CS314H CSB Lecture 13: Sorting

Sorting

2. Sorting & the original order
. sort: maintains the original order of “equal” items.
. sort: does not maintain the order.

3. Sorting & space usage
. sort: does not require additional memory just use original space for sorting.
. sort: use extra space that's directly related to the size of the problem.

4. When is stable sort useful?

5. How to prove correctness of a sorting algorithm?
Use - A loop property that is true at the start or at the end of each iteration.

6. Can you find a loop invariant for below code?

int calcSum(int array[], int n){
int sum = 0;
for(int i =0 ; 1 < n ; i++){
sum += arrayl[il;
}

return sum;

After 1% iteration, sum contains what?
After 2" iteration, sum contains what?

Loop invariant: After k™ iteration, sum contains
9

Selection Sort
7. For each iteration you are allowed to do only one swap.

8. Find max approach: Find max among index thru and swap the max with element at
array|], where k goes from to

9. Find min approach: Find min among index thru and swap the max with element at
array|], where k goes from to

10. Code (select min and swap)

CS314H CSB Lecture 13: Sorting

void selectionSort(vector<int>& list) {
for(int i = @0 ; 1 < list.size() - 1 ; i++) {
//Before iteration with index i, list[@:i-1] is sorted
//find min index from unsorted list[i:n-1]
int min = 1i;
for(int j =1 + 1 ; j < list.size() ; j++) {
if(listlminl > list[j]) {
min = j;
¥
}
//send the min value to the start of unsorted list
swap(list[i], list[minl);
//After iteration with index i, list[@:i] is sorted

* Isitstable?
* Isitin-place? What is the space complexity?
* Loop invariant?
* Time complexity?
11. Best case input vs worst case input?
* Best case (no swap needed):

* Worst case (always need to swap):

* Time complexity for each?

Bubble sort

12. Find max and place it to the rightful max’s place by swapping adjacent items. (multiple swaps are allowed).
13. Code
void bubbleSort(vector<int>& list) {
for(int i = (int) list.size() -1 ; i > @ ; i—) {

//Before iteration with index i, list[i+1:n-1] is sorted

//bubble up max of unsorted 1list[@:i] to list[i]

for(int j =0 ; j < i ; j++) {

if(list[j] > 1istl[j + 11) {
swap(list[j], list[j + 11);

* Isitin-place?

* Isitstable?

* Loop invariant?
}

}

//After iteration with index i, list[i:n-1] is sorted . '
} * Time complexity

14. Best case vs worst case input and time complexity for each case?

* Best case (no swap needed at all):
* Worst case (always need to bubble up all the way):

CS314H CSB Lecture 13: Sorting

Insertion sort

15.

Shifting is allowed (do not need to rely on swapping). For each item at index k in the array find a right hole
j between 0..k inclusive and insert to the hole by shifting later items (items at index j+1 ... k-1) to the right.

void insertionSort(vector<int>& list) {

for(int 1 =1 ; i < list.size() ; i++) { . Stable?
//Before iteration with index i, list[@:i-1] is sorted ’

//find a hole to place list[i] from sorted list[@:i-1] ' hlpla§e? .
int val = list[i]; . Loop invariant?
int hole = i; . Time complexity
while (hole > @ &% val < list[hole - 11) {
list[hole] = list[hole - 1]; //shift right
hole——;)
} 16. Best case vs worst case input
list[hole] = val;
//After iteration with index i, 1list[@:i] is sorted
}
}
Mergesort
17. Mergesort is a -and- algorithm: Divide a large problem into smaller problems
andsolve the smaller problem to solve the large problem.
* Divide the list into two roughly equal halves.
* Sort the half.
* Sort the half.
. the two sorted halves into one sorted list.
18. Mergesort is a algorithm: an algorithm that solves a problem by breaking it down
into smaller instances of the same problem. Consists of
. case: The simplest instance of the problem that can be solved directly without
recursion.
. case: The part where the algorithm calls itself to solve a smaller version of the

original problem.

19. Let’s first implement merge. What should be the if condition?

CS314H CSB Lecture 13: Sorting

//a version of merge used for mergeSort2
//merges two separate halves (left and right) into 1list
//pre-condition: 1) left and right is sorted
// 2) size of list is equal to size of left + size of right
void merge2(vector<int>& list, const vector<int> left, const vector<int> right){
int i1 = @; //left index
int i2 = @; //right index
for(int 1 = 0 ; i < list.size(); i++){
if(i1 < left.size() &&
(i2 >= right.size() || left[il] <= right[i2])) {
list[i] = leftl[il++]; //take from left
} else {
list[i] = right[i2++]1; //take from right

* Isitstable?
* What it the time complexity of just merge?

20. Complete below code:

//sub-optimal merge sort

void mergeSort2(vector<int>& list){
if(list.size() <= 1) return; //base case

// copy list into two halves (left and right)

vector<int> left(list.size()/2);

vector<int> right(list.size() - left.size());
std::copy(list.begin(), list.begin() + left.size() ,left.begin());
std::copy(list.begin() + left.size(), list.end(), right.begin());

// sort the two halves
mergeSort2(left);
mergeSort2(right);

// merge the sorted havles into list
merge2(list, left, right);
}

21. What is the space complexity?
* Informal analysis:

CS314H CSB Lecture 13: Sorting

01 2 3 4 5 6 7
org [22]18]12]-4|58] 7 [31]42]

copy

=]
PY « “a COPY
B

22|18 58] 7 |

COPY .~ . COPY COpY . —COPY copi + ~aCOpy O

[12] []

At each recursion level, we see exactly cells.
How many levels are there? n is reduced to 1 by dividing into half each time. levels.

