ecture |4:
Trees and Recursion

Mikyung Han



TS A nllisnou;mrﬁ d
- 3 -

Please, interrupt and ask questions AT ANY TIME !



Reminders

* Read Ch 18,Ch 19.1 — 194
* CritterFest Oct 5:30 PM - 6:30 PM @ JGB 2.218

o Extra credit towards Exam |



Outline

@ 2. Trees Intro



Trees

* What is a tree?
* Why trees could be useful?



Tree Definition |

Does it allow cycle!?



Tree Definition 2




Tree Definition 3 (Our definition)

/A set of nodes

|. one node is distinguished as root r
2. Every node c except r has exactly one parent node p

connected by an edge
\3. A unique path exists from r to each node.

e How does this definition include Tree Definition |?
o N nodes connected by n-1 edges?

* Could there be cycle?



More definitions

* Root: A distinguished node that has no parent
* | eaf node/external node: A node with no children

* Internal nodes: non-leaf nodes

* Parent: If node c is reachable via node p, p is the parent, c is the child
* Siblings:The nodes nodes that have the same parent

* Ancestors/Descendants

* Directed vs undirected edges

* Depth of a node: the length of the path from the root to that node

* Height of a node: the length of the path from that node to is deepest
descendent (must be a leaf)



What is Binary Tree!

* Tree whose node has at most 2 children
* Why binary tree is useful?

* It is versatile: We can encode ANY tree into a binary tree



Recap: Abstract Data Type (ADT) vs. Data Structure

* ADT defines a set of values and legal operations on the values.
o A circular gueue, the next element after the last element is the first element
o A binary tree has left/right child

* Data structure is an implementation of ADT
o A circular gueue can be implemented with an array
o A circular queue can be implemented with a linked list
o A binary tree can be implemented with an array
o A binary tree can be implemented with a node with references to left/right child

So, when we say “Tree” we are talking about ADT




Let’s talk about data structure

* How to implement tree!



Use node with left/right reference

Node



Use array

Node

Node index

Current node index: i

‘ Mapping
Left child node index:
Right child node inde

‘ Using arrays to represent binary trees

Nodeindex © 1 2 3 4 5 6 7 8 9 161112 13 14




Pros and Cons

* A binary tree with an array
* A binary tree with a node with references to left/right



Code

* Using array
o Let's take a look!
* Using tree node with left/right references

o Code it up!
o Level order insert



Outline

@ 3. Binary Tree Traversal



Consider expression (3 + |) * 4 in Java

* How should complier represent it?
|) In-order traversal
2) Pre-order traversal

3) Post-order traversal




How to implement tree traversal?

e Use recursion!

10
/ \

20 30
\ / \
40 60 90
/ / \ \

50 70 80 100



Pseudo code

preorder (node)
if (node == null) return;
visit (node)
preorder (node.left) //recurse on left subtree

preorder (node.right) //recurse on right subtree

inorder (node)
if (node == null) return;
inorder (node.left)//recurse on left subtree
visit (node)
inorder (node.right) //recurse on right subtree

postorder (node)
if (node == null) return;
postorder (node.left)//recurse on left subtree
postorder (node.right) //recurse on right subtree

visit (node)



Can we implement tree traversal without recursion?

* Which data structure are we implicitly using when using recursion?
o A call stack!

* What happens whenever you invoke a method!?
o Push the callers’ local variables onto stack and jump to the called method

* What happens whenever you return from the method?
o You pop those local variables back



Call stack and heap

class Student{
int age;
String name;

public Student()

//instance variable
//instance variable

1
this.age = 0;

name = "Anonymous";
¥
public Student(int Age, String Name)
1
this.age = Age;
setName (Name) ;
}
public void setName(String Name)
1
this.name = Name;
}

b

public class Main{
public static void main(String[] args) {
Student s; //local variable
s = new Student(23,"Jonh");

int noStudents = 1; //local variable

main()

program start

&lHVawna(Serog)

Student(int,String)
. -

call stack

setN

ame() )
Student() fj Smuwmﬂudaﬁrugr—
main() | = main() cting

Student s; new Student

S =
(

23,"JdJohn") ;

Stack

String

reference
O .-_‘--____--

Student

"‘————--____________ Lg_f_grence \
String ref. )<

Age
this

int value

Heaqs-

5 QoD

N

String
object

Studenth§efgyence

23 | reference

int value

v

noStudents

/

Student reference S

/

Student object
age | name

22



Can we convert ANY recursive implementation
to non-recursive one?



