Lecture 04 Supplementary:

Object class and Equality
Mikyung Han

\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g) =
\ ;i 4) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !

APM Demo

https://www.youtube.com/watch?v=YbpCLqryN-Q

APM Demo

* IDE is your friend!

* Practice using keyboard shortcuts

* Intelli] shortcuts that you CANNOT miss

* My Most Useful Intelli] shortcuts
o For Mac
o For Windows

e VSCode shortcuts Windows

https://www.jetbrains.com/help/idea/2016.2/keyboard-shortcuts-you-cannot-miss.html
http://www.radcortez.com/my-most-useful-intellij-idea-keyboard-shortcuts/
https://dl.dropboxusercontent.com/u/138156/wallpaper/IdeaCanoo1920x1200_Mac.png
https://dl.dropboxusercontent.com/u/138156/wallpaper/IdeaCanoo1920x1200.png
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Inheritance and Subtype Polymorphism

* Both allows code reuse and facilitate changes

* Inheritance allows to reap the benefits now from the past
o by reusing the past code
o Also allows added/new behaviors
* Polymorphism allows to reap the benefits in the future from the present

o | am writing Shape client code now
o | think | might introduce new shape Triangle or shape Ghost, etc.
o | can just plug in Triangle or Ghost instance to wherever Shape Is expected!

o No need to change any Shape client code

Outline

@ 2. Object class

The Object class;
Object equality and the equals method

The class Object

* The class Object forms the root of the
overall inheritance tree of all Java classes.
o Every class is implicitly a subclass of Object

* The Object class defines several methods

that become part of every class you write.
For example:

o public String toString()
Returns a text representation of the object,
usually so that it can be printed.

Object

equals
finalize
getClass
hashCode
notify
notifyAll
toString

wait

Point

X,y

distance
getx

getY
setLocation
toString
translate

Object methods

method

description

protected Object clone ()

creates a copy of the object

public boolean equals (Object o)

returns whether two objects have
the same state

protected void finalize ()

called during garbage collection

public Class<?> getClass /()

info about the object's type

public int hashCode ()

a code suitable for putting this
object into a hash collection

public String toString ()

text representation of the object

public void notify ()
public void notifyAll ()
public void wait()
public void wait(...)

methods related to concurrency
and locking (seen later)

o VWhat does this list of methods tell you about Java's design?

Common properties of objects

* When Sun designed Java, they felt that every object
(including arrays) should be able to:
o be compared to other objects
o be printed on the console or converted into a string
o ask guestions at runtime about what type/class it is
o be created, copied, and destroyed
o be used In hash-based collections
o perform multi-threaded synchronization and locking

This powerful and broad set of capabilities

helped Java's adoption as an object-oriented language.

Using the Object class

* You can store any object in a variable of type Object.

Object ol
Object 02

new Point (5, -3);
"hello there";

* You can write methods that accept an Object parameter.

public void example (Object o) {
1f (o !'= null) {
System.out.println ("o is " + o.toString());
}

* You can make arrays or collections of Objects.

Object[] a = new Object[5];

al0] = "hello";

all] = new Random{() ;

List<Object> list = new ArrayList<Object>();

How to compare objects
(aka. Reference types)?

Does == work?

* == tests for referential equality, not state-based equality.
It produces true only when you compare an object to itself.

Point pl = new Point (5, 3);
Point p2 = new Point (5, 3);
Point p3 = pZ;

X 5 Y
// pl == p2 is false; P!
// pl == p3 is false;
// p2 == p3 1is true p2 x| 5 Y%
// pl.equals (p2)? 03 //
// p2.equals (p3)?

Let’s look what is the Default equals method

* The Object class's equals implementation is very
simple:

public class Object {

éﬁﬁlic boolean equals (Object o) {
return this == o;
}

* However:

o When we have used equals with various kinds of objects, it didn't
behave like == . Why not!

o The Java APl documentation for equals is elaborate. VWhy!
* Because equals method gets overridden

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

Overriding equals

* The Obiject class is designed for inheritance.
o Its description and specification will apply to all other Java classes.

* So, its specification must be flexible enough to apply to all
classes.
o Subclasses will override equals to test for equality in their own way.

o The Object equals spec enumerates basic properties that clients
can rely on that method to have in all subtypes of Object.

* (this == 0) is compatible with these properties, but so are other tests.

Flawed equals method |

public boolean equals (Point other) ({ //
bad
1f (x == other.x && y == other.y) {
return true;
} else {

return false;

}

* Let's write an equals method for a Point class.

o The method should compare the state of the two objects and
return true If they have the same x/y position.

o What's wrong with the above implementation?

Flaws in the method

* The body can be shortened to the following (boolean zen):

return x == other.x && y == other.y;

* The parameter to equals must be of type Object, not
Point.
o It should be legal to compare a Point to any other object:

// this should be allowed
Point p = new Point (7, 2);
if (p.equals("hello")) { // false

o equals should always return false if a non-Point Is passed.

o By writing ours to accept a Point, we have overloaded equals.
* Point has two equals methods: One takes an Object, one takes a Point.

