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ABSTRACT

The use of randomness in quantum circuits is an intrinsically interesting property

due to the model’s convergence to the hard-to-simulate Haar measure. While random

circuit sampling is both promising for quantum advantage and realistically imple-

mentable on a NISQ device, it is not yet efficiently verifiable. Previous work in

studying peaked random circuit sampling models has shown optimism for a poten-

tially viable model [2]. In this paper, we extend those observations by studying a

simpler, alternative model to quantum computation involving beamsplitter networks.

We present numerical and theoretical findings on the structure of peaked beamsplit-

ter networks and evaluate their potential as a candidate for quantum advantage

experiments.
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1 Introduction

1.1 Overview

Figure 1: Landscape of quantum advantage proposals [2]

Quantum computing is a field centered on solving tasks based on the principles of

quantum mechanics. Within this landscape, ideas like random circuit sampling have

garnered public interest, in part due to Google’s experiment on benchmarking fidelity

with linear cross-entropy (LXEB) scores on their 53-qubit Sycamore processor [5].

While this task claims to show a quantum speedup over classical supercomputers,

the proposal lacks an efficient classical method for certifying the output distribution.

The importance of having a clear method of verification motivates a discussion on

what constitutes a convincing demonstration of quantum advantage.

The first desired property is that algorithms exhibit in-principle quantum

advantage. At a high level, quantum advantage is the idea that quantum computers

can outperform classical ones at certain tasks. Usually, the task is identified with

a complexity-theoretic assumption such as the unlikely collapse of the polynomial
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hierarchy [1] or the average-case hardness of highly entangled random circuits to #P-

hard as they approach Haar-random states in exponential depth [7]. Consequently,

discovering the existence of a classical algorithm that samples from this distribution

efficiently would result in foundational revisions to complexity-theoretic assumptions.

Examples of tasks in this region include BosonSampling and random circuit sampling.

It is also known that quantum hardware is inherently error-prone due to the

inability of quantum systems to preserve the delicate state of quantum information

(QI) such as qubits in entanglement or superposition. In order to prevent most

demonstrations from breaking down at larger systems, we should look for algorithms

that are feasible on noisy, intermediate-scale quantum (NISQ) devices. An

example of such an algorithm is the linear optical model of BosonSampling, which

can be implemented in optics laboratories on near-term devices.

Finally, we should specify that our algorithm is efficiently verifiable. This

enables a classical verifier to check the outputs of the quantum computation without

running the algorithm itself. More concretely, assume a classical verifier A is handed

a quantum algorithm Q from some quantum party B, for which B may claim Q

outperforms classical computers at certain tasks. We then demand that A should be

able to check certain properties of the output distribution of Q to ensure that B is

being “honest” with their description. One type of construction that falls into this

category is peaked circuits.

1.2 Challenges

While these tasks are well-defined, achieving a convincing demonstration of quantum

advantage remains difficult due to most demonstrations either breaking down at
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larger systems or being hard to verify. In the following, we briefly describe two strong

candidates for quantum advantage that fall short of a convincing demonstration due

to at least one of these issues.

As mentioned previously, while Google’s experiment is efficiently implementable

on a linear optical platform, the proposal lacks a clear method for classically verifying

the LXEB scores of the quantum outputs.

Shor’s algorithm delivers an exponential speedup for solving the problem of fac-

toring large numbers, which was thought to be hard to recover due to being hard

to factor classically. This makes it a candidate for quantum advantage which real-

istically threatens to break the cryptography upon which credit card security lies.

However, QI is highly fragile: quantum noise gives rise to many categorizations of

errors (bit flip, phase flip, dephasing or depolarizing noise) that develop in various

settings (prolonged interaction of qubits with the environment, frequent photon loss

in linear optical regimes). Because of this, a physical implementation of Shor’s al-

gorithm would require a circuit consisting of roughly 1,400 qubits and on the order

of millions of gates [13]. This implementation is infeasible given current quantum

systems can only sustain coherent computation across a few hundred qubits before

error correction fails to reverse the noise.