Non recursive pre-order traversal

* What are we using stack for in this case!?
o o remember nodes that we need to traverse

* Push left first or right first?
o If we push left first, then left will be traversed later
o Push right first, so that left will be traversed first

24



Non recursive in-order traversal

* How many times should we visit each node?
o Twice

* What should happen on the first visit?
* What should happen on the second visit?

25



Non recursive post-order traversal

* How many times are we visiting each node!
o Twice

* What happens on the first visit!
* What happens on the second visit!

26



How about level-order traversal?

* Which existing code to modify to make level-order?
* What are the 2 things to modify?

27



s tree traversal unique given a binary tree!

* Practice question: Assume keys are unique.
Given pre-order traversal and in-order traversal, construct a binary tree
o Int[] preorder = {10, 5, 3, 2, /7, 20, 15, 17, 25};
o Int[] inorder ={2, 3,5, 7, 10, 15, 1/, 20, 25}



Outline

@ 4. Binary Search Trees



Suppose we need a dictionary
that inserts, finds, deletes items efficiently

* How can we do this with binary tree?

Binary Search Tree

30



BST is a binary tree with BST property

Does it say anything about the tree being balanced?




Find on BST

Find 8
Find 10

What is the time complexity of find?




Insert on BST

Insert 8

What is the time complexity of insert?




Duplicate on BST?

Insert 10

Flag an error, ignore, or allow duplicate — all possible options



Delete on BST

Delete 19

/
Q@

8

Case |: Deleting on a leaf node — simple!



Deleting an internal node

Case 2: when the internal node
has either left or right subtree

Case 3: when the internal node
has both left and right subtree

36



Case 2: Deleting an internal node with either left/right subtree

Delete 5

Which node should replace 5 to preserve BST property?

37



Case 2: Deleting an internal node with either left/right subtree

14

Delete 5

Its subtree can replace the internal node. Why!?

38



Case 3: Deleting an internal node
with both left/right subtree

Delete 14

Which node should

replace |4 to preserve
BST property?

39



Replace with predecessor

Delete 14

Replace with the
largest key in the left
subtree

oo
.

o

40



Replace with predecessor

Delete 14

Replacing
will always result in
case | or case 2

41



Replace with successor

Delete 14

Replace with the
smallest key in the
right subtree

oo
.

o

42



Replace with succe

Delete 14

Replacing

will always result in
case | or case 2

e

1

43



Replace with succe

Delete 14

Replacing

will always result in
case | or case 2

e

1

44



Outline

@ 5. Binary Tree Analysis



Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Which is NOT a complete binary tree!

o Num nodes at level k?

1 10 . o Min num nodes at the lowest level?
/ \ A / \
5 s 20 30 -
I\ / N/ \ \
4 56 40 50 60 70 n
/\

80 90 100



Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Num nodes at level k?

* Min/max num nodes at the lowest level?



Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Num nodes at level k?

o Root is at level O
o 2|<

* Min/max num nodes at the lowest level?
o Let k be the number of levels
o Min: |
o Max: 2k!



Perfect Binary Tree

* All the levels of the tree are filled completely including the lowest level

* Total number of nodes given
there are total k levels?

* How many leaf nodes?
Y

* How many internal nodes!?

49



Perfect Binary Tree

* All the levels of the tree are filled completely including the lowest level

Let k be the number of levels
* Total 2%-| nodes
e 2k-I |eaf nodes

e 2k-I_| internal nodes

50



