
CS314H
DATA STRUCTURES

Lecture 07:
Abstract class and Interface

Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

How to solve complex problem?

• Decomposition: divide and conquer
o Divide into smaller scope problem

• Abstraction: simplify

5

Abstract Classes and Interfaces

Outline

1. Administrative
2. Abstract Class

Abstract Classes

• Unlike classes, these cannot be instantiated.

• Like classes, they introduce types.
o but no objects can have as actual type the type of an abstract class.

• Why use them?
o Because common features/implementation exists
• To prevent users from handling objects that are too generic (Example 1)
• Cannot give a full implementation for the class (Example 2)

AbstractClass

Italics indicates
abstract

Example 1

• The problem:
o Students are either undergraduate, PhD or MsC.
o Need to guarantee that nobody creates a Student object.

• Always need to creates a specific kind of Student.

• The solution:
o Declare Student as abstract.

• Why have the Student class in the first place?
o A common implementation of common aspects of all students.

(e.g. setLogin() and getLogin())
o A place holder in my hierarchy that corresponds to some significant concept
o Enable code reuse via subtype polymorphism

PhdStudent MscStudentUndergrad

Student

getLogin()
setLogin(String)

Abstract Classes in Java
public abstract class Student {

 protected String login, department, name;

 public Student() {

 login = “”; department = “”; name = “”;

 }

public void setLogin(String login) {

this.login = new String(login);

 }

public String getLogin() {

return new String(login);

 }

}

PhdStudent

Student

getLogin()
setLogin(String)

public class PhdStudent extends Student{
 private String supervisor;

 public void setSupervisor(String login) {
 ...

PhdStudent is said
to be a concrete class

Example 2

• The Problem
o How to calculate the area of an arbitrary shape?
o We cannot allow Shape objects, because we cannot provide a reasonable

implementation of getArea();
• The Solution

o So we declare the Shape to be an abstract class.
o Furthermore, we declare getArea() as an abstract method because it has no

implementation
• Why have the Shape class in the first place?

o A placeholder for common features
o Plus that we want to force all shapes to provide an implementation for getArea();
o Code reuse via subtype polymorphism

Triangle CircleRectangle Hexagon

getArea(): double
setColor(int)

Shape

Abstract Methods in Java
public abstract class Shape {

 private Color color;

 public Shape() {

 Color = Color.BLACK;

 }

public void setColour(Color c) {

this.color = c;

}

public abstract double getArea();

}

public class Circle extends Shape {

final static double PI = 3.1419;

private int radius;

public Circle(int r) {

radius = r;

}

public double getArea() {

return (radius^2)*PI;

}

}

getArea(): double
setColour(int)

Shape

Circle

If Circle did not implement getArea() then
it would have to be declared abstract too!

Abstract methods
have no body

Abstract Classes

• What are the differences between both examples?
• In Example 1

o I choose to declare Student abstract because I think it is convenient to prevent
the existence of plain Students

• In Example 2
o I must declare Shape abstract because it lacks an implementation for getArea();

Prog1 with abstract class: Is this first case or second?

When you are NOT allowed to modify the original class
introducting intermediate abstract class is particularly useful

Using abstract classes

• Class Shape cannot be instantiated

• Abstract methods can be called on concrete type object

// Shape s = new Shape(); // ERROR
Shape s = new Circle(4); // Ok
double area = s.getArea(); // Ok – Remember polymorphism?
Circle c = new Circle(3); // Ok
c.setColour(Color.GREEN); // Ok
area = c.getArea(); // Ok

Java abstract class examples

• http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

• Which case is this?
o Choose to be abstract
o Has to be abstract

• Java Collection Hierarchy
o AbstractCollection -> AbstractList -> ArrayList
o AbstractCollection -> AbstractSet -> HashSet

http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractCollection.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractCollection.html
https://docs.oracle.com/javase/7/docs/api/java/util/AbstractSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Collections

HashSet

interface
Collection

interface
List

interface
Set AbstractCollection

AbstractSet AbstractList

Vector

class HashSet extends AbstractSet implements Set … { … }

Extract from the
Java Standard

Library hierarchy
for collections

Outline

1. Administrative
2. Abstract Class
3. Interface

Interfaces (Java)
• An interface is a set of methods and constants that is identified with a

name.

• They are similar to abstract classes
o You cannot instantiate interfaces
o An interface introduces types
o But, they are completely abstract (no implementation)

• Classes and abstract classes realize or implement interfaces.
o They must have (at least) all the methods and constants of the

interface with public visibility

interface
Clock

setTime(Time):void

MIDNIGHT:Time

• To separate (decouple) the specification available to the user from implementation
o Subtype polymorphism: I can use any class that implements the interface

through the interface type

• As a partial solution to Java’s lack of multiple inheritance

user
uses //black box

interface {
…
}

realised
(implemented)

class

class

Why use Interfaces?

Interfaces (Java)
• Can an interface extend (inherit from) another interface?
• Can an interface extend multiple interfaces?
• Can an interface implement another interface?

• All methods are implicitly public
• All fields are implicitly public static final
• Why?

Multiple Inheritance

start()
stop()

MultiFunctionWatch

setTime()
setAlarm()

StopWatch AlarmClock

Java does not
support multiple

inheritance,
but...

Multiple Interfaces

• Classes are allowed to implement multiple interfaces

interface
StopWatch

+start()
+stop():

interface
AlarmClock

+setTime()
+setAlarm():

MultiFunctionWatchQ: Why is this
not the same
as multiple
inheritance?

A: There is no
implementation

to inherit

Abstract classes vs. Interfaces

• Can have data fields

• Methods may have an implementation

• Classes and abstract classes extend
abstract classes.

• Class cannot extend multiple abstract
classes

• Substitution principle is assumed

• Can only have static (constants)

• Methods have no implementation

• Classes and abstract classes implement
interfaces

• Interfaces can extend multiple interfaces

• A class can implement multiple interfaces

• Substitution principle not assumed

Abstract Classes or Interfaces?

• If there is common concrete implementation -> Abstract Class

• If there is no common implementation -> Interface
o Interfaces allow classes implementing multiple interfaces...
o Abstract classes can be subsequently extended without breaking subclasses...
o No clear cut decision...

I am still not clear.. when to use what?

• Credit

26

https://stackoverflow.com/questions/383947/what-does-it-mean-to-program-to-an-interface

Outline

1. Administrative
2. Abstract Class
3. Interface
4. More discussions

Should subclass of abstract class provide
implementation for all abstract methods?

• No. But you need to mark the subclass as “abstract”
• Only if you provide implementation of all abstract methods, you can

be a concrete class.

• The same holds for a class that implements an interface
o In order for this class to be “concrete” class then it must override all abstract

methods and provide concrete implementation for these methods.

Is this legal?

Can I throw in Interface where Object type is expected?Does this mean Interface inherits from a concrete class Object?

Interfaces are part of “type” hierarchy

Inheritance is NOT the requirement for subtype polymorphism

Why this is legal?

Yes, indeed interface has all methods in Object implicitly defined

l should have everything O has

