
CS314H Sorting Algorithms

Mi Kyung Han

1

2

Please, interrupt and ask questions AT ANY TIME !

3

Why sorting?

What is the min/max?

• Unsorted array

• Sorted array

4

0 1 2 3 4 5 6 7 8 9

22 18 12 -4 27 36 30 -7 50 25

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50

Are they identical sets?

• 2 unsorted arrays

 How to find the answer? And how long does it take?

5

0 1 2 3 4 5 6 7 8 9

22 18 12 -4 27 36 30 -7 30 25

0 1 2 3 4 5 6 7 8 9

18 -4 50 27 25 22 30 12 36 -7

Are they identical sets?

• 2 sorted arrays

 How to find the answer? How long does it take now?

6

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 30 36

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50

Sorting reduces the complexity of a problem

7

Various sorting algorithms

• bogo sort: shuffle and pray

• bubble sort: swap adjacent pairs that are out of order

• selection sort: look for the smallest element, move to front

• insertion sort: build an increasingly large sorted front portion

• merge sort: recursively divide the array in half and sort it

• heap sort: place the values into a sorted tree structure

• quick sort: recursively partition array based on a middle value

• bucket sort: cluster elements into smaller groups, sort them

• radix sort: sort integers by last digit, then 2nd to last, then ...

Why so many of them?

• Some are faster/slower than others

• Some use more/less memory than others

• Some work better with specific kinds of data

• Some can utilize multiple computers/processors, ...

9

Outline

1. Intro

2. Vocabs: Sorting Stability and Loop Invariants

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

10

A stable sort
maintains the original order of equal items

Stable Sort

Original

0 1 2 3 4

1001 1002 1003 901 902

0 1 2 3 4

901 902 1001 1002 1003

Unstable Sort

0 1 2 3 4

902 901 1001 1003 1002

When can this be useful?

A stable sort can be useful
when searching with multiple criteria

12

Sorted by Name

0 Alice A

1 Bob B

2 Carol A

3 Dave A

4 Eric B

Unstable

0 Dave A

1 Alice A

2 Carol A

3 Eric B

4 Bob B

0 Alice A

1 Carol A

2 Dave A

3 Bob B

4 Eric B

Sort by section

Stabl
e

How to proof correctness of algorithm?

2/21/20 CS 356 13

Loop invariant – a loop property
that is true at the start or end of each iteration.

Can you find the loop invariant here?

L oop invariant – a loop property
that is true at the start or end of each iteration.

After the 1st iteration (iter with index 0), sum contains the sum of subarray A[0:0]

After the 2nd iteration (iter with index 1), sum contains the sum of subarray A[0:1]

After the 3rd iteration (iter with index 2), sum contain the sum of subarray A[0:2]

After kth iteration, sum contains the sum of subarray A[0:k-1]

Proof of correctness

• Initialization: i = 0. Before the first iteration, the invariant holds true
• Before the iteration, sum is 0 (contains nothing from this array)

• Maintenance: If the invariant holds before the iteration, it also holds
after the iteration

• After kth iteration, sum contains the sum of array[0:k-1]

• Terminates: Therefore, when the loop terminates XYZ is true
• When loop terminates, sum contains sum of arry[0:n-1]

2/21/20 16

Outline

1. Intro

2. Vocabs: Sorting Stability and Loop Invariants

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

17

Our goal

Where should max go in a sorted array?

Unsorted array

18

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 50

Our goal

How to send max to the end of the array?

Unsorted array

19

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 50

• Case 1: Only one swap is allowed

• Case 2: Multiple swaps are are allowed but only among adjacent values

• No other methods of changing values allowed (Use only swapping!)