1.3 Contributions

Does there exist an algorithm that lies in the intersection of all three criteria of being

hard to simulate classically, efficiently verifiable, and realizable on near-term quan-

tum devices? Proof of such an algorithm would yield the first ever quantum speedup
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to be physically realized on a real near-term quantum device. While BosonSampling

provides evidence for in-principle quantum advantage but lacks the property of ef-

ficient verification, peaked circuits offer the ability to verify outputs but are known

to be easy to simulate classically. Combining these tasks raises the natural question

of whether it is possible to generate peaked but hard-to-sample from distributions.

Our model combines the linear optical setup of BosonSampling with the efficiently

verifiable properties of peaked circuit sampling to address this question.

2 Background

2.1 The standard circuit model

The principle model of quantum computation is the standard circuit model, which

has three components: input states called qubits, unitary gates governing the state

evolution, and measurement. In classical circuits, input bits (0s and 1s) are fed into

wires with gates to produce some output bit(s). Similar to classical circuits, one can

imagine a quantum circuit as a framework in which input bits (|0⟩ and |1⟩) travel

down “wires” that time-evolve the state. Importantly, the gates U that are applied

along the way result in non-classical interactions.
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Figure 2: The standard circuit model

Gate evolution governs various quantum-specific properties of the state such as

operator growth, entanglement, and superposition. Measurement collapses the state

into a single classical outcome. Although we are allowed to make intermediate mea-

surements, the principle of deferred measurement tells us that adding extra auxillary

qubits and controlled-NOT gates to our circuit and measuring at the end can simu-

late an equivalent circuit. While the effect of collapsing a state upon measurement is

inevitable, there are ways to mitigate this information loss. For example, one might

consider using partial measurements to control the spread of entanglement through

the system [15] or apply the gentle measurement lemma which tells us that it is pos-

sible to minimally disturb a state with a highly likely measurement outcome upon

measuring in a basis very close it.

2.2 Sampling

The task for sampling problems is to take as input an (efficient) classical description

of a circuit and generate samples from its output distribution. For instance, we may

5



be given a n-qubit quantum circuit U specified by U = U1, · · ·Um in which each

Ui is a 2-local gate (Ui = I ⊗ I ⊗ · · · ⊗ Vi ⊗ I ⊗ I) where Vi acts on two specified

qubits. This may be the case if we are given a quantum circuit whose gates are 4×4

unitaries chosen randomly as in random circuit sampling. An ideal noiseless quantum

computer will sample x ∈ {0, 1}n according to Pr|ψ⟩(x) = |⟨x |ψ⟩|2 = |⟨x|U |0n⟩|2. Of

course, a quantum algorithm can exactly sample from this probability distribution by

simply running the circuit. A more interesting problem is examining the ability for

classical algorithms to sample, approximately or exactly, from quantum distributions.

2.3 Peaked Circuit Sampling

The task of peaked circuit sampling is to sample from a peaked distribution. We

say a distribution is peaked if maxs∈{0,1}n |⟨s|C|0n⟩|2 ≥ δ for δ ∈ [0, 1]. Let the

state corresponding to the maximum peaked weight be x. Since the distribution is

peaked, the probability of finding a collision on outcome x by sampling from the

output distribution polynomially many times is high, so with high probability one

can recover the peaked string x. Thus, giving x to a classical verifier would be a

way to efficiently verify the outputs of the quantum computation even if the classical

verifier cannot find an efficient algorithm that produces samples approximating the

quantum distribution.

2.4 BosonSampling

An alternative to the standard circuit model of qubit-based quantum computation

is the noninteraction-boson model in which a problem called BosonSampling resides.
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Bosons are a class of particles that can be physically realized as photons. In the

laboratory, BosonSampling can be implemented on a linear-optical platform in which

m modes host n identical photons which pass through a set of local optical elements

called beamsplitter and phaseshifter gates, to be measured at the end of the network

to determine their exact locations [1]. In comparison to the input states characterized

by qubits from the standard model, BosonSampling uses m modes as input which

represents different locations a boson can occupy in an m-dimensional Hilbert space.

