Hashing — Open Addressmg

Mikyung Han

\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g) =
\ ;i 4) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !

Outline

@ 2. Open addressing

Open Addressing resolves collisions by choosing
a different location when the natural choice is full

Sure, different location OC! But what should be the criteria!?

Open Addressing In General

Choose a new function f(x) and then probe with

(h(key) + f(i)) mod |T|

* We should be able to reproduce the path
o Cannot be random. Still deterministic

* We want to utilize most of the spaces in the table

* We should avoid putting keys too close together. Why!?
o More collisions means even more collisions!

| st attempt: Linear Probing

Strategy #1: Linear Probing
1=0; Insert 38,19,8,109,10 into a

while (index in use) { _ _
try (h(key) + i) % |T| hash table with hash function

} h(x) =x and linear probing

L L 1T 1 [[|

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
(Items with the same hash code are the same color)

Time complexity

Strategy #1: Linear Probing Example

g1 =0 Insert 38,19,8,109,10 into a
hash table with hash function
h(x) =x and linear probing

yd while (index in use) {
try (h(key) + i) % |T|

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
(Items with the same hash code are the same color)

* Insert? What is the worst case of finding the next slot?
* Find?
* Delete!

Time complexity

Strategy #1: Linear Probing Example

g1 =0 Insert 38,19,8,109,10 into a
hash table with hash function
h(x) =x and linear probing

yd while (index in use) {
try (h(key) + i) % |T|

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
(Items with the same hash code are the same color)

* Insert? What is the worst case of finding the next slot?
* Find?

Time complexity

Strategy #1: Linear Probing Example

g1 =0 Insert 38,19,8,109,10 into a
hash table with hash function
h(x) =x and linear probing

yd while (index in use) {
try (h(key) + i) % |T|

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
(Items with the same hash code are the same color)

* Insert? What is the worst case of finding the next slot?
* Find?

* Wait, can you delete? How!
o What happens when you just delete 19 and try to find 1097

One way: Lazy deletion

* Hint: Each entry now has an active bit

* Think about the modified actions for
o find(x):
o Insert(x):
o delete(x):
o rehash():

* When can you actually (physically) remove the item from the table!?

See Example Code: ProbingHashSet.java

* [nstead, the slot at which x is located is marked inactive

* Modified actions (Show code!)
o Delete: find(x). If found, mark the slot as in active

o find(x): locate element x. Only If the slot is active then it is found otherwise not
found

o Insert(x): Go to hashed location. If collision, do linear search to find an available
slot including inactive slot and insert mark active

o rehash: double the hash table size and only insert active elements from the old
table

Let’s revisit the criteria and analyze Linear Probing

Thumbs up or down
* We should be able to reproduce the path
* We want to use most of the spaces in the table

* We should avoid putting keys close together

Linear probing leads to primary clustering

Why primary clustering is bad!?

* Odd filled + Even empty vs first half filled + second half not filled

Primary clustering is
when different keys collide to form one big group

Which would have worse performance!? (i.e., more # of probes?)
* Successful find

e Unsuccessful find

High-level intuition:Why unsuccessful search
is far worse than successful search?

* In fact, exponentially worse

What is a good load factor?

Unsuccessful Search Successful Search

1 I 1 1
5(“(1_,1)2) 5(“(1—@) » Load factor = 0.5 (table half full

» Successful: 0.5 x (1 4 2) = 1.5 probes

* Unsuccessful: 0.5 x (1 + 4) = 2.5 probes
» Load factor = 0.9 (table almost full)

e Successful: 0.5 x (1 4 10) = 5.5 probes

______4 » Unsuccessful: 0.5 x (1 + 100) = 50.5 probes (!!)

oooooooooo

About half full!

Mathematically....

* P, is the average number of probes for successful find
1 1
F=5 (1 * ﬁ)

Why | +

Why 1 /(1 -2)

Why | /2

Mathematically....

* P, is the average number of probes for unsuccessful find

Why square in | / (I = 1)??

Beyond the scope of this class ©

Outline

@ 3. Open addressing — Quadratic Probing

Quadratic probing tries to reduce primary

clustering by using a quadratic function

Choose a new function f(x) and then probe with

(h(key) + f(i)) mod |T|

Strategy #2: Quadratic Probing Example
1 Insert 89,18,49,58,79 into a

yA while (index in use) {
try (h(key) + i2) % |T
i IT|

hash table with hash function
h(x) =x and quadratic probing

T[0] T[1] T[2] T([3] T[4] T[5] T[6] T[7] T[8] T[9]

Using quadratic probing
primary clusters are spread out more effectively

Strategy #2: Quadratic Probing

; ihflei ey Insert 89,18,49,58,79 into a
LD (BURES U uze) : hash table with hash function

3 try (h(key) + i) % |T| . .

