is 30%, we
only see a 2.3% performance improvement for two reasonst, fire L1 gap is smaller:
miss reduction at L1 yields less performance gain than at$€cond, the push scheme
causes additional pressure on the L2 cache, in fact incrgéise L2 misses by 9% com-
pared to GRP. However, the 9% increase does not cause muohnpance loss since the
L2 miss rates of GRP are typically very low. Push accuracyd® ®n average, lower than
the 69% accuracy of GRP on L2. This suggests that there i®higiplacement pressure
on the smaller L1 cache.

Table 5.3 shows the coverage and accuracy of the other sehéihe push accuracies

are very close across different schemes. The small gap oavidrage coverage among

122

GRP/LRU GRP/MRU GRP/MRU

Push/LRU Push/LRU Push/MRU
L1 L2 | Accu L1 L2 | Accu L1 L2 | Accu
gzip 0.00 0.00| 71.43 0.00 0.00| 73.79|| 0.00 0.00| 71.15

wupwise || 58.62| 11.11| 44.10| 56.90| 22.22| 44.48| 64.37| 22.22| 51.79
swim 44.61| -42.90| 85.68| 45.33| -12.30| 91.18| 48.62| -12.44| 97.58
mgrid 78.02| -10.00| 82.59| 45.05| -1.43| 80.09| 46.15| 0.00| 81.76
applu 67.04| -69.39| 66.28 || 66.48| 18.37| 70.21|| 87.43| 17.35| 91.20

vpr 28.57| 0.00| 28.21| 31.25| -19.08| 36.65|| 38.84| -19.85| 46.82
mesa -5.71| -4.76| 3.34| -286| 4.76| 6.59| -5.71| 4.76| 6.71
art 10.32| 5.46| 54.07| 10.43| -5.77| 55.30| 11.53| -6.10| 60.25
mcf -0.37| -0.03| 9.40| -0.27 0.49| 9.77| -094| 051| 9.91

equake | 63.13| -15.89| 74.12| 63.37| 12.15| 76.08|| 68.74| 11.21| 86.31
ammp -0.22 1.09| 12.71| -0.22| -2.19| 12.30|| -0.44| -2.19| 13.14
parser 25.93| -5.58| 78.06| 26.33| -1.99| 78.92| 26.13| -1.79| 79.71

gap 48.28| -9.33| 96.26| 48.28| 0.00| 96.23| 48.28| 0.00| 98.61
bzip2 7.79| -6.95|36.38| 7.41 1.05| 34.52| 8.17 0.84| 40.17
twolf -0.22 0.34| 4.73| -0.11| -1.46| 5.30| -0.33| -1.34| 6.58
apsi 4091 -14.29| 64.45| 4091 0.00| 64.50|| 40.91| 0.00| 65.28

sphinx || 15.66| 147 14.65] 17.31| -3.91| 14.99] 17.03| -3.84] 16.77
average || 28.37| -9.39| 48.62| 26.80| 0.64] 50.05] 29.34] 0.55] 54.34|

Table 5.3.Coverage and accuracy of the other push schemes

the four schemes does not reflect that there is large variem@®me benchmarks. For
example, the miss reduction is 82% foigrid with GRP/LRU plus Push/MRU compared
to only 45% with GRP/MRU plus Push/LRU. In general, variedggiment policies have
more impact on performance and coverage for specific berisntiaan for the overall
average.

The push scheme cache does not hide the latencies of thoséskésnthat hit the L2
cache. Those misses are mostly L1 capacity misses that atairmed by the larger L2
cache. They do not trigger L2 prefetching and thus do notgbinpushed lines, which
could hide their latencies. A prefetching engine that wiggprefetches upon L1 misses

will solve this problem; we leave this option to future work.

5.2 Combination of Evict-me and Hardware Prefetching
Prefetched cache blocks may pollute the cache if the bloeksseless. Several tech-

niques seek to reduce cache pollution. For instance, haedgam detect stride accesses

123

and selectively prefetch blocks that are expected to beiLg2f]. Compilers can help re-
duce the impact of cache pollution introduced by hardwaeggpching in two ways. First,
the cache pollution of a prefetched cache block may be hamilét evicts a block that is
marked as evict-me. In this situation, the marked line ibphbly useless anyway. Second,
compilers can use locality analysis to decide when prefietcis necessary. We examined
the second option in Chapter 4, where we generate compilés to guide an aggressive
hardware prefetcher. In this section, we explore the firibop GRP enhances an aggres-
sive hardware prefetcher and tolerates L2 miss latencieSettion 5.1, we described a
push scheme that hides L1 miss latencies. The evict-me caplecement policy helps
reduce cache misses and can interact with the prefetchitgpashing techniques. This

section provides results of combining GRP, evict-me, and gashing.

5.2.1 Performance

For our experiments, we use the same system configurationCaspter 4 except that
we change the L1 cache line size to 32 bytes and make it 4-wiaasseciative. The Level
1 cache size does not change. We change the L1 cache lin@di# sve can examine the
performance impact when the cache line sizes of the twodefataches differ. We merge
the benchmarks used in Chapter 3 with the five Fortran bendtswee chose in Chapter
4. We do not include C benchmarks from SPEC CPU2000 becausmmpiler currently
does not support dependence testing in C code very well.