Figure 3: Illustration of a beamsplitter and phaseshifter network from [2]

Expanding off Figure 3, we can think of each mode as an initial slot labeled

i ∈ [m] with some nonnegative integer si denoting the number of photons in that

mode. In particular, for this diagram m = 4. For n photons, we have that s1 + s2 +

· · · + sm = n. Applying a direct counting argument for n indistinguishable photons

in m distinguishable modes gives |Φm,n| =
(
m+n−1

n

)
basis states, which is equal to the

size of the Hilbert space. Any m ×m unitary can be applied to this single photon

state with m modes. Additionally, any unitary transformation on m modes can be

decomposed into a product of beamsplitters and phaseshifters, which formally act
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with the non-identity operation on two modes and one mode respectively.

BM×M =


cos(θ) − sin(θ)

sin(θ) − cos(θ)

1

1

 , PM×M =


eiθ

1

1

1



In the single-photon case, the probability of recovering the photon in some mode i

is |Ui,i|2: a function of a singular entry in the permanent of a BosonSampling matrix

U . We can generalize this single-photon input state to the n-photon standard initial

state: define |1n⟩ := |1, · · · , 1, 0, · · · , 0⟩ to be the state with one photon in each of

the first n modes and the remaining m − n modes unoccupied. Because only the

first n columns of any unitary act on the input state, the gate complexity of this

setup can be reduced from O(m2) to O(mn), which can further be improved to have

O(n logm) depth by parallelization (Theorem 6.1 of [2]). Correspondingly, we denote

with M :=
(
m+n−1

n

)
the size of the larger Hilbert space.

This gives rise to a natural homomorphism that lifts from the m×m unitary to

the M ×M unitary [2]. Each entry of this larger unitary is a permanent of a smaller

m × m unitary from the original unlifted space. Notably, while BosonSampling is

suspected to be far from universal for quantum computation, the homomorphism

discovered by Aaronson and Arkhipov reduces to a permanent calculation which

is in principle #P -hard for classical computation by the Permanent-of-Gaussians

conjecture.

Conjecture 1 (Permanent-of-Gaussians [2]). Given X ∼ N (0, 1)n×nC where N (0, 1)

is the Gaussian distribution with µ ∼ 0 and σ ∼ 1, estimating |Per(X)|2 to within
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±ϵ · n! is #P-hard.

At a high level, this says that we expect performing certain computations with

beamsplitter networks can give a quantum advantage over classical computations. It

is also worth noting that the Hilbert space dimension of qubit-based computation

scales with tensor products while the Hilbert space dimension in the noninteracting-

boson model of computation scales with the direct product. This is another property

in addition to the linear optical context which makes BosonSampling an easier model

to study. Thus, we suspect that investigating peaked boson models, i.e. random

beamsplitter networks with specific peaked properties, may shed light on new ways to

achieve quantum advantage or at least simplify the terrain for conducting numerical

experiments.

2.5 Searching for Structure

We previously posited the question of whether it is possible to generate peaked but

hard-to-sample from distributions. One method to build such distributions is to de-

sign circuits that encode hard-to-recover peaking structure through statistical inde-

pendence. While exact Haar-random unitaries guarantee full statistical independence

(i.e. all moments match that of the Haar measure), they are only efficient to gener-

ate numerically and impractical for most real experiments in requiring exponential

resources (i.e. form with exponential circuit depth). A more practical alternative is

using circuits that form approximate unitary t-designs, which approximate the Haar

distribution up to the tth moment and are known to emerge at polynomial depth

in generic random circuits [9]. However, it is not yet known if t-designs can arise
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efficiently in linear optical settings, or whether such designs can coexist with output

distributions exhibiting peaking behavior.

A more grounded question, then, is how postselecting from random instances

affects the statistical properties of standard BosonSampling. While approximate t-

designs are known to suppress peaking by closely matching the low-order moments

of the Haar distribution, postselecting on rare, high probability outcomes may yield

an ensemble of circuits with a modified set of moment distributions. This raises

the question of whether such postselected ensembles can retain properties of random

networks such as anticoncentration or k-wise indistinguishability, despite being highly

structured [12]. We further discuss the overlap between indistinguishability and

structure in near-term quantum advantage proposals in our Conclusion section.

