Overriding Overloading and Dynamic Binding
Mikyung Han



\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g ) =
\ ;i 4 ) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !



Outline

@ 2. Method Overriding



What is method overriding?

* Subclass re-defining the implementation of an existing (available)
method of a superclass

Exceptions

* Subclass cannot override methods
* Subclass cannot override methods
* Subclass cannot override methods
* Subclass cannot override methods

MUST
e Subclass MUST override methods




Superclass can use final keyword to prevent
method overriding by its descendants

{
() {

System.out.printin(




What would p.staticMethod() print? Why?

{




Private method cannot be overriden

(9 Copy code




constructor cannot be overridden

(9 Copy code

() {
System.out.println(

() A

super(); // Calls Paren

System.out.println(




Wait, what is overriding!?

* Subclass re-defining the implementation of an existing (available)
method of a superclass

e Subclass cannot override final methods
e Subclass cannot override static methods

* Subclass cannot override private methods

e Subclass cannot override constructor methods

e Subclass MUST override abstract methods

When overriding, must preserve the method signature




Wait, what is method signature!

* Methods name and parameter types

* How about return type? No in Java
o But traditional definition does include return type

In Java, when overriding,

must preserve the method signature and return type



http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://stackoverflow.com/questions/16149285/does-a-methods-signature-in-java-include-its-return-type

Overriding leads to multiple versions

e How to determine which version of a method to be executed?

class A({

void foo() { print “A”)} A a = new B();
} a.foo(); //which one?
class B extends A({

void foo () { print “B”}

}

Let’s talk about static binding or dynamic binding




Static binding vs dynamic binding

* Static binding decides the version to run at compile time

* Dynamic binding decides the version to run at run-time

class A({
void foo() { print “A”} Bl = new B
} a.foo(); //which one?
class B extends A({
void foo () { print “B”}
} vold bar (A a) {

a.foo(); //which one?

J

Why did Java designers advocate dynamic binding?



Dynamic binding significantly reduces redundancy

* Enables code reuse (no need to rewrite client code)

Also improves our work-life balance ©

13



Outline

2. Static type vs dynamic type
3. Method Overriding

@ 4. Method Overloading



What is Overloading?

* Methods with different signatures having the same name

* Aka.Ad-hoc polymorphism

class Af{
public 1nt bat(int i1insect);
public int bat (Object ball);



Outline

2. Static type vs dynamic type
3. Method Overriding

4. Method Overloading

@ 5. Misc



Why does Java NOT allow
overriding that changes return type!

* Some languages do allow subclass redefining return type

What happens to type checking when we allow this!?



Private Inheritance

* C++ allows a subclass to hide methods that it inherits
o Example
o public methods of parent class becomes private methods in the subclass, etc

Would subtype polymorphism work in this case!?



https://www.programiz.com/cpp-programming/public-protected-private-inheritance
https://www.programiz.com/cpp-programming/public-protected-private-inheritance

Is inheritance a requirement
to have subtype polymorphism!?

* No interface also introduces subtype

List<Integer> list = new ArrayList<>();

Interface vs abstract class to be continued ...




