
CS314H
DATA STRUCTURES

Lecture 04 Supplementary:
Object class and Equality

Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

APM Demo

3

https://www.youtube.com/watch?v=YbpCLqryN-Q

APM Demo

4

• IDE is your friend!
• Practice using keyboard shortcuts

• IntelliJ shortcuts that you CANNOT miss

• My Most Useful IntelliJ shortcuts
o For Mac
o For Windows

• VSCode shortcuts Windows

https://www.jetbrains.com/help/idea/2016.2/keyboard-shortcuts-you-cannot-miss.html
http://www.radcortez.com/my-most-useful-intellij-idea-keyboard-shortcuts/
https://dl.dropboxusercontent.com/u/138156/wallpaper/IdeaCanoo1920x1200_Mac.png
https://dl.dropboxusercontent.com/u/138156/wallpaper/IdeaCanoo1920x1200.png
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Inheritance and Subtype Polymorphism

• Both allows code reuse and facilitate changes
• Inheritance allows to reap the benefits now from the past

o by reusing the past code
o Also allows added/new behaviors

• Polymorphism allows to reap the benefits in the future from the present
o I am writing Shape client code now
o I think I might introduce new shape Triangle or shape Ghost, etc.
o I can just plug in Triangle or Ghost instance to wherever Shape is expected!
o No need to change any Shape client code

5

Outline

1. Recap
2. Object class

The Object class;
Object equality and the equals method

The class Object
• The class Object forms the root of the

overall inheritance tree of all Java classes.
o Every class is implicitly a subclass of Object

• The Object class defines several methods
that become part of every class you write.
For example:

o public String toString()
Returns a text representation of the object,
usually so that it can be printed.

Object methods

o What does this list of methods tell you about Java's design?

method description
protected Object clone() creates a copy of the object
public boolean equals(Object o) returns whether two objects have

the same state
protected void finalize() called during garbage collection
public Class<?> getClass() info about the object's type
public int hashCode() a code suitable for putting this

object into a hash collection
public String toString() text representation of the object
public void notify()
public void notifyAll()
public void wait()
public void wait(...)

methods related to concurrency
and locking (seen later)

Common properties of objects
• When Sun designed Java, they felt that every object

(including arrays) should be able to:
o be compared to other objects
o be printed on the console or converted into a string
o ask questions at runtime about what type/class it is
o be created, copied, and destroyed
o be used in hash-based collections
o perform multi-threaded synchronization and locking

This powerful and broad set of capabilities
helped Java's adoption as an object-oriented language.

Using the Object class
• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";

• You can write methods that accept an Object parameter.
public void example(Object o) {
 if (o != null) {
 System.out.println("o is " + o.toString());
 }

• You can make arrays or collections of Objects.
Object[] a = new Object[5];
a[0] = "hello";
a[1] = new Random();
List<Object> list = new ArrayList<Object>();

How to compare objects
(aka. Reference types)?

13

Does == work?
• == tests for referential equality, not state-based equality.

 It produces true only when you compare an object to itself.

 Point p1 = new Point(5, 3);
 Point p2 = new Point(5, 3);
 Point p3 = p2;

 // p1 == p2 is false;
 // p1 == p3 is false;
 // p2 == p3 is true

 // p1.equals(p2)?
 // p2.equals(p3)?

...

x 5 y 3p1

p2

...

x 5 y 3

p3

Let’s look what is the Default equals method
• The Object class's equals implementation is very

simple:

public class Object {
 ...
 public boolean equals(Object o) {
 return this == o;
 }
}

• However:
o When we have used equals with various kinds of objects, it didn't

behave like == . Why not?
o The Java API documentation for equals is elaborate. Why?

• Because equals method gets overridden

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

Overriding equals
• The Object class is designed for inheritance.

o Its description and specification will apply to all other Java classes.

• So, its specification must be flexible enough to apply to all
classes.
o Subclasses will override equals to test for equality in their own way.
o The Object equals spec enumerates basic properties that clients

can rely on that method to have in all subtypes of Object.
• (this == o) is compatible with these properties, but so are other tests.

Flawed equals method 1
public boolean equals(Point other) { //
bad

 if (x == other.x && y == other.y) {
 return true;
 } else {
 return false;
 }
 }

• Let's write an equals method for a Point class.

o The method should compare the state of the two objects and
return true if they have the same x/y position.

o What's wrong with the above implementation?

Flaws in the method
• The body can be shortened to the following (boolean zen):

 return x == other.x && y == other.y;

• The parameter to equals must be of type Object, not
Point.
o It should be legal to compare a Point to any other object:
 // this should be allowed
 Point p = new Point(7, 2);
 if (p.equals("hello")) { // false
 ...

o equals should always return false if a non-Point is passed.
o By writing ours to accept a Point, we have overloaded equals.

