Amortization Analysis

Mikyung Han

Outline

@ |. Definition

Amortization Analysis

* a worst-case analysis of a a sequence of operations

* Used to obtain a tighter bound on the average cost per operation in
the sequence

* Obtained by separately analyzing each operation in the sequence.

How is it different from average case analysis?

Average case analysis measures expected
runtime over ALL possible inputs

* Need some probability distribution on inputs (e.g., uniform random)
 E[T(n)] = Zinputs P (I)-T(I), where T(I)is the time for input .

“If | pick a random input,

how long does the algorithm typically take?”

Amortization analysis measures average runtime
per operation over a worst-case sequence of operations

* No probability needed
* Does NOT depend on the input

* Used when
o Some operations are cheap (insert to an unsorted array)
o Other operation Is expensive but less often (insert to a full array that needs resizing)

“What is per-operation cost over a sequence of operations

when an expensive operation occurs only occasionally?”

Resizable Array Example

* Add operation in ArrayList

o If full, double the size of the array and copy rreese T
existing elements over
. . Insert 12
* Array is doubled in 2"d, 3rd, and 5% step,
copying |, 2,and 4 elements respectively
Insert 13

* Time complexity of inserting n items!?
o Worst case insert one item is O(n), thus neert 14
inserting n items is O(n?) ... is it!

* Tighter bound when considering doubling ... 15
happens “once in a while”

+-—+
111]

+-—+

+=—t-—4+

11112

+=—t——+

s i et STt

11111213 |

s s et
s et et S
111112)13|14]|
s St et S

s St ST R E S S S
|11112113|14|15] | | |
s Tt ST R E S S S

Amortization analysis considers sequence of n operations!

Outline

2. 3 Methods

. Aggregate method
2. Banking method
3. Potential method

3 methods in amortization analysis

* Aggregate method: the total running time for a sequence
of operations is analyzed.

Aggregate method for resizable array

* Let ¢, be the cost of it insertion *c. =d + |

* Let d; be the cost of doubling
o Cost of copying existing elements

* S, be the array size

+——+ i 1 2 3 4 5 6 7 8 910
Insert 11 |11|]

s s; 1 2 4 4 8 8 8 8 16 16

==t c; 1 2 3 1 5 1 1 1 9 1
Insert 12 |11]|12|

Fooket dij = i-1 if i-1 is a power of 2

+-—d——f——t——
Insert 13 |11]12]13] | 0 otherwise

+-—+——+-—+-—+

e s Tt it c; = i if i-1 is a power of 2

Insert 14 |11]12|13|14|
+-—+-—+-—+-—+
i S e e T e 2
Insert 15 |11|12]13)14)15|] | | |
+-—t——t——t——t——t——F——4——+

1 otherwise

T(n) =X1¢ =X1d; +n=0O(n)

3 methods in amortization analysis

* Accounting (banker’s) method:“pay” for each operation in a
way that “‘charges” money to inexpensive operation to later
"pay" for the expensive operation

Accounting method

* find a payment charged to each individual operation such that
the total cost for seq of n operation < sum of the n payments

* Let ¢, be the actual cost, c’; be the payment for it insertion
* Balance b, = c’. — ¢
* Balance must stay non-negative for each step: b, = 0 for all i

®*Yi<i<n Ci S Zi<i<y C7

How much should we charge for each operation?

Sum of the lowest possible charges will be
the bound for the time complexit

Accounting method for resizeable array

* 2i<i<h Cj < Yi<i<n ¢T3, b; =2 0

] =

* Assume it costs | unit to insert and | unit to copy

How much should we charge for each operation?

Accounting method

i 1 2 3 5 6 7 8 910
s;i 1 2 4 8 8 8 8 16 16
1 2 3 5 1

1 1 9 1

= s N

Ci

* Charge | for each insert

* Charge 2 for each insert

* Charge 3 for each insert

Insert 11

Insert 12

Insert 13

Insert 14

Insert 15

-t
111]12]

+=—t-—t

e i It St

|11112(13| |

e s et St

e i it St
|111]112|13|14|

e s i St

R et et ST R S S
|11112|13|14|15] | | |
e s et Tl T S S S

What is the minimum charge needed per operation?

