
CS314H
DATA STRUCTURES

Lecture 17:
AVL Analaysis

Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

Outline

1. AVL implementation

Source code

• https://github.com/mikiehan/CS314H-CSB-AVL-Solution

4

https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution
https://github.com/mikiehan/CS314H-CSB-AVL-Solution

Outline

1. AVL implementation
2. AVL analysis

Time complexity of AVL

• Find
• Insert
• Delete

• Rotation cost is O(1)
• What is the dominant cost?

6

Walking down the tree to its deepest leaf! O(Tree height)

7

f(n)= height h given n
f(n)≤ c*g(n) for n ≥ k

Let f(n) be the tree height given number of nodes n

8

f(n)= height h given n
f(n)≤ c*g(n) for n ≥ k

f-1(h)= n given height h
f-1 (h)≥ c*g-1 (h) for h ≥ k’

Flip the graph over the line y=x

Let’s find the lower bound of n given height h!

N(h) be the min num of nodes in AVL tree with height h

• What is the base case?

• How to construct min num of nodes of height h?
o Need a root
o Need one subtree that has min num of nodes with height h-1
o Need another subtree that has min num of nodes with height h-1 h-2

• Recurrence
o N(h) = 1 + N(h-1) + N(h-2)
o Base case: N(0) = 1, N(-1) = 0

9

Theorem 1:
An AVL tree with height h has at least 2h/2 nodes
Proof by induction
• What is the base case?

o Tree with height 0 has at least 1 node (true!)
• Induction hypothesis

o Let’s say for all i < h, AVL tree with height i has at least 2i/2 nodes
• N(h) = 1 + N(h-1) + N(h-2)

10

By theorem 1, num of nodes n > 2h/2

•Given above, we can find the upper bound of h
• Take log base 2 on both sides

o log2 n > h/2
o 2 log2 n > h //what does this mean?

• h = O(log2 n)

12
Time complexity of find, insert, delete of AVL Tree is O(log2 n)

Alternatively, we can also use Fibonacci sequence
• N(h) = 1 + N(h-1) + N(h-2), where N(-1) = 0, N(0) = 1

• F(k) = F(k-1) + F(k-2), where F(0) = 0, F(1) = 1

13

h AVL’s N Fibonacci number F
0
1
2
3
4
5
6
7

Alternatively, we can also use Fibonacci sequence
• N(h) = 1 + N(h-1) + N(h-2), where N(-1) = 0, N(0) = 1

• F(k) = F(k-1) + F(k-2), where F(0) = 0, F(1) = 1

14

h AVL’s N Fibonacci number F
0 1 0
1 2 1
2 4 1
3 7 2
4 12 3
5 20 5
6 33 8
7 54 13

N(h) = F(h+3) – 1. Follows the same growth rate as Fibonacci

Fibonacci’s growth rate is exponential

15

• F(k) ≈ !
"

#
 , where 𝜑 =

$% "
&

 ≈ 1.618 (smaller than 2)

• F(k) ≈ C 𝜑#

Fibonacci’s growth rate is exponential

16

• F(k) ≈ !
"

#
 , where 𝜑 =

$% "
&

 ≈ 1.618 (smaller than 2)

• F(k) ≈ C 𝜑#

• F(h+3) ≈ C 𝜑'%(

• F(h+3) - 1 ≈ C 𝜑'%(- 1

• N(h) ≈ C 𝜑'%(- 1

• h+3 ≈ 𝑙𝑜𝑔𝜑(
)%$
*

) = 𝑙𝑜𝑔𝜑(N+1) + 𝑙𝑜𝑔𝜑(
$
*
)

• h ≈ O(𝑙𝑜𝑔𝜑 N)

Slightly larger than log2 (but by a constant factor)