Figure 5.1 compares the performance of GRP, evict-me (EM),their combination.
Evict-me is turned on for both levels of cache. GRP and PushL&&J and MRU place-
ment policies respectively. Evict-me does not offer muctiggenance improvement over
the base, although there are no degradations. It improgesi andarc2dby about 4% and
boosts overall performance by 1.5% on average across athbearks. GRP, which tol-
erates most L2 misses for these Fortran benchmarks, impp®rformance by 30.5% on

average. Combining GRP and Evict-me adds an additional ant¥she Push scheme adds

124

- = _ m Perfect L1
2 o Perfect L2
o Base

(@) I m EM
a = GRP
= GRP+EM
o GRP+Push
1] o GRP+Push+EM
0 L Ll Ll Ll L - — — P L
by S, S 9 % R &, A G %, b
%, Y G %, Ry K o s G, R S, R
P Ty Ry Y Ry, Ry %, b ”’o% R
® %
Y.

Figure 5.1. Evict-me and GRP

an extra 2.7%. The combination of GRP, Push, and evict-metbdbe base performance
by 36.5% on average, adding an additional 6% over GRP. THerpgince gain mostly
arises fromswim jacobi, andvpenta with improvements over GRP by 13.2%, 14.9%, and
10.2%, respectively. For all bupenta combining the three techniques beats any single one
or two combined. Fovpenta GRP/Push/EM is negligibly worse than GRP/EM because of
the slight degradation of GRP/Push.

5.2.2 Cache Pollution

We use a pseudo direct-mapped structure to measure thé@ollaused by L1 pushes.
The structure uses the same line size as the L1 cache anthitetonber of lines equals
the number of sets of the L1 data cache. When a pushed lints et@che line, we record
the evicted line’s address in the pseudo structure. On anlérind miss, we check if it
hits the structure. If so, we consider the previously pudivezlas having polluted the
cache. Figure 5.2 shows the normalized L1 pollution cauggulkhed lines of GRP/Push
and GRP/Push/EM. Above each set of bars is the pseudo s&uttuate with GRP/Push,

which we use as a metric of cache pollution. The overall pofucaused by pushed lines

125

1104

100

90

80

704

60 == GRP/Push

=3 GRP/Push/EM
50

40

Normalized Cache Pollution

304

20

104

Figure 5.2. Cache pollution

is small. Evict-me reduces this pollution by over a half. foee benchmarkspsi jacobi,

andtomcaty evict-me eliminates almost all pollution.

5.2.3 Discussion

The evict-me cache shows less performance improvementtharewe reported in
Chapter 3. We attribute this to three reasons. First, thes|&#& different. In Chapter
3, we targeted the SPARC V8 ISA, while here we use the Alph#ei@int back-end op-
timizations have an impact on data layout and data accessrpst which affect cache
replacement. Second, we use two different simulators, WR&1d SimpleScalar. UR-
SIM is designed to model multi-processor systems. It imglets strict cache inclusion
while SimpleScalar does not. This choice has a significapachon cache replacement
decisions. In an inclusion system, an L2 replacement witlidate the corresponding L1
cache lines. On an L1 miss, an invalid line, if it exists, vadl evicted before an evict-me
line or an LRU line. Third, cache ports are not modeled in 3@8palar, which makes the
caches in SimpleScarlar very aggressive and assumeserngarillelism in cache accesses.

It will be interesting to see how evict-me performs in Singalar when we implement a

126

stricter cache model. We envision the stricter model wilkmaache performance more

critical and create more improvement space for GRP and Hawect

5.3 Chapter Summary

In this chapter, we evaluate the synergy among GRP, datangysind evict-me. We
show that both the push scheme and evict-me bring an adalipenformance improvement
over GRP. The three techniques together add an additiona&¥ GRP. The evict-me
cache does not perform as well in SimpleScalar as in URSIMaWeute this to differ-
ences in the compiler, in the accuracy of the L1 cache modetsthat cache inclusion is
not enforced in SimpleScalar. However, it is worth furth@rastigation to examine where
exactly the gap arises. Even in the aggressive cache mo&igfleScalar, we observe
that evict-me is very effective at reducing cache polluttansed by prefetched or pushed
lines. It eliminates half the L1 cache pollution from thealptish scheme. This result sug-
gests our cooperative techniques have potential to irtesgltto improve memory system

performance.

127

CHAPTER 6
CONCLUSION

The memory system continues to be a major bottleneck on madehitectures. This
dissertation proposes a hardware/software cooperatp®agph to address this challenge.
We show the promise of our approach by examining techniquesgrove cache replace-
ment and data prefetching and by demonstrating their efegass. This chapter summa-

rizes our contributions and discusses future work.

6.1 Contributions

We propose a unique hardware/software cooperative apgptbatcombines the strengths
of both software and hardware. Compiler analyses can dategtam characteristics such
as data locality, data access patterns, loop structurdghancall graph. These static fea-
tures provide a global view of a program, and, if communid&tethe hardware, the hard-
ware can use them to direct run-time decisions. On the othed,hthe hardware at run
time is able to supply a precise execution history and perfectime state such as variable
values, cache hits or misses, and loop bounds. Howevertipe ®f the run-time informa-
tion is limited. The cooperative techniques discussedigdissertation benefit from static
compiler hints as well as run time status. Our approachgelelSA extensions to convey
compiler hints to the hardware by encoding the hints in Isi@adé instructions. This new
interface ensures that the hints can interact with each meagzess at run time and help
hardware make decisions when needed.