• First need to find max by scanning all elements

• Swap the max and the last element

Case 1: Only one swap is allowed

Unsorted array

20

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 25 50

This is one iteration of SELECTION sort

50 25

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

21

After 2nd itera tion

Selection sort at each iteration
selects max from unsorted and swaps with last of unsorted

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 25 36 -7 -4 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 25 -4 -7 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 -7 27 18 25 -4 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

22 12 -7 -4 18 25 27 30 36 50

sortedunsorted

After 3rd
itera tion

After 4th itera tion

36 -4

30 -7

27 -4

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initia l a rray

…

22

After 7th iteration

After 6th iteration

23

0 1 2 3 4 5 6 7 8 9

18 12 -7 -4 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-4 12 -7 18 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-4 -7 12 18 22 25 27 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 22 25 27 30 36 50

sorted

After 8th
iteration

After 9th iteration

18 -4

12 -7

-4 -7

0 1 2 3 4 5 6 7 8 9

22 12 -7 -4 18 25 27 30 36 50

unsorted

After 5th iteration

sorted

After 2nd itera tion

Alternatively, we can
select min from unsorted and swap with the first of unsorted

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 50 36 22 -4 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 30 27 18 50 36 22 12 25

sorted unsorted

12 -4

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initia l a rray After 3rd itera tion

0 1 2 3 4 5 6 7 8 9

-7 -4 12 27 18 50 36 22 30 25

sorted unsorted

30 12

24

• Which one should we swap with 22?

• Which one should be the min?

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 -7 36 -4 25 22

Is selection sort stable (select min)?

25

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 -7 36 -4 -7 25

S elect min

1 2

21

When selecting min, scan from the start and
do not update min when there is a tie

• Which one should we swap with 25?

• Which one should be the max?

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 25 50

26

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 50 251 2

1 2

When selecting max, scan from the end and

do not update max when there is a tie

Select max

Is selection sort stable (select max)?

What is the loop invariant for selection sort?

27

After 2nd iteration

What is true after kth iteration (select min)?

After 1st iteration

0 1 2 3 4 5 6 7 8 9

-7 12 30 27 18 50 36 22 -4 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

-7 -4 30 27 18 50 36 22 12 25

sorted unsorted

After kth iteration, s ubarray A[0:k-1] is s orted

After 3rd iteration

0 1 2 3 4 5 6 7 8 9

-7 -4 12 27 18 50 36 22 30 25

sorted unsorted

All elements in subarray A[k:n-1] ≥ A[k-1]

After 4th iteration

0 1 2 3 4 5 6 7 8 9

-7 -4 12 18 27 50 36 22 30 25

sorted unsorted

Example code for selection sort

29

What is the time complexity? Space complexity?

Space complexity for selection sort is Θ(1)

30

• One variable for storing min index

• Another temporary variable for swap

• i and j

Time complexity of selection sort

31

total n-1 iterations

Θ 1 = c0

Θ 1 = c3

Θ 𝑛 − 1 − 𝑖 = 𝑐1 𝑛 − 1 − 𝑖 + 𝑐2

𝒏 − 𝟏 𝐜𝟎 +
𝐜𝟐 + 𝒄𝟑 + 𝒄𝟏 ෍

𝒌=𝟏

𝒏−𝟏

𝒌 = 𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟏

= Θ(𝒏𝟐)

Best case vs worst case for selection sort

32

• Best case?

• Worst case?

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

Best case: Always scan, no swap

Worst case: Always scan, always swap

Both are Θ(n2)

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

33

Our goal

How to send max to the end of the array?

Unsorted array

34

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 50

• Case 1: Only one swap is allowed

• Case 2: Multiple swaps are are allowed but only among adjacent values

• No shifting in all cases!

Case 2:
Compare two adjacent values and swap if they are “out of order”

35

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

0 1 2 3 4 5 6 7 8 9

.. 22 30

0 1 2 3 4 5 6 7 8 9

.. 30 50

0 1 2 3 4 5 6 7 8 9

.. 50

0 1 2 3 4 5 6 7 8 9

.. .. 30 27

0 1 2 3 4 5 6 7 8 9

.. 30 18

0 1 2 3 4 5 6 7 8 9

.. 50 36

0 1 2 3 4 5 6 7 8 9

.. 50 -7

0 1 2 3 4 5 6 7 8 9

.. 50 -4 ..

