
CS314H
DATA STRUCTURES

Lecture 12:
AlgorithmAnalysis 2 – Sorting Lower Bound

Mikyung Han

Please, interrupt and ask questions ATANY TIME !
2

3

Reminders

• Read Ch 16 Ch 7 (except 7.4 and 7.6) if you haven’t done so

Outline

1. Administrative
2. Hangman

What is Hangman?

• Start with set of words in a dictionary
o {ally beta cool deal else flew good hope ibex}

• Computer starts by choosing a word to guess. For example,
o {else}

• Each round user guesses an alphabet in the word
and computer outputs the result
o Round one: your guess? e
o Round one result: Yes, there are two e’s [e - - e]
o Round two: your guess? a
o Round two result: No, there is no a [e - - e]
o Round three: your guess? s
o Round three result:Yes, there is one s [e - s e]
o …

Hangman has a brother

… who is evil

What is Evil Hangman? See UW assignment spec

• Start with set of words in a dictionary
o {ally beta cool deal else flew good hope ibex}

• Computer never commits to a word but tries to delay user guessing
o {ally beta cool deal else flew good hope ibex}

• Each round user guesses an alphabet in the word
and computer outputs the result
o Round one: your guess? e

• Which answer would reveal less about the word?
o if no, {ally cool good}
o if yes, {else} or {beta deal} or {flew ibex} or {hope}

• Algorithm pick the “largest” set
o Round one result: No, there is no e [- - - -]

https://courses.cs.washington.edu/courses/cse143/19au/homework/a4/spec.pdf

What is Evil Hangman?

• Current possible words
o {ally cool good}
o Round two: your guess? o

• Which answer would reveal less about the word?
o if yes, {cool good}
o if no, {ally}

• Algorithm pick the “largest” set
o Round two result:Yes, there are two o’s [- o o -]

With a larger dictionary, it takes much longer to commit

9

Outline

1. Administrative
2. Evil Hangman
3. Lower bound of sorting

Theorem: Any deterministic comparison-based
sorting algorithm in the worst case must perform
Ω(n log n) comparisons to sort n elements

• What does deterministic mean?
o Given the same input algorithm always outputs the same result

• What is Ω?
o Lower bound: need at least n log n comparisons

Why just count the number of comparison?
11

Sorting algorithm solves the problem by doing
a sequence of comparing two elements “Is ai < aj?”

• What is essential operation in comparison-based sorting algorithm?
• Can algorithm perform other actions than comparisons?

• Since we are interested in the lower bound only
it’s ok to abstract sorting algorithm to such sequence of comparisons

12

Counting num of comparisons provides a valid lower bound

Theorem: Any deterministic comparison-based
sorting algorithm in the worst case must perform
𝛺(n log n) comparisons to sort n elements

To prove above, let’s play a game
13

The algorithm

14

Input
Algorithm

Output

Unknown order: {a1, a2, a3}

Is ai< aj Y/N

Adversary

Algorithm
- initially doesn’t know anything about (a1, a2, a3)

- picks two elements to question as smart as possible
to reduce the number of rounds

- Only after asking the adversary, it knows which one is smaller
-

Known order: {a1, a2, a3}

For example, we have 3 elements {a1 , a2, a3 }

• Algorithm doesn’t know which ones are bigger or smaller

• First, algorithm asks a1 < a2 ?
• Say, the answer is “Yes”
• Next, algorithm asks a2 < a3 ?
• What should you answer if you are the adversary?

o If yes, then algorithm knows about all with just 2 comparisons
o If no, then algorithm still has to ask one more time < ?