We apply the hardware/software cooperative approach teeceeplacement. We en-

hance a primary cache replacement policy, LRU, using a an@Wct-me) compiler hint.

128

Each cache line is augmented by a single evict-me bit. Cagllagement chooses to evict
a marked line if any and follows the LRU policy if no line is rkad. This architecture
extension is unique and practical. We introduce a new rastateuse level, to formulate
our compiler model and prove that our cache replacemertegiravill at least match LRU
in hits if the compiler can make correct predictions. Ounwoé-based compiler analysis
uses the total data volume across adjacent loop nests toagstieuse distance and reuse
levels. Our simulated results validate this heuristic. Bglging evict-me in the L1 and L2
caches, we observe up to 56% miss reduction, and a correggddlo performance im-
provement. Combined with data prefetching techniquesetWiet-me cache reduces cache
pollution by half.

Our cooperative approach leads to a new data prefetchiragligan: compiler-guided
prefetching. Using software hints to direct hardware potfers, this new paradigm en-
joys the high accuracy of software prefetchers as well tigé performance of hardware
prefetchers. Specifically, we propose a new prefetchirfgigcie called guided region pre-
fetching. Guided region prefetching enhances hardwalgsmmeduled region prefetching
by using compiler assistance to decide when to prefetch andbig the prefetching re-
gion size should be. We propose a set of compiler analysesrtergtespatial hints and
sizehints. Guided by these two types of hints, GRP is able to defperformance close to
SRP but reduce additional bus traffic from 180% to only 23%hE&sRP and SRP perform
significantly better than a state-of-the-art stride pfet. The stride prefetcher uses sev-
eral hardware features to control accuracy, which makesrdiffec even lower than GRP.
However, GRP has a simpler hardware implementation ancehigérformance than the
stride prefetcher.

We propose a pointer prefetching scheme, which is esslgrti@ same as and devel-
oped independently of a published prefetching technigakkeatcontent-aware prefetch-
ing [32]. Our content-aware prefetcher shows over a 10% pedoo®m improvement in

3 of 17 selected benchmarks. It, in fact, exploits spatiehlity among two of the three

129

benchmarks. We find that region prefetching mostly outperéoor subsumes pointer pre-
fetching. It will be interesting to investigate more benarks to see if this conclusion
holds more widely.

We propose a data push scheme that pushes prefetched dhtal#t tache to the
L1 cache. This scheme is independent of any specific L2 mpiefet Considering the
cache pollution and cache replacement pressure introdyci@ pushed lines, this scheme
works better with guided region prefetching, which reducssless L2 prefetches. Improv-
ing over GRP, the push scheme delivers performance imprentai around 10% for two
benchmarks, and 2.5% on average by hiding L1 latenciesingtie placement policy for
the prefetched and pushed lines has a small overall impaxtsall benchmarks. However,
we see larger gaps for several programs.

Combining evict-me, GRP, and data pushing brings an additi6.5% improvement
over GRP. Evict-me helps reduce by half the L1 cache pohutioe to pushed lines. The
push scheme is built upon the highly accurate GRP, which smmakepushing accuracy
high and cache pollution low. Our experiments on this coratixam use only Fortran bench-
marks, which typically show good spatial locality and yiblgh prefetching accuracy even
using SRP. It will be interesting to see if the combination baing us more synergy for C

benchmarks.

6.2 Future Work

Our future interests include applying the cooperative aaph to other areas and ad-
dressing some concerns of our current focuses, cache eepdent and prefetching.

The evict-me cache uses one bit to denote preferred evicfiarcache line. Contrary
to the semantics of an evict-me bit would beave-mebit, which denotes a preference to
retain a line until a hit to it. We can apply similar localitpalyses to generate save-me
bits. The combination of evict-me bits and save-me bits cabably work well together.

Given a program and an input, varying the cache size coulshraeavict-me hint should

130

be changed to a save-me hint or vice versa. Given a loop nkest) the total data volume is
smaller than the cache size, we would want to save everyeraferwith inter-nest reuses.
When the data volume is much greater than the cache size, nigtovavict data without
temporal locality in the current nest whether it has intestrreuse or not. But if the cache
size is not too big or too small, we probably want to save paiti® data for reuse across
nests and evict other data to exploit locality in the curresdt. In this case, we need two
bits.

Our evict-me analyses now only work for Fortran code. We ptamvestigate the
possibility of applying evict-me to C and Java code. Curcamhpiler support for the evict-
me cache involves data locality analysis and data voluni@agon in loop nests. Locality
analysis in C code is much harder due to aliases and the pdikeenternal representation
of C arrays. Aliases create uncertainties about tempanakeof arrays involving aliasing.
A conservative strategy assumes temporal uses amongeaknekes in an alias group. We
are interested in the impact of the accuracy of alias armlysimarking evict-me loads.
Arrays in C code are frequently represented in pointer foffor example *(p+i) can
be treated as an array reference wipeis a pointer and is an induction variable. We
want to extend our compiler infrastructure to detect thesdicit arrays and feed them to
dependence testing.

