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Please, interrupt and ask questions AT ANY TIME !
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Why sorting?



What is the min/max?

• Unsorted array

• Sorted array

4

0 1 2 3 4 5 6 7 8 9

22 18 12 -4 27 36 30 -7 50 25

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50



Are they identical sets?

• 2 unsorted arrays

   How to find the answer? And how long does it take? 
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0 1 2 3 4 5 6 7 8 9

22 18 12 -4 27 36 30 -7 30 25

0 1 2 3 4 5 6 7 8 9

18 -4 50 27 25 22 30 12 36 -7



Are they identical sets?

• 2 sorted arrays

  How to find the answer? How long does it take now?
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0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 30 36

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50



Sorting reduces the complexity of a problem
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Various sorting algorithms

• bogo sort: shuffle and pray

• bubble sort: swap adjacent pairs that are out of order

• selection sort: look for the smallest element, move to front

• insertion sort: build an increasingly large sorted front portion

• merge sort: recursively divide the array in half and sort it

• heap sort: place the values into a sorted tree structure

• quick sort: recursively partition array based on a middle value

• bucket sort: cluster elements into smaller groups, sort them

• radix sort: sort integers by last digit, then 2nd to last, then ...



Why so many of them?

• Some are faster/slower than others

• Some use more/less memory than others

• Some work better with specific kinds of data

• Some can utilize multiple computers/processors, ...

9



Outline

1. Intro

2. Vocabs: Sorting Stability and Loop Invariants
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A stable sort 
maintains the original order of equal items

Stable Sort

Original

0 1 2 3 4

1001 1002 1003 901 902

0 1 2 3 4

901 902 1001 1002 1003

Unstable Sort

0 1 2 3 4

902 901 1001 1003 1002

When can this be useful?



A stable sort can be useful 
when searching with multiple criteria 
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Sorted by Name

0 Alice A

1 Bob B

2 Carol A

3 Dave A

4 Eric B

Unstable

0 Dave A

1 Alice A

2 Carol A

3 Eric B

4 Bob B

0 Alice A

1 Carol A

2 Dave A

3 Bob B

4 Eric B

Sort by section

Stabl
e



How to proof correctness of algorithm?
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Loop invariant – a loop property 
that is true at the start or end of each iteration.

Can you find the loop invariant here?



L oop invariant – a loop property 
that is  true at the start or end of each iteration.

After the 1st iteration (iter with index 0), sum contains the sum of subarray A[0:0]

After the 2nd iteration (iter with index 1), sum contains the sum of subarray A[0:1]

After the 3rd iteration (iter with index 2), sum contain the sum of subarray A[0:2]

After kth iteration, sum contains the sum of subarray A[0:k-1]



Proof of correctness

• Initialization: i = 0. Before the first iteration, the invariant holds true
• Before the iteration, sum is 0 (contains nothing from this array)

• Maintenance: If the invariant holds before the iteration, it also holds 
after the iteration

• After kth iteration, sum contains the sum of array[0:k-1] 

• Terminates: Therefore, when the loop terminates XYZ is true
• When loop terminates, sum contains sum of arry[0:n-1] 

2/21/20 16



Outline

1. Intro

2. Vocabs: Sorting Stability and Loop Invariants
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Our goal

Where should max go in a sorted array?

Unsorted array

18

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. .. .. 50



Our goal

How to send max to the end of the array? 

Unsorted array

19

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. .. .. 50

• Case 1: Only one swap is allowed 

• Case 2: Multiple swaps are are allowed but only among adjacent values

• No other methods of changing values allowed (Use only swapping!)