0 1 2 3 4 5 6 7 8 9

.. 50 25

This is one iteration of BUBBLE sort

After 2nd iteration

In bubble sort, after each iteration
max from unsorted “bubbles up” to the top

After 1st iteration

36

0 1 2 3 4 5 6 7 8 9

12 22 27 18 30 36 -7 -4 25 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 22 18 27 30 -7 -4 25 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 27 -7 -4 25 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 -7 -4 25 27 30 36 50

sortedunsorted

After 3rd
iteration

After 4th iteration

0 1 2 3 4 5 6 7 8 9

22 12 30 27 18 50 36 -7 -4 25

unsorted

Initial array

0 1 2 3 4 5 6 7 8 9

12 18 -7 -4 22 25 27 30 36 50

sortedunsorted

After 5th iteration

• Should we swap?

Is bubble sort stable?

38

0 1 2 3 4 5 6 7 8 9

22 221 2

Don’t swap the adjacent values when they tie

What is the loop invariant for bubble sort?

39

After 2nd iteration

What is true after kth iteration?

After 1st iteration

40

0 1 2 3 4 5 6 7 8 9

12 22 27 18 30 36 -7 -4 25 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 22 18 27 30 -7 -4 25 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 27 -7 -4 25 30 36 50

sortedunsorted

0 1 2 3 4 5 6 7 8 9

12 18 22 -7 -4 25 27 30 36 50

sortedunsorted

After 3rd
iteration

After 4th iteration

After kth iteration, subarray A[n-k:n-1] is sorted

All elements in subarray A[0:n-k-1] is less than or equal to A[n-

k]

Example code for bubble sort

41

What is the time complexity? Space complexity?

Space complexity for bubble sort is Θ(1)

42

• One temporary variable for swap

• i and j

Time complexity for bubble sort

43

total n-1 iterations

Θ 𝑖 = 𝑐0 𝑖 + 𝑐1

𝒏 − 𝟏 𝒄𝟏 + 𝒄𝟎 ෍

𝒊=𝟏

𝒏−𝟏

𝒊 = 𝒏 − 𝟏 𝒄𝟏 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟎 = Θ(𝒏𝟐)

Best case vs worst case for bubble sort

44

• Best case?

• Worst case?

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

Both is Θ(n2)

Is bubble sort faster than selection sort?

45

• Why or why not?

How about shifting items instead of swapping?

46

How about shifting items instead of swapping?

47

It’s called insertion sort

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

48

• As we read the first value from the unsorted
find out its correct position in the sorted and insert!

• Where should 12 go in the sorted array?

Case 3: Shifting values are allowed

Initial array

49

0 1 2 3 4 5 6 7 8 9

22 12 -4 15 18 50 36 -7 30 25

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

This is one iteration of INSERTION sort

After 2nd iteration

Insertion sort at each iteration
reads the next value from unsorted and inserts it to sorted

After 1st iteration

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

sorted

unsorted

0 1 2 3 4 5 6 7 8 9

-4 12 22 15 18 50 36 -7 30 25

sorted unsorted

0 1 2 3 4 5 6 7 8 9

22 12 -4 15 18 50 36 -7 30 25

unsorted

Initial array

sorted

0 1 2 3 4 5 6 7 8 9

-4 12 15 22 18 50 36 -7 30 25

sorted unsorted

After 3rd iteration

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 4th iteration

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 5th iteration

• Where should we insert?

Is insertion sort stable?

51

0 1 2 3 4 5 6 7 8 9

25 251 2

Yes! Insert after the last element with equal value

0 1 2 3 4 5 6 7 8 9

25 25 27 28 251 2 3

What is the loop invariant for insertion sort?

52

After 2nd itera tion

What is true after kth iteration?