Although region prefetching improves performance by mdrant20% on average
across the SPEC CPU2000 benchmarks, there are still 7 revgdieanchmarks where the
performance gap from a perfect L2 is greater than 15%. Wenéeeeisted in investigating
these benchmarks further. A typical problem in these bemacksns linked data structures
traversed in short loops. Unfortunately, we find that contemare prefetching does not
help these benchmarks much. Content-aware prefetching rimgoerform as well as re-
gion prefetching and is typically subsumed by it. We arergdied in examining more
benchmarks to see if content-aware pointer prefetchiniyviays subsumed by region pre-

fetching. Content-aware prefetching detects the poiikervalues in a fetched cache line.

131

This kind of prefetch is usually too late for the pointers isheort loop. It would be inter-
esting to examine the interaction between region prefetchnd software linked structure
prefetching techniques. In particular, we plan to examio& fjump pointer prefetching
interacts with region prefetching.

The application of the hardware/software cooperative @ggr is not limited to cache
replacement and prefetching. We can use compiler hintsitteglata placement and move-
ment in a partitioned cache or a NUCA (non-uniform cache s&ceache [60]. We also
see the applicability of this approach to cache cohereneeany disambiguation, and 1/0
controls. In a partitioned cache, the compiler can tell \wiigo arrays in a nest tend to
conflict with each other and thus should be mapped to diftexrgrartitions. In a NUCA
cache, compiler analysis can determine which cache linalghme promoted to a bank
closer to the processor. Compiler dependence testing &aslaalalysis can specify when
there is no dependence between a store and a load. This atfomtan be used to speed

up speculative execution.

6.3 Concluding Remarks

We have demonstrated that a hardware/software coopeagipreach can bridge much
of the processor-memory performance gap. We propose twjuariechniques using this
approach and show that they improve cache replacement afetqiring. We also show
that the two techniques work well independently and togetki¢ée present practical and
simple hardware designs, compiler algorithms, and compig@lementations. Our ap-

proach is thus feasible to include in future computer system

132

BIBLIOGRAPHY

[1] W. A. Abu-Sufah. Improving the Performance of Virtual Memory Compute?D
thesis, Dept. of Computer Science, University of lllinotslrbana-Champaign,
1978.

[2] A. Agarwal and S. D. Pudar. Column-associative cachetedhnique for reducing
the miss rate of direct-mapped caches. Pioceedings of the 20th International
Symposium on Computer Architectupages 169-178, San Diego, CA, May 1993.

[3] V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and Doug Barg Clock rate versus
IPC: The end of the road for conventional microarchiteuta Proceedings of the
27th International Symposium on Computer Architectpages 248-259, Vancou-
ver, Canada, June 2000.

[4] T. Alexander and G. Kedem. Distributed predictive cadesign for high perfor-
mance memory system. Becond International Symposium on High Performance
Computer Architecturgpages 254-263, February 1996.

[5] Murali Annavaram, Jignesh M. Patel, and Edward S. Dauid®ata prefetching by
dependence graph precomputationPhoceedings of the 28th Annual International
Symposium on Computer Architecturages 52-61, 2001.

[6] Architecture and Language Implementation Group, Ursitg of Massachusetts,
Ambherst. Scale compiler infrastructure. Http://ali-www.cs.umass.edu/Scale

[7] R. Ashok, S. Chheda, and C. A. Moritz. Cool-mem: Combinstatically spec-
ulative memory accessing with selective address transldtr energy efficiency.
In Proceedings of the Tenth International Conference on Aechiral Support for
Programming Languages and Operating Systepages 133-143, San Jose, CA,
October 2002.

[8] T. Austin and D. Burger. Micro-30 SimpleScalar tutorialTechnical report,
http://www.cs.wisc.edu/ mscalar/ss/tutorial.html, 799

[9] J-L. Baer and T-F. Chen. An effective on-chip preloadsesheme to reduce data ac-
cess penalty. IfProceedings of Supercomputing ;9dages 176-186, Albuquerque,
NM, November 1991.

[10] L. A. Belady. A study of replacement algorithms for atual-storage computer.
IBM Systems Journab(2):79-101, 1966.

133

[11] D. Bernstein, D. Cohen, A. Freund, and D. E. Maydan. Cienpechniques for
data prefetching on the PowerPC.The 1996 International Conference on Parallel
Architectures and Compilation Technigugmges 19-26, Limassos, Cyprus, June
1995.

[12] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum,daNl. S. Lam.
Compiler-directed page coloring for multiprocessorsPtaoceedings of the Seventh
International Conference on Architectural Support for framming Languages and
Operating Systempages 244-257, Cambridge, MA, October 1996.

[13] D. Burger. Hardware Techniques to Improve the Performance of the Rroce
sor/Memory Interface PhD thesis, Dept. of Computer Science, University of Wis-
consin at Madison, 1998.

[14] D. Burger, A. Kagi, and J. R. Goodman. Memory bandwilittitations of future
microprocessors. IRroceedings of the 23rd International Symposium on Conmnpute
Architecture pages 78-89, Philadelphia, PA, May 1996.

[15] D. C. Burger and T. M. Austin. The SimpleScalar tool se&trsion 2.0.Computer
Architecture News25(3):13-25, June 1997.

[16] B. Cahoon and K. S. McKinley. Simple and effective arpagfetching for Java. In
ACM Java Grandgpages 86-95, Seattle, WA, November 2002.

