
1

Getting Started in
Programming Language Design Research

Object-Oriented
and Imperative Languages

William Cook

Univertisy of Texas at Austin

2

More about Me

• I’ve lived in nine sates
– MI, PA, IL, MA, FL, LA, RI, CA, TX

• Worked many jobs
– HP, Apple, BAM!, Net-It, Allegis, UT

– (ask about the $60M in venture capital)

• Married w/8-year old son Miles
– My wife Robin is a user-interface designer

• Research interests
– Programming languages & databases

– Structured concurrency/workflow

– Model-driven & feature-oriented programming

3

Picking Topics

• Train your “spider senses”
– As undergraduates, we work around problems

· Also true of most programming tasks

– As grad students, focus on the problems

• Do something
… even if it doesn’t seem big enough

– In the doing, you may bump into a bigger problem

• Solve someone else’s problem
– Someone else ==== person outside PL

– Learn about other areas in CS, and outside CS

4

Picking Topics

• Best: direct contact with problem area
– Get your hands dirty

• Theory
– Theory does not tell you what to do

– It helps guide/constraint/analyze

• Learn 2 or 3 things deeply
– Opportunities are found at the interfaces

• Find problem and solution together

5

Criteria Different by Topic

• Types
– Proof of soundness (mechanically checked!)

• Language runtime (systems)
– Implementation, performance

• Language design papers
– Good motivation, examples

• Analysis papers
– Proof, implementation, complexity,
performance

• Garbage Collection
– careful experiment design and measurement

6

Use the Tools

• Semantics and Analysis

• Language Theory Substrates

• Implementation Substrates

• Verification and mechanization

• (Runtimes… in another talk)

• Practical Tools

• Evaluation + Packaging

7

Foundation

• Denotational Semantics
– good for intuition

– λ-calculus

• Operational Semantics
– Small-step

· good for proofs

– Large-step
· natural, easy interpreters

· recent proof techniques

8

Combination of Two Areas

• Denotational Semantics + Objects

A

Object

Y(G)

G

Self-reference

∆(A)

A∆

Modification

∆(Y(G))

G∆

Y(∆�G)

G∆

Inheritance ∆(Y(G))

G∆

9

The Tools

• Abstract Interpretation
– compute over abstract values – types,
properties, states

• Static analysis
– lightweight formal methods

– typing

– shape analysis

– ownership

• Model checking

• Partial evaluation

10

Language Substrates

• Featherweight Java (Pierce’s book)
– functional subset of java

• Lightweight Java
– http://www.cl.cam.ac.uk/~rs456/lj/

– imperative, true subset of java

– comes with formalization in Isabelle/HOL

• ClassicJava
– imperative

– also support for mixins

11

Implementing Java Extensions

• Polyglot
– Widely used

– Complex plug-in model

• JastAdd
– Newer

– Based on declarative attribute grammars

12

Thought Tools

• Galois connections
– loose isomorphism

between ordered sets

• Fixed points
– recursion and induction

• Linear Types
– control over resources

• Abstract data types
and algebra
– Contrast with objects

• Bisimulation
– equivalence of processes

• Datalog
– data query/transformation

• Attribute grammars
– declarative static analysis

• Category theory
– theory of structure

(some say: “content-free”)

13

Language Environments

• Implementations are convincing

• Ott tool
– Generates Isabelle/HOL specs (an Latex)

– Includes formalization of Lightweight Java

• PLT Redex
– Based on PLT Scheme

– domain-specific language (DLS)

– specifying and debugging operational
semantics

• Eclipse
– For refactoring/Development tools

14

15

Mechanical Proof Checking

• Theorem provers
– Isabelle/HOL

– Twelf

– ACL2

– PVS

• Specification languages
– Alloy, Maude, Z

• POPLMark Challenge
– Challenge problems for “mechanizing meta-
theory”

16

Practical Tools

• Latex
– Inference Rules: Pierce’s “bcprules.sty”

– Presentations: PP or Latex??

• Graphics
– OpenOffice � eps, IPE � esp

• Use CVS for collaboration
– Latex too --- 5 author papers

– Eclipse interface

• Unison file sync

• Shell script!
– running tests

– gathering results

17

Learn new skills

You are here because
you are good at something

To be successful,
need to be good

at a range of skills

18

Tasks

– Managing a small business

– Presenting your work

– Get funding

– Starting projects

– Accounting

– How to really dig into
unfamiliar territory

– Finding topics to work on

– How to skim

– Managing a team

Understand your work
style
~~

Compensate for
deficiencies

19

my profile

• Quick thinking, sometimes too quick

• A programmer at heart

• Use theory as a tool

• Relentless, creative, intuitive

• Know what can be proven

• Proofs themselves are not easy

• Struggle with email (time management)

• Not a “born” writer, bad spelling

• How do you think I compensate?

20

What do you
have to produce

to get a
PhD?

21

No,
it’s not your thesis

22

It is you

