Lecture 02:

OQOP Definition and Properties
Mikyung Han



\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g ) =
\ ;i 4 ) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !



Reminders

* Welcome Survey (Canvas)

* Syllabus Reading via Perusall (Canvas)
o Make 4-5 meaningful comments
o Ask/answer questions
o Up-vote

* Assignment O (Ed Discussion)
* Start reading Ch3/Ch4

* Progl coming up
o Read Prog | Spec before coming to discussion on Friday
o Due next Thursday



Collaboration vs Cheating

* What is different!?

Never share your code either offline or on-line!



Outline

@ 2. Challenges in Software Development and Management



Physical Construction vs Software Construction

What are the fundamental differences!?



So really... which one is more difficult?



MS Copilot

& Which Is More Difficult?

« Software construction is often considered more intellectually complex due to:
« Abstract design and logic.
« Rapidly changing technologies.

« Difficulty in visualizing and validating behavior.

« Physical construction is often considered more logistically and physically demanding, with:
« Higher stakes for safety.
« More rigid constraints.

« Less room for error once building begins.



Chat GPT

_. Which is more difficult?

» Physical construction is more difficult in terms of logistics, safety, and cost of mistakes.

» Software construction is more difficult in terms of complexity, flexibility, and never-ending evolution.

A famous line in software engineering:

“Building software is easy; building software that works, is maintainable, and meets real needs is the
hard part.”

If we're talking one-time difficulty - building a skyscraper is probably harder.
If we're talking long-term difficulty - maintaining and evolving software is harder, because it never

stops changing.



Google Gemini

Which is More Difficult?

While both are challenging, many experts consider software construction more difficult due to
its abstract nature and inherent complexity. Physical projects operate within a well-understood
framework of physics and established engineering principles. Software projects, however, have a
higher degree of interconnectedness, where a small change can have unpredictable and
widespread effects. This abstract complexity, combined with the pressure for constant updates

and feature additions, makes software projects highly prone to failure.



Software is non-linear

* What could small change (i.e. a bit flip) lead to!?
* Testing

This non-linearity makes it difficult to build and maintain software




Software is constantly changing

* Why!



If software is (large, complex,)
non-linear, and constantly changing

* How should we design our software!?

* How should programming languages be like!?

This is the motivation for OO Design and OOP Languages




Top Challenges building/maintaining software

* Code reuse

* Facilitating changes to software

* Integrating modules

* Understanding the system as a whole

Let’s see how OO Design and OOP Languages can help

|4



Outline

|. Administrative

2. Challenges in Software Construction and Management
@J 3. OO Model Definition



Two key ingredients in OO Model.What are they!?

e Data
* What to do with the data



Two key ingredients in OO Model

They have many synonyms. Let’s name some
* Data:

* Operation:



What is more important in OO Model?

Choose one

e Data

* Operation



What is more important in OO Model?

Choose one

Data

* Operation



The Object-Oriented Model

* Encapsulates all program inside of objects
that can be accessed through defined
on these objects




The Object-Oriented Model

* Encapsulates all program states inside of objects
and can be accessed through operations defined
on these objects

* What does it focus on? Data >> Operation

s this good? Why this way!?

Let’s compare with what is NOT OO paradigm

2



Imperative Programming

* Consists of set of commands for computer to
perform
o Focuses on how a program operates step-by-step

* Directly manipulates states
* What does it focus on? Data << Operation

22



Imperative style vs OO style

* Imperative (Direct data manipulation) ¢ OOP (use instance method)

public class Main {
public static void main(String[] args) {

int counter = 0;

// Explicit instructions
counter = counter + 1;
counter = counter + 1;

"

System.out.println ("Counter value:

+ counter) ;

1
2
3
4
5
6
7
8

9
10

12
13
14
15
16
17
18
19
20
21
22

class Counter {

private int value;

public void increment () {

value++;

public int getValue() {

return value;

public class Main {
public static void main(String[] args)
Counter ¢ = new Counter();
c.increment () ;

c.increment () ;

