CS314H CSB Lecture 06 OOP Overriding and Overloading

Overriding and Overloading Method Call: Decision Tree

Method call: obj.method(arg);

Step 1: Look at the TYPE of obj

(the type of the reference, not the new object).

Step 2: Compiler picks a method signature (overload resolution)
- Based only on the _______ TYPE of obj
+ the TYPE of arg.

- Chooses the "most specific applicable method" (pick itself or closest ancestor)

Step 3: At RUNTIME, Java checks if that chosen method
is ________ in the ________ TYPE of obj.

- If yes > run the overriding version.
- If no - run the dinherited version.

Overriding and Overloading Method Call Decision Tree with Type Casting (ULTIMATE!!)

Declaration and instantiation:
S1 obj = new D1(); // obj’s original static type is S1 and dynamic type is D1.
S2 arg = new D2(); // arg’s original static type is S2 and dynamic type is D2.

Method call: ((T1l)obj).method((T2)arg);

((T1)obj) .method((T2)arg);

1. At compile-time
Check (type conversion legality)
Check: S1 -> T1 either ___ or _____ the 1dinheritance tree?
Check: S2 -> T2 either ___ or _____ the 1dinheritance tree?
L1f invalid, compile error “____________ types”
Apply static type conversion
obj 1is treated as type

arg is treated as type

(obj’s static type T1)
(obj’s static type = T2)

Check existence of method: does Tl.method(T2’) exists in class T1?
(T2?: T2 or most specific applicable type closest to T2.)
t: if method itself does not exist, compile error “ ”

if such T2’ does not exist, compile error “_______________ ”
Picks method signature with most specific applicable overload based on T2 from T1
Tl.method(T2?)

2. At runtime:
Check: Allow type conversion only if S1 -> Tl is ___ the dinheritance tree.
Check: Allow type conversion only if S2 -> T2 is ___ the dinheritance tree.
If not, runtime _____________ Exception 1is thrown.
Honors the method choice made in Step 1: Tl.method(T2’)
- call goes to dynamic type of obj (D1)
If method 1is overridden »> run dynamic type’s version: Dl.method(T2’)
Else » run inherited version.



CS314H CSB Lecture 06 OOP Overriding and Overloading

Example 0
class Parent {
void method(C c¢){ .. } //C is a subclass of B

class Child extends Parent {
void method(A a){ .. }
void method(B b){ .. } //B is a subclass of A

Main {
Parent p = new Parent();
B b = new B();
p.method(b); //what happens?

Example 1 (Credit: Akaash)
class P {
methodl (A a) { some implementation }

}

class C extends P {
methodl (A a) { some implementation }
methodl (B b) { some implementation }

}

class A { some implementation }
class B extends A { some implementation }

main {
P somePC = new C;
A someAB = new Bj;
B someBB = new B;

somePC.method1(someAB); //what happens?
somePC.method1(someBB); //what happens?
¥

Example 2 (Ed Post)

main {
P p2 = new C(); //P is C's parent
A al = new A();
B bl = new B();
()

A a2 = new B(); //A is B's parent
p2.methodl(al); //which version?
p2.method1(bl); //which version?
p2.methodl(a2); //which version?