After 1s t itera tion

0 1 2 3 4 5 6 7 8 9

12 22 -4 15 18 50 36 -7 30 25

unsorted

0 1 2 3 4 5 6 7 8 9

-4 12 22 15 18 50 36 -7 30 25

sorted unsorted

sorted

0 1 2 3 4 5 6 7 8 9

-4 12 15 22 18 50 36 -7 30 25

sorted unsorted

After 3rd itera tion

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 50 36 -7 30 25

sorted unsorted

After 4th itera tion

53

After kth iteration, subarray A[0:k] is sorted

No claim can be made for elements in subarray A[k+1:n-1]

Example code for insertion sort

54

What is the time complexity? Space complexity?

Space complexity for insertion sort is Θ(1)

55

• One variable for shifting without losing any info

• Variable for hole

• i

Time complexity for insertion sort

56

total n-1 iterations

Θ 1 = 𝑐0

𝒏 − 𝟏 (𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑) + 𝒄𝟏 ෍

𝒊=𝟏

𝒏−𝟏

𝒊 = 𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 +
𝒏 × (𝒏 − 𝟏)

𝟐
𝒄𝟏 = Θ(𝒏𝟐)

Θ 1 = 𝑐3

Worst case:Θ 𝒊 = 𝒄𝟏 𝒊 + 𝒄𝟐

Time complexity for insertion sort

57

total n-1 iterations

Θ 1 = 𝑐0

𝒏 − 𝟏 𝒄𝟎 + 𝒄𝟐 + 𝒄𝟑 = Θ(𝒏)

Θ 1 = 𝑐3

Best case: Θ 1 = 𝑐2

Best case vs worst case for insertion sort

58

• Best case?

• Worst case?

The best case is Θ(n) and the worst case is Θ(n2)

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

Selection vs Bubble vs Insertion sort

59

• Which one is the fastest?

• The slowest?

How can we improve insertion sort?

60

• What could be a better approach to find the hole?

• Hint: searching for something in a sorted array

0 1 2 3 4 5 6 7 8 9

-4 12 15 18 22 36 50 -7 30 25

sorted unsorted

Binary search!

Worst-case Θ(n2) sounds pretty bad.
Can we do better?

61

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

62

Merge sort is a divide-and-conquer algorithm

• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

63

• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

64

Who is going to sort these halves?

Merge sort is a recursive algorithm

• Divide the list into two roughly equal halves.

• Sort the left half.

• Sort the right half.

• Merge the two sorted halves into one sorted list.

65

Merge sort example
0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22
merge

split
12 -4

12 -4

-4 12
merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58
merge

split
31 42

31 42

31 42
merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge

66

Let’s implement merge!

67

Merging two sorted halves into one

68

Merge halves code: merge2

69

/* Implement me */

Merge halves code: merge2

70

What would be this condition?

merge2 completed

71

What is the time complexity?Time complexity of merge is Θ(n)

mergeSort2 code (version 1)

72

/* Implement me */

/* Implement me */

mergeSort2 code (version 1) completed

73

Does it work? How about space complexity?

Space complexity is Θ(n log2 n)

Copying array at each step is expensive

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

copy
12 -4

12 -4

copy

58 7 31 42

58 7

58 7

31 42

31 42

copy copy

copy

copy copy copy

copy

copy copy

copy

org

copy copy

Additional time needed for copying array - Θ(n) at each step
step

Can we do better?

• For which step we need extra space?
• Divide the array

• Sort the left half

• Sort the right half

• Merge the sorted left and right arrays into a sorted array

• Where should we put extra array allocation code?

75

We can move array allocation code just inside merge

Let’s move memory allocation code just inside the merge

76Will this make a difference?

Draw space diagram

2/21/20 CS 356 77

How?

We can do better with one auxiliary array

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42org

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42aux

Better merge sort

79

/* Implement me */

/* Implement me */

Better merge sort

80

Why do we alternate between list and result?

