
CS314H
DATA STRUCTURES

Lecture 02:
OOP Definition and Properties

Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

Reminders

3

• Welcome Survey (Canvas)
• Syllabus Reading via Perusall (Canvas)

o Make 4-5 meaningful comments
o Ask/answer questions
o Up-vote

• Assignment 0 (Ed Discussion)
• Start reading Ch3/Ch4
• Prog1 coming up

o Read Prog 1 Spec before coming to discussion on Friday
o Due next Thursday

Collaboration vs Cheating

4

• What is different?

Never share your code either offline or on-line!

Outline

1. Administrative
2. Challenges in Software Development and Management

Physical Construction vs Software Construction

What are the fundamental differences?

6

So really… which one is more difficult?

7

MS Copilot

8

Chat GPT

9

Google Gemini

10

Software is non-linear

•What could small change (i.e. a bit flip) lead to?
• Testing

11

This non-linearity makes it difficult to build and maintain software

Software is constantly changing

•Why?

12

If software is (large, complex,)
 non-linear, and constantly changing

13

•How should we design our software?

•How should programming languages be like?

This is the motivation for OO Design and OOP Languages

Top Challenges building/maintaining software

•Code reuse
• Facilitating changes to software
• Integrating modules
•Understanding the system as a whole

14

Let’s see how OO Design and OOP Languages can help

Outline

1. Administrative
2. Challenges in Software Construction and Management
3. OO Model Definition

Two key ingredients in OO Model. What are they?

• Data
• What to do with the data

16

Two key ingredients in OO Model

They have many synonyms. Let’s name some
• Data:
• Operation:

17

What is more important in OO Model?

Choose one

• Data
• Operation

18

What is more important in OO Model?

Choose one

•Data
• Operation

19

The Object-Oriented Model

•Encapsulates all program ________ inside of objects
that can be accessed through ________ defined
on these objects

20

The Object-Oriented Model

•Encapsulates all program _states_ inside of objects
and can be accessed through _operations_ defined
on these objects

•What does it focus on? Data >> Operation

21

Is this good? Why this way?

Let’s compare with what is NOT OO paradigm

Imperative Programming

22

•Consists of set of commands for computer to
perform
o Focuses on how a program operates step-by-step

•Directly manipulates states
•What does it focus on? Data << Operation

Imperative style vs OO style

• Imperative (Direct data manipulation)

23

• OOP (use instance method)

Another example: Imperative/Procedural Programming

24

Any better?

25Write down why this is bad (At least 4 reasons!)

Why Bad?

26

Imperative style vs OO style

• Imperative (Direct data manipulation)

27

• OOP (use instance method)

OO Model: Data >> operation

How can this help with challenging software development?

28

OO Model’s stance (Data is more important!)

• Protects data integrity
• Promotes self-contained objects
• Better abstraction to real world

o Define what an object is (inheritance)
o What it has (its fields)
o What it does (its operations on each field)

• Has clear interface (API) between two objects
o API: public operations that can be called by clients

29

Now that we talked about OO Model
let’s talk about OO Languages

30

Let’s see how OO Language implements OO Model

Outline

1. Administrative
2. QoD Discussion
3. Challenges in Software Construction and Management
4. OO Model
5. OO Languages

What makes a language an OO Language?

32

•E

• I

•P

Defining characteristics of OO Languages

33

•Encapsulation

• Inheritance

• (Subtype) Polymorphism

What is Encapsulation?

34

Encapsulation

35

How does Java provide encapsulation?
• Via class! Wrap data/operation inside a class
•Give each of them access modifiers

Encapsulation

36

• Information Hiding Principle (Dave Parnas, 1972)
 - A client of a module should have ALL info needed to
use the module, and NOTHING more
 - The implementor should have ALL info needed to
implement the module correctly, and NOTHING more.

Why this is good?
How does encapsulation help with 4 challenges in software?

Encapsulation – how can it help with …

37

•Code reuse?

• Facilitate changes?

• Integrating modules?

•Understanding system as a whole?

Discuss with your neighbors and share

Resources

38

• A/B Testing – an example of why software is non-linear
• Factory Pattern – Separation of concern

https://hbr.org/2017/06/a-refresher-on-ab-testing
https://hbr.org/2017/06/a-refresher-on-ab-testing
https://www.oreilly.com/library/view/head-first-design/0596007124/ch04.html
https://www.oreilly.com/library/view/head-first-design/0596007124/ch04.html

Backup Slides

39

