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Please, interrupt and ask questions AT ANY TIME !



Reminders

* Read Ch 5, 6-6.8 if you haven’t done so
* Prog 4 Part | submission due Friday 26 9 PM



Outline

@ 2. Comparing programs



How to compare two program??

* hasDuplicate

* Given a sorted int array determine if the array has a duplicate

Any idea?
* Algorithm |: For each pair of element, check if they are the same

* Algorithm 2: For each element, check if it’s equal to the one after it

First approach:

Can we measure how long each program takes to run?



Can we time the program!?

* Timing programs is prone to error (not reliable or portable):
o Hardware: processor(s), memory, etc.
o OS, Java version, libraries, drivers
o Other programs running

o Implementation dependent

* Can we even time an algorithm? What if it is intractable!?
o Algorithm that cannot be solved in polynomial time



How about counting number of steps!?

OUTPUT

>> hasDuplicatel average number of steps is 9758172 steps.
>> hasDuplicate2 average number of steps is 170 steps.

* What is above code depending upon!?

We must do this via testing




Comparing pregrams algorithms

Why!
* Abstract out implementation detail

* Independent of CPU speed, programming languages, versions etc..
* Can do analysis before coding

* Enables us to study scalability



When analyzing algorithms,
we count number of operations

Operation? Didn’t we just say we don’t do # of steps!



An operation is any action whose cost
does NOT depend on the input size

proc analyzeMe(list L) {
L[O] = 3;
int x = length(L); //read L.size

sort(L); //is this an operation?
Return L[floor(x/2)];

;



We define time complexity T(n)
as a function of input size n

* We ignore constants!

Why is it ok to ignore constant!



Should be consider these “same’?

200000
150000

100000

800




Probably yes
since they seem to grow at the same rate

2000 3000

We ignore constant because it doesn’t affect the growth rate



Why care about large input!?

g(x)
tel:00%2050%20100%20150%20200

With small input any algorithm could work well



Comparing algorithms

* Usually focus on time and space
* We usually consider the worst case (unless specified otherwise)
* We only consider large inputs

* We like to discuss them in bounds
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@ 4. Asymptotic Analysis



Asymptotics is an analysis of the behavior
as the input size grows to infinity



Asymptotics

* We like to compare two functions
e |If we havefand 4f, consider them the same

f < g when. ..

f <cg where c is a constant and ¢ # 0.

* We care about all values of the function that are big enough

For all n “large enough”, f(n) <cg(n), where c+0
For some ny >0, for all n>ng, f(n) <cg(n), where c+0
For some ¢ + 0, for some ng >0, for all n>ngy, f(n)<cg(n)



Big-O Definition

Definition (Big-Oh)

We say a function f:A - B is dominated by a function g:A — B when:

A(c,n9>0).V(n>ng). f(n) <cg(n)

Formally, we write this as f e O(g).

Big-Oh Gotchas

= O(f) is a set! This means we should treat it as such.

m If we know f(n) € O(n), then it is also the case that f(n) € O(n?),
and f(n) e O(n?), etc.

® Remember that small cases, really don't matter. As long as it's
eventually an upper bound, it fits the definition.




Big-O Examples

(1) 4+3neO(n)

(2) 4+3n=0(1)

(3) 4+3nis O(n?)

(4) n+2logn e O(logn)
(5) logneO(n+2logn)



B|g-o Examp|es prove 4+3n+4n? ¢ (’)(n3)



Big Omega for lower bound

Definition (Big-Omega)

We say a function f:A — B dominates a function g: A - B when:

3(c,np>0).V(n>ng). f(n) >cg(n)

Formally we write this as fe€Q(g).

Why/when is it useful to have lower bound!?



Big Theta for tight bound

Definition (Big-Theta)
We say a function f:A — B grows at the same rate as a function

g:A—>Bwhen: feO(g) and feQ(g)
Formally we write this as f € ©(g).

No need to use the same ¢, n, values for O and Q to prove

If you want to say “fis a tight bound for g~ use ©® not O




Note we are analyzing the worst case time

What else can we analyze!
* Space

* Average case

* Best case

* Time over multiple operations
o Amortization analysis



Worst case vs Average case vs Best case

* Best case:T(n) is the run time for the best-case input of size n
* Worst case: T(n) is the run time for the worst-case input of size n

* Average case: T(n) is the average run time, over all inputs of size n
o Note in reality it's possible that not all inputs are equally likely.



Is best case the lower bound and the worst
case the upper bound!?

* No!
o There can be the lower/upper/tight bound for the best case
o There can be the lower/upper/tight bound for the worst case
o There can be the lower/upper/tight bound for the average case

* Worst case lower bound
o Comparison-based sorting is Q(n log(n)) in the worst case.

* Best case upper bound
o Insertion sort on already sorted list Q(n)



BTW,is log; and log,q the “same™?

log,;(x)
log,(D)

log,(x) =

In asymptotic analysis, all log bases are the same
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@ 5. Does it really matter?



Moore’s law vs asymptotic analysis

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
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Since computers are doubling in speed every year,

if | just wait then wouldn’t inefficient algorithms run fast enough?



The Tyranny of Growth rate

= Max problem size | Max problem size Increase in
(") for 1000 cycles for 10000 cycles problem size

100n 100 | Ox
5n2 14 45 3.2x
0.5 x n3 12 27 2.3x
2n |0 13 |.3x

As computers become more powerful, asymptotics matter even more!

We need to solve larger and more complex problems