[17] Brendon Cahoon and Kathryn S. McKinley. Data flow analyer software pre-
fetching linked data structures in Java. Pmoceedings of the 2001 International
Conference on Parallel Architectures and Compiler Techag pages 280-291,
Barcelona, Spain, Sept. 2001.

[18] B. Calder, C. Krintz, S. John, and T. Austin. Cache-cimgs data placement. In
Proceedings of the Eighth International Conference on Aectural Support for
Programming Languages and Operating Systepagjes 139-150, San Jose, CA,
October 1998.

[19] D. Callahan, K. Kennedy, and A. Porterfield. Softwarefptching. InProceedings
of the Fourth International Conference on Architecturapgart for Programming
Languages and Operating Systemages 40-52, Santa Clara, CA, April 1991.

[20] S. Carr, K. S. McKinley, and C. Tseng. Compiler optintiaas for improving data
locality. In Proceedings of the Sixth International Conference on Aedhural Sup-
port for Programming Languages and Operating Systgrages 252—-262, San Jose,
CA, October 1994.

[21] M. Charney and A. Reeves. Generalized correlatiorethdsardware prefetching.
Technical Report EECEG_95-1, Cornell University, February 1995.

[22] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. LebeEkact analysis of the
cache behaviour of nested loops.Rroceedings of the SIGPLAN 2001 Conference

134

on Programming Language Design and Implementatpages 286—-297, Snowbird,
Utah, June 2001.

[23] T. Chen and J. Baer. Reducing memory latency via nookihgy and prefetching
caches. IrProceedings of the Fifth International Conference on Atettural Sup-
port for Programming Languages and Operating Systepagjes 51-61, Boston,
MA, October 1992.

[24] T. Chen and J. Baer. Effective hardware based datatphafg. IEEE Transactions
on Computers44(5):609-623, May 1995.

[25] T-F Chen. An effective programmable prefetch enginehigh-performance pro-
cessors. IfProceedings of the 29th International Symposium on Miabigecture
pages 237—-242, Ann Arbor, Michigan, November 1995.

[26] Tien-Fu Chen. Data Prefetching for High Performance ProcessoBhD thesis,
University of Washington, Department of Computer Scienog Bngineering, July
1993.

[27] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-anoss structure definition.
In Proceedings of the SIGPLAN '99 Conference on Programmimguage Design
and Implementatiarpages 13—-24, Atlanta, GA, May 1999.

[28] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-coneas structure layout. In
Proceedings of the SIGPLAN 99 Conference on Programminggluage Design
and Implementatiarpages 1-12, Atlanta, GA, May 1999.

[29] T. M. Chilimbi and J. R. Larus. Using generational gaybaollection to imple-
ment cache-conscious data placemeniTHe International Symposium on Memory
Managementpages 37—-48, Vancouver, BC, October 1998.

[30] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot dattream prefetching for
general-purpose programs. Rroceedings of the SIGPLAN 2002 Conference on
Programming Language Design and Implementatioaiges 199-209, Berlin, Ger-
many, June 2002.

[31] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Chiiéter Hughes, Yong-Fong
Lee, Dan Lavery, and John P. Shen. Speculative precomguitdiong-range pre-
fetching of delinquent loads. IRroceedings of the 28th International Symposium
on Computer Architecturgpages 14—25, June 2001.

[32] Robert Cooksey, Stephen Jordan, and Dirk Grunwald.afedss, content-directed
data prefetching mechanism. Pmoceedings of the Tenth Annual International Con-
ference on Architectural Support for Programming Langusagad Operating Sys-
tems pages 279-290, San Jose, CA, October 2002.

135

[33] Vinodh Cuppu and Bruce Jacob. Concurrency, latencgystem overhead: Which
has the largest impact on uniprocessor DRAM-system pedoo®. InProceed-
ings of the 28th International Symposium on Computer Aechitre pages 62—73,
Goteborg, Swenden, June 30 - July 4 2001.

[34] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Meidg performance com-
parison of contemporary DRAM architectures. Rroceedings of the 26th Interna-
tional Symposium on Computer Architectysages 222-233, Atlanta, GA, May 2 -
4 1999.

[35] F. Dahigren, M. Dubois, and P. Stenstrom. Fixed and taapequential prefetch-
ing in shared-memory multiprocessors. Pnoceedings of the 1993 International
Conference on Parallel Processingages 56—63, St Charles, IL, 1993.

[36] F. Dahlgren and P. Stenstrom. Effectiveness of harevsaised stride and sequential
prefetching in shared-memory multiprocessors.First International Symposium
on High Performance Computer Architectugages 68—77, Raleigh, NC, January
1995.

[37] B. Dileep. Parallelism in mainstream enterprise mlatfs of the future. IikKeynote,
the 2002 International Conference on Parallel Architeetand Compilation Tech-
niques Charlottesville, Virginia, September 2002.

[38] C. Dulong. The IA-64 architecture at workEEE Computer 31(7):24-32, July
1998.

[39] S. Ghosh, M. Martonosi, and S. Malik. Precise miss asialjor program trans-
formations with caches of arbitrary associativity. Rroceedings of the Eighth In-
ternational Conference on Architectural Support for Pragming Languages and
Operating Systemgpages 228-239, San Jose, CA, October 1998.

[40] J. D. Gindele. Buffer block prefetching methodBm Tech. Disclosure Bull.
20(2):696-697, July 1977.

