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Please, interrupt and ask questions AT ANY TIME !



Administrative
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• Prog 3 due Thursday 11:59 PM
o Your own critter for competition: Can work on it till CritterFest

• CritterFest 
o Fierce competition, party, food J 
o Time and date: TBD

• Reading 
o Ch 6-6.8 if you haven’t done so
o Ch 5



Outline

1. Administrative
2. Hash table Intro



Why (general-purpose) hash table?

• When order doesn’t matter (no need to sort)
• Abstract Data Type 

o void insert(key, value);
o value find(key);
o void remove(key); 



Wait, what is Abstract Data Type (ADT)?

• Defines a set of operations it supports (and a set of values it holds)
o Stack: push pop peek
o Queue: enqueue, dequeue 

• Emphasizes the behavior of the data structure
• Does NOT dictate any particular implementation
• When it is actually implemented, we call it a ______________
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ADT defines what a data structure does, 
while the actual data structure defines how it does it.



Why hash table?

• When order doesn’t matter
• Abstract Data Type 

o void insert(key, value);
o value find(key);
o void remove(key); //sometimes

• We want O(1) performance!
o Worst case O(n) 
o Average case O(1)

The hash table is the workhorse of computer systems



Notation

o U: Universe of all possible keys.
o K: Set of keys actually stored in the dictionary.
o |K| = n: the num of current elements stored
o m: size of the hash table

• Why not just use array? 

o void insert(key, value); 
o value find(key);
o void remove(key);

ADT



In fact, it is called Direct-address Tables 

• Direct-address Tables are ordinary arrays
• Store element with key k at index k  
• All dictionary operations takes O(1) time

• What is the big assumption here? 
o Key k is integer
o The universe U is small

• What to do if k is NOT an integer?

• If U is too large what happens? 



Notation

• We use should use hashing only if |U| >> |K|
• Use a table size proportional to |K|

o void insert(key, value); 
o value find(key);
o void remove(key);

ADT

o U: Universe of all possible keys.
o K: Set of keys actually stored in the dictionary.
o |K| = n: the num of current elements stored
o m: size of the hash table



Hash function h maps U to an index [0 .. m-1] 
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• With arrays, key k maps to slot A[k].

• With hash tables, key k maps to slot T[h[k]].
• h[k] is the hash value of key k.



Time complexity
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• Insert?
• Find?
• Delete? 

All O(1) All O(1) when life is good 
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1. Administrative
2. Hash table Intro
3. Bad things can happen to good people hash table



What can go wrong with hashing?
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What can go wrong with hashing?
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• Hash returns a value ≥ m

Use h[k] % m 



What else can go wrong with hashing?
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What else can go wrong with hashing?
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Multiple keys can be mapped to the same slot causing collision!



What makes a good hash function?

MUST
• Deterministic: same input same output
GOOD
• Fast
• High uniformity: spread uniformly across the table

VERY GOOD
• Avalanche effect: small changes in input should cause large 

unpredictable changes in the output bits.



How do we deal with collisions? 

There are multiple strategies: 
• Separate Chaining 
• Open Addressing 

o Linear Probing 
o Quadratic Probing 
o Double Hashing 



Outline

1. Administrative
2. Hash table Intro
3. Bad things can happen to good people hash table
4. Separate chaining



Separate chaining idea: 
If we hash multiple keys to the same slot, store a LinkedList of them

• h(k) = k  %10

• What is the worst-case time complexity for insert(key)? 

• How about find(key) ?

• O(n):  Absolute worst when using a horrible hash function h(k) = C

•  What is the average case? 



Load factor measures “how full” a hash table is

•𝜆 = 
!
"
	

om is the size of the table
o n = |K| is the number of items inserted 

• Using separate chaining, what is the avg num of elements per slot?
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Load factor measures “how full” a hash table is

•𝜆 = 
!
"
	

om is the size of the table
o n = |K| is the number of items inserted 

• Using separate chaining, the avg num of elements per slot is 𝜆
• Each unsuccessful find compares against 𝜆 items

• Each successful find compares against 𝜆 items
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If we want O(1) then what should be 𝜆 ?We want 𝜆 ≈ 1 Why? 



Load factor example

24What is average case runtime of find?  



Why average case is O(1)? 
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Separate chaining delete is simply a reverse of insert

• Remove from linked list!

• What is the worst-case time complexity for delete(key)? 

• O(n):  Absolute worst when using a horrible hash function h(k) = C 

• Average case is O(1) with a good hash function



How to further improve performance?

• Use better hash function
o MurmurHash, xxHash, CityHash
o Speed, spread, avalanche effect, seed 
o Look to the experts, don’t implement your own

• Instead of using linked-list you can use fancier tree
o Java uses red-black tree (a balanced tree) if linked list size becomes > 8
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What are the pros/cons of separate chaining?
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Outline

1. Administrative
2. Hash table Intro
3. Bad things can happen to good people hash table
4. Separate chaining
5. Open addressing



Open Addressing resolves collisions by choosing 
a different location when the natural choice is full

Sure, different location OC! But what should be the criteria? 

• We should be able to reproduce the path 
o Cannot be random. Still deterministic

• We want to use most of the spaces in the table
• We should avoid putting keys close together.  Why? 

o More collisions means even more collisions!
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1st attempt: Linear Probing
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Time complexity
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• Insert? What is the worst case of finding the next slot? 
• Find? 
• How to delete? 



Time complexity
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• Insert? What is the worst case of finding the next slot? 
• Find? 



Time complexity
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• Insert? What is the worst case of finding the next slot? 
• Find? 
• Wait, can you delete? How? 

o What happens when you just delete 19 and try to find 109? 
o Lazy delete must be implemented



What is lazy delete?
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Let’s revisit the criteria and analyze Linear Probing

Thumbs up or down
• We should be able to reproduce the path 
• We want to use most of the spaces in the table
• We should avoid putting keys close together
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Linear probing leads to primary clustering



Primary clustering is 
when different keys collide to form one big group 
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Which would have worse performance? (i.e., more # of probes?) 
• Successful find
• Unsuccessful find



High-level intuition: Why unsuccessful search 
is far worse than successful search?
• In fact, exponentially worse 

38



What is a good load factor?
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Mathematically….

• Ps is the average number of probes for successful find
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Why 1 + 

Why 1 / (1 - 𝜆 )

Why 1 / 2



Mathematically….

• Pu is the average number of probes for unsuccessful find
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Why square 1 / (1 - 𝜆 )!?