• Point has two equals methods: One takes an Object, one takes a Point.

Flawed equals method 2
public boolean equals(Object o) { // bad

 return x == o.x && y == o.y;
 }

• What's wrong with the above implementation?
o It does not compile:
 Point.java:36: cannot find symbol
 symbol : variable x
 location: class java.lang.Object
 return x == o.x && y == o.y;
 ^

o The compiler is saying,
"o could be any object. Not every object has an x field."

Object variables
• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";
Object o3 = new Scanner(System.in);

• An Object variable only knows how to do general
things.
String s = o1.toString(); // ok
int len = o2.length(); // error
String line = o3.nextLine(); // error

o (The objects referred to by o1, o2, and o3 still do have those
methods. They just can't be called through those variables because
the compiler isn't sure what kind of object the variable refers to.)

Casting references
Object o1 = new Point(5, -3);
Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok
int len = ((String) o2).length(); // ok
Point p = (Point) o1;
int x = p.getX(); // ok

• Watch out for precedence mistakes:
int len = (String) o2.length(); // error

Flawed equals method 3
public boolean equals(Object o) {

 Point other = (Point) o;
 return x == other.x && y == other.y;
 }

• What's wrong with the above implementation?
o It compiles and works when other Point objects are passed, but

it throws an exception when a non-Point is passed (see next
slide).

Comparing different types
Point p = new Point(7, 2);

 if (p.equals("hello")) { // should be false
 ...
 }

o Currently our method crashes on the above code:

 Exception in thread "main"
 java.lang.ClassCastException: java.lang.String
 at Point.equals(Point.java:25)
 at PointMain.main(PointMain.java:25)

o The problem is the cast (cannot cast sideways in an inheritance tree):

 public boolean equals(Object o) {
 Point other = (Point) o;

The instanceof keyword
reference instanceof type

 if (variable instanceof type) {
 statement(s);
 }

• A binary, infix, boolean operator.

• Tests whether variable refers
to an object of class type
(or any subclass of type).

 String s = "hello";
 Point p = new Point();

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof String false

null instanceof Object false

Flawed equals method 4a
// Returns true if o refers to a Point object
// with the same (x, y) coordinates as
// this Point; otherwise returns false.
public boolean equals(Object o) {
 if (o instanceof Point) {
 Point other = (Point) o;
 return x == other.x && y == other.y;
 } else {
 return false;
 }
}

• What's wrong with the above implementation?
o It behaves incorrectly if the Point class is extended (see next

slides).

Subclassing and equals
public class Point3D extends Point {
 private int z;
 public Point3D(int x, int y, int z) { ...
}

 ...
}

Point3D p1 = new Point3D(4, 5, 0);
Point3D p2 = new Point3D(4, 5, 6);
Point p3 = new Point (4, 5);

• All objects above will report that they are "equal" to each
other.
o But they shouldn't be. The objects don't have equal state.
o In some cases, they aren't even the same type.

Flawed equals method 4b
public class Point3D extends Point {
 ...
 public boolean equals(Object o) {
 if (o instanceof Point3D) {
 Point3D other = (Point3D) o;
 return super.equals(o)
 && z == other.z;
 } else {
 return false;
 }
 }
}

• What's wrong with the above approach?
o It produces asymmetric results when Point and Point3D are mixed.
o We need something more strict than instanceof

A proper equals method
• Equality is reflexive:

o a.equals(a) is true for every object a

• Equality is symmetric:
o a.equals(b) ↔ b.equals(a)

• Equality is transitive:
o (a.equals(b) && b.equals(c)) ↔ a.equals(c)

• No non-null object is equal to null:
o a.equals(null) is false for every object a

• Effective Java Tip #8:
Obey the general contract when overriding equals.

The getClass method
• getClass returns information about the type of an

object.
o Commonly used for reflection (seen later).
o Uses run-time type information, not the type of the variable.
o Stricter than instanceof ; subclasses return different results.

• getClass should be used when implementing equals.
o Instead of instanceof to check for same type, use
getClass.

o This will eliminate subclasses from being considered for equality.
o Caution: Must check for null before calling getClass .

Correct equals methods
• Inside Point class
public boolean equals(Object o) { // Point
 if (o != null && getClass() == o.getClass())
{

 Point other = (Point) o;
 return x == other.x && y == other.y;
 } else {
 return false;
 }
}
• Inside Point3D class
public boolean equals(Object o) { // Point3D
 if (o != null && getClass() == o.getClass())
{

 Point3D other = (Point3D) o;
 return super.equals(o) && z == other.z;
 } else {
 return false;
 }
}