15

a1 a2 a3

a2 a3

a1 a3

The adversary

Algorithm
Output

Adversary

Is a1< a2 Y/N

Adversary
- Starts with all possible combination of elements as its pool

- Based the question, it answers in the most “evil” way,
giving the least info as possible (i.e., the answer with the largest poo1l7)

Input

{1, 2, 3}
{2, 1, 3}
{3, 2, 1}
{1, 3, 2}
{2, 3, 1}
{3, 1, 2}

The adversary

Algorithm
Output

Adversary

Y/NIs a1< a2

Input

{1, 2, 3}
{2, 1, 3}
{3, 2, 1}
{1, 3, 2}
{2, 3, 1}
{3, 1, 2}

Adversary answers eitherY or N as neither reveals less
18

The adversary

Algorithm
Output

Adversary

YIs a1< a2{1, 3, 2}
{2, 3, 1}

Say, Adversary choose to answerY

Input

{1, 2, 3}

19

Is a1< a3

The adversary

Algorithm
Output

Adversary

Y/N

Input

{1, 2, 3}
{1, 3, 2}
{2, 3, 1}

What should the adversary answer?
20

Algorithm asks “Is a1 < a3?”

The adversary

Algorithm
Output

Adversary

Y/N

Input

{1, 2, 3}
{1, 3, 2}
{2, 3, 1} Is a1< a3

Adversary answersY as it leads to one additional round
20

The adversary

Algorithm
Output

Adversary

Y/N

Input

{1, 2, 3}
{1, 3, 2}

Is a1< a3

Algorithm asks the final question. Adversary can say eitherY or N
21

The adversary

Algorithm
Output

Adversary

N

{1, 3, 2}
a1Is < a3

Input

Say,Adversary choose to answer N. Algorithm finds the ordering!
22

Given the sequence of questions,
adversary finds a worst possible input

• Namely “Is a1 < a2?”,“Is a1< a3?”, “Is a2< a3?”
• {1,3, 2} turns out to be the worst case input

• Could there be other worst case inputs?

If algorithm asked with a different sequence,
worst case input would have changed

23

Why algorithm has to be as smart as possible?

The smartest will provide the lower bound for ANY algorithm

Theorem: Any deterministic comparison-based
sorting algorithm in the worst case must perform
𝛺(n log n) comparisons to sort n elements

24

Why adversary has to be as evil as possible?

Being as evil as possible == hand-crafting the very WORST case input

Theorem: Any deterministic comparison-based
sorting algorithm in the worst case must perform
𝛺(n log n) comparisons to sort n elements

25

Now let’s prove

Where does n and log n come from?
26

Theorem: Any deterministic comparison-based
sorting algorithm in the worst case must perform
𝛺(n log n) comparisons to sort n elements

Outline

1. Administrative
2. Evil Hangman
3. Lower bound of sorting as a game
4. Proof of n log n

What is the initial pool size with n elements?

With n elements, there are n! possible permutations
28

Each round the pool size shrinks as the adversary
answersY/N to the comparison question

Half of |S|. Why?
29

If S is the current pool and |S| is the pool size,
how many will remain in the pool after a new comparison
in the worst case (for algorithm)?

Suppose NOT.
So, after the comparison, less than half remained

When would this be possible?

When the adversary is NOT evil enough

If adversary was most evil it would have picked the other choice
leaving more options for itself. Contradiction!

30

31

In terms of “set”:
consider two items and pool S
• Half the sets in S will have smaller item placed before larger item
• The other half will have larger item placed before smaller item

Each round, half will be eliminated based on adversary’s answer

Given X, how many times do you have to divide by
half so that it becomes 1?

In this case X = n!
log2 n! gives the total number of rounds

33

log2 X

≥ log () + log() + … + log() //replace all terms with smallest one

log n! = log n + log (n-1) + … + log(1)
= log n + log (n-1) + … + log ()+ … + log(1)

Use “log (p x q) = log p + log q”

≥ log n + log (n-1) + … + log() //drop the smaller half

34

of comparisons isΩ(n log n)

≥ () log () = f comparisons isΩ(n log n)

Outline

1. Administrative
2. Evil Hangman
3. Lower bound of sorting as a game
4. Proof of n log n
5. Conclusion

36

Smartest algorithm under the harshest condition has
Ω(n log n) bound

Harshest condition gives the worst-case input:
Some other input may require lesser num of comparisons

Smartest algorithm gives the lower bound for all:
non-smart algorithm could do more num of comparisons