[41] G. Goff, K. Kennedy, and C. Tseng. Practical dependdestng. InProceedings
of the SIGPLAN '91 Conference on Programming Language Demsigl Implemen-
tation, pages 15-29, Toronto, Canada, June 1991.

[42] E. H. Gornish and A. V. Veidenbaum. An integrated hardesoftware scheme for
shared-memory multiprocessors. Rroceedings of the 1994 International Confer-
ence on Parallel Processingages 281-284, St Charles, IL, 1994.

[43] E. G. Hallnor and S. K. Reinhardt. A fully associativéta@re-managed cache de-
sign. InProceedings of the 27th International Symposium on Compuithitecture
pages 107-116, Vancouver, Canada, June 2000.

[44] P. Havlak and K. Kennedy. An implementation of interqedural bounded regular
section analysiSEEE Transactions on Parallel and Distributed Syste&(8):350—
360, July 1991.

136

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Hennessy and D. Patterso@omputer Architecture: A Quantitative Approach
Morgan Kaufmann Publishers, San Mateo, CA, 1995.

M. D. Hill. Aspects of Cache Memory and Instruction Buffer PerformariegieD
thesis, Computer Science Dept., University of CaliforBiarkeley, 1987. Available
as Technical Report UCB/CSD 87/381.

M. D. Hill. A case for direct-mapped cachelEEE Computer21(12):25-40, De-
cember 1988.

M. D. Hill and A. J. Smith. Evaluating associativity inRU cacheslEEE Transac-
tions on Computers38(12):1612—-1630, December 1989.

Glenn Hinton, Dave Sager, Mike Upton, Darren Boggs, @@armean, Alan Kyker,
and Patrice Roussel. The microarchitecture of the Pentipnodessorintel Tech-
nology Journal (Q1 2001), 2001.

Christopher J. Hughes and Sarita Adve. Memory-sidéeprhing for linked data
structures. Technical Report UIUCDCS-R-2001-2221, Ui of Illinios, Urbana
Champagne, May 2001.

Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. Bxpipothe design space
of future CMPs. InProceedings of the 2001 International Conference on Pal&l
rchitectures and Compilation Techniguesiges 199-210, Sep 2001.

T. L. Johnson, M. C. Merten, and W. W. Hwu. Run-time sakltbcality detection
and optimization. IrProceedings of the 30th International Symposium on Microar
chitecture pages 57—64, Research Triangle Park, NC, December 1997.

Doug Joseph and Dirk Grunwald. Prefetching using Manedictors. InProceed-
ings of the 24th Annual International Symposium on CompAtehitecture pages
252-263, 1997.

N. P. Jouppi. Improving direct-mapped cache perforoedny the addition of a small
fully-associative cache and prefetch buffersPhceedings of the 17th International
Symposium on Computer Architectupages 364—-373, Seattle, WA, June 1990.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Baeerjé matrix-based
approach to the global locality optimization problem. The 1998 International
Conference on Parallel Architectures and Compilation Teghes pages 306-313,
Paris, France, October 1998.

M. Karlsson, F. Dahlgren, and P. Sternstrom. A prefetghiechnique for irregular
accesses to linked data structures.SIrth International Symposium on High Per-
formance Computer Architectyrpages 206—-217, Toulouse, France, January 2000.

K. Kennedy, K. S. McKinley, and C. Tseng. Interactivergdbel programming us-
ing the ParaScope EditolEEE Transactions on Parallel and Distributed Systems
2(3):329-341, July 1991.

137

[58] R. E. Kessler, E.J. McLellan, and D.A. Webb. The Al-
pha 21264 microprocessor architecture. Technical report,
http://www.compaqg.com/AlphaServer/download/ev6qtuih. November 1999.

[59] Richard E. Kessler. The Alpha 21264 microprocessBEE Micro, 19(2):24-36,
Mar/Apr 1999.

[60] Changkyu Kim, Doug Burger, and Stephen W. Keckler. Aagte, non-uniform
cache structure for wire-delay dominated on-chip cachesPrboceedings of the
Tenth Annual International Conference on Architecturapfart for Programming
Languages and Operating Systemages 211-222, San Jose, CA, October 2002.

[61] D. Kim and D. Yeung. Design and evaluation of compilegalthms for pre-
execution. InProceedings of the Tenth International Conference on Aechiral
Support for Programming Languages and Operating Systeages 159-170, San
Jose, CA, October 2002.

[62] A.C.Klaiberand H. M. Levy. An architecture for softveacontrolled data prefetch-
ing. InProceedings of the 18th International Symposium on Computditecture
pages 43-53, Toronto, Canada, May 1991.

[63] David Kroft. Lockup-free instruction fetch/prefetchche organization. IRroceed-
ings of the Eighth International Symposium on Computer ikgcture pages 81-87,
May 1981.

[64] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe p8w®dence graphs and
compiler optimizations. IrfConference Record of the Eighth Annual ACM Sympo-
sium on the Principles of Programming Languageages 207-218, Williamsburg,
VA, January 1981.

[65] S. Kumar and C. Wilkerson. Exploiting spatial locality data caches using spa-
tial footprints. InProceedings of the 25th International Symposium on Compute
Architecture pages 357-368, Barcelona, Spain, June 1998.

[66] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-blocldfmton and dead-block
correlating prefetchers. IRroceedings of the 28th International Symposium on
Computer Architecturgpages 144—-154, July 2001.