Alternating org and aux achieves space complexity of Θ(n)

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

12 -4

12 -4

58 7 31 42

58 7

58 7

31 42

31 42

81

aux
0x500

org
0x200

aux
 0x500

org
0x200

Split phase

Alternating org and aux achieves space complexity of Θ(n)

0 1 2 3 4 5 6 7

22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22 12 -4

12 -4

-4 12

-4 12 18 22 58 7 31 42

58 7

58 7

7 58 31 42

31 42

31 42

7 31 42 58

-4 7 12 18 22 31 42 58

82

org

0x200

aux

 0x500

org

0x200

aux
0x500

Merge phase

Modified merge - takes two lists of original length

83

Time complexity

84

Θ 𝑛

Θ 𝑛

Θ 1

? ?

Recurrence for merge sort

• Let T(n) be the time complexity of merge sort with n elements

85

T (n) =

Θ(1) if (n = 0)

Θ(1) if (n = 1)

Θ(𝑛) + 2 T(
𝑛

2
) otherwise

How to solve this recurrence?

G eneral strategies for s olving recurrence

Ex) T(n) = 1 if (n = 0 or 1)

 1 + T(n-1) otherwise

• By substitution
• substitute T(k) with equation containing T(k-1) and simplify

• By telescoping
• manipulate equation to cancel out!

86

Solve recurrence for merge sort

• Let T(n) be the time complexity of merge sort with n elements

87

T(n) =

Θ(1) if (n = 0)

Θ(1) if (n = 1)

Θ(𝑛) + 2 T(
𝑛

2
) otherwise

What strategy would you use?

By telescoping

2/21/20 CS 356 88

By art

2/21/20 CS 356 89

Solving recurrence

• T(n) = T(
𝑛

2
) + T(

𝑛

2
) + n

• Via telescoping

• Via substitution

• Via art(?)

90

91

92

93

𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1) if (n = 0)

Θ(1) if (n = 1)

Θ(𝑛) + 2 T(
𝑛

2
) otherwise

T(n) is the sum of all work done by each node

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

Each node represents Θ

How many levels are there?
94

𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1) if (n = 0)

Θ(1) if (n = 1)

Θ(𝑛) + 2 T(
𝑛

2
) otherwise

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

log2 n

Each node represents Θ

What is the amount of work done at each level?

95

𝑛

𝑛

2

𝑛

4

… … … …

1

T(n) =

Θ(1) if (n = 0)

Θ(1) if (n = 1)

Θ(𝑛) + 2 T(
𝑛

2
) otherwise

𝑛

4

1 1 1 11 1 1 1 1 1 1 1 1 1 1

… … … …

𝑛

2

𝑛

4

𝑛

4

log2 n

Each level does Θ(𝑛) work. Therefore T(n) ∈ Θ(n log2 n)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Θ(𝑛)

Each node represents Θ

Is merge sort stable?

96

0 1 2 3 4 5 6 7 8 9

20 ? ?

• Which 25 to pick to put into result?

0 1 2 3 4

25

Is merge stable?

97

0 1 2 3 4

20 251 2

C hoose from left when there is a tie

20 25 251 2

left right

result

Merge sort has significantly lower runtime than selection sort

98

Selection Sort Merge Sort

• Which data structure instead of array can achieve space complexity
of Θ(1)?

• Can we make merge sort even faster?

Improving merge sort

99

• Merge sort on linked list achieves space complexity of Θ(1)
• But linked list requires additional pointer per data

• Parallel merge sort!
• We can parallelize sorting left and right as they are independent

• We can even parallelize merge! How?

100

Improving merge sort

Parallelizing merge!

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7, 8, 10, 11], M = 6

• Assume 2 threads: each merge 6 items
• Thread 1 should merge first smallest 6

• Thread 2 should merge remaining 6

• How to find smallest k items from two sorted arrays? (k =
𝑁+𝑀

2
)

101

How to find such partition efficiently? (Determining partition)

What makes the smallest k items? (Defining partition)

Defining partition

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7, 8, 10, 11], M = 6

• What are the conditions for i and j?
•

102

Why equality?