• First need to find max by scanning all elements

• Swap the max and the last element

Case 1: Only one swap is allowed

Unsorted array

20

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. 25 .. .. .. 50

This is one iteration of SELECTION sort

50 25
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After 2nd itera tion

Selection sort at each iteration 
selects max from unsorted and swaps with last of unsorted

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 25 36 -7 -4 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 25 -4 -7 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 -7 27 18 25 -4 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 -7 -4 18 25 27 30 36 50

sortedunsorted

After 3rd 
itera tion

After 4th itera tion

36 -4

30 -7

27 -4

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initia l a rray

…
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After 7th iteration

After 6th iteration

23

0 1 2 3 4 5 6 7 8 9

18 12 -7 -4 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-4 12 -7 18 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-4 -7 12 18 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50

sorted

After 8th 
iteration

After 9th iteration

18 -4

12 -7

-4 -7

0 1 2 3 4 5 6 7 8 9

22 12 -7 -4 18 25 27 30 36 50

unsorted

After 5th iteration

sorted



After 2nd itera tion

Alternatively,  we can
select min from unsorted and swap with the first of unsorted

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 50 36 22 -4 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 30 27 18 50 36 22 12 25

sorted unsorted

12 -4

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initia l a rray After 3rd itera tion

0 1 2 3 4 5 6 7 8 9

-7 -4 12 27 18 50 36 22 30 25

sorted unsorted

30 12

24



• Which one should we swap with 22? 

• Which one should be the min?

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 -7 36 -4 25 22

Is selection sort stable (select min)? 

25

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 -7 36 -4 -7 25

S elect min

1 2

21

When selecting min, scan from the start and 
do not update min when there is a tie



• Which one should we swap with 25? 

• Which one should be the max?

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 25 50

26

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 50 251 2

1 2

When selecting max, scan from the end and 

do not update max when there is a tie

Select max

Is selection sort stable (select max)? 



What is the loop invariant for selection sort?
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After 2nd iteration

What is true after kth iteration (select min)? 

After 1st iteration

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 50 36 22 -4 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 30 27 18 50 36 22 12 25

sorted unsorted

After kth iteration, s ubarray A[0:k-1] is  s orted

After 3rd iteration

0 1 2 3 4 5 6 7 8 9

-7 -4 12 27 18 50 36 22 30 25

sorted unsorted

All elements in subarray A[k:n-1] ≥  A[k-1]

After 4th iteration

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 27 50 36 22 30 25

sorted unsorted



Example code for selection sort
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What is the time complexity? Space complexity?



Space complexity for selection sort is Θ(1)

30

• One variable for storing min index

• Another temporary variable for swap

• i and j



Time complexity of selection sort
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total n-1 iterations

Θ 1 = c0

Θ 1 = c3

Θ 𝑛 − 1 − 𝑖 = 𝑐1 𝑛 − 1 − 𝑖 + 𝑐2

𝒏 − 𝟏 𝐜𝟎 +
𝐜𝟐 + 𝒄𝟑 + 𝒄𝟏 ෍

𝒌=𝟏

𝒏−𝟏

𝒌 = 𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟏

= Θ(𝒏𝟐)



Best case vs worst case for selection sort

32

• Best case? 

• Worst case?

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

Best case:  Always scan, no swap

Worst case:  Always scan, always swap

Both are Θ(n2) 
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Our goal

How to send max to the end of the array? 

Unsorted array

34

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. .. .. 50

• Case 1: Only one swap is allowed 

• Case 2: Multiple swaps are are allowed but only among adjacent values

• No shifting in all cases! 



Case 2: 
Compare two adjacent values and swap if they are “out of order”

35

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 22 30 .. .. .. .. .. .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. 30 50 .. .. .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. .. .. 50

0 1 2 3 4 5 6 7 8 9

.. .. 30 27 .. .. .. .. .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. 30 18 .. .. .. .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. 50 36 .. .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. 50 -7 .. ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. 50 -4 ..

0 1 2 3 4 5 6 7 8 9

.. .. .. .. .. .. .. .. 50 25

This is one iteration of BUBBLE sort



After 2nd iteration

In bubble sort, after each iteration
max from unsorted “bubbles up” to the top 

After 1st iteration

36

0 1 2 3 4 5 6 7 8 9

12 22 27 18 30 36 -7 -4 25 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 22 18 27 30 -7 -4 25 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 27 -7 -4 25 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 -7 -4 25 27 30 36 50

sortedunsorted

After 3rd 
iteration

After 4th iteration

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initial array

0 1 2 3 4 5 6 7 8 9

12 18 -7 -4 22 25 27 30 36 50

sortedunsorted

After 5th iteration



• Should we swap?