System.out.println ("Counter value:

{

" + c.getValue ()



Another example: Imperative/Procedural Programming

double area(Object shape) {
if (shape instanceof Circle) {
Circle circle = (Circle) shape;
return Math.PI * circle.radius x circle.radius
} else if (shape instanceof Rectangle) {
Rectangle rectangle = (Rectangle) shape;
return rectangle.width *x rectangle.height;
} else if (shape instanceof Square) {
Square square = (Square) shape;
return square.size *x square.size;

throw new IllegalArgumentException("Unknown shape");

24



Any better?

double area2(Object shape) {
if (shape instanceof Circle) {
Circle circle = (Circle) shape;
return Math.PI *x circle.getRadius() * circle.getRadius();
} else if (shape instanceof Rectangle) {
Rectangle rectangle = (Rectangle) shape;
return rectangle.getWidth() * rectangle.getHeight();
} else if (shape instanceof Square) {
Square square = (Square) shape;
return square.getSize() x square.getSizel();
};
throw new IllegalArgumentException("Unknown shape");

}
Write down why this is bad (At least 4 reasons!)




Why Bad?



Imperative style vs OO style

* Imperative (Direct data manipulation) * OOP (use instance method)

public class Main {
public static void main(String[] args) {

int counter = 0;
// Explicit instructions
counter = counter + 1;

counter = counter + 1;

System.out.println ("Counter value: "

+ counter) ;

1
2
3
4
5
6
7
8

9
10

12
13
14
15
16
17
18
19
20
21
29

class Counter {

private int value;

public void increment () {
value++;

public int getValue () {

return value;

public class Main {
public static void main(String[] args)
Counter ¢ = new Counter();
c.increment () ;

c.increment () ;

System.out.println ("Counter value:

{

" + c.getValue ()



OO Model: Data >> operation

How can this help with challenging software development!?

28



OO Model’s stance (Data is more important!)

* Protects data integrity
* Promotes self-contained objects

e Better abstraction to real world

o Define what an object is (inheritance)

o What It has (its fields)
o What it does (its operations on each field)

* Has clear interface (APl) between two objects
o API: public operations that can be called by clients



Now that we talked about OO Model
let’s talk about OO Languages

Let’s see how OO Language implements OO Model

30



Outline

|. Administrative

2. QoD Discussion

3. Challenges in Software Construction and Management
4. OO Model

5.

OO Languages

&



What makes a language an OO Language?



Defining characteristics of OO Languages

* Encapsulation
* Inheritance

* (Subtype) Polymorphism

33



What is Encapsulation?



Encapsulation

How does |ava provide encapsulation?

* Via class! Wrap data/operation inside a class
* Give each of them access modifiers

Modifier Within the Within the same In subclasses (same or
same class package other packages)

public Yes Yes Yes

protected Yes Yes Yes

default Yes Yes No

private Yes No No

From other
packages

Yes
No
No

No

50



Encapsulation

* Information Hiding Principle (Dave Parnas, 1972)

- A client of a module should have ALL info needed to
use the module, and NOTHING more

- The implementor should have ALL info needed to
implement the module correctly,and NOTHING more.

Why this is good!?

How does encapsulation help with 4 challenges in software?



Encapsulation — how can it help with ...

* Code reuse?
* Facilitate changes?
* Integrating modules!?

* Understanding system as a whole?

Discuss with your neighbors and share




Resources

* A/B Testing — an example of why software is non-linear

* Factory Pattern — Separation of concern

38


https://hbr.org/2017/06/a-refresher-on-ab-testing
https://hbr.org/2017/06/a-refresher-on-ab-testing
https://www.oreilly.com/library/view/head-first-design/0596007124/ch04.html
https://www.oreilly.com/library/view/head-first-design/0596007124/ch04.html

Backup Slides



