Abstract class and Interface

Mikyung Han

\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g) =
\ ;i 4) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !

How to solve complex problem?

* Decomposition: divide and conquer
o Divide into smaller scope problem

* Abstraction: simplify

Abstract Classes and Interfaces

Outline

@ 2. Abstract Class

Abstract Classes

* Unlike classes, these cannot be instantiated.
* Like classes, they introduce types.

o but no objects can have as actual type the type of an abstract class.
* Why use them!

o Because common features/implementation exists

* To prevent users from handling objects that are too generic (Example 1)
* Cannot give a full implementation for the class (Example 2)

AbstractClass

Waies Mleaes /

abstract

Student

getLogin ()
Exal I IPIe I setLogin (String)
| |
* The problem: Undergrad PhdStudent MscStudent

o Students are either undergraduate, PhD or MsC.
o Need to guarantee that nobody creates a Student object.
* Always need to creates a specific kind of Student.
* The solution:
o Declare Student as abstract.

* Why have the Student class in the first place!?
o A common implementation of common aspects of all students.
(e.g. setlLogin() and getlogin())
o A place holder in my hierarchy that corresponds to some significant concept
o Enable code reuse via subtype polymorphism

Abstract Classes in Java

public abstract class Student {

protected String login, department, name;

public Student() {

public void setLogin(String login) ({

this.login = new String(login) ;

}

public String getLogin() {

return new String(login) ;

login = “”; department = “”; name = “";

Student
getLogin ()
setLogin (String)

T

PhdStudent

PhdStudent is said
to be a concrete class

public class PhdStudent extends Student{
private String supervisor;

public void setSupervisor (String login) {

Shape

Example 2 getArea () : double

setColor (int)

AN

| | |
Rectangle Triangle Circle

* The Problem
o How to calculate the area of an arbitrary shape!?

o We cannot allow Shape objects, because we cannot provide a reasonable
implementation of getArea();

* The Solution
o SO we declare the Shape to be an abstract class.

o Furthermore, we declare getArea() as an abstract method because 1t has no

implementation

* Why have the Shape class in the first place!?
o A placeholder for common features

|
Hexagon

o Plus that we want to force all shapes to provide an implementation for getArea();

o Code reuse via subtype polymorphism

Abstract Methods in Java

public abstract class Shape { Shape
private Color color; getArea () : double
setColour (int)
public Shape () {
Color = Color.BLACK; é>
} Circle

. . ublic class Circle extends Shape
public void setColour (Color c) { P pe {
final static double PI = 3.1419;

his. lor = ;
this.colo C; private int radius;

public Circle(int r) {

radius = r;

public abstract double getArea();

| Abstract methods
have no body

public double getArea() {

return (radius”2)*PI;

}

If Circle did not implement getArea() then — |

it would have to be declared abstract tool

Abstract Classes

* What are the differences between both examples?
* In Example |

o | to declare Student abstract because | think it is convenient to prevent
the existence of plain Students

* In Example 2

o | declare Shape abstract because it lacks an implementation for getArea();

Progl| with abstract class: Is this first case or second?

Implements any color masking operation.
abstract class InPlaceImageEffect extends ImageEffect {

public int[][] apply(int[][] pixels, ArrayList<ImageEffectParam> params) {

Filters out the red component of every pixel in an image.

(int r = 0; r < pixels.length; r++) {
(int ¢ = 0; c < pixels[r].length; c++) { class NoRed extends InPlaceImageEffect {

pixels[rl[c] = modifyPixel(pixels[r][cl); int modifyPixel(int pixel) {
makePixel(0, getGreen(pixel), getBlue(pixel));
I

pixels;

}

abstract int modifyPixel(int pixel);

When you are NOT allowed to modify the original class
introducting intermediate abstract class is particularly useful

Using abstract classes

/1 Shape s = new Shape(); // ERROR

Shape s = new Circle(4); // Ok

double area = s.getArea(); // Ok - Remermber polyrmorphism?
Circle ¢ = new Circle(3); // Ok

c.setColour(Color.GREEN); // Ok

area = c.getArea(); // Ok

* Class Shape cannot be instantiated

* Abstract methods can be called on concrete type object

Java abstract class examples

* http://docs.oracle.com/javase/tutorial/java/landl/abstract.html

* Which case is this?