[67] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEfchenarks: A case
study.IEEE Computerpages 15—-26, October 1994.

[68] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the SRM speech recog-
inition system. INEEE Transactions on Acoustics, Speech and Signal Prewgssi
volume 38(1), pages 35-44, 1990.

[69] Wei-Fen Lin, Steven K. Reinhardt, and Doug Burger. Rewdg DRAM latencies
with an integrated memory hierarchy designPhoceedings of the 7th International
Symposium on High Performance Computer Architecfpages 301-312, Jan 2001.

138

[70] G. Lindenmaier, K. S. McKinley, and O. Temam. Load saled) with profile
information. In A. Bode, T. Ludwig, and R. Wismuller, ediso Euro-Par 2000
— Parallel Processingvolume 1900 ofLecture Notes in Computer Sciengages
223-233, Munich, August 2000. Springer-Verlag.

[71] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Rageli SPAID: Software
prefetching in pointer- and call-intensive environmentsProceedings of the 28th
Annual IEEE/ACM International Symposium on Microachiteet pages 231-236,
November 1995.

[72] C. Luk and T. C. Mowry. Compiler-based prefetching fecursive data structures.
In Proceedings of the Seventh International Conference ohi#atural Support for
Programming Languages and Operating Systgmages 222—-233, Cambridge, MA,
October 1996.

[73] C. Luk and T. C. Mowry. Cooperative prefetching: Conepidnd hardware support
for effective instruction prefetching in modern processotn Proceedings of the
31st International Symposium on Microarchitectupages 182—-194, Dallas, TX,
December 1998.

[74] Chi-Keung Luk. Tolerating memory latency through saite-controlled pre-
execution in simultaneous multithreading processor®rateedings of the 28th In-
ternational Symposium on Computer Architectyorages 40 — 51, Goteborg, Swen-
den, June 30 - July 4 2001.

[75] N. McIntosh.Compiler Support for Software PrefetchinghD thesis, Rice Univer-
sity, May 1998.

[76] S. A. McKee, A. Aluwihare, B. H. Clark, R. H. Klenke, T. Candon, C. W. Oliver,
M. H. Salinas, A. E. Szymkowiak, K. L. Wright, W. A. Wulf, andH. Aylor. Design
and evaluation of dynamic access ordering hardwarePréiceedings of the 1996
ACM International Conference on Supercomputipgges 125-132, Philadelphia,
PA, May 1996.

[77] S. A. McKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H. Smas, J. H. Aylor,
and A. P. Batson. Smarter memory: Improving bandwidth fozashed references.
IEEE Computer31(7):54—63, July 1998.

[78] K. S. McKinley, S. Carr, and C. Tseng. Improving datadity with loop transforma-
tions. ACM Transactions on Programming Languages and Syste&(s):424—-453,
July 1996.

[79] K. S. McKinley and O. Temam. Quantifying loop nest lagalising SPEC’95 and
the Perfect benchmark®CM Transactions on Computer Systerhs(4):288—336,
November 1999.

[80] C. A. Moritz, M. Frank, and S. Amarasinghe. Flexcachdramework for compiler
generated data caching. Lecture Notes in Computer Sciencpringer Verlag,
2001.

139

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hogps: Software caching
for raw microprocessors. Technical Report LCS-TM-599, dralory for Computer
Science, MIT, August 1999.

T. Mowry, M. S. Lam, and A. Gupta. Design and evaluatiba compiler algorithm
for prefetching. InProceedings of the Fifth International Conference on Atetu

tural Support for Programming Languages and Operating &yst pages 62—73,
Boston, MA, October 1992.

V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM referenarual (version 1.0).
Technical Report Technical Report 9705, Rice UniversitgpD of Electrical and
Computer Engineering, August 1997.

S. Palacharla and R. E. Kessler. Evaluating streamelsifis a secondary cache
replacement. IrProceedings of the 21th International Symposium on Compute
Architecture pages 24-33, Chicago, IL, April 1994.

M. Prvulovi, D. Marinov, Z. Dimitrijevic, and V. Miluthovic. The split spatial/non-
spatial cache: A survey and reevaluation of performaheEE TCCA Newsletters
pages 8-17, 1999.

W. Pugh. A practical algorithm for exact array depermeanalysis.Communica-
tions of the ACM35(8):102—-114, August 1992.

J. A Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, an&#rens. Utilizing reuse
information in data cache management.Pimceedings of the 1997 ACM Interna-
tional Conference on Supercomputimmges 449-456, Melbourne, Australia, July
1998.

A. Roth and G. Sohi. Effective jump-pointer prefetahiior linked data structures. In
Proceedings of the 26th International Symposium on Computditecture pages
111-121, Atlanta, GA, May 1999.

Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Delemce based prefetch-
ing for linked data structures. IRroceeding of the Eighth International Confer-
ence on Architectural Support for Programming Languages @perating Systems
pages 115-126, 1998.

Vatsa Santhanam, Edward H. Gronish, and Wi-Chung Hsua prefetching on the
HP PA-8000. InProceedings of the 24th International Symposium on Compute
Architecture pages 264-273, Denver, CO, June 1997.

T. Sherwood, B. Calder, and J. Emer. Reducing cacheesigsing hardware and
software page placement. Rroceedings of the 1997 ACM International Conference
on Supercomputingages 155-164, Rhodes, Greece, June 1999.