Our final question is how studying explicitly peaked structures, which are struc-

tures that are easy to construct but also easy to spoof classically, can help us under-

stand how peakedness emerges. To this end, we use tools such as stochastic gradient

descent and quantum state learning to optimize over the peaking parameters of the

distribution. It is worth noting that from a quantum advantage perspective, nat-

urally postselected peaked states may be more realistic given they may still retain

hardness properties from the computational complexity of BosonSampling. Here,

the cost of identifying peaked circuits would likely shift the computational burden

to preprocessing, rendering the overall protocol inefficient despite the potential effi-

ciency of the final circuit. Resolving this issue is addressed in recent proposals such

as Complement Sampling [6], which suggests using cryptographic constructions like

S-AES to optimize their protocol.
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3 Related Work

The search for quantum advantage through specialized circuit architectures has

drawn significant attention in recent years. A notable contribution in this domain

is the recent work by Aaronson and Zhang [2], who conduct experiments on peaked

circuit sampling, which we recall as the task of sampling from output distributions

with a high concentration on specific computational basis states.

A portion of our work is extending the results from Aaronson and Zhang to the

linear optical regime. In particular, while the code is entirely our own, we have also

replicated many of the experimental results from this paper. For instance, we can

confirm the results of an explicitly-peaked output distribution for τr = 40 random

gates and τp = 10 peaking gates,

Replicated Original

Figure 4: Peaked circuits resemble the random Porter-Thomas distribution.

Their study demonstrates that peaked circuits enable efficient verification through
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the classical detection of peaked output states while still maintaining analytical and

numerical evidence supporting nontrivial peaking structure such as the ability to

invert beyond what is expected as compared to purely random behavior.

Complementing this work are experiments from IBM on the classical simulation of

peaked shallow quantum circuits [8]. Notably, there exist classical algorithms capable

of approximately sampling from output distributions of peaked circuits with constant

depth. This indicates that while simulating peaked circuits may be challenging in the

general case, enforcing certain structural constraints may render them more tractable

for an efficient classical simulation.

In the applied setting, BlueQubit recently hosted a Quantum Hackathon pro-

viding a platform for over 400 contestants to solve instances of peaked circuits.

Contestants were taksed to identify the peaked output state from circuits gener-

ated with obfuscation techniques using both classical and quantum resources. The

best algorithm (i.e. highest overall accuracy and efficiency) utilized tensor network

contraction techniques, a circuit optimization strategy employed by Aaronson and

Zhang in studying peaked circuit sampling [2]. This competition highlighted the

challenges associated with reverse-engineering peaked circuits and the potential of

tensor network contraction methods to efficiently recover parts of these distributions.

While exploratory in nature, the hackathon was beneficial for understanding what

kinds of peaked structures may be hard to simulate classically and hence have the

potential for demonstrating a quantum speedup.

Our work incorporates these ideas by attempting to better understand the nat-

urally formed and explicitly peaked structures that emerge from linear optics. In

particular, we ask whether postselection and explicit circuit design can give rise to
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a hard-to-simulate peaked output distribution in the linear optical regime, and aim

to recover the conditions under which such structured peaking emerges.

4 Methodology

4.1 Analytical setup

Definition 4.1 (Peaked linear optics network). Given δ ∈ (0, 1], we call the unitary

U δ-peaked if:

max
S∈Φm,n

|⟨S|ϕ(U)|1n⟩|2 ≥ δ

with a corresponding peak weight δS ≡ |⟨S|ϕ(U)|1n⟩|2.

Just by definining peakedness, we already get very interesting properties. For

instance,

Theorem 4.2 (Hamming weight concentration for peaked shallow circuits [8]). Let

U be a peaked shallow circuit with output distribution P . Suppose we choose a local

basis so that E[xj] ≤ 1
2
for every qubit j ∈ {1, · · · , n}. Then

Pr
x∼P

[|x| ≥ O(log n)] ≤ 1

poly(n)

For comparison, these results without peakedness are

Theorem 4.3 (Hamming weight concentration for shallow circuits [4]). Let U be a
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shallow circuit with output distribution P . Then for every t > 0,

Pr
x∼P

[||x| −medianHW(P )| ≥ t ·O(
√
n)] ≤ e−t

2

The first theorem tells us that there is a concrete classical algorithm for peaked

shallow quantum circuits formed from approximate sampling with noise. Taking

the contrapositive gives us a useful characterization stating that the circuits used to

demonstrate quantum advantage must not be shallow.

