
CS314H
DATA STRUCTURES

Lecture 19:
Priority Queue and Heap

Mikyung Han

2

Please, interrupt and ask questions AT ANY TIME !

Outline

1. Binary Tree Analysis

Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Which is NOT a complete binary tree?

4

o Num nodes at level k?
o Min num nodes at the lowest level?

Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Num nodes at level k?

• Min/max num nodes at the lowest level?

5

Complete Binary Tree

• All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

• Num nodes at level k?
o Root is at level 0
o 2k

• Min/max num nodes at the lowest level?
o Let L be the number of levels
o Min: 1
o Max: 2L-1

6

Perfect Binary Tree

• All the levels of the tree are filled completely including the lowest level

7

• Total number of nodes given
there are total L levels?
• How many leaf nodes?
• How many internal nodes?

Perfect Binary Tree

• All the levels of the tree are filled completely including the lowest level

8

Let L be the number of levels

• Total 2L-1 nodes
• 2L-1 leaf nodes
• 2L-1-1 internal nodes

Outline

1. Binary Tree Analysis

2. Priority Queue

FIFO Queue ADT

10

• But sometimes we’re interested in a PriorityQueue instead
o A hospital ER room
o OS process scheduling
o Network packet routing
o Discrete event simulation
o etc

Priority Queue ADT

11

• Data in PriorityQueue must be comparable

• Highest priority == lowest priority value
• ADT does not specify tie case

Priority Queue Example

12

findMin
deleteMin
insert(E (p:1))
deleteMin
deleteMin

Priority Queue Example

13

findMin → B
deleteMin → B
insert(E (p:1))
deleteMin → E
deleteMin → A

Now let’s talk about the implementation

14

Here are some options.
What is the cost of insert and deleteMin?

• Unsorted Array/Unsorted Linked List

• Sorted Circular Array List

• Sorted Linked List

• Binary Search Tree

• AVL?
15

Here are some options.
What is the cost of insert and deleteMin?
• Unsorted Array

o Insert at the end O(1) for Array, or at the front O(1) for LinkedList
o deleteMin: linear search O(n) + shift O(n) for Array. No shifting for LinkedList.

• Sorted Circular Array List
o Insert by binary search and shift O(n)
o deleteMin: move front no shifting needed O(1)

• Sorted Linked List
o Insert by linear search O(n)
o deleteMin: remove front and update front to front->next O(1)

• Binary Search Tree
o Insert walk down to the leaf O(n). Tree is not balanced
o deleteMin: findMin and replace min with min’s right child. O(n). Tree not balanced

• AVL
o Insert: Go to the correct leaf node to insert O(log n) and rebalance O(1)
o deleteMin: Find left most node O(log n) delete and rebalance. O(1) 16

Better data structure
needed!!

Outline

1. Binary Tree Analysis

2. Priority Queue
3. Heap

Heap has two properties

18

• Is this a heap? • Where would be the min?

Which ones are heap?

19

Heap properties

• Where is the minimum item in a heap?
o At the root!

• What is the height h of a heap with n elements?
o How many levels in this tree? L= h+1
o Total number of nodes n ≈ 2(h+1)-1 (assuming perfect tree)
o h = O(log2 n)

• FindMin is easy, how to insert, or deleteMin?

20

DeleteMin

• Step 1: find the min

• Step 2: To preserve structure property who should fill the root?
o Hint: we do not want to shift O(n) times.
o The last node is promoted as the root!

• Step 3: “Percolate down” to fix
o To preserve heap property - all children is larger than itself
o Pick one: Swap data with its [smaller or larger] child

21

DeleteMin Example

22

“Percolate down”

23

“Percolate down” another example

24

What is the time complexity of percolate down?

Insert

• Step 1: To preserve structure property where to insert?
o Hint: we do not want to shift O(n) times.
o The the very end!

• Step 2: ”Percolate up” to fix
o If my data is smaller than the parent’s, swap data!

25

“Percolate Up”

26

What is the time complexity of percolate up?

Percolate up another example

27

How to implement Heap?

Which option would you choose?

