
CS314H
DATA STRUCTURES

Lecture 03:
OOP Inheritance

and Subtype Polymorphism
Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

Reminders

3

• Assignment 0 Part 2 (Canvas) due tonight
• Prog1 spec reading (Perusall) due tonight
• Read Ch3/Ch4 if you haven’t done so
• UW Coding Style Guide

o Commenting
o Collections and objects

https://courses.cs.washington.edu/courses/cse143/16au/style/commenting-inside-methods.html
https://courses.cs.washington.edu/courses/cse143/16au/style/commenting-inside-methods.html
https://courses.cs.washington.edu/courses/cse143/16au/style/collections-and-objects.html
https://courses.cs.washington.edu/courses/cse143/16au/style/collections-and-objects.html

Outline

1. Administrative
2. OO Model Recap

Pick 2 from below and tell your neighbor about it

• 1 What is Object-oriented Model? What does it focus on?
• 2 What is information hiding principle?
• 3 How does Java provides encapsulation?
• 4 What are the 3 defining characteristics of OO Language?

The Object-Oriented Model

• Encapsulates all program data inside of objects
and can be accessed through operations defined
on these objects

•What does it focus on? Data >> Operation
•Why is this good? Separation of concern
•Comparison with NOT OO paradigm

o Imperative/procedural

6

Defining characteristics of OO Languages

7

•Encapsulation

• Inheritance

•Subtype Polymorphism

Outline

1. Administrative
2. Recap
3. Types

Before talking about inheritance
we first need to talk about TYPES
• What is a type in a programming language?

• Example

9

Why are types useful?

o int: min/max
o int a = 3;

int b = 4;
a = b % a;

o float: min/max
o float x = 3;

float y = 4;
x = y % x;

What are some real-world examples of TYPES?

10

11

Real world examples of TYPES

• What are the possible values?
• What can we do with it?
• What can we NOT do with it?

12

Why are types useful in programming language?

• If we know a type of a variable… what can we do?

13

Type Checking in Programming Languages

• When does it happen?

• Static type checking
o double x = 3;

String y = “hi”;
x = y + x; // legal?

14

• Dynamic type checking
o void foo(Object o) {
 Shape s = (Shape) o; //legal?
 }

Java does type checking statically when possible,
dynamically when necessary

Outline

1. Administrative
2. Recap
3. Type
4. Inheritance

Inheritance: defines a new object in terms of
existing object
•Let Y (new object) inherits from X (old object)

oWhat is the benefit?

• Y “IS A” X

16

In Java, child class inherits public/protected methods
and fields from parent class

Inheritance is a way to REUSE code

17

Publication
- title()
- medium()
- copiesPrinted

Book
- ISBN
- Publisher()

Periodical
- subscriptionDate()

Parent class == super class
Child class == sub class

Class in Java introduces types
Inheritance introduces sub-types

18

Discuss with your friend: Is this legal?

19

Outline

1. Administrative
2. OO Model Recap
3. Type
4. Inheritance
5. Subtype polymorphism

Subtype polymorphism allows subtypes to be
used whenever supertype is expected

21

• What is the benefit?

Allows writing code now to be reusable in the future

Shape s = new Triangle();
foo(s);

void foo(Shape s) {
 s.getArea();
}

Inheritance and Subtype Polymorphism

• Both allows code reuse and facilitate changes
• Inheritance allows to reap the benefits now from the past

o by reusing the past code
o Also allows added/new behaviors

• Polymorphism allows to reap the benefits in the future from the present
o I am writing Shape client code now
o I think I might introduce new shape Triangle or shape Ghost, etc.
o I can just plug in Triangle or Ghost instance to wherever Shape is expected!
o No need to change any Shape client code

22

