CS314H CSB Lecture 17: Heap

AVL Tree Analysis
What is AVL tree?

Itis a BST, where the height of the left and right subtree can differ by at

most for each node (recursively).

0. Time complexity of AVL tree: Let h be the height of a AVL tree.
* What is the cost of rotation?

1) Find:

2) Insert:

3) Delete:

1. Let’s formally prove this.
h=f(n). Let f(n) be the tree height given number of nodes n.
We must find an bound for f(n).

n=f1(h). Let f1(h) be the number of nodes given tree height.

We will first find a bound for f'1(h). That is the lower bound of n given h.

N(h) be the minimum num of nodes in AVL tree given height h.
Write the recurrence equation of N(h).
What is the base case?

2. Theorem: An AVL tree with height h has at least 2"? nodes.
Proof by induction.
Base case: An AVL tree with height has nodes.

Induction hypothesis:

Proof:

3.n > 22

h < //what does this mean? Having "2” x log, n (compared to log. n)

h = O(logz n)

1| Page



CS314H CSB Lecture 17: Heap

Binary Tree Analysis

0. of a node refers to the distance of the node from the root, measured in the
number of e

1. binary tree

a binary tree in which all the levels are completely filled except possibly the lowest
(deepest), which is filled from the left.

[Draw some examples]

1) How many nodes at level k (where k is not the lowest level)?

2) Min number of nodes at lowest level?

3) Max number of nodes at lowest level, where k is the height of the tree?

4) Assume, all the levels are completely filled INCLUDING the lowest level
What is the total humber of nodes in this tree with k levels?

5) Given n is the number of nodes in a complete binary tree, what is the nhumber of
levels? (Hint: the closest power of 2 that is >= n)

2. binary tree
a binary tree in which every parent node/internal node has either two or no children.
[examples]

® @ ®
e | ©
0 0
g » g o
g o ¢ © © 60 6 ©
@ @
« o & @ ©
e @ g o
g v [@ o

2 | Page



CS314H CSB Lecture 17: Heap

1. Why do we need Priority Queue?

2. PriorityQueue ADT

1) findMin
2) deleteMin
3) insert

4) isEmpty

3. Here are some options to implement PriorityQueue.
What is the cost of insert and deleteMin? Write them down for each option.

As you can see, a new data structure is need!

Unsorted Array

Unsorted Linked List

Sorted Circular Array List

Sorted Linked List

Binary Search Tree

1. Heap has two properties.

1)

property: All ¢

Priority Queue

are smaller than p

3 | Page



CS314H CSB Lecture 17: Heap

2) property: A binary tree with no ™ "
What do you call this type of binary tree?
2. Find heap

3. Heap features.
+ Where is the minimum item in a heap?

+ What is the height h of a heap with n items?

findMin is easy. Let’s consider deleteMin and insert.
4. deleteMin in 3 steps.
1) Step 1:

2) Step 2: How to fill the gap?

3) Step 3: “Percolate i

5. Pseudo-code of percolate down.
percolateDown (node) {
while (node.data is than child) {
swap data with child

}

4 | Page



CS314H CSB Lecture 17: Heap

6. PercolateDown example

Time complexity of percolate down?
4. insert in 2 steps.

1) Step 1: Where to insert to preserve structure property?

2) Step 2: “Percolate " to fix heap property.

5. Percolate up
percolateUp (node) {
while (node.data is than )|
swap data with parent data

}
}

6. Insert example: Insert “2”

(10)
(20) (25)
OROMONO)
(10) (32

7. How to implement heap? Use
Draw the Heap array of 6.

5| Page



CS314H CSB Lecture 17: Heap

8. Average case analysis of insert. (Count the number of comparisons.)

1) How many nodes are in the last level?
2) How many nodes are in the second to the last Ievel?

Insertion is like finding a “seat” in a heap.

What are the chances that this seat will be at the last level? (That is, we end up
inserting at the last level).

How many “comparisons” needed in this case?

What are the chances that this seat will be at the second to the last level? (That is,
we end up inserting at the second to the last level).
How many “comparisons” needed in this case?

As an average case, we pick a random value x to insert.

Then the average number of comparisons =
[e0]

z Prob (Settling down at kth to the last level) x k comparisons
k=1

2K 1+ % *2+1/8%3+ ... =32, = Z (Let this be Z).

Z-72]2 =7/2 =S =

S-5/2=5/2 =
Thus S = 1.
Z=2.

This is O( ). Constant time average case of insert!

9. Other possible operations supported (expand ADT) for PriorityQueue
1) increasePriority

2) decreasePriority

3) buildHeap

6 | Page



CS314H CSB Lecture 17: Heap

10. Can we build heap more efficiently?
Floyd’s algorithm.

Rather than insert one node and fix (percolate up), and then insert another node
and fix (percolate up) how about insert all items first and try to fix?

Given array itself is the heap that we need to fix.

void buildHeap(int[] input) { //input itself is a heap that we need to fix
for(i = size/2 -1; i>=0 ; i--) { //starting from the last node with children
percolateDown(i);

11. Time complexity of Floyd’s algorithm.
Tighter analysis. Let n be the number of nodes in thie heap.

¢ How many elements in the second to the lowest level? . At most how
many times do we percolate down?
¢ How many elements in the third to the lowest level? . At most how

many times do we percolate down?

Putting it altogether, write down the equation.

What is the time complexity of Floyd’s algorithm?

7 | Page