o Choose to be abstract
o Has to be abstract

* Java Collection Hierarchy
o AbstractCollection -> Abstractlist -> Arraylist
o AbstractCollection -> AbstractSet -> HashSet

http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractCollection.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractCollection.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Collections

interface
Collectio

A

Extract from the
Java Standard
Library hierarchy
for collections

N
N
~ |

. | .
interface AbstractCollectio mter_‘face
Set List

N NA
|
| - |
: AbstractSe AbstractlLis
|
|

HaéhSet

Vectorl

class rlasnSzt extends AbsiraciSat implements Szt ...

(~~

N
444 J

Outline

@ 3. Interface

Interfaces (Java)

* An interface is a set of methods and constants that is identified with a
name.

interface
Clock

* They are similar to abstract classes MIDNIGHT: Time

o You cannot instantiate interfaces setTime(Time):void

o An Interface introduces types
o But, they are completely abstract (no implementation)

* Classes and abstract classes realize or implement interfaces.
o They must have (at least) all the methods and constants of the
interface with public visibility

Why use Interfaces!?

* To the specification available to the user from implementation

o Subtype polymorphism: | can use any class that implements the interface
through the interface type

7 realised .)
‘- uses implemented
//black box | MPlemented) i | s
user |)| -—------ *> | interface { 4 --7
) V- a >
T~<_ | class

* As a partial solution to Java’s lack of multiple inheritance

Interfaces (Java)

* Can an interface extend (inherit from) another interface!?
* Can an interface extend multiple interfaces?
* Can an interface implement another interface!

* All methods are implicitly public

* All fields are implicitly public static final
* Why!?

Multiple Inheritance

StopWatch AlarmClock :::::j:"

start () setTime ()
stop () setAlarm()
T 7
MultiFunctionWatch Java does not
support multiple
inheritance,

but...

Multiple Interfaces

* Classes are allowed to implement multiple interfaces

interface interface
StopWaich AlarmClock
+start() +setTime()
+stop(): +setAlarm():
A A
Q: Why is this MultiFuncltionWatch

not the same

A: There is no
implementation

as multiple
inheritance?

to inherit

Abstract classes vs. Interfaces

* Can only have static (constants)

Can have data fields

Methods have no implementation

Methods may have an implementation

Classes and abstract classes implement
Classes and abstract classes extend interfaces

abstract classes.

Interfaces can extend multiple interfaces
* Class cannot extend multiple abstract

classes

A class can implement multiple interfaces

Substitution principle not assumed

Substitution principle is assumed

Abstract Classes or Interfaces?

* If there is common concrete implementation -> Abstract Class

* If there is no common implementation -> Interface
o Interfaces allow classes implementing multiple interfaces...

o Abstract classes can be subsequently extended without breaking subclasses...
o No clear cut decision...

| am still not clear.. when to use what!?

e Credit

https://stackoverflow.com/questions/383947/what-does-it-mean-to-program-to-an-interface

Outline

@ 4. More discussions

Should subclass of abstract class provide
implementation for all abstract methods?

* No. But you need to mark the subclass as “abstract”

* Only if you provide implementation of all abstract methods, you can
be a concrete class.

* The same holds for a class that implements an interface

o In order for this class to be “‘concrete” class then it must override all abstract
methods and provide concrete implementation for these methods.

s this legal?

public static void main(String[] args) {
Link 1 = new Sausage(); //Concrete class Sausage implements interface Link
foo(l); //legal?

+

public static void foo(Object 0){
//...
}

Does this mean Interface inherits from a concrete class Object!?

Interfaces are part of “type” hierarchy

public static void main(String[] args) {
Link 1 = new Sausage(); //Concrete class Sausage implements interface Link
foo(l); //legal?

+

public static void foo(Object 0){
//...
}

Inheritance is NOT the requirement for subtype polymorphism

Why this is legal?

public static void main(String[] args) {
Link 1 = new Sausage(); //Concrete class Sausage implements interface Link
foo(l); //legal?

}

public static void foo(Object 0){
//...
}

¢ should have everything 0 has

Yes, indeed interface has all methods in Object implicitly defined

