



Please, interrupt and ask questions AT ANY TIME!

### Outline

I. AVL implementation

### Source code

• <a href="https://github.com/mikiehan/CS314H-CSB-AVL-Solution">https://github.com/mikiehan/CS314H-CSB-AVL-Solution</a>

### Outline

I. AVL implementation



2. AVL analysis

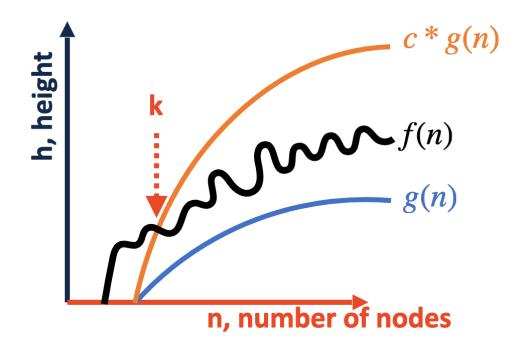
## Time complexity of AVL

- Find
- Insert
- Delete

- Rotation cost is O(I)
- What is the dominant cost?

Walking down the tree to its deepest leaf! O(Tree height)

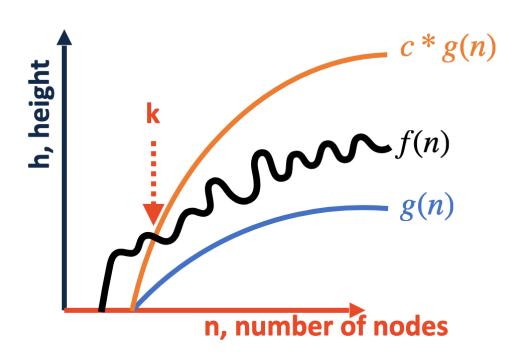
## Let f(n) be the tree height given number of nodes n



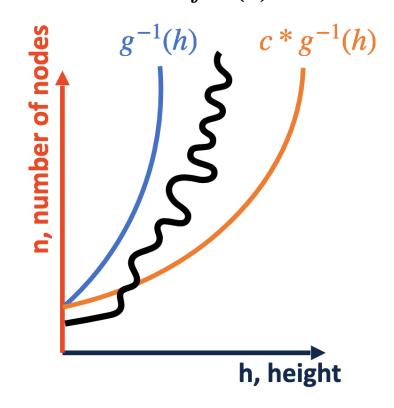
```
f(n) = height h given n

f(n) \le c*g(n) for n \ge k
```

## Flip the graph over the line y=x



$$f(n) = height h given n$$
  
 $f(n) \le c*g(n) for n \ge k$ 



$$f^{-1}(h) = n$$
 given height h  
 $f^{-1}(h) \ge c*g^{-1}(h)$  for  $h \ge k'$ 

Let's find the lower bound of n given height h!

### N(h) be the min num of nodes in AVL tree with height h

What is the base case?

- How to construct min num of nodes of height h?
  - Need a root
  - Need one subtree that has min num of nodes with height h-I
  - Need another subtree that has min num of nodes with height h-1 h-2
- Recurrence
  - $\circ N(h) = I + N(h-I) + N(h-2)$
  - $\circ$  Base case: N(0) = 1, N(-1) = 0

# Theorem I: An AVL tree with height h has at least $2^{h/2}$ nodes

#### Proof by induction

- What is the base case?
  - Tree with height 0 has at least I node (true!)
- Induction hypothesis
  - $\circ$  Let's say for all i < h, AVL tree with height i has at least  $2^{i/2}$  nodes
- N(h) = I + N(h-I) + N(h-2)

## By theorem 1, num of nodes $n > 2^{h/2}$

- Given above, we can find the upper bound of h
- Take log base 2 on both sides
  - $\circ \log_2 n > h/2$
  - $\circ$  2 log<sub>2</sub> n > h //what does this mean?
- $h = O(\log_2 n)$

## Alternatively, we can also use Fibonacci sequence

```
• N(h) = I + N(h-I) + N(h-2), where N(-I) = 0, N(0) = I
```

| • F(k) | = F(k-1) | + F(k-2) | , where $F(0)$ | 0) = 0, F( | (1) = 1 |
|--------|----------|----------|----------------|------------|---------|
|--------|----------|----------|----------------|------------|---------|

| h | AVL's N | Fibonacci number F |
|---|---------|--------------------|
| 0 |         |                    |
| 1 |         |                    |
| 2 |         |                    |
| 3 |         |                    |
| 4 |         |                    |
| 5 |         |                    |
| 6 |         |                    |
| 7 |         |                    |

## Alternatively, we can also use Fibonacci sequence

- N(h) = I + N(h-I) + N(h-2), where N(-I) = 0, N(0) = I
- F(k) = F(k-1) + F(k-2), where F(0) = 0, F(1) = 1

| h | AVL's N | Fibonacci number F |
|---|---------|--------------------|
| 0 | 1       | 0                  |
| 1 | 2       | 1                  |
| 2 | 4       | 1                  |
| 3 | 7       | 2                  |
| 4 | 12      | 3                  |
| 5 | 20      | 5                  |
| 6 | 33      | 8                  |
| 7 | 54      | 13                 |

N(h) = F(h+3) - I. Follows the same growth rate as Fibonacci

## Fibonacci's growth rate is exponential

• F(k) 
$$\approx \frac{\varphi^k}{\sqrt{5}}$$
, where  $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$  (smaller than 2)

• 
$$F(k) \approx C \varphi^k$$

# Fibonacci's growth rate is exponential

• F(k) 
$$\approx \frac{\varphi^k}{\sqrt{5}}$$
 , where  $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$  (smaller than 2)

- $F(k) \approx C \varphi^k$
- F(h+3)  $\approx$  C  $\varphi^{h+3}$
- F(h+3) I  $\approx$  C  $\varphi^{h+3}$  I
- N(h)  $\approx$  C  $\varphi^{h+3}$  I
- h+3  $\approx log_{\varphi}(\frac{N+1}{C}) = log_{\varphi}(N+1) + log_{\varphi}(\frac{1}{C})$
- h  $\approx$  O( $log_{\varphi}$  N)