4 B h(x) =x and quadratic probing

49| |58]79] | | | [18]89

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

20

Quadratic probing example

Strategy #2: Quadratic Probing Example
1 Y Insert 76,40,48.5,55,47 into a

A while (index in use) {
try (h(key) + i2) % |T|
=

hash table with hash function
h(x) =x and quadratic probing

T[0] T[1] T[2] T[3] T[4] T[5] T[6]

h(76) =% 76 +0% = 6

2

Can you insert 477

Strategy #2: Quadratic Probing

; ihTIGF e | Insert 76,40,48,5,55,47 into a
PIFLE I Sy u'.c'ze) { hash table with hash function

3 try (h(key) + i%) % |T| h . .

n — (x) =x and quadratic probing

T[0] T[1] T[2] T[3] T[4] TI5] T[]

h(47) =% 474+0% = 5
L+’ 56
L 47+2% =2
B 4143250
14450

247452 =2

We will never get a 1 or a 4!

Even with empty slots insertion can fail due to cycle!

Good news!
If m is a prime number and load factor < 0.5

* Quadratic probing will find an empty slot in at most m/2 probes.

—
* Proof will be posted in Ed Discussion

o Not required to do the formal proof in our course
o But you do for discrete mathematics

Quadratic probing:What could go wrong?

Secondary Clustering is when different keys hash to the same place and
follow the same probing sequence.

39 29 9 |19
T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
* Consider keys 9; il 9ié39z, 29 and their probing sequence
0c9->0->3>>5>4>
——r—x, - @_—q‘—\

Can we avoid secondary clustering? What is the problem here!?

This is the motivation for Double Hashing

24

Outline

@ 4. Open addressing — Double Hashing

Double hashing idea

* Each key should “jump” in their own way (each key has a different delta)
o Keyl jumps multiples of 3 (+3, +6, +9, etc)
o Key2 jumps multiples of || (+11,+22,+33, etc)

Double hashing example

Strategy #3: Double Hashing Insert 13,28,33,147,43 into a

i=0; hash table with:
while (index in) {

try (h(key) (key)) % |T| ® h(x)=x
} —

We insist g(x) # 0.

=)= 1+ %) mod (71-1)

using double hashing

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

27

Can you insert 43!

Strategy #3: Double Hashing Insert 13,28,33,147,43 into a

i=20; hash table with:
while (index in use) {

try (h(key) + 40) % |T|
} -

x
d (|T|-1
We insist g(x) #0.) mod (|7[-1)

using double hashing

L | [J13] | | [33]28]147

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

h(43) =5 43+0=3

—>43+1(1+4 mod 9) =8
L, 43+2(1+4 mod 9) =3

ZL 43+3(1+4 mod 9) =8

28

We wiill not get an infinite loop when...

With primes p,q such that 2<qg< p:

* h(key) = key mod(p)
* g(key)=q~(key mod q)

How much better is double hashing than linear probing?

%In (lia)

@Jccessful search|vs unsuccessfulsearch

507

40t

30F

201

10t

= C
e nv Pwlﬁ VS
Graoh of 1in (1) (owB& heglw 10/\“1 " —
raph of zIn (12) ‘== _ Graph of - —
— i 50 i
éln (lia) i — :
--- a=1 (asymptote) ! ——- a=1 (asymptote) |
1
! I
1
! 40 i
: i
| 1
| |
| 1
1 |
I I
I 301 !
| 1
| 1
: ok |
I A i
| 1
| — :
| 20} |
| |
| 1
| 1
| 1
| 1
| 1
| 1
i 10+ I
| i
| |
1 1 1 1 1 : :
0.0 0.2 0.4 0.6 0.8 1.0 0 L L L L L 1
a 0.0 0.2 0.4 0.6 0.8 1.0
a

Double hashing is much better than linear probing

Outline

@ 5. Mini math lecture

Analysis of linear probing

* P, is the average number of probes for successful find
1 1
F=5 (1 * ﬁ)

Why | +

Why 1 /(1 -2)

Why | /2

Probability 101

* What is the expected number of coin toss to see a tail?

e Coin is biased: 70% chance for head, 30% chance for tail

Geometric series...

This series converges only when |a| < 1, meaning that for values 0 < o < 1, you can represent

1 .
i—a as.:

—l4+a+a’+a®+...
1l -«

34

Outline

Administrative
Open addressing — Linear Probing

Open addressing — Quadratic Probing

Open addressing — Double Hashing

Mini math lecture

o U1 AW IN —

Rehashing

Rehashing

* With separate chaining, we decide when to resize (good if A S 1)
* With open addressing, we need to keep A < 0.5

* New table size should be a prime number
o Roughly twice as big

* What is the time complexity of rehashing?

Outline

N o s WY =

Administrative
Open addressing — Linear Probing

Open addressing — Quadratic Probing

Open addressing — Double Hashing
Mini math lecture

Rehashing

Other hash functions

Other hash functions

* Two-probe hashing (separate-chaining variant)
o Hash to two positions, insert key in shorter of the two chains.
o Reduces expected length of the longest chain to ~ g In N

* Cuckoo hashing (linear-probing variant)
o Use two hash table (or one longer table) with 2 different hash functions
o Iry to insert to erther table
o If occupied, evict existing entry and try to insert to the other table
o Guarantees lookup time is O(1)

* Perfect hashing
o Useful for static data set
o Construct a perfect secondary hash

Backup Slides

