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Please, interrupt and ask questions AT ANY TIME !



Outline

1. Binary Tree Analysis



Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Which is NOT a complete binary tree?

4

o Num nodes at level k?
o Min num nodes at the lowest level?  



Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Num nodes at level k? 

• Min/max num nodes at the lowest level? 
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Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Num nodes at level k? 
o Root is at level 0
o 2k

• Min/max num nodes at the lowest level? 
o Let L be the number of levels
o Min: 1
o Max: 2L-1
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Perfect Binary Tree

• All the levels of the tree are filled completely including the lowest level
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• Total number of nodes given 
there are total L levels? 
• How many leaf nodes? 
• How many internal nodes? 



Perfect Binary Tree

• All the levels of the tree are filled completely including the lowest level
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Let L be the number of levels

• Total 2L-1 nodes
• 2L-1 leaf nodes
• 2L-1-1 internal nodes



Outline

1. Binary Tree Analysis

2. Priority Queue



FIFO Queue ADT
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• But sometimes we’re interested in a PriorityQueue instead
o A hospital ER room 
o OS process scheduling
o Network packet routing
o Discrete event simulation
o etc



Priority Queue ADT
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• Data in PriorityQueue must be comparable

• Highest priority == lowest priority value
• ADT does not specify tie case 



Priority Queue Example
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findMin
deleteMin
insert(E (p:1))
deleteMin
deleteMin



Priority Queue Example
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findMin → B
deleteMin → B
insert(E (p:1))
deleteMin → E
deleteMin → A



Now let’s talk about the implementation
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Here are some options. 
What is the cost of insert and deleteMin?

• Unsorted Array/Unsorted Linked List

• Sorted Circular Array List

• Sorted Linked List

• Binary Search Tree

• AVL? 
15



Here are some options. 
What is the cost of insert and deleteMin?
• Unsorted Array

o Insert at the end O(1) for Array, or at the front O(1) for LinkedList
o deleteMin: linear search O(n) + shift O(n) for Array. No shifting for LinkedList.

• Sorted Circular Array List
o Insert by binary search and shift O(n)
o deleteMin: move front no shifting needed O(1)  

• Sorted Linked List
o Insert by linear search O(n)
o deleteMin: remove front and update front to front->next O(1)

• Binary Search Tree
o Insert walk down to the leaf O(n). Tree is not balanced
o deleteMin: findMin and replace min with min’s right child. O(n). Tree not balanced

• AVL
o Insert: Go to the correct leaf node to insert O(log n) and rebalance O(1)
o deleteMin: Find left most node O(log n) delete and rebalance. O(1) 16

Better data structure 
needed!!



Outline

1. Binary Tree Analysis

2. Priority Queue
3. Heap



Heap has two properties
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• Is this a heap? • Where would be the min? 



Which ones are heap?
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Heap properties

• Where is the minimum item in a heap? 
o At the root!

• What is the height h of a heap with n elements? 
o How many levels in this tree? L= h+1
o Total number of nodes n ≈ 2(h+1)-1 (assuming perfect tree)
o h = O(log2 n)

• FindMin is easy, how to insert, or deleteMin? 
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DeleteMin

• Step 1: find the min

• Step 2: To preserve structure property who should fill the root?
o Hint: we do not want to shift O(n) times.
o The last node is promoted as the root! 

• Step 3: “Percolate down” to fix 
o To preserve heap property - all children is larger than itself
o Pick one: Swap data with its [smaller or larger] child
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DeleteMin Example
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“Percolate down” 
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“Percolate down” another example
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What is the time complexity of percolate down?



Insert

• Step 1: To preserve structure property where to insert? 
o Hint: we do not want to shift O(n) times.
o The the very end!

• Step 2: ”Percolate up” to fix 
o If my data is smaller than the parent’s, swap data!
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“Percolate Up”
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What is the time complexity of percolate up?



Percolate up another example
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How to implement Heap?

Which option would you choose?