We now transition to the linear optical regime, where we highlight specific inter-

ferometer architectures that are known to analytically produce peaked states. For

these models, we also quantify the degree of peakedness by analyzing their associated

peak weights.

Claim 1. Assume input Fock states are of the form |1n⟩. Consider a linear optical

network consisting of a fixed random interferometer Cr followed by a variable peaking

region Cp. Then Cp must have O(n logm)-depth in order to produce an optimal

peaked value of δ = 1.

Proof. Let C ′
r be the decomposition of Cr into local beamsplitters and phaseshifters

gates, which can be done efficiently with a Reck [14] or Clements [11] construction

occurring in O(m2). Invert each gate in O(1) so that C ′
r = C−1

r and set the peaking

circuit to be Cp = C−1
r . We recover an identity circuit which is peaked by definition.

The overall procedure has O(n logm) depth by Theorem 6.1 of [2].

Historically, this decomposition has been done with both O(m2) optical elements

and depth by constructing a network of all-to-all beamsplitters followed by a layer
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of m phaseshifters [14] and can be improved to O(mn) by computing only over the

first n columns of the unitary matrix. It can subsequently be lowered to O(n logm)

depth via a parallelization technique [1]. The unitary transformation V that acts on

this circuit can be constructed as follows:

2log2 m−1︷ ︸︸ ︷
(· · · ) · · ·

4︷ ︸︸ ︷
(B4,8B3,7B2,6B1,5)

2︷ ︸︸ ︷
(B2,4B1,3)

1︷ ︸︸ ︷
(B1,2)

which gives O(logm) depth and 1+ 2+ 22 + · · ·+2log2m−1 = O(m) gates. This tells

us that with at least O(n logm) peaking gates, we can always recover a fully-peaked

circuit. However, we can also consider circuits producing non-optimal peakedness

that have less than O(n logm) peaking gates.

Claim 2. A network of O(t) nonlocal peaking gates BSθi,ϕi(1, i) acting on the first

mode and mode i for i ∈ [2, t] can transfer all amplitudes from the bottom t−1 modes

to the first mode.

Proof. We provide a construction. Let |ψ⟩ be the state outputted from a m-mode

random beamsplitter network Cr. Label the output amplitudes ai for i ∈ [m]. Then

setting the peaking circuit to be

Cp =
m∏
i=1

B1,i|ψ⟩

results in the aforementioned amplitude on mode 1, where

B(θ, ϕ) =

 cos(θ) −e−iϕ sin(θ)

eiϕ sin(θ) cos(θ)
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⇒ B1,i =
|a1|√

|a1|2 + |ai|2

 1 −a∗2
a∗1

−a2
a1

1


is the beamsplitter transformation that transfers amplitude from i to 1: mode i

now has no probability associated with it while mode 1 updates with probability√
|a1|2 + |ai|2. Solving gives θ = cos−1

(
|a1|√

|a1|2+|ai|2

)
and ϕ = θi − θ1 +

π
2
for ampli-

tudes in exponential form aj = rje
jθj .

While both these constructions are efficiently verifiable (being peaked) and ef-

ficiently constructable (being a result of the decomposition described above), the

distributions can be easily learned by a classical algorithm given that the structure

of these circuits is exploitable. We use this model as a basis for further numerical

exploration rather than as a candidate for quantum advantage. In particular, we

perform stochastic gradient descent on the nonlocal peaking layers of our explicit

circuit construction to find the thresholds at which we can recover mostly peaked

distributions.

4.2 Experimental setup

All experiments were performed using Strawberry Fields, a Python library for simu-

lating photonic quantum circuits. We focus on beamsplitter networks with a single

photon, as results in this regime automatically generalize to the n-photon case via

the homomorphism introduced by Aaronson and Arkhipov [1].