Is bubble sort stable? 

38

0 1 2 3 4 5 6 7 8 9

22 22 .. .. .. .. .. .. .. ..1 2

Don’t swap the adjacent values when they tie



What is the loop invariant for bubble sort?
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After 2nd iteration

What is true after kth iteration?

After 1st iteration
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0 1 2 3 4 5 6 7 8 9

12 22 27 18 30 36 -7 -4 25 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 22 18 27 30 -7 -4 25 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 27 -7 -4 25 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 -7 -4 25 27 30 36 50

sortedunsorted

After 3rd 
iteration

After 4th iteration

After kth iteration, subarray A[n-k:n-1] is sorted

All elements in subarray A[0:n-k-1] is less than or equal to A[n-

k]



Example code for bubble sort

41

What is the time complexity? Space complexity?



Space complexity for bubble sort is Θ(1)

42

• One temporary variable for swap

• i and j



Time complexity for bubble sort

43

total n-1 iterations

Θ 𝑖 = 𝑐0 𝑖 + 𝑐1

𝒏 − 𝟏 𝒄𝟏 + 𝒄𝟎 ෍

𝒊=𝟏

𝒏−𝟏

𝒊 = 𝒏 − 𝟏 𝒄𝟏 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟎 = Θ(𝒏𝟐)



Best case vs worst case for bubble sort

44

• Best case? 

• Worst case?

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

Both is Θ(n2)



Is bubble sort faster than selection sort?

45

• Why or why not?



How about shifting items instead of swapping?
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How about shifting items instead of swapping?

47

It’s called insertion sort
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• As we read the first value from the unsorted 
find out its correct position in the sorted and insert!

• Where should 12 go in the sorted array? 

Case 3: Shifting values are allowed

Initial array

49

0 1 2 3 4 5 6 7 8 9

22 12 -4 15 18 50 36 -7 30 25

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

This is one iteration of INSERTION sort



After 2nd iteration

Insertion sort at each iteration 
reads the next value from unsorted and inserts it to sorted

After 1st iteration

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

sorted

unsorted

0 1 2 3 4 5 6 7 8 9

-4 12 22 15 18 50 36 -7 30 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

22 12 -4 15 18 50 36 -7 30 25

unsorted

Initial array

sorted

0 1 2 3 4 5 6 7 8 9

-4 12 15 22 18 50 36 -7 30 25

sorted unsorted

After 3rd iteration

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 4th iteration

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 5th iteration



• Where should we insert?

Is insertion sort stable? 

51

0 1 2 3 4 5 6 7 8 9

25 25 .. .. .. .. .. .. .. ..1 2

Yes! Insert after the last element with equal value

0 1 2 3 4 5 6 7 8 9

25 25 27 28 25 .. .. .. .. ..1 2 3



What is the loop invariant for insertion sort?
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After 2nd itera tion

What is true after kth iteration? 

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

unsorted

0 1 2 3 4 5 6 7 8 9

-4 12 22 15 18 50 36 -7 30 25

sorted unsorted

sorted

0 1 2 3 4 5 6 7 8 9

-4 12 15 22 18 50 36 -7 30 25

sorted unsorted

After 3rd itera tion

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 4th itera tion

53

After kth iteration, subarray A[0:k] is sorted

No claim can be made for elements in subarray A[k+1:n-1]



Example code for insertion sort

54

What is the time complexity? Space complexity?