• Option 1: Use TreeNode with left/right references
• Option 2: Use array representation
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Use array! Fill in array by level-order



Heap array
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Outline

1. Binary Tree Analysis

2. Priority Queue
3. Heap analysis



Recap

• Heap property 
o Relationship between root and its children
o Relationship between siblings 

• Structure property
o Complete binary tree

• Insert
o Where do you insert to satisfy the structure property? 
o Percolate up or down to satisfy the heap property? 



Average Case Analysis: Insert to a heap with n nodes

• How many nodes …
o in the last level? 
o 2nd to the last level?
o 3rd to the last level? 

• What are the chances that the node just inserted eventually land … 
o On the last level?  
o 2nd to the last level? 
o 3rd to the last level?  
o What is the number of comparisons for each case?

• For average case, we pick a random value x
o ½ probability that we compare once
o ¼ probability that we compare twice



Average Case Analysis: Insert to a heap with n nodes

• For average case, we pick a random value x to insert 
o 1/2 probability that we compare once
o 1/4 probability that we compare twice
o 1/8 probability that we compare 3 times
o Etc.

• Sum 
o 1/2 + 2/4 + 3/8 + 4/16 + 5/32 … = ∑!"#∞

!
$!

Will this converge? 



Average Case Analysis: Insert to a heap with n nodes

• Let Z = ∑!"#∞
!
$!
	 = 1/2 + 2/4 + 3/8 + 4/16 + 5/32 …

• Div Z by 2:   Z/2 = 1/4 + 2/8 + 3/16 + 4/32 + 5/64 …
• Z – Z/2= S  

• S = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 …
• S-S/2 = 1/2 
• S = 1  
• Z = 2 

Constant time! What does this mean?



Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap



More operations to support 
besides insert, findMin, deleteMin

Given a particular index i of the array

• increasePriority(i, newPriority)
o i has now higher priority

• decreasePriority(i, newPriority) 
o i has low lower priority 

• buildHeap(array)
o Where array is unsorted elements 

How would you implement them? Time complexity?



Increase/Decrease Priority Example

• Increase priority: Change 6 to 0

• Decrease priority: Change 1 to 15
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Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap
4. Building heap



Building heap: Simply use insert
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What is the time complexity? 



Floyd’s algorithm

• Rather than insert and fix the heap one by one

• Insert all and fix all at once
o input array itself is a heap to be fixed

• Example
o input array = [22, 33, 10, 4, 5, 6, 90, 3, 8, 12, 1, 11] 
o Note leaf nodes are already valid heap!

How to fix?



Floyd’s algorithm

• Insert all and fix all at once
o input array itself is a heap to be fixed
o Starting with a largest index node with children, percolate down!
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Time Complexity of Floyd’s algorithm

• Is Floyd’s algorithm better?



A tighter worst-case analysis of Floyd’s algorithm

• How many nodes on the lowest level? 
o n/2

• How many nodes on the 2nd lowest level? 
o n/4 

• How many nodes in the 3rd lowest level? 
o n/8

• How many nodes in the 4th lowest level? 
o n/16

• Etc…
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• Max num percolation for nodes on the lowest level? 
o 0

• Max num percolation for nodes on the 2nd lowest level?
o 1 

• Max num percolation for nodes on the 3rd lowest level?
o 2

• Max num percolation for nodes on the 4th lowest level?
o 3

• Etc..
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Putting it together..

A tighter worst-case analysis of Floyd’s algorithm



• 1x n/4 + 2 x n/8 + 3 x n/16 + …. = nS 

• S- S/2 
o Do coloring or telescoping to solve S

• S = 1 
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Floyd’s Algorithm is O(n) in the WORST case, 
which is better than inserting one by one n times

A tighter worst-case analysis of Floyd’s algorithm



Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap
4. Building heap
5. Heapsort



How to use heap to do sorting? 

• Treat input array as a complete binary tree

• Heapify using Floyd’s algorithm
• Call DeleteMin n times! 

o Instead of actually removing,
keep the item on the back of
the unsorted array  

• Use Max heap sort ascending order
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