ecture 19:
Priority Queue and Heap

Mikyung Han

\ N
- -
IT'S A QUESTION PARTY! "
y & <3 & 3
." \ - . k. \ L -
C 32 ‘e, ‘ Ve
L (3 \ o o ' ' - .. , ¢ -
- " 4 'v &
S - @ g) =
\ ;i 4) . 9 o
- v ® “ - g
~ .

)
N

\\ My FAVORI

Please, interrupt and ask questions AT ANY TIME !

Outline

@ |. Binary Tree Analysis

Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Which is NOT a complete binary tree!

o Num nodes at level k?

. 10 | o Min num nodes at the lowest level?
/ \ a / \
5 20 30 _
/\ 7 T \
0o 40 50 60 70 4
N

80 90 100

Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Num nodes at level k?

* Min/max num nodes at the lowest level?

Complete Binary Tree

* All the levels of the tree are filled completely except the lowest level
o At the lowest level, nodes are filled from as left as possible

* Num nodes at level k?
o Root is at level O

o 2|<

* Min/max num nodes at the lowest level?
o Let L be the number of levels
o Min: |
o Max: 2&!

Perfect Binary Tree

* All the levels of the tree are filled completely including the lowest level

* Total number of nodes given
there are total L levels!?

* How many leaf nodes?

* How many internal nodes!?

Perfect Binary Tree

* All the levels of the tree are filled completely including the lowest level

Let L be the number of levels
* Total 2L-1 nodes
e 2L-I leaf nodes

e 2L-I_] internal nodes

Outline

@ 2. Priority Queue

FIFO Queue ADT

enqueue (val) | Adds val to the queue.

dequeue () Returns the least-recent item not already returned by a
dequeue. (Errors if empty.)

peek () Returns the least-recent item not already returned by a
dequeue. (Errors if empty.)

isEmpty () Returns true if all inserted elements have been returned by
a dequeue.

* But sometimes we're interested in a PriorityQueue instead
o A hospital ER room
o OS process scheduling
o Network packet routing
o Discrete event simulation
o etc

PriorityQueue ADT

A

Priority Queue ADT

insert (val) Adds val to the queue.

deleteMin() Returns the highest priority item not already returned by
a deleteMin. (Errors if empty.)

findMin() Returns the highest priority item not already returned by
a deleteMin. (Errors if empty.)

isEmpty () Returns true if all inserted elements have been returned by
a deleteMin.

* Data in PriorityQueue must be comparable

* Highest priority == lowest priority value

* ADT does not specify tie case

Priority Queue Example

deleteMin
-

findMin
deleteMin
insert (E
deleteMin
deleteMin

(p:1))

Priority Queue Example

deleteMin
-

findMin - B
deleteMin - B
insert (E (p:1))
deleteMin - E
deleteMin - A

Now let’s talk about the implementation

Here are some options.
What is the cost of insert and deleteMin?

* Unsorted Array/Unsorted Linked List
* Sorted Circular Array List
* Sorted Linked List

* Binary Search Tree

* AVL!

Here are some options.
What is the cost of insert and deleteMin?

* Unsorted Array
o Insert at the end O(I) for Array, or at the front O(1) for LinkedList
o deleteMin: linear search O(n) + shift O(n) for Array. No shifting for LinkedList.
* Sorted Circular Array List

o Insert by binary search and shift O(n) Better data structure
o deleteMin: move front no shifting needed O(1)

e Sorted Linked List

o Insert by linear search O(n)
o deleteMin: remove front and update front to front->next O()

* Binary Search Tree
o Insert walk down to the leaf O(n).Tree is not balanced
o deleteMin: findMin and replace min with min’s right child. O(n). Tree not balanced

* AVL

o Insert: Go to the correct leaf node to insert O(log n) and rebalance O(1)
o deleteMin: Find left most node O(log n) delete and rebalance. O(1) 6

needed!!

Outline

@ 3. Heap

Heap has two properties

Heap Property:
All Children are larger

Structure Property:
Insist the tree has no “gaps”

* Where would be the min?

[S

* |s this a heap!?

Which ones are heap!?

Heap properties

* Where is the minimum item in a heap!
o At the root!

* What is the height h of a heap with n elements!?
o How many levels in this tree! L= h+|
o Total number of nodes n = 2*1-| (assuming perfect tree)
o h = O(log, n)

* FindMin is easy, how to insert, or deleteMin?

DeleteMin

* Step |:find the min

* Step 2:To preserve structure property who should fill the root?

o Hint: we do not want to shift O(n) times.
o The last node Is promoted as the root!

* Step 3:“Percolate down” to fix
o lo preserve heap property - all children is larger than itself
o Pick one: Swap data with its [smaller or larger] child

2

DeleteMin Example [l

Remove the min and fill the hole with the last child

“Percolate Down"” to fix the invariant:

B S

“Percolate down”

1 percolateDown(node) {

2 while (node.data is greater than either child) {
3 swap data with smaller child
4

5

}
}

23

“Percolate down” another example

What is the time complexity of percolate down!?