T. Sherwood, S. Sair, and B. Calder. Predictor-dirdtream buffers. IrPro-
ceedings of the 33rd International Symposium on Microdedture pages 42-53,
Monterey, California, December 2000.

140

[93] Timothy Sherwood, Erez Perelman, and Brad Calder.dasck distribution analy-
sis to find periodic behavior and simulation points in apgtiens. InProceedings of
the 2001 International Conference on Parallel Architeetsiand Compilation Tech-
niques pages 3—14, Barcelona, Spain, Sept. 2001.

[94] J. P. Singh, W. Weber, and A. Gupta. Splash: Standfordliga applications for
shared-memory. Technical Report TR CSL-TR-91-469, Coepbystems Labora-
tory, Stanford University, April 1991.

[95] J. Skeppstedt and M. Dubois. Hybrid compiler/hardwanefetching for multipro-
cessors using low-overhead cache miss trapraceedings of the 1997 Interna-
tional Conference on Parallel Processirages 298-307, Bloomington, IL, August
1997.

[96] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: Singid effective adaptive
page replacement. IAroceedings of the ACM SIGMETRICS Conference on Mea-
surement & Modeling Computer Systeipages 122-133, Atlanta, GA, May 1999.

[97] A. J. Smith. Sequential program prefetching in memeduegrarchies.IEEE Com-
puter, 11(12):7-21, December 1978.

[98] A.J. Smith. Cache memorie€omputing Survey44(3):473-530, September 1982.

[99] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using erdsvel memory thread
for correlation prefetching. IRroceedings of the 29th International Symposium on
Computer Architecturgpages 171-182, May 2002.

[100] S.T. Srinivasan and A. R. Lebeck. Load latency toleean dynamically scheduled
processorsJournal of Instruction Level Parallelispi:1-24, 1999.

[101] B. Steensgaard. Points-to analysis in almost lingmae.t In Proceedings of the
Twenty-third Annual ACM Symposium on the Principles of Raogning Lan-
guagespages 21-24, St. Petersburg, FL, January 1996.

[102] R. A. Sugumar and S. G. Abraham. Efficient simulatiorcathes under optimal
replacement with applications to miss characterizatiorPrbceedings of the ACM
SIGMETRICS Conference on Measurement & Modeling Compyse®s pages
24-35, Santa Clara, CA, May 1993.

[103] O. Temam. An algorithm for optimally exploiting spatiand temporal locality in
upper memory levelslEEE Transactions on Compute8(2):150-158, February
1999.

[104] Univerisity of Maryland. The Omega Library 1996.
http://www.cs.umd.edu/projects/omega/.

[105] O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, and C. Aoiiiz. Cool-cache for
hot multimedia. InProceedings of the 34rd International Symposium on Microar
chitecture pages 274-283, Austin, TX, December 2001.

141

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, and C. Aofiz. Cool-cache: A
compiler-enabled energy efficient data caching frameworlembedded and multi-
media systemsACM Transactions on Embedded Computing Systems, Spexial Is
on Low Powey2(3):373-392, August 2003.

O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz. @detch: Compiler-
enabled power-aware fetch throttling. ACM Computer Architecture Lettersages
100-103, May 2002.

O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz. & minimax cache: An
energy-efficient framework for media processors.Skventh International Sympo-
sium on High Performance Computer Architectupages 131-140, Boston, MA,
February 2002.

S. P. VanderWiel and D. J. Lilja. A compiler-assistadiadprefetch controller. IRro-
ceedings of International Conference on Computer Degigges 372—-377, Austin,
TX, 1999.

E. Witchel, S. Larsen, C. S. Ananian, and K. Asanoviaeligy efficient architec-
tures: Direct addressed caches for reduced power consumgh Proceedings of
the 34rd International Symposium on Microarchitectupages 124-133, Austin,
TX, December 2001.

M. E. Wolf and M. Lam. A data locality optimizing algdinim. InProceedings of the
SIGPLAN '91 Conference on Programming Language Design amgldmentation
pages 30—44, Toronto, Canada, June 1991.

W. A. Wong and J. Baer. Modified LRU policies for impragi second-level cache
bahavior. InSixth International Symposium on High Performance ConrpAtehi-
tecture pages 49-60, Toulouse, France, January 2000.

Y. Wu. Efficient discovery of regular stride patternsnregular programs and its use
in compiler prefetching. IfProceedings of the SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementatipeges 210-221, Berlin, Germany,
June 2002.

C.-L. Yang and A. R. Lebeck. Push vs. pull: Data movenfienlinked data struc-
tures. InProceedings of the 1997 ACM International Conference orefgmput-
ing, pages 176-186, May 2000.

Kenneth C. Yeager. The MIPS R10000 superscalar mioagssor.IEEE Micro,
16(2):28-40, April 1996.

Lixin Zhang. URSIM reference manual. Technical RepddCS-00-015, Univer-
sity of Utah, August 2000. http://www.cs.utah.edu/prégémpulse.

Z.Zhang and T. Torrellas. Speeding up irregular aggpions in shared memory mul-
tiprocessors: Memory binding and group prefetching.Piceedings of the 22nd

142

International Symposium on Computer Architectypages 1-19, Santa Margherita
Ligure, Italy, June 1995.

143