Determining partition

• A = [1, 2, 3, 4, 9, 13], N = 6

• B = [5, 6, 7, 8, 10, 11], M = 6

• What is better than linear search when things are sorted?

103

Use binary search!

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Quick Sort

9. Conclusion

104

Quicksort

qsort (List S) {

 if (| S| <= 1) return S; / / Note that S could be empty

 v = element of S; / / Choose pivot

 / / Using set notation for lists

 List L = { x in S - {v} | x <= v }

 List R = { x in S - {v} | x >= v }

 return (qsort(L) + {v} + qsort (R)); / / + is list concatenation

}

105

/ / Note x = v goes

/ / in either list

Why either list?Why not make it deterministic?

Quicksort

qsort (List S) {

 if (| S| <= 1) return S; / / Note that S could be empty

 v = element of S; / / Choose pivot

 / / Using set notation for lists

 List L = { x in S - {v} | x <= v }

 List R = { x in S - {v} | x > v }

 return (qsort(L) + {v} + qsort (R)); / / + is list concatenation

}

106

//consider S = {5,5,5,5,5}

Why either list?Such will result in bad partitioning

Correctness proof of qsort algorithm

• Assume qsort works on lists that are smaller than S

• qsort(L) and qsort(R) works because | L| < n and | R| < n

• qsort(L) is sorted and all elements in L are smaller or equal to v

• qsort(R) is sorted and all elements in R are greater or equal to v

• Thus qsort(L) + {v} + qsort(R) is sorted

107

Why having |L| < n and |R| < n important?

Is it important how we choose pivot?

• What is a bad pivot?

108

Bad pivot (partition) analysis via telescoping

• T(n) = T(n-1) + n

• Why n?

109

This is a worst-case analysis

G ood partition analys is

• T(n) = T(
𝑛

2
) + T(

𝑛

2
) + n

• Via telescoping

• Via substitution

• Via art(?)

110

111

General results for divide-n-conquer

• If we divide the work two half-size problems + linear additional work
• What is the linear additional work in quicksort?

• How many times do we need to divide into half?
• From n to get to 1

• This is the definition of log n (base 2)

• Thus, we will have O(n log n) algorithm

113

For the case of quicksort, picking the right pivot is critical

Outline

1. Administrative

2. Recap on Big-O, Big-Omega, Big-Theta

3. Quicksort analysis

4. How to choose pivot?

How to choose pivot?

• Solution 0: Random

• Solution 1: Pick the middle
• When will this create worst case behavior?

• Solution 2: Pick the real median
• How can you find median value?

• Solution 3: Pick median of 3 elements
• Pick a median from leftmost, rightmost, and the middle element

• Can you come up with a pathological example (worst case)?

115

Which one is better – random vs median of 3?

Probability of worst case happening

• Random:
• What is a probability of choosing min or max out of n?

• Median of 3
• What is the probability of having the two smallest or two largest values in

[leftmost, rightmost, middle]?

116

Outline

1. Administrative

2. Recap on Big-O, Big-Omega, Big-Theta

3. Case study: Quicksort analysis

4. How to choose pivot?

5. Partitioning the list

Basic idea

• Put the pivot v at the end of the list

• One cursor at the low end l and another at the high end h.

• Move l to the right until it finds L[l] > v

• Move h to the left until it finds L[h] < v

• Swap

• Stop when l >= h

• Restore pivot to l

119

v

l h

Example

120

4

l h

8 6 7 5 3 0 9

l h

40 6 7 5 3 8 9

l h

40 3 7 5 6 8 9

Stop since h and crossed over and restore pivot to l

h l

40 3 7 5 6 8 9

40 3 5 6 8 9 7

5 5 5 5 5 5 5

What if

121

5

Do we not swap? Or still swap?

51 52 53 54 55 56 57

51 52 53 54 55 56 57

Skip to swap:
looking for strictly larger/smaller than pivot

122

5v

l h

h l

5v

Results in bad partitioning. R is empty.