• Option 1: Use TreeNode with left/right references
• Option 2: Use array representation

28

Use array! Fill in array by level-order

Heap array

29

Outline

1. Binary Tree Analysis

2. Priority Queue
3. Heap analysis

Recap

• Heap property
o Relationship between root and its children
o Relationship between siblings

• Structure property
o Complete binary tree

• Insert
o Where do you insert to satisfy the structure property?
o Percolate up or down to satisfy the heap property?

Average Case Analysis: Insert to a heap with n nodes

• How many nodes …
o in the last level?
o 2nd to the last level?
o 3rd to the last level?

• What are the chances that the node just inserted eventually land …
o On the last level?
o 2nd to the last level?
o 3rd to the last level?
o What is the number of comparisons for each case?

• For average case, we pick a random value x
o ½ probability that we compare once
o ¼ probability that we compare twice

Average Case Analysis: Insert to a heap with n nodes

• For average case, we pick a random value x to insert
o 1/2 probability that we compare once
o 1/4 probability that we compare twice
o 1/8 probability that we compare 3 times
o Etc.

• Sum
o 1/2 + 2/4 + 3/8 + 4/16 + 5/32 … = ∑!"#∞

!
$!

Will this converge?

Average Case Analysis: Insert to a heap with n nodes

• Let Z = ∑!"#∞
!
$!
	 = 1/2 + 2/4 + 3/8 + 4/16 + 5/32 …

• Div Z by 2: Z/2 = 1/4 + 2/8 + 3/16 + 4/32 + 5/64 …
• Z – Z/2= S

• S = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 …
• S-S/2 = 1/2
• S = 1
• Z = 2

Constant time! What does this mean?

Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap

More operations to support
besides insert, findMin, deleteMin

Given a particular index i of the array

• increasePriority(i, newPriority)
o i has now higher priority

• decreasePriority(i, newPriority)
o i has low lower priority

• buildHeap(array)
o Where array is unsorted elements

How would you implement them? Time complexity?

Increase/Decrease Priority Example

• Increase priority: Change 6 to 0

• Decrease priority: Change 1 to 15

37

Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap
4. Building heap

Building heap: Simply use insert

39

What is the time complexity?

Floyd’s algorithm

• Rather than insert and fix the heap one by one

• Insert all and fix all at once
o input array itself is a heap to be fixed

• Example
o input array = [22, 33, 10, 4, 5, 6, 90, 3, 8, 12, 1, 11]
o Note leaf nodes are already valid heap!

How to fix?

Floyd’s algorithm

• Insert all and fix all at once
o input array itself is a heap to be fixed
o Starting with a largest index node with children, percolate down!

42

Time Complexity of Floyd’s algorithm

• Is Floyd’s algorithm better?

A tighter worst-case analysis of Floyd’s algorithm

• How many nodes on the lowest level?
o n/2

• How many nodes on the 2nd lowest level?
o n/4

• How many nodes in the 3rd lowest level?
o n/8

• How many nodes in the 4th lowest level?
o n/16

• Etc…

44

• Max num percolation for nodes on the lowest level?
o 0

• Max num percolation for nodes on the 2nd lowest level?
o 1

• Max num percolation for nodes on the 3rd lowest level?
o 2

• Max num percolation for nodes on the 4th lowest level?
o 3

• Etc..

45
Putting it together..

A tighter worst-case analysis of Floyd’s algorithm

• 1x n/4 + 2 x n/8 + 3 x n/16 + …. = nS

• S- S/2
o Do coloring or telescoping to solve S

• S = 1

46

Floyd’s Algorithm is O(n) in the WORST case,
which is better than inserting one by one n times

A tighter worst-case analysis of Floyd’s algorithm

Outline

1. Administrative

2. Heap analysis
3. Other possible operations of Heap
4. Building heap
5. Heapsort

How to use heap to do sorting?

• Treat input array as a complete binary tree

• Heapify using Floyd’s algorithm
• Call DeleteMin n times!

o Instead of actually removing,
keep the item on the back of
the unsorted array

• Use Max heap sort ascending order

48