Space complexity for insertion sort is Θ(1)

55

• One variable for shifting without losing any info

• Variable for hole

• i



Time complexity for insertion sort

56

total n-1 iterations

Θ 1 = 𝑐0

𝒏 − 𝟏 (𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑) + 𝒄𝟏 ෍

𝒊=𝟏

𝒏−𝟏

𝒊 = 𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟏 = Θ(𝒏𝟐)

Θ 1 = 𝑐3

Worst case:Θ 𝒊 = 𝒄𝟏 𝒊 + 𝒄𝟐



Time complexity for insertion sort

57

total n-1 iterations

Θ 1 = 𝑐0

𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 = Θ(𝒏)

Θ 1 = 𝑐3

Best case: Θ 1 = 𝑐2



Best case vs worst case for insertion sort

58

• Best case? 

• Worst case?

The best case is Θ(n) and the worst case is Θ(n2) 

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1



Selection vs Bubble vs Insertion sort

59

• Which one is the fastest? 

• The slowest?



How can we improve insertion sort?

60

• What could be a better approach to find the hole?

• Hint: searching for something in a sorted array

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 36 50 -7 30 25

sorted unsorted

Binary search!



Worst-case Θ(n2) sounds pretty bad. 
Can we do better?
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Merge sort is a divide-and-conquer algorithm

• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

63



• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

64

Who is going to sort these halves?



Merge sort is a recursive algorithm

• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

65



Merge sort example
0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22
merge

split
12 -4

12 -4

-4 12
merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58
merge

split
31 42

31 42

31 42
merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge
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Let’s implement merge!

67



Merging two sorted halves into one

68



Merge halves code: merge2

69

/* Implement me */



Merge halves code: merge2

70

What would be this condition?



merge2 completed

71

What is  the time complexity?Time complexity of merge is Θ(n)



mergeSort2 code (version 1)

72

/* Implement me */

/* Implement me */



mergeSort2 code (version 1) completed

73

Does it work? How about space complexity?



Space complexity is Θ(n log2 n)

Copying array at each step is expensive

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

copy
12 -4

12 -4

copy

58 7 31 42

58 7

58 7

31 42

31 42

copy copy

copy

copy copy copy

copy

copy copy

copy

org
 

copy copy

Additional time needed for copying array - Θ(n) at each step 
step 



Can we do better? 

• For which step we need extra space? 
• Divide the array

• Sort the left half

• Sort the right half

• Merge the sorted left and right arrays into a sorted array

• Where should we put extra array allocation code? 

75

We can move array allocation code just inside merge



Let’s move memory allocation code just inside the merge 

76Will this make a difference?



Draw space diagram
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How?

We can do better with one auxiliary array

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42org

 

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42aux

 



Better merge sort

79

/* Implement me */

/* Implement me */



Better merge sort

80

Why do we alternate between list and result? 



Alternating org and aux achieves space complexity of Θ(n)

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

12 -4

12 -4

58 7 31 42

58 7

58 7

31 42

31 42

81

aux
0x500

org
0x200 

aux
 0x500

org
0x200 

Split phase



Alternating org and aux achieves space complexity of Θ(n)

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22 12 -4

12 -4

-4 12

-4 12 18 22 58 7 31 42

58 7

58 7

7 58 31 42

31 42

31 42

7 31 42 58

-4 7 12 18 22 31 42 58

82

org

0x200 

aux

 0x500

org

0x200 

aux
0x500

Merge phase



Modified merge - takes two lists of original length

83



Time complexity

84

Θ 𝑛

Θ 𝑛

Θ 1

? ?



Recurrence for merge sort

• Let T(n) be the time complexity of merge sort with n elements 

85

T (n) =

Θ(1)                  if (n = 0)          

Θ(1)                  if (n = 1)         

Θ(𝑛) + 2 T(
𝑛

2
)    otherwise

How to solve this recurrence?



G eneral strategies  for s olving recurrence

Ex) T(n) =   1                       if (n = 0 or 1) 

                  1 + T(n-1)          otherwise

• By substitution
• substitute T(k) with equation containing T(k-1) and simplify

• By telescoping
• manipulate equation to cancel out!

86



Solve recurrence for merge sort

• Let T(n) be the time complexity of merge sort with n elements 

87

T(n) =

Θ(1)                  if (n = 0)          

Θ(1)                  if (n = 1)         

Θ(𝑛) + 2 T(
𝑛

2
)    otherwise

What strategy would you use?