57 56 55 54 53 52 51

51 52 53 54 55 56 57

Yes, to swap!

123

5v

l h

h,l

5v

Results in even partition

In the actual implementation, we can skip the swapping

but let h, l progress as shown above

Code

124

The analysis has guided the details of the algorithm

development

Use < not <=

Use > not >=

How to make quicksort even quicker?

• Parallelize! How?

• If there are many duplicates…

2/21/20 CS 356 125

3 way-partitioning Quicksort

qsort (List S) {

 if (| S| <= 1) return S; / / Note that S could be empty

 v = element of S; / / Choose pivot

 / / Using set notation for lists

 List L = { x in S - {v} | x < v }

 List R = { x in S - {v} | x > v }

 return (qsort(L) + E {all elements equal to v} + qsort (R));

}

126

How to implement this algorithm?

We have 3 partitions in this version
So, we should maintain 3 pointers!

2/21/20 127

We have 3 partitions in this version
So, we should maintain 3 pointers!

2/21/20 128

We start at i = lt , we stop at i > gt

Complete the given code in the notes

2/21/20 CS 356 129

Outline

1. Intro

2. Vocabs: Loop Invariants and Stable Sorting

3. Primer: Where should max go?

4. Selection Sort

5. Bubble Sort

6. Insertion Sort

7. Merge Sort

8. Conclusion

130

In conclusion

• Sorting reduces the complexity of problems

• Various sorting algorithms exist each with unique traits

• Lecture example code available

https:/ /github.com/mikiehan/sorting-example.git

131

Time Complexity Space Complexity Stable?

Selection Θ(n2) Θ(1) Y

Bubble Θ(n2) Θ(1) Y

Insertion Θ(n2) Θ(1) Y

Merge sort Θ(n log n) Θ(n) Y

Quick sort Θ(n log n) Θ(n) Y

https://github.com/mikiehan/sorting-example.git
https://github.com/mikiehan/sorting-example.git
https://github.com/mikiehan/sorting-example.git