Flawed equals method 2

public boolean equals (Object o) { // bad
return x == 0.X && y == 0.VY;

J

* What's wrong with the above implementation?
o It does not complle:

Point.java:36: cannot find symbol

symbol : variable x
location: class java.lang.Object
return x == 0.X && y == 0.Vy;

VAN

o The compliler is saying,
"o could be any object. Not every object has an x field."

Object variables

* You can store any object in a variable of type Object.

Object ol = new Point (5, -3);
Object 02 = "hello there";
Object 03 = new Scanner (System.1n);

* An Object variable only knows how to do general
things.

String s = ol.toString():; // ok
int len = o02.length(); // error
String line = o3.nextLine(); // error

o (The objects referred to by 01, 02,and o3 still do have those
methods. They just can't be called through those variables because
the compiler isn't sure what kind of object the variable refers to.)

Casting references

Object ol = new Point (5, -3);

Object 02 = "hello there";

((Point) ol) .translate (6, 2); // ok
int len = ((String) o2).length(); // ok
Point p = (Point) ol;

int x = p.getX(); // ok

* Watch out for precedence mistakes:
int len = (String) o2.length(); // error

Flawed equals method 3

public boolean equals (Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

* What's wrong with the above implementation?

o It compiles and works when other Point objects are passed, but
it throws an exception when a non-Point Is passed (see next

slide).

Comparing different types

Point p = new Point (7, 2);
if (p.equals("hello")) ¢{ // should be false

o Currently our method crashes on the above code:

Exception 1n thread "main"
jJava.lang.ClassCastException: java.lang.String
at Point.equals (Point.java:25)

at PointMain.main (PointMailin.java:25)

o The problem is the cast (cannot cast sideways in an inheritance tree):

public boolean equals (Object o) {
Point other = (Point) o;

The instanceof keyword

reference instanceof type

if (variable instanceof type)

statement(s);

* A binary, infix, boolean operat

e Tests whether variable refers

to an object of class type

(or any subclass of type).

String s = "hello";

{

expression result
s 1nstanceof Point false
DY’ instanceof String true
p 1nstanceof Point true
p instanceof String false
p instanceof Object true
s 1nstanceof Object true
null instanceof String | false
null instanceof Object | false

Point p = new Point();

Flawed equals method 4a

// Returns true if o refers to a Point object
// with the same (x, y) coordinates as
// this Point; otherwise returns false.
public boolean equals (Object o) {

i1f (o instanceof Point) {

Point other = (Point) o;
return x == other.x && y == other.y;
} else {

return false;

J

* What's wrong with the above implementation?

o It behaves incorrectly If the Point class is extended (see next
slides).

Subclassing and equals

public class Point3D extends Point {
private int z;

\ public Point3D(int x, i1nt y, 1nt z) {

J

Point3D pl = new Point3D(4, 5, 0);
Point3D p2 = new Point3D(4, 5, ©6);
Point p3 = new Point (4, 5);

* All objects above will report that they are "equal” to each
other.

o But they shouldn't be. The objects don't have equal state.
o In some cases, they aren't even the same type.

Flawed equals method 4b

public class Point3D extends Point {

public boolean equals (Object o) {
1f (o instanceof Point3D) {

Point3D other = (Point3D) o;
return super.equals (o)
&& z == other.z;
} else {

return false;

J

J

* What's wrong with the above approach?
o It produces asymmetric results when Point and Point3D are mixed.
o We need something more strict than instanceof

A proper equals method

* Equality is reflexive:
o a.equals (a) Is true for every object a

* Equality is symmetrlc
oa.equals (b . b.equals (a)

* Equality is transitive:
o (a.equals(b) && b.equals(c . a.equals(c)

* No non-null object is equal to null:
oa.equals (null) is false for every object a

* Effective Java Tip #8:
Obey the general contract when overriding equals.

The getClass method

* getClass returns information about the type of an
object.
o Commonly used for reflection (seen later).
o Uses run-time type information, not the type of the variable.
o Stricter than instanceof ; subclasses return different results.

* getClass should be used when implementing equals.

o Instead of instanceof to check for same type, use
getClass.

o This will eliminate subclasses from being considered for equality.
o Caution: Must check for null before calling getClass .

Correct equals methods

- Inside Polnt class
public boolean equals (Object o) { // Point

{ if (o !'= null && getClass() == o.getClass())
Point other = (Point) o;
return x == other.x && y == other.y;
} else {

return false;

}
}

- Inside Point3D class
public boolean equals (Object o) { // Point3D

1f (o !'= null && getClass() == o.getClass())
Point3D other = (Point3D) o;
return super.equals (o) && z == other.z;
} else {

return false;

}

