
CS314H CSB Lecture 06 OOP Overriding and Overloading

1

Overriding and Overloading Method Call: Decision Tree

Method call: obj.method(arg);

Step 1: Look at the _________ TYPE of obj
 (the type of the reference, not the new object).

Step 2: Compiler picks a method signature (overload resolution)
 - Based only on the _______ TYPE of obj
 + the ________ TYPE of arg.
 - Chooses the "most specific applicable method" (pick itself or closest ancestor)

Step 3: At RUNTIME, Java checks if that chosen method
 is ________ in the ________ TYPE of obj.
 - If yes → run the overriding version.
 - If no → run the inherited version.

Overriding and Overloading Method Call Decision Tree with Type Casting (ULTIMATE!!)

Declaration and instantiation:
S1 obj = new D1(); // obj’s original static type is S1 and dynamic type is D1.
S2 arg = new D2(); // arg’s original static type is S2 and dynamic type is D2.

Method call: ((T1)obj).method((T2)arg);

((T1)obj).method((T2)arg);

1. At compile-time
Check (type conversion legality)

Check: S1 -> T1 either ___ or _____ the inheritance tree?
Check: S2 -> T2 either ___ or _____ the inheritance tree?

 └─If invalid, compile error “____________ types”

Apply static type conversion
 ├─ obj is treated as type ____ (obj’s static type = T1)
 └─ arg is treated as type ____ (obj’s static type = T2)

Check existence of method: does T1.method(T2’) exists in class T1?
(T2’: T2 or most specific applicable type closest to T2.)
 ├─ if method itself does not exist, compile error “_______________”
 └─ if such T2’ does not exist, compile error “_______________”

Picks method signature with most specific applicable overload based on T2 from T1
T1.method(T2’)

2. At runtime:
Check: Allow type conversion only if S1 -> T1 is ___ the inheritance tree.
Check: Allow type conversion only if S2 -> T2 is ___ the inheritance tree.
If not, runtime _____________Exception is thrown.

Honors the method choice made in Step 1: T1.method(T2’)
 └─ Call goes to dynamic type of obj (D1)
 ├─ If method is overridden → run dynamic type’s version: D1.method(T2’)
 └─ Else → run inherited version.

CS314H CSB Lecture 06 OOP Overriding and Overloading

2

Example 0
class Parent {
 void method(C c){ … } //C is a subclass of B
}

class Child extends Parent {
 void method(A a){ … }
 void method(B b){ … } //B is a subclass of A
}

Main {
 Parent p = new Parent();
 B b = new B();
 p.method(b); //what happens?
}

Example 1 (Credit: Akaash)
class P {
 method1 (A a) { some implementation }
}

class C extends P {
 method1 (A a) { some implementation }
 method1 (B b) { some implementation }
}

class A { some implementation }
class B extends A { some implementation }

main {
 P somePC = new C;
 A someAB = new B;
 B someBB = new B;

 somePC.method1(someAB); //what happens?
 somePC.method1(someBB); //what happens?
}

Example 2 (Ed Post)
main {
 P p2 = new C(); //P is C's parent
 A a1 = new A();
 B b1 = new B();
 A a2 = new B(); //A is B's parent

 p2.method1(a1); //which version?
 p2.method1(b1); //which version?
 p2.method1(a2); //which version?
}