	Slide 1: CS314H Sorting Algorithms
	Slide 2
	Slide 3: Why sorting?
	Slide 4: What is the min/max?
	Slide 5: Are they identical sets?
	Slide 6: Are they identical sets?
	Slide 7: Sorting reduces the complexity of a problem
	Slide 8: Various sorting algorithms
	Slide 9: Why so many of them?
	Slide 10: Outline
	Slide 11: A stable sort maintains the original order of equal items
	Slide 12: A stable sort can be useful when searching with multiple criteria
	Slide 13: How to proof correctness of algorithm?
	Slide 14: Loop invariant – a loop property that is true at the start or end of each iteration.
	Slide 15: Loop invariant – a loop property that is true at the start or end of each iteration.
	Slide 16: Proof of correctness
	Slide 17: Outline
	Slide 18: Where should max go in a sorted array?
	Slide 19: How to send max to the end of the array?
	Slide 20: Case 1: Only one swap is allowed
	Slide 21: Outline
	Slide 22: Selection sort at each iteration selects max from unsorted and swaps with last of unsorted
	Slide 23
	Slide 24: Alternatively, we can select min from unsorted and swap with the first of unsorted
	Slide 25: Is selection sort stable (select min)?
	Slide 26: Is selection sort stable (select max)?
	Slide 27: What is the loop invariant for selection sort?
	Slide 28: What is true after kth iteration (select min)?
	Slide 29: Example code for selection sort
	Slide 30: Space complexity for selection sort is cap theta(1)
	Slide 31: Time complexity of selection sort
	Slide 32: Best case vs worst case for selection sort
	Slide 33: Outline
	Slide 34: How to send max to the end of the array?
	Slide 35: Case 2: Compare two adjacent values and swap if they are “out of order”
	Slide 36: In bubble sort, after each iteration max from unsorted “bubbles up” to the top
	Slide 38: Is bubble sort stable?
	Slide 39: What is the loop invariant for bubble sort?
	Slide 40: What is true after kth iteration?
	Slide 41: Example code for bubble sort
	Slide 42: Space complexity for bubble sort is cap theta(1)
	Slide 43: Time complexity for bubble sort
	Slide 44: Best case vs worst case for bubble sort
	Slide 45: Is bubble sort faster than selection sort?
	Slide 46: How about shifting items instead of swapping?
	Slide 47: How about shifting items instead of swapping?
	Slide 48: Outline
	Slide 49: Case 3: Shifting values are allowed
	Slide 50: Insertion sort at each iteration reads the next value from unsorted and inserts it to sorted
	Slide 51: Is insertion sort stable?
	Slide 52: What is the loop invariant for insertion sort?
	Slide 53: What is true after kth iteration?
	Slide 54: Example code for insertion sort
	Slide 55: Space complexity for insertion sort is cap theta(1)
	Slide 56: Time complexity for insertion sort
	Slide 57: Time complexity for insertion sort
	Slide 58: Best case vs worst case for insertion sort
	Slide 59: Selection vs Bubble vs Insertion sort
	Slide 60: How can we improve insertion sort?
	Slide 61: Worst-case cap theta(n2) sounds pretty bad. Can we do better?
	Slide 62: Outline
	Slide 63: Merge sort is a divide-and-conquer algorithm
	Slide 64
	Slide 65: Merge sort is a recursive algorithm
	Slide 66: Merge sort example
	Slide 67: Let’s implement merge!
	Slide 68: Merging two sorted halves into one
	Slide 69: Merge halves code: merge2
	Slide 70: Merge halves code: merge2
	Slide 71: merge2 completed
	Slide 72: mergeSort2 code (version 1)
	Slide 73: mergeSort2 code (version 1) completed
	Slide 74: Copying array at each step is expensive
	Slide 75: Can we do better?
	Slide 76: Let’s move memory allocation code just inside the merge
	Slide 77: Draw space diagram
	Slide 78: We can do better with one auxiliary array
	Slide 79: Better merge sort
	Slide 80: Better merge sort
	Slide 81: Alternating org and aux achieves space complexity of cap theta(n)
	Slide 82: Alternating org and aux achieves space complexity of cap theta(n)
	Slide 83: Modified merge - takes two lists of original length
	Slide 84: Time complexity
	Slide 85: Recurrence for merge sort
	Slide 86: General strategies for solving recurrence
	Slide 87: Solve recurrence for merge sort
	Slide 88: By telescoping
	Slide 89: By art
	Slide 90: Solving recurrence
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: Is merge sort stable?
	Slide 97: Is merge stable?
	Slide 98: Merge sort has significantly lower runtime than selection sort
	Slide 99: Improving merge sort
	Slide 100: Improving merge sort
	Slide 101: Parallelizing merge!
	Slide 102: Defining partition
	Slide 103: Determining partition
	Slide 104: Outline
	Slide 105: Quicksort
	Slide 106: Quicksort
	Slide 107: Correctness proof of qsort algorithm
	Slide 108: Is it important how we choose pivot?
	Slide 109: Bad pivot (partition) analysis via telescoping
	Slide 110: Good partition analysis
	Slide 111
	Slide 113: General results for divide-n-conquer
	Slide 114: Outline
	Slide 115: How to choose pivot?
	Slide 116: Probability of worst case happening
	Slide 118: Outline
	Slide 119: Basic idea
	Slide 120: Example
	Slide 121: What if
	Slide 122: Skip to swap: looking for strictly larger/smaller than pivot
	Slide 123: Yes, to swap!
	Slide 124: Code
	Slide 125: How to make quicksort even quicker?
	Slide 126: 3 way-partitioning Quicksort
	Slide 127: We have 3 partitions in this version So, we should maintain 3 pointers!
	Slide 128: We have 3 partitions in this version So, we should maintain 3 pointers!
	Slide 129: Complete the given code in the notes
	Slide 130: Outline
	Slide 131: In conclusion

