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1. Definition



Amortization Analysis

• a worst-case analysis of a a sequence of operations 

• Used to obtain a tighter bound on the average cost per operation in 
the sequence 
• Obtained by separately analyzing each operation in the sequence. 

How is it different from average case analysis?



Average case analysis measures expected 
runtime over ALL possible inputs
• Need some probability distribution on inputs (e.g., uniform random)

• 𝐸 𝑇 𝑛 = ∑inputs ! 𝑃 𝐼 ⋅ 𝑇 𝐼 ,	where 𝑇 𝐼 is the time for input 𝐼.
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“If I pick a random input, 
how long does the algorithm typically take?”



Amortization analysis measures average runtime 
per operation over a worst-case sequence of operations

• No probability needed
• Does NOT depend on the input 
• Used when

o Some operations are cheap (insert to an unsorted array)
o Other operation is expensive but less often (insert to a full array that needs resizing)
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“What is per-operation cost over a sequence of operations
when an expensive operation occurs only occasionally?”



Resizable Array Example

• Add operation in ArrayList
o If full, double the size of the array and copy 

existing elements over
• Array is doubled in 2nd, 3rd, and 5th step, 

copying 1, 2, and 4 elements respectively
• Time complexity of inserting n items?

o Worst case insert one item is O(n), thus 
inserting n items is O(n2) … is it?

• Tighter bound when considering doubling 
happens “once in a while”

Amortization analysis considers sequence of n operations!



Outline

1. Motivation
2. 3 Methods

1. Aggregate method
2. Banking method
3. Potential method



3 methods in amortization analysis

•Aggregate method: the total running time for a sequence 
of operations is analyzed. 
•Accounting (banker’s) method:
• Potential (physicist’s) method
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Aggregate method for resizable array
• Let ci be the cost of ith insertion
• Let di be the cost of doubling 

o Cost of copying existing elements
• Si be the array size 

• ci = di + 1 

T(n) = ∑!" 𝑐𝑖 = ∑!" 𝑑𝑖 + n = O(n) 



3 methods in amortization analysis

•Aggregate method
•Accounting (banker’s) method: “pay” for each operation in a 

way that “charges” money to inexpensive operation to later 
''pay'' for the expensive operation 
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Accounting method

• find a payment charged to each individual operation such that 
the total cost for seq of n operation ≤ sum of the n payments
• Let ci be the actual cost, c’i be the payment for ith insertion
• Balance bi = c’i – ci 

• Balance must stay non-negative for each step: bi ≥ 0 for all i
• Σ1≤i≤n ci ≤ Σ1≤i≤n c’i
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How much should we charge for each operation?

Sum of the lowest possible charges will be 
the bound for the time complexity 



Accounting method for resizeable array

• Σ1≤i≤n ci ≤ Σ1≤i≤n c’i , bi ≥ 0
• Assume it costs 1 unit to insert and 1 unit to copy
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How much should we charge for each operation?



Accounting method

• Charge 1 for each insert
• Charge 2 for each insert
• Charge 3 for each insert 
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What is the minimum charge needed per operation?



Intuition: Why charge 3 unit per insert?

Let m be the mth element inserting
• One unit is paid toward inserting m
• One unit is paid toward copying m
• One unit is paid toward copying one previously inserted element 
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We can further optimize by charging 1 unit for first insert 
and charging 3 units for all subsequent inserts

Amortized time complexity of inserting n elements ≤3n, 
thus O(n)



3 methods in amortization analysis

•Aggregate method
•Accounting (banker’s) method
• Potential (physicist’s) method: defines potential function 

where potential increases or decreases with each successive 
operation (but cannot be negative)
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Potential method

• Potential method associates credit/potential with the entire data 
structure
o Similar concept as “payment” in banker’s method

• The data structure represents prepaid work as "potential 
energy" that can later be released to pay for future operations.
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Potential method: defines potential for entire data structure

• Let ci be the ________ cost
• Di be the ________ of the data structure after ith operation
• 𝜙i (Di): ___________ that maps Di to a real number

o Represents potential of Di after ith operation
o Typically, 
o Need to ensure

• Amortized cost ai = actual cost of + change in potential by ith operation

• ∑"#$% 𝑎𝑖 = ∑"#$% 𝑐𝑖 + 𝜙n (Dn)
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Potential method: defines potential for entire data structure

• Let ci be the actual cost
• Di be the state of the data structure after ith operation
• 𝜙i (Di): Potential function that maps Di to a real number

o Represents potential of Di after ith operation
o Typically 𝜙0 (D0) = 0
o Need to ensure 𝜙n (Dn) ≥ 0

• Amortized cost ai = actual cost of + change in potential by ith operation
o ai = ci + {𝜙i (Di) - 𝜙i-1 (Di-1)}

• ∑%# 𝑎𝑖 = c1 + … cn-1+ 𝜙n (Dn) - 𝜙0 (D0) = ∑%# 𝑐𝑖 + 𝜙n (Dn)
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Potential method provides a formal proof that amortized cost 
of the upper bound for the actual cost



In potential method, 
figuring out the right potential function is the key

• Array resizing example
o Initially potential 𝜙0 is 0
o Good times: When there is enough capacity (N<M), insert 1
o Bad times: When full (N==M), double the capacity, copy M elements and insert 1.

• How much credit/potential do we need to save up during good times so 
that can use it during the bad times?
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We need to devise a potential function 
where credit increases during good times

- just enough to cover M potential energy drop during bad times   



Potential method for resizable array
• 𝜙i (Di): 2N – M 

o N is the number of elements and M is the capacity of the array
• ai = ci + {𝜙i (Di) - 𝜙i-1 (Di-1)}
• Case 1: no copying needed (N < M)

o What is ci? 
o After ith operation, N -> N +1, no change in M
o ai = ci + {2(N+1) – M} – {2(N) – M} = ? 

• Case 2: copying is needed (N == M, copying N elements)
o What is ci? 
o After ith operation, N -> N +1, M: N -> 2N
o ai = ci + {2(N+1) – 2M} – {2(N) – M}

   = ci + {2(N+1) – 2N} – {2(N) – N}
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Potential method for resizable array
• 𝜙i (Di):

o N is the number of elements and M is the capacity of the array
• ai = ci + {𝜙i (Di) - 𝜙i-1 (Di-1)}
• Phase 1: no copying needed (      <      )

o What is ci? 
o After ith operation,
o ai =

• Phase 2: copying is needed (      ==      )
o What is ci? 
o After ith operation, 
o ai =
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Practice!
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Ex 1: Stack with a multipop

• push(x) //Push x onto the stack
• x = pop() //Pop x from the top of the stack
• multipop(k)  Pop the k topmost elements off of the stack. 

o If the stack contains fewer than k items, pop the entire stack.
• Assume NO resizing is needed.
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What is the worst-case cost of each operation of stack?



Naïve approach

Costs:
• Push(): O(1)
• pop(): O(1)
• multipop(k):  O(min(n,k)), where n is the number of items on the stack

• For a sequence of m operations, the maximum height of the stack is m,  
thus the worst-case cost for any single operation is O(m)
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What is the amortized cost of each operation of stack?



Ex 2: Even more dynamic array

Let c be the capacity of the array. 
Let n be the number of actual list elements. 

• initialize(): create an empty list with capacity 2. (c = 2 and n = 0)
• append(): if c = n then grow(). Now insert the element into the table.
• pop(): if n = c /4 and c ≥ 4 then shrink(). Now erase the element from the table

Where
• grow() increases the capacity of the array from c to 2c ,
• shrink() decreases the capacity of the array from c to c /2.
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What is the amortized cost of append, pop, and initialize? 


