CS314H Lecture 04 Polymorphism In-class Exercise Name:

Polymorphism Mystery

1. You are given below code
public class Snow {
public void method2() {
System.out.println("Snow 2");
}

public void method3() {
System.out.println("Snow 3");

public class Rain extends Snow {
public void methodl() {
System.out.println("Rain 1");
}
public void method2() {
System.out.println("Rain 2");

} }

}

W N A WN -
0O N O A WN -

}

public class Sleet extends Snow {
public void method2() {
System.out.println("Sleet 2");
super.method2() ;
this.method3();

public class Fog extends Sleet {
public void methodl() {
System.out.println("Fog 1");
}
public void method3() {
System.out.println("Fog 3");

}
public void method3() {
System.out.println("Sleet 3"); }

}

1
2
3
4
5
6
7
8
9

R N AW =

}

=y
o

}
Class Diagram

Snow
created: method2()
created: method3()

W
Rain \‘

created: method1()
overriden: method2()
inherited: method3()

Sleet
overriden: method?2()
overriden: method3()

l
Fog
created: method1()
inherited: method2()
overriden: method3()

(Note that the arrows have the opposite direction of typical UML diagram)

2. Here are some vocabs.
D type == Runtime type
S type == Compile-time type

« (True/False) At compile time, Java knows the static type of an object. Thus
can determine what is legal or illegal.
« (True/False) At compile time, Java knows the dynamic type of an object.

« When calling a method (which happens in run-time), the version called is
always of the type. What is the name of the method in Java Object
class to view this actual type?

l|Page

CS314H Lecture 04 Polymorphism In-class Exercise Name:

3. Keep the following rules in mind
1) [Compile Time]
e The static type dictates the legal action for the object

Shape s = new Triangle();
s.getArea(); //legal?
s.doTriangleThing(); //legal?

» Both casting and the tree is ok static type. This means
subclass can be casted into superclass and vice versa. But casting in any
other direction in the tree or outside the tree (complete foreigner) is
invalid.

void foo(Object 0){
Shape s = (Shape) o; //legal?
s.getArea();

by

void bar(Triangle t){
Shape s = (Shape) t; //legal?
s.getArea();

b

2) [Run Time]
« Happens only when no error in step 1)
« The dynamic type dictates which will be called.
« Only casting the tree is ok with dynamic type. This means only
subclass can be casted up to superclass in run-time. Also casting in any
other direction in the tree or outside the tree (complete foreigner) is invalid.

** Why? Run-time is when all the value gets evaluated thus, we cannot allow
any

class Point {
int x; inty;

¥

class Point3D
extends Point{
int z;

2|Page

CS314H Lecture 04 Polymorphism In-class Exercise Name:

Point p = new Point (3, 5);
Point3D p2 = (Point3D) p; //What could go wrong in run-time?

Such is prevented by Java throwing a run-time

** Why legal in compile time? Can’t we check earlier in compile time?

For example,

void foo(Object 0){ //formal parameter
((Point) o).translate(3,5);

}

Below is the actual invocation code of foo in run-time

foo(new Point(10,20)); //foo called with actual parameter
foo(new Point3D(10,20,30));
foo("hello”);

The first two cases are certainly valid run-time type casting, but the latter is
not. Since compiler doesn’t know the actual type, so he wisely does not judge
and throws no error and defer that judgement to run-time.

(* Mini life lesson: We should also NOT judge others as often times we do not
have a full-knowledge of situation.)

As a good programmer, we should care about both compile-time and run-time.
Best coding practice is check the run-time type and only if it is valid, do the
typecasting!

void foo(Object o){
if(o Point) //ensures no ClassCastException will be thrown
((Point) o).translate(3,5);

;

How about we use
if(o.getClass() == class.Point) instead?

What is a difference?

3|Page

CS314H Lecture 04 Polymorphism In-class Exercise Name:

4. [Think-Pair-Share] Discuss with your buddy what the results for below cases
would be. It's ok to be wrong. Remember all thinking is good thinking. Go
figure smarties!

1) Mystery #1
Snow varl = new Sleet ();
varl.method?2 () ;

2) Mystery #2
Snow var?2 = new Rain|();
var2.methodl () ;

3) Mystery #3
Snow var3 = new Rain{();
((Rain)var3) .methodl () ;

4) Mystery #4
Snow var4d = new Rain () :;
vard.method?2 () ;

5) Mystery #5
Snow varb5 = new Rain () ;
((Sleet)varb) .method2 () ;

4|Page

CS314H Lecture 04 Polymorphism In-class Exercise

6) Mystery #5
Snow var6 = new Fog/();
((Sleet)varob) .method2 () ;

7) Mystery #7
Snow var/7 = new Sleet ();
((Fog)var7) .methodl () ;

8) Mystery #8
Snow var8 = new Sleet ()

System.out.println(((Object)var8) .getClass());

Name:

5|Page