Insert

* Step |:To preserve structure property where to insert?
o Hint: we do not want to shift O(n) times.
o The the very end!

* Step 2: "Percolate up” to fix
o If my data is smaller than the parent’s, swap datal

“Percolate Up”

percolateUp(node) {
while (node.data is smaller than parent) {
swap data with parent

}

What is the time complexity of percolate up?

Percolate up another example

How to implement Heap?

Which option would you choose!?
* Option |:Use TreeNode with left/right references
* Option 2: Use array representation

Use array! Fill in array by level-order

28

Heap array

Fill in an array in level-order of the tree:
heap: ‘ A|lB|]C D|E|F|G]|H | J K L

h[0] h[1] h[2] h[3] h([4] h([5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14]

Outline

@ 3. Heap analysis

Recap

* Heap property
o Relationship between root and its children
o Relationship between siblings

* Structure property
o Complete binary tree

* Insert
o Where do you insert to satisfy the structure property?
o Percolate up or down to satisfy the heap property!?

Average Case Analysis: Insert to a heap with n nodes

* How many nodes ...
o In the last level?
o 2" to the last level?
o 3™ to the last level?

* What are the chances that the node just inserted eventually land ...
o On the last level?
o 2" to the last level?
o 3 to the last level?

o What is the number of comparisons for each case!?

* For average case, we pick a random value x
o /2 probability that we compare once
o /4 probability that we compare twice

Average Case Analysis: Insert to a heap with n nodes

* For average case, we pick a random value x to insert
o |/2 probabllity that we compare once
o |/4 probabllity that we compare twice
o |/8 probabllity that we compare 3 times
o Etc.

e Sum
o 12+ 204430844116+ 532 ... = Tpy =

Will this converge!

Average Case Analysis: Insert to a heap with n nodes

cLetZ =Y oz = 12+ 2/4+3/8+4/16+5/32 ..

*DivZby2: Z/2=1/4+2/8+3/16 +4/32+5/64 ...
e L —-7/2=S

e S=122+1/4+1/8+1/16+1/32 ...

*S-S/2=1/2

eS=1

e /=12

Constant time! What does this mean?

Outline

@ 3. Other possible operations of Heap

More operations to support
besides insert, findMin, deleteMin

Given a particular index i of the array

* increasePriority(i, newPriority)
o 1 has now higher priority

* decreasePriority(i, newPriority)
o | has low lower priority

* buildHeap(array)

o Where array Is unsorted elements

How would you implement them? Time complexity?

Increase/Decrease Priority Example

* Increase priority: Change 6 to 0

* Decrease priority: Change | to |5

37

Outline

3. Other possible operations of Heap
() 4. Building heap

Building heap: Simply use insert

The Easy Way. ..

I8 void buildHeap(int[] input) {

2 for (int i = 0; i < input.length; i++) {
3 insert(input[i]);
4
5

What is the time complexity?

39

Floyd’s algorithm

* Rather than insert and fix the heap one by one

* Insert all and fix all at once
o Input array itself is a heap to be fixed

* Example
o Input array = [22,33,10,4,5,6,90, 3,8, 12, |, | |]
o Note leaf nodes are already valid heap!

How to fix!?

Floyd’s algorithm

* Insert all and fix all at once
o Input array itself is a heap to be fixed
o Starting with a largest index node with children, percolate down!

void buildHeap(int[] input) {
for (1=size/2 - 1;i>=0;1i—-) {

percolateDown(1);

}

Floyd's buildHeap

Each highlighted node is a valid heap! Percolate down red nodes until at top

perc down reds

N
>

next level

Time Complexity of Floyd’s algorithm

* Is Floyd’s algorithm better?

void buildHeap(int[] input) {
for (1=size/2 - 1;i>=0;1—-) {

percolateDown(1);

}

}

void buildHeap(int[] input) {
for (int i = 0; i < input.length; i++) {
insert(input[i]);
}
}

A tighter worst-case analysis of Floyd’s algorithm

* How many nodes on the lowest level?
o n/2

* How many nodes on the 2" lowest level?
o n/4

* How many nodes in the 3" lowest level?
o N/8

* How many nodes in the 4th lowest level?
o n/l6

e Etc...

A tighter worst-case analysis of Floyd’s algorithm

* Max num percolation for nodes on the lowest level?
o 0

* Max num percolation for nodes on the 2" lowest level?

o |

* Max num percolation for nodes on the 3™ lowest level?
o2

* Max num percolation for nodes on the 4" lowest level?
o3

e Etc..

Putting it together.

A tighter worst-case analysis of Floyd’s algorithm

e Ixn4+2xn/8+3xn/l6+....=nS
e S-S/2

o Do coloring or telescoping to solve S

S=1

Floyd’s Algorithm is O(n) in the WORST case,

which is better than inserting one by one n times

Outline

3. Other possible operations of Heap
4. Building heap

@ 5. Heapsort

How to use heap to do sorting!?

* Treat input array as a complete binary tree
* Heapify using Floyd’s algorithm

e Call DeleteMin n times!

o Instead of actually removing,
keep the item on the back of
the unsorted array

* Use Max heap sort ascending order