By telescoping
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By art
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Solving recurrence

• T(n) = T(
𝑛

2
) + T(

𝑛

2
) + n  

• Via telescoping

• Via substitution

• Via art(?)

90
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92



93

𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1)                  if (n = 0)          

Θ(1)                  if (n = 1)         

Θ(𝑛) + 2 T(
𝑛

2
)    otherwise

T(n) is the sum of all work done by each node

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

Each node represents Θ



How many levels are there?
94

𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1)                  if (n = 0)          

Θ(1)                  if (n = 1)         

Θ(𝑛) + 2 T(
𝑛

2
)    otherwise

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

log2 n

Each node represents Θ

What is the amount of work done at each level?
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𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1)                  if (n = 0)          

Θ(1)                  if (n = 1)         

Θ(𝑛) + 2 T(
𝑛

2
)    otherwise

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

log2 n

Each level does Θ(𝑛) work.  Therefore T(n) ∈ Θ(n log2 n)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Each node represents Θ



Is merge sort stable? 
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0 1 2 3 4 5 6 7 8 9

20 ? ? .. .. .. .. .. .. ..

• Which 25 to pick to put into result?

0 1 2 3 4

25 .. .. .. ..

Is merge stable? 
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0 1 2 3 4

20 25 .. .. ..1 2

C hoose from left when there is  a tie

20 25 25 .. .. .. .. .. .. ..1 2

left right

result



Merge sort has significantly lower runtime than selection sort
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Selection Sort Merge Sort



• Which data structure instead of array can achieve space complexity 
of Θ(1)?

• Can we make merge sort even faster?

Improving merge sort

99



• Merge sort on linked list achieves space complexity of Θ(1)
• But linked list requires additional pointer per data 

• Parallel merge sort!
• We can parallelize sorting left and right as they are independent

• We can even parallelize merge! How? 

100

Improving merge sort



Parallelizing merge!

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7,  8, 10, 11], M = 6

• Assume 2 threads: each merge 6 items 
• Thread 1 should merge first smallest 6

• Thread 2 should merge remaining 6

• How to find smallest k items from two sorted arrays? (k = 
𝑁+𝑀

2
 )

101

How to find such partition efficiently? (Determining partition)

What makes the smallest k items? (Defining partition)



Defining partition

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7,  8, 10, 11], M = 6

• What are the conditions for i and j? 
•  

102

Why equality? 



Determining partition

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7,  8, 10, 11], M = 6

• What is better than linear search when things are sorted? 

103

Use binary search!
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Quicksort

qsort (List S) {

    if (| S|  <= 1) return S;             / /  Note that S could be empty

    v = element of S;                      / /  Choose pivot

    / /  Using set notation for lists

    List L = { x in  S - {v} |  x <= v } 

    List R = { x in  S - {v} |  x >= v } 

    return (qsort(L) + {v} + qsort (R));    / /  + is list concatenation

}

105

/ /  Note x = v goes

/ /  in either list

Why either list?Why not make it deterministic?



Quicksort

qsort (List S) {

    if (| S|  <= 1) return S;             / /  Note that S could be empty

    v = element of S;                      / /  Choose pivot

    / /  Using set notation for lists

    List L = { x in  S - {v} |  x <= v } 

    List R = { x in  S - {v} |  x > v } 

    return (qsort(L) + {v} + qsort (R));    / /  + is list concatenation

}
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//consider S = {5,5,5,5,5}

Why either list?Such will result in bad partitioning



Correctness proof of qsort algorithm

• Assume qsort works on lists that are smaller than S

• qsort(L) and qsort(R) works because | L|  < n and | R|  < n

• qsort(L) is sorted and  all elements in L are smaller or equal to v

• qsort(R) is sorted and all elements in R are greater or equal to v

• Thus qsort(L) + {v} + qsort(R) is sorted 
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Why having |L| < n and |R| < n important?