Intuition:Why charge 3 unit per insert?

Let m be the mt" element inserting

* One unit is paid toward inserting m

* One unit is paid toward copying m

* One unit is paid toward copying one previously inserted element

We can further optimize by charging | unit for first insert
and charging 3 units for all subsequent inserts

Amortized time complexity of inserting n elements <3n,
thus O(n)

3 methods in amortization analysis

* Potential (physicist’s) method: defines potential function
where potential increases or decreases with each successive
operation (but cannot be negative)

Potential method

* Potential method associates credit/potential with the entire data
structure

o Similar concept as “payment” in banker's method

* The data structure represents prepaid work as "potential
energy" that can later be released to pay for future operations.

Potential method: defines potential for entire data structure

* Let ¢, be the cost
* D, be the of the data structure after i*" operation
* ;. (D): that maps D, to a real number

o Represents potential of Di after it" operation

o lypically,

o Need to ensure

* Amortized cost a, = actual cost of + change in potential by i*" operation

X0 ta; =X e+ ¢, (D)

Potential method: defines potential for entire data structure

* Let ¢, be the actual cost
* D, be the state of the data structure after it operation

* ¢, (D,): Potential function that maps D, to a real number
o Represents potential of Di after it" operation

o Typically ¢y (Dg) = 0
o Need to ensure ¢, (D) = 0

* Amortized cost a, = actual cost of + change in potential by i*" operation
0 3= ¢+ {¢ (D) - P (D))}
* Z?’ll a; = C TGt ¢n (Dn) B ¢0 (DO) = Z? C; + ¢n (Dn)

Potential method provides a formal proof that amortized cost

of the upper bound for the actual cost

In potential method,
figuring out the right potential function is the key

* Array resizing example
o Initially potential ¢qi1s O
o Good times:When there Is enough capacity (N<M), insert |
o Bad times:When full (N==M), double the capacity, copy M elements and insert |.

* How much credit/potential do we need to save up during good times so
that can use it during the bad times?

We need to devise a potential function

where credit increases during good times
- just enough to cover M potential energy drop during bad times

22

Potential method for resizable array
+ ¢, (D):2N - M

o N is the number of elements and M is the capacity of the array

*3;= ¢t {¢; (D) - ¢ (D)}
* Case |:no copying needed (N < M)

o What is ¢/
o After ith operation, N -> N + [, no change in M

oa=c+ {2(N+1) =M} - 2(N) - M} =7
* Case 2: copying is needed (N == M, copying N elements)

o What is ¢/
o After it operation, N -> N + [, M: N -> 2N
oa=c + {2(N+1)—2M} - 2(N) — M)

= ¢ + {2(N+1) — 2N} — {2(N) — N}

Potential method for resizable array
* ¢; (D):

o N is the number of elements and M is the capacity of the array

*3;= ¢t {¢; (D) - ¢ (D)}
* Phase |:no copying needed (<)

o What is ¢!
o After it operation,

o dj —

* Phase 2: copying is needed (==)

o What is ¢!
o After i operation,

o di —

Practice!

Ex |:Stack with a multipop

* push(x) //Push x onto the stack
* x = pop() //Pop x from the top of the stack

* multipop(k) Pop the k topmost elements off of the stack.
o If the stack contains fewer than k items, pop the entire stack.

* Assume NO resizing is needed.

What is the worst-case cost of each operation of stack!?

27

Naive approach

Costs:

* Push(): O(1)

* pop(): O(l)

* multipop(k): O(min(n,k)), where n is the number of items on the stack

* For a sequence of m operations, the maximum height of the stack is m,
thus the worst-case cost for any single operation is O(m)

What is the amortized cost of each operation of stack?

28

Ex 2: Even more dynamic array

Let c be the capacity of the array.
Let n be the number of actual list elements.

* initialize(): create an empty list with capacity 2. (c =2 and n = 0)
* append(): if c = n then grow(). Now insert the element into the table.
* pop():if n = c /4 and c = 4 then shrink(). Now erase the element from the table

Where
* grow() increases the capacity of the array from c to 2c,
* shrink() decreases the capacity of the array from c to c /2.

What is the amortized cost of append, pop, and initialize?

29