What is the space complexity (the max space used at the deepest level of recursion)?

22. Formal analysis using the recurrence relation:
Let S(n) be the space needed for mergeSort with input size n. Write
the recurrence for S(n):

23. Space complexity does not look good. How to save space?
Where/which part of the code actually needs this space? Circle one from below.

* Divide the list into two roughly equal halves.

* Sort the left half.
* Sort the right half.
* Merge the two sorted halves into one sorted list.

24. One way to improve this code is to move the creation of new array inside the merge function.
* Why the simply moving instantiation and array copy code to merge () saves space?

CS314H CSB Lecture 13: Sorting

9 // Function to merge two sorted subarrays into one sorted array Draw space usage diagram and see if
10~ void merge3(vector<int>& array, int left, int mid, int right) { 1 -t isiruiee(i()(n)
1 // Calculate the sizes of the two subarrays space complexity
12 int n1 = mid - left + 1;

13 int n2 = right - mid;

14

15 // Create temporary arrays to hold the elements
16 vector<int> L(n1);

17/ vector<int> R(n2);

18

19 // Copy data to temporary arrays L[] and R[]

20 for (int i = 0; i < nl; i++)

24 L[i] = array[left + i];

22 for (int j = 0; j < n2; j++)

23 R[j] = array[mid + 1 + jI;

24

25 // Merge the two temporary arrays back into the original array
26 // Code ommited

277

28 }

29 }

30

31 // Function to implement merge sort
32 - void mergeSort3(vector<int>& array, int left, int right) {

33 if (left >= right) return;

34 // Find the middle point

35 int mid = left + (right - left) / 2;
36

37 // Recursively sort the two halves
38 mergeSort3(array, left, mid);

39 mergeSort3(array, mid + 1, right);
40

41 // Merge the sorted halves

42 merge3(array, left, mid, right);
43 }

Compare memory usage with 22.

25. Final approach! We do not like to create/de-create objects each time merge is called. We want to just
start with n extra space to begin with.

Draw the space usage diagram.

26. Complete the code (mergeSort final version).

CS314H CSB Lecture 13: Sorting

void mergeSort(vector<int>& list){
vector<int> copy(list); // copy of array
//copy is the source and list is the output
mergeSort(copy, list, @, (int) list.size() - 1);

//sort list[start:end] and save to result[start:end]
//start and end is inclusive

void mergeSort(vector<int>& list, vector<int>& result, int start, int end) {

if (end - start <= @) return; // base case (size 1 or @ is already sorted)
int mid = (start + end) / 2;

// sort the two halves
mergeSort(result, list, start, mid); //sort left and save to list

mergeSort(result, list, mid + 1, end); //sort right and save to list

// merge the sorted halves into a sorted whole
merge(list, result, start, mid, mid + 1, end); //save the merged to result

27. Time complexity. Write down the recurrence for merge sort.

28. General strategy: How to solve recurrence?

* By : Directly expand and substitute terms recursively. Ex) T(1)=0
T(n) =1+ T(n-1) //substitute T(n-1)
=1+ //substitute T(n-2)
=1+ //substitute T(n-3)
=1+ //substitute T(1)
* By : Manipulate terms to achieve cancellation. Add all the left-hand side up and
right hand-side up and cancel items
Ex)

T(n)=1+T(n-1)
T(n-1)=1+T(n-2)

After cancelling out, what is left?
T(n) =
29. Solve recurrence of merge sort.

CS314H CSB Lecture 13: Sorting

0(1) if (n = 0)
T(n) =4 ©(1) if(n=1)
O(n) +2T(5) otherwise

* By substitution? Tricky (this strategy typically works better with linear recurrence)

* By telescoping! (Hint: re-write the recurrence by dividing by n)

* By art (my favorite ©): Formally this is called

Quick sort
30. Psuedo code: what is wrong with below code?

gsort (List S) { if (|S| <= 1) return S;// Note that
S could be empty v = element of S;// Choose pivot

// Using set notation for lists
List L = { x in S - {v} | x <= v }
List R={ xin S - {v} | x >= v }

return (gsort(L) + {v} + gsort (R));// + is list concatenation }
Assume x can go either L or R (not both!) Why
not make it deterministic?

// Using set notation for lists

List L = { x in S - {v} | x <= v }

List R={ xin S - {v} | x > v }

CS314H CSB Lecture 13: Sorting

Partitioning is the key to the performance of this algorithm.
31. What is a bad pivot?

Write a recurrence for using a bad pivot for each iteration.
Bad pivot analysis by telescoping (Worst case analysis).

32. What is a good pivot?
Write a recurrence for using a good pivot for each iteration

33. How to choose a pivot?

Which one is worse 1) random vs 2) median of any 3 elements?