Is it important how we choose pivot?

• What is a bad pivot?

108



Bad pivot (partition) analysis via telescoping

• T(n) = T(n-1) + n

• Why n?  

109

This is a worst-case analysis 



G ood partition analys is  

• T(n) = T(
𝑛

2
) + T(

𝑛

2
) + n  

• Via telescoping

• Via substitution

• Via art(?)

110
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General results for divide-n-conquer

• If we divide the work two half-size problems + linear additional work
• What is the linear additional work in quicksort? 

• How many times do we need to divide into half? 
• From n to get to 1 

• This is the definition of log n (base 2)

• Thus, we will have O(n log n) algorithm

113

For the case of quicksort, picking the right pivot is critical
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How to choose pivot? 

• Solution 0: Random

• Solution 1: Pick the middle 
• When will this create worst case behavior? 

• Solution 2: Pick the real median
• How can you find median value? 

• Solution 3: Pick median of 3 elements
• Pick a median from leftmost, rightmost, and the middle element

• Can you come up with a pathological example (worst case)? 

115

Which one is better – random vs median of 3? 



Probability of worst case happening

• Random:
• What is a probability of choosing min or max out of n?

• Median of 3
• What is the probability of having the two smallest or two largest values in 

[leftmost, rightmost, middle]? 
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3. Case study: Quicksort analysis

4. How to choose pivot?

5. Partitioning the list



Basic idea

• Put the pivot v at the end of the list 

•  One cursor at the low end l and another at the high end h.

    

• Move l to the right until it finds L[l] > v

• Move h to the left until it finds L[h] < v

• Swap

• Stop when l >= h

• Restore pivot to l

119

v

l h



Example

120

4

l h

8  6  7  5  3  0  9 

l h

40  6  7  5  3  8  9 

l h

40  3  7  5  6  8  9 

Stop since h and crossed over and restore pivot to l

h l

40  3  7  5  6  8  9 

40  3         5  6  8  9  7 



5  5  5  5  5  5  5

What if

121

5

Do we not swap? Or still swap?



51 52 53 54 55 56 57 

51 52 53 54 55 56 57 

Skip to swap: 
looking for strictly larger/smaller than pivot

122

5v

l h

h l

5v

Results in bad partitioning. R is empty. 



57 56 55 54 53 52 51 

51 52 53 54 55 56 57 

Yes, to swap!

123

5v

l h

h,l

5v

Results in even partition

In the actual implementation, we can skip the swapping 

but let h, l progress as shown above 



Code

124

The analysis has guided the details of the algorithm 

development

Use < not <=

Use > not >=



How to make quicksort even quicker?

• Parallelize! How? 

• If there are many duplicates…

2/21/20 CS 356 125



3 way-partitioning Quicksort

qsort (List S) {

    if (| S|  <= 1) return S;             / /  Note that S could be empty

    v = element of S;                      / /  Choose pivot

    / /  Using set notation for lists

    List L = { x in  S - {v} |  x < v } 

    List R = { x in  S - {v} |  x > v } 

    return (qsort(L) + E {all elements equal to v} + qsort (R));  

}

126

How to implement this algorithm?



We have 3 partitions in this version
So, we should maintain 3 pointers!
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We have 3 partitions in this version
So, we should maintain 3 pointers!

2/21/20 128

We start at i = lt , we stop at i > gt



Complete the given code in the notes
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In conclusion

• Sorting reduces the complexity of problems

• Various sorting algorithms exist each with unique traits

• Lecture example code available 

https:/ /github.com/mikiehan/sorting-example.git 
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Time Complexity Space Complexity Stable?

Selection Θ(n2) Θ(1) Y

Bubble Θ(n2) Θ(1) Y

Insertion Θ(n2) Θ(1) Y

Merge sort Θ(n log n) Θ(n) Y

Quick sort Θ(n log n) Θ(n) Y

https://github.com/mikiehan/sorting-example.git
https://github.com/mikiehan/sorting-example.git
https://github.com/mikiehan/sorting-example.git
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