We begin by constructing interferometers initialized from one of three network

structures: (1) brickwall structure, an efficiently parallelizable network of alternat-

ing vertical horizontal beamsplitter layers; (2) pollman structure, a network with
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staggered gate placements; and (3) Haar-random interferometers, generated by QR

decompositions of complex Gaussian matrices. These initial interferometer settings

help us determine the extent to which variables such as randomness and individual

gate placement contribute to an overall peaked distribution.

Each random interferometer network is augmented with a series of peaking layers,

which are parameterized beamsplitter gates designed to concentrate output proba-

bility on a specific Fock state. We optimize these layers using stochastic gradient

descent (SGD) across two objectives. The first objective minimizes the fidelity be-

tween the random output state and the parameterized peaking state. The second

directly maximizes the squared amplitude of a chosen output mode, pulling the sys-

tem toward a single-modal distribution. These methods can be used for threshold

analysis with full control over peaking in linear optical settings.

In addition to explicitly peaked structures, we also examine the performance of

postselected circuits using two key metrics: Shannon entropy and collision probabil-

ity. Shannon entropy is defined as H(x) = −
∑n

i=1 p(xi) log p(xi). This quantifies

the unpredictability of seeing a potential state in the output distribution, with lower

entropy indicative of more biased or nonuniform distributions. The collision prob-

ability is defined as πC :=
∑

s pC [s]
2 for some circuit C, where pC is the associated

probability distribution over basis states of C. This measures the likelihood that

two independent samples drawn from the same distribution yield the same outcome.

These metrics are applied to ensemble averages and to individual circuit realizations

for both global and local statistical analysis of circuit behavior.

In summary, our experimental setup combines random and structured linear op-

tical circuit generation, gradient-based optimization, and statistical characterization
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to investigate the conditions under which peaking can emerge in linear optics. This

framework also serves as a testbed for future investigations into how peaking behav-

ior scales with the number of modes, and whether such scaling may offer a viable

path toward demonstrating quantum advantage.

5 Results

Figure 5: Explicit constructions of peaking circuits. An interferometer composed of
beamsplitter and phaseshifter gates is followed byO(m) peaked nonlocal beamsplitter
gates optimized using a numerical solver.

We begin by implementing explicit peaking circuits as shown in Figure 5. The

circuits are composed of a standard interferometer (a sequence of beamsplitter and

phase-shifter gates) followed by O(m) numerically optimized nonlocal peaking gates

based on the construction from 2. The goal of this construction is to maximize the
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amplitude of a specific Fock state, which we can assign wlog to the first mode, thus

creating a peaked output distribution.

To check the performance of our optimization, we compare the theoretical values

derived from 2 against our simulation results. For example, with m peaking layers

we should expect to get a peaked weight of δ = 1 with all amplitude transferred to

the first mode i.e. |⟨1n|ϕ(U)|1n⟩|2 =
√

|a1|2 + · · ·+ |am|2 = 1. Getting lower than

this δ-value indicates that we are not reaching the optimal peaking value, either due

to stochastic gradient descent being constrained by the barren plateau issue or a

non-optimal structure for our peaked circuit.
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(a) (b)

(c)

Figure 6: A numerical solver is optimized to learn the output state.

Figures 6a and 6b each show five (averaged) probability distributions of optimized
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random networks over m = 5 modes. Our explicitly peaked linear optical networks

are trained via gradient-based optimization over two distinct objectives based on the

control flag self.cft, each corresponding to a different method of peaking. The

architecture comprises an initial random layer followed by a trainable peaking layer

composed of beamsplitter gates. Our parameters were defined with m = 5 modes,

a cutoff dimension of 2 for single-photon experiments, and a random interferome-

ter sampled according to the Haar measure using QR-based decomposition. The

parameters of the peaking layer are initialized from a normal Gaussian distribu-

tion ∼ N (0, 0.1) with mean 0 and standard deviation 0.1. They are subsequently

run through a TensorFlow backend which adjusts the circuit parameters iteratively

through gradient-based optimization. This is done with an Adam optimizer with

learning rate 0.1, and the optimized gates are optionally inverted at the end in O(1)

to produce the final output distribution.

