
CS314H CSB Lecture 13: Sorting  

  1  

Sorting   
2. Sorting & the original order  

• ________ sort: maintains the original order of “equal” items.   
• ________ sort: does not maintain the order.   

  
3. Sorting & space usage  

• ___________ sort: does not require additional memory just use original space for sorting.  
• ___________ sort: use extra space that's directly related to the size of the problem.  

4. When is stable sort useful?   
  
5. How to prove correctness of a sorting algorithm?   

Use _____________________- A loop property that is true at the start or at the end of each iteration.  
  

6. Can you find a loop invariant for below code?   
  

  
  
After 1st iteration, sum contains what?  
After 2nd iteration, sum contains what?  
…  
Loop invariant: After kth iteration, sum contains ___________________________.  
  
Selection Sort   
7. For each iteration you are allowed to do only one swap.   
8. Find max approach: Find max among index ____thru____ and swap the max with element at 

array[____], where k goes from _____ to _______.   
  

  
9. Find min approach: Find min among index ____thru____ and swap the max with element at 

array[____], where k goes from _____ to _______.   
  
10. Code (select min and swap)  



CS314H CSB Lecture 13: Sorting  

  2  

  
• Is it stable?          
• Is it in-place?             What is the space complexity?   
• Loop invariant?  
• Time complexity?   

11. Best case input vs worst case input?   
• Best case (no swap needed):  

  
• Worst case (always need to swap):  

  
• Time complexity for each?   

  

Bubble sort  

12. Find max and place it to the rightful max’s place by swapping adjacent items.  (multiple swaps are allowed).  
13. Code   

  

• Is it in-place?   
• Is it stable?   
• Loop invariant?  

  

• Time complexity   
  

14. Best case vs worst case input and time complexity for each case?  

• Best case (no swap needed at all):  
• Worst case (always need to bubble up all the way):  



CS314H CSB Lecture 13: Sorting  

  3  

Insertion sort  

15. Shifting is allowed (do not need to rely on swapping). For each item at index k in the array find a right hole 
j between 0..k inclusive and insert to the hole by shifting later items (items at index j+1 … k-1) to the right.   

  

• Stable?  
• In place?   
• Loop invariant?   
• Time complexity   

  

16. Best case vs worst case input   

  

  
Mergesort  

17. Mergesort is a _______-and-________ algorithm: Divide a large problem into smaller problems 
andsolve the smaller problem to solve the large problem.   
• Divide the list into two roughly equal halves.  
• Sort the _____ half.  
• Sort the _____ half.  
• ________ the two sorted halves into one sorted list.  

  
18. Mergesort is a ____________ algorithm: an algorithm that solves a problem by breaking it down 

into smaller instances of the same problem. Consists of   
• _________ case: The simplest instance of the problem that can be solved directly without 

recursion.  
• ___________ case: The part where the algorithm calls itself to solve a smaller version of the 

original problem.  
  

19. Let’s first implement merge. What should be the if condition?   



CS314H CSB Lecture 13: Sorting  

  4  

  

• Is it stable?  
• What it the time complexity of just merge?   

  
20. Complete below code:   

  

21. What is the space complexity?  
• Informal analysis:  

  



CS314H CSB Lecture 13: Sorting  

  5  

  

At each recursion level, we see exactly _______ cells.   
How many levels are there? n is reduced to 1 by dividing into half each time. _________ levels.   

What is the space complexity (the max space used at the deepest level of recursion)?   

22. Formal analysis using the recurrence relation:   
Let S(n) be the space needed for mergeSort with input size n.  Write 
the recurrence for S(n):  
       
  

23. Space complexity does not look good. How to save space?  
Where/which part of the code actually needs this space?  Circle one from below.  
• Divide the list into two roughly equal halves.  
• Sort the left half.  
• Sort the right half.  
• Merge the two sorted halves into one sorted list.  

  
24. One way to improve this code is to move the creation of new array inside the merge function.  

• Why the simply moving instantiation and array copy code to merge() saves space?   



CS314H CSB Lecture 13: Sorting  

  6  

Draw space usage diagram and see if 
space complexity is indeed O(n)  

  

  

  

  

  

  

  

  

  

  

  

  

 Compare memory usage with 22.   

25. Final approach! We do not like to create/de-create objects each time merge is called. We want to just 
start with n extra space to begin with.   

Draw the space usage diagram.   

  

  

  

  
26. Complete the code (mergeSort final version).   



CS314H CSB Lecture 13: Sorting  

  7  

 

  

27. Time complexity. Write down the recurrence for merge sort.   

  

28. General strategy: How to solve recurrence?   
• By ____________: Directly expand and substitute terms recursively. Ex)  T(1) = 0   

        T(n) = 1+ T(n-1)   //substitute T(n-1)   
                = 1 +                           //substitute T(n-2)   
                = 1 +                                     //substitute T(n-3)   
                …  
                = 1 +                                                     //substitute T(1)    

• By ____________: Manipulate terms to achieve cancellation. Add all the left-hand side up and 
right hand-side up and cancel items  
Ex)   
       T(n) = 1 + T(n-1)   
    T(n-1) = 1 + T(n-2)   
   

  

   After cancelling out, what is left?   
    T(n)  =   

29. Solve recurrence of merge sort.  



CS314H CSB Lecture 13: Sorting  

  8  

  
• By substitution? Tricky (this strategy typically works better with linear recurrence)   

  
• By telescoping! (Hint: re-write the recurrence by dividing by n)  

  

  

  

  

  

• By art (my favorite J): Formally this is called _______________.   

  

  

  

  

Quick sort   
30. Psuedo code: what is wrong with below code?  
  
qsort (List S) {     if (|S| <= 1) return S;// Note that 

S could be empty     v = element of S;// Choose pivot  

    // Using set notation for lists  
    List L = { x in  S - {v} | x <= v }     
List R = { x in  S - {v} | x >= v }   

    return (qsort(L) + {v} + qsort (R));// + is list concatenation }  
Assume x can go either L or R (not both!)  Why 
not make it deterministic?   
    // Using set notation for lists  
    List L = { x in  S - {v} | x <= v }  
    List R = { x in  S - {v} | x > v }   



CS314H CSB Lecture 13: Sorting  

  9  

Partitioning is the key to the performance of this algorithm.   
31. What is a bad pivot?   
Write a recurrence for using a bad pivot for each iteration.   
Bad pivot analysis by telescoping (Worst case analysis).   
  

  

32. What is a good pivot?   
Write a recurrence for using a good pivot for each iteration  
  
   

  

  

  

33. How to choose a pivot?   

  

Which one is worse 1) random vs 2) median of any 3 elements?   

  