The first cost function uses quantum state learning. State learning refers to the

use of variational quantum circuits (i.e. circuits with tunable gate parameters) to

optimize the preparation of a state. To achieve this, we define a loss function based

on fidelity, which quantifies the overlap between a pre-specified target state Ctar and

the circuit’s final output state Cout. In this setting, we let Ctar be the state after

applying random layers and Cout the state after applying both random and peaking

layers. After converging to maximum fidelity Cfid ≈ 1, we invert the layers of the

peaking circuit to recover a highly peaked distribution on the first mode.

The second cost function aims to maximize the probability of a specific Fock basis

state in wlog the first mode, greedily peaking the distribution for a single mode. We

choose the following cost function, min ||⟨s|ϕ(U)|1n⟩|2−1| where s = |1n⟩ is the basis

state with a single photon occupation on the first mode. By minimizing this cost
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function, the quantum circuit will prepare a state with high probability on the first

mode. Unlike the state-learning objective which matches the entire wavefunction to

a target state, this approach focuses solely on concentrating amplitude in a chosen

basis element of the Fock space. Note that no inversion is needed given we are

directly optimizing over the probability of the output distribution.

For both cases, the optimization proceeds layer-by-layer, and the learned parame-

ters are stored and later re-applied using the run circuit subroutine. This execution

includes post-optimization circuit reconstruction and optional gate sequence record-

ing for analysis and reproducibility. Notably, final circuit realizations are evaluated

for peakedness by checking whether the maximum output probability surpasses a

defined threshold, at which point the gate sequence and output state are saved.

In Figure 6c, we compare both training objectives by overlaying the graphs. It

is clear that both optimization techniques converge to nearly identical outcomes. At

around 1
2
m-depth, inversions begin to take effect. This shows that state learning

is effective for single-photon modes. The high degree of overlap between both cost

functions suggests that at least for small systems, convergence to the global opti-

mum is possible in linear optics. Furthermore, we confirm these results support our

theoretical findings. For example, we confirm that with m peaking gates we are able

to obtain a maximally peaked weight on the first mode, as predicted by 2.
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(a)

(b) (c)

Figure 7: Peaked circuits do not scramble as quickly as Haar-random circuits.

We now transition to comparing Haar-random linear optical circuits with postse-
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lected peaked circuits by tracking the evolution of collision probability and Shannon

entropy over circuit depth. These metrics allow us to quantify scrambling and con-

centration of the output distribution.

In 7a, as higher thresholds of peakedness are enforced, we see the natural emer-

gence of a single peak with all other probabilities decaying over time. Interestingly,

the emergence of a single dominant peak (as thresholded peaking is enforced) occurs

naturally even without explicit optimization, suggesting that unimodal peaking is

dominant in structured random networks.

In 7b, we plot the collision probability of Haar-random linear optical circuits

against various degrees of postselected peaked circuits as a function of circuit depth

over 100 trials. These metrics show that peaked linear optical networks eventually

converge to the same behavior as random optical ones. In the case of random circuits,

the collision probability decreases with depth, reflecting the natural tendency of

random circuits to spread amplitude across many outcomes. The behavior shown

here is consistent with anticoncentration bounds proved by [12], which suggest that

sufficiently deep random circuits produce nearly uniform output distributions with

a constant factor with high probability.

Also shown in 7c is a plot of Shannon entropy as a function of circuit depth over

100 trials. We see that Shannon entropy converges to a value of log2 5 ≈ 2.3, which

is the maximum allowed entropy for a state. Given that peaked interferometers

saturate to bounds reached by random interferometers as a function of depth, we

can further ask what depth t-designs arise naturally in linear optical settings [10].
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Figure 8: Single-run instance of numerically optimized peaked entropy.

Figure 9: Single run instance of postselected peaked entropy.

In addition to examining circuit behavior when averaging over many trials, we
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can also inspect individual interferometer networks. In Figures 8 and 10, we analyze

single-shot instances of postselected peaked circuits, again as a function of circuit

depth.

In order to analyze how structure emerges, we switch from generating QR-

decomposition-based Haar-random unitaries to constructing a gate-by-gate network

using pollman and brickwall network structures as shown in Figure 10. We see vi-

sually that some networks exhibit naturally occurring peaking behavior even in the

absence of explicit optimization, which may suggest underlying interference struc-

tures in the gates themselves. Further exploration can be done in analyzing individual

gate parameters.

Figure 10: Pollman and brickwall networks used for single-shot experiments.

6 Conclusion

Over the duration of four months, we provide numerical and analytical findings on

peaked boson sampling. Due to time constraints, there are many open questions and

opportunities we leave as future work. First, we outline several of these.

While our results from section 5 show promise in peaked networks converging to

the same statistical values as random linear optical networks, to make this rigorous,
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we would also need to establish the hardness of simulating these circuits in a linear

optical regime, in analogy to standard BosonSampling. As mentioned in 7a, we note

for Haar-random states, the collision probability Z of 2n × 2n unitary ensembles is

known to approach Z ∼ 2
2n+1

due to an anticoncentration result proved in 2022

[12]. Given that linear optical networks converge much faster in O(m2) time for the

single-photon regime, we can naturally ask at what depth anticoncentration arises

in linear optical settings.

Figure 11: Output distribution for random circuits and interferometers

While the output distribution of random circuits is known to follow the Porter-

Thomas distribution, i.e. P (x) = Ne−Nx for N = 2n, we can also ask what kind

of distribution is followed by the BosonSampling distribution, which we claim is

given by the permanent-squared of random Gaussian matrices, see Figure 11. This

is because Section 5 of Aaronson and Arkhipov’s paper [6] proves that truncations of

Haar-random unitaries are close in TV distance to matrices of i.i.d Gaussians. There-

fore, studying the output distribution of random linear optical networks amounts to

studying the distribution of ∼ |Per(X)|2 where X is a random variable denoting a

matrix with independently chosen random Gaussian entries.

Another potential experiment is to choose different gate sets to measure the ef-
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fects on peaking. Orthogonal gates, which are real-valued unitary matrices with

orthonormal columns, may for instance change the peaking landscape by creating

potentially sharper-looking distributions due to their constrained geometry. Reflec-

tion matrices, similar to those used in the diffusion operator of Grover’s algorithm,

perform amplitude amplification to increase the probability of measuring a target

state. We can ask whether the generated circuits exhibit characteristics of Grover-

like search algorithms and whether these structures arise more frequently when using

constrained gate families.

One can also consider the impact of measurement-induced entanglement (MIE),

previously shown to give rise to a quantum advantage in shallow-depth random cir-

cuits [16], in random linear optical networks. Since both platforms share features like

non-adaptive measurements and unitary evolution, understanding whether shallow-

depth beamsplitter networks exhibit similar entanglement transitions could provide

a new framework for demonstrating quantum advantage without requiring deep or

noisy circuits.

We are lastly interested in moving to a practical laboratory to conduct scalable

physical experiments. A current bottleneck in the numerical investigation using

Strawberry Fields is the inability to efficiently represent the Fock space in memory,

which limits our study to 5-12 modes. However, recent papers on experimental

BosonSampling have shown it is possible to scale physical systems to at least 100

modes [17]. One can envision that probing an interferometer model as described in 2

in the optics laboratory at the JJ Pickle Research Campus in Austin, TX would not

only help to cross-verify the numerical results listed in this paper but would allow us

to generalize our findings to linear optical system of size order of magnitudes higher

than numerically tested.
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In summary, over the past few months we conducted and analyzed experiments

on BosonSampling with peaked output distributions. In particular, we replicated

known behavior from the random circuit model and extended these ideas to the

linear optical domain, where our work explores the use of postselecting and explicitly

peaking BosonSampling circuits to make experiments more verifiable and accessible.

Ultimately, we provide the first exploration of peaked linear optical networks for

potentially verifiable quantum advantage, which can be seen as an alternative model

to Aaronson and Zhang’s work on random circuit sampling [2]. These studies lay

the foundation for further experiments on peaked optics models and point at future

directions to further explore the properties of peaked optics, both analytically and

experimentally on higher modes. A copy of the classical simulations for this project

can be found here: https://github.com/michelled01/Peaked-circuits.